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CLIMATE FORECASTS FOR  
EARLY WARNING

Up to six months in advance

Simon J. Mason
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Ángel G. Muñoz

Summer shall come, and with her all delights,
But dead-cold winter must inhabit here still.

The Two Noble Kinsmen by John Fletcher / William Shakespeare

8.1 Introduction

Numerical weather prediction only became practically possible in the 1960s with 
the availability of sufficiently powerful computers. Prior to then, scientifically-based 
weather forecasting was based on statistical relationships informed by under-
standing of the physical processes of weather. Earlier still, weather lore,1 some of 
which has some scientific basis,2 has been used for centuries to make weather 
forecasts. However, the earliest record of a meteorological prediction is a seasonal 
climate forecast rather than a weather forecast. In the Epic of Gilgamesh, the god Ea 
warns Utnapishtim (more commonly known through the story of Noah, or Nûh 
ibn Lamech ibn Methuselah) of persistent torrential rain and a resulting flood. 
Utnapishtim successfully takes evasive action by constructing a boat (or ark) for 
himself and for the animals.

Warnings are only useful if they elicit an effective response, if they are clearly 
articulated and disseminated by mandated authorities, and are accepted as valid 
and actionable by the intended beneficiary community; budgets must be agreed, 
commodities moved to the area at risk, public communication campaigns 
developed, etc. (And, apparently, Utnapishtim was able to tick all those boxes.) 
All of these actions take time, and weather forecasts provide sufficient warning 
only to take limited action. If decision-makers could be provided with addi-
tional lead-time, they would be better able to organize an effective response.
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In Chapter 7, we showed that in most cases it is not possible to make useful 
weather forecasts much beyond a week (unless we have the prophetic gift of an 
Utnapishtim). Despite this limitation, forecasts are routinely available at longer 
ranges. How can that be? Surely the further into the future one tries to predict, 
the less accurate the forecast will be. A simple response is that it is not true; some-
times it is easier to predict the further into the future one looks, just as a doctor 
can more accurately predict the status of a patient’s cold two months hence (it will 
have passed) than its status in three days’ time. What will differ across the various 
timescales of predictions are their accuracy and specificity (Chapter 3, Figure 3.1 
and Box 8.1).

BOX 8.1  HOW DOES A SEASONAL CLIMATE FORECAST 
DIFFER FROM A WEATHER FORECAST?

A seasonal climate forecast is an indication of some aspect of the expected 
weather conditions aggregated over a period of between one and about six 
months, and typically starting a few weeks to a few months in the future. 
A typical seasonal climate forecast differs from a typical weather forecast in 
important ways (Table 8.1), although exceptions can be found. For example, 
while most seasonal forecasts are probabilistic, a few use intervals (e.g., 
predictions of tropical storm frequencies3).

TABLE 8.1 Differences between weather and seasonal climate forecasts

Characteristic Weather forecast Seasonal forecast

Specificity Specific timing  
and intensity

General frequency  
and intensity

Parameters Rainfall, max and  
min temperature, 
humidity, wind  
speed and direction, 
cloudiness

Rainfall, average 
temperature

Format Deterministic;  
prediction intervals  
for rainfall

Probabilistic

Precision Nearest °C;  
prediction intervals  
for rainfall  
and wind speed

3 categories (below, 
normal, above;  
Box 8.3)

Spatial resolution Individual locations Area-averages
Temporal resolution Hourly to daily 3–4 months
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In this chapter, we explore the potential value of seasonal climate forecasts to 
the health community. We begin by considering why the general weather condi-
tions over a season might be predictable, before examining how seasonal forecasts 
are made, and why they are presented in a different way to weather forecasts. We 
then examine where and when seasonal forecasts work best, and emphasize that it 
is possible to make useful seasonal forecasts for health outcomes only in some parts 
of the world and for certain times of the year (and possibly only for some years). We 
also review some of the main sources of seasonal forecasts.

8.2 How do forecasters predict the next few months?

When preparations for the 2014 World Cup soccer tournament were underway, 
concern was raised about the possibility of a dengue epidemic impacting the games, 
which were being held in cities across Brazil. A dengue early warning system was 
created that was driven by seasonal forecasts and predictions were made for each 
participating city.5 How did this forecast differ from a prediction based on weather 
forecasts, and how was such a forecast even possible?

Consider a ‘Spot the Ball’ puzzle. Such puzzles are common in newspapers such 
as the New York Times.i They involve a photograph of a soccer (or other sports) 
match, but the ball has been removed. The problem is to estimate exactly where 
the ball should be. That question is analogous to estimating what the weather 
conditions are like at this moment, given the available observations. Now try esti-
mating where the ball will be in ten seconds’ time, or two minutes’ time. We may 
be able to estimate where the ball will be in a few seconds’ time if we know where 
it is now, but in two minutes’ time the ball could be virtually anywhere, regardless 
of which is the better team. Although we cannot predict where the ball will be 
more than a few seconds into the future, it may well be possible to predict who 
will win the match, or who will win the tournament. For that, we need to know 
which is the better team. Analogously, estimating the current weather conditions 

Characteristic Weather forecast Seasonal forecast

Skill (Box 7.4) High Moderate at best,  
often non-existent

Areas of greatest skill Extratropics Tropics
Source of skill Initial conditions Boundary conditions

The lack of skill in most seasonal forecasts is reflected in the forecast probabilities, 
which rarely differ from climatological probabilities by much. However, there are 
also some problems with the reliability of many seasonal forecasts4 (§ 8.4), and 
so the probabilities may not provide a good indication of the uncertainty.

TABLE 8.1 (Continued)
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(where the ball is now) is very difficult, and the weather is predictable only a short 
way into the future (where the ball will be in a few seconds’ time). Nevertheless, 
it may be possible to predict  the general weather conditions over the next few 
months without knowing what the weather will be like at any given time (similar 
to predicting the final outcome of the soccer match, but not when the goals will 
be scored).

Forecasts far beyond one week are sometimes possible if forecasters do not try 
to predict the weather at any specific time, but instead try to predict the general 
weather conditions over a prolonged period. For example, a forecast of generic 
weather conditions over the next few months might consider the question 
of whether there will be many storms – as opposed to, when will specific storms 
occur? In general, the further into the future the forecast is projected, the longer 
the period over which the predicted weather conditions are aggregated: typically 
about one-to-two weeks in the case of sub-seasonal forecasts (Box 7.2); one to four 
months in the case of seasonal forecasts (Box 8.1); or ten to 30 years in the case of 
longer-range projections and scenarios (Chapter 9). These aggregated weather con-
ditions describe the climate (Box 4.1), and the reasons why scientists can predict the 
climate are not the same as the reasons why they can predict the weather. Similarly, 
the reasons why scientists can predict the climate over the next few months are not 
the same as why they can predict the climate decades into the future. Timescales of 
weather and climate variability, their causes and sources of uncertainty are described 
in Chapter 5, Table 5.1.

8.2.1 Why is the seasonal climate (sometimes) predictable?

As discussed in § 5.3.5, differences in climate from year-to-year can be substantial. 
An unusually wet season will occur if there is an excess number of rainfall-producing 
weather events, and/or they are more intense or persistent. Much of these 
year-to-year differences are completely random, and it is only possible to forecast 
the individual events at weather timescales. In some cases, however, there may be a 
reason why the weather behaves unusually. Perhaps the most clear-cut case is after 
a large volcanic eruption: large amounts of dust many kilometres up can block out 
the sun and so parts of the globe may cool down noticeably for possibly two years 
or even longer after the severest eruptions (§ 5.4.2.1). Such large volcanic erup-
tions are rare and unpredictable, and so their effects can only be predicted after 
the eruption has occurred. If seasonal forecasts are to be made more regularly than 
only after volcanic eruptions, other influences on the weather must be sought.

The key to predicting seasonal climate conditions was noted in Chapters 4 
and 5: the air is heated by Earth’s surface rather than directly by the sun, and so 
prolonged unusual conditions at the surface will have a (possibly predictable) effect 
on the climate. Earth’s surface consists of sea and other water bodies, land and 
snow/ice, each of which provides some level of seasonal predictability.6 Collectively, 
these surface conditions are called the boundary forcings. The mechanisms involved 
are discussed in the following subsections.
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8.2.1.1 The oceans

Sea-surface temperatures are the most important source of predictability of seasonal 
climate7,8 because:

• Most (70%) of Earth’s surface is sea.
• Sea temperatures change much more slowly than air temperatures, and they 

can therefore have a prolonged effect on the weather.
• The main predictable effect on the air is through changes in humidity rath-

er than changes in temperature, and the oceans are the primary source of 
 moisture.

If the sea is unusually hot or cold, sea temperature anomalies may last weeks or 
months9 because it takes so much energy to heat up and cool down water (§ 5.2.3). 
Air heats up and cools down much more easily than water, and so air temperatures 
adjust to sea temperatures much more quickly than vice versa. Therefore, sea-surface 
temperature anomalies can cause large and prolonged changes in evaporation and 
heating or cooling of the overlying air. Changes in evaporation are important not 
only because of how much water is available for making rain, but because of the 
latent heat in the water vapour (§ 4.2.8.1).10

The effect of sea-surface temperature anomalies is strongest in the tropics where 
the sea is hottest because the amount of moisture that the air can hold is more 
sensitive when the air is hot than when it is cold (§ 4.2.1). Therefore, a 1 ° increase 
in sea temperature in a hot sea can result in a much larger increase in evaporation 
than can a similar increase in sea temperature in a colder place. How then do 
sea-surface temperatures in different areas of the oceans affect climate?

8.2.1.1.1 Tropical Pacific Ocean

Variability in tropical Pacific sea-surface temperatures is dominated by the El 
Niño – Southern Oscillation (ENSO; Box 5.1). The ENSO is the main reason 
why seasonal forecasts are possible, because it has a stronger influence on temporal 
variability in climate at seasonal scales than anything other than the cycle of summer 
and winter (§ 5.3.3). The development of a numerical model in the 1980s that 
could predict ENSO events a few months in advance was based on the physics of 
how wind patterns and ocean currents in the equatorial Pacific Ocean affect each 
other.11,12 The success of this model in forecasting the 1988 El Niño was a major 
stimulus for promoting widespread interest in operational seasonal forecasting, and 
the motivation for the creation of what is now the International Research Institute 
for Climate and Society (IRI).13 Prior to then, forecasts were developed in only a 
handful of countries (§ 8.2.2).

Over the equatorial Pacific itself, areas of prolonged heavy rain preferentially 
occur over the warmest part of the ocean, and so these areas may shift thousands of 
kilometres between El Niño, neutral and La Niña episodes. Because Pacific Ocean 
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sea temperatures near the equator are the highest in the world, the convective 
rainfall (§ 4.2.2) here is particularly heavy and widespread, such that the rainstorms 
are large and violent enough to affect weather patterns elsewhere. The ENSO can 
therefore affect climate in areas well beyond the equatorial Pacific, and so El Niño 
and La Niña are often used to predict seasonal climate anomalies in areas that do 
not even border the Pacific Ocean. These remote effects – or teleconnections – occur 
partly because weather patterns around the world respond to the shifts in weather 
patterns over the equatorial Pacific itself (for example, over southern parts of North 
America). Remote effects can also occur because some of these changes in weather 
patterns can disrupt wind patterns over the oceans, which changes the sea temper-
atures there (for example, over eastern and southern Africa because of changes in 
the tropical Indian Ocean.

8.2.1.1.2 Tropical Atlantic Ocean

The Atlantic Ocean does experience an El Niño-like phenomenon, called the 
Atlantic Equatorial Mode.14 The warming events, Atlantic Niños, can cause drought 
in the Sahel and increased rainfall along the Gulf of Guinea. However, Atlantic 
Niños are able to develop only to about half the strength and persistence of those 
in the Pacific because the Atlantic is so much narrower.

Of greater importance for predicting seasonal climate than Atlantic Niños is the 
difference in temperature between the North and South Atlantic Ocean. Variations 
in the difference in sea-surface temperature across the tropical Atlantic have 
important implications for rainfall over much of West Africa and Northeast Brazil. 
On a larger-scale the north–south contrast in sea-surface temperatures throughout 
the Atlantic Ocean and beyond contribute to climate variability at decadal scales 
over areas such as West and North Africa and India.15

8.2.1.1.3 Tropical Indian Ocean

Sea-surface temperature variability in the Indian Ocean is weaker than in the 
Pacific and Atlantic Oceans, in part because of its size, but primarily because of 
the influence of the South Asian land-mass in the Northern Indian Ocean. The 
land-sea contrast and its alternation between summer and winter (§ 5.2.3) domi-
nate the mechanisms of climate in the Indian Ocean, whereas in the Pacific and, to 
a lesser extent, the Atlantic, there is less interference from the land. An important 
exception in the Indian Ocean is the so-called Dipole, which describes variability 
in the difference between western and eastern equatorial Indian Ocean sea-surface 
temperatures.16 Although the two sides of the ocean vary independently of each 
other, the name Indian Ocean Dipole has become standard. The Dipole, and the 
tropical Indian Ocean more generally, have important effects on climate over parts 
of Australia and East and Southern Africa, and play an important role in how El 
Niño affects some areas beyond the Pacific.17
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8.2.1.1.4 Extratropical oceans

In the tropics, sea-surface temperature anomalies have an impact on the climate 
primarily because of large changes in evaporation; in the extratropics the impact 
on changes in air temperature and air pressure may be more important than on 
evaporation. The changes in air temperature and air pressure can affect storm 
tracks, intensities and frequencies, because of effects of the temperature and 
pressure gradients on the jet streams (§ 4.2.8.2).8 Similar effects occur at the sea-ice 
boundary: the retreat of sea-ice through warming may therefore have important 
effects on climate in the mid- and high-latitudes.18

8.2.1.2 The land

While changes in tropical sea-surface temperatures are the main reason why 
forecasters can predict the general weather conditions over the next few months, 
land and ice/snow conditions should not be completely ignored (§ 5.2.7). For 
example, after an unusually dry period, the land surface may dry up, and in 
the summer months it can be heated to unusually high temperatures (a larger 
proportion of the sun’s energy is used to increase the temperature rather than to 
heat and evaporate soil, plant and surface water). The resultant hot dry air provides 
a basis for predicting heat waves in places such as Europe19,20 and South Asia.21 
However, a dry land-surface is usually insufficient in itself to provide a strong basis 
for seasonal forecasts. Instead it may act to reinforce effects of sea-surface temper-
ature anomalies, as was the case in the US Dust Bowl of the 1930s,22 for example.

8.2.1.3 Snow and ice

Like land temperature and soil moisture, ice and snow cover have some predictable 
influences on the weather at seasonal timescales. You may need to wear sunglasses 
after snow because it acts like a mirror, reflecting the sunlight into your face and 
back into space. Because this sunlight is reflected rather than absorbed, there is less 
heating of the surface than if there were no snow or ice, and so the overlying air 
is not heated much. This cooling can result in more snow or freezing, even more 
sunlight is then reflected, and further cooling occurs. This albedo effect (§ 4.2.7) is 
important at multi-year timescales (see Chapter 9), but less so in seasonal forecasting, 
partly because the year-to-year differences are rather small and only a small pro-
portion of the Earth is covered in ice and snow. However, year-to-year differences 
can be useful in predicting spring snow-melt in places such as California. Similarly, 
unusually heavy snowfall over the Himalayas in winter can slow the summer heating 
of inland South Asia, and thus weaken the summer monsoon (See Box 7.3).

8.2.2 How are seasonal forecasts made?

The principle behind seasonal forecasting is to predict how unusual conditions at 
Earth’s surface (detailed in § 8.2.1) might affect the persistence, frequency and/or 
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intensity of certain weather types (such as rainstorms). The effects of Earth’s surface 
on the seasonal climate are most likely to be detectable if: a) the influence on the 
overlying air is strong (as is likely in the tropics given large sea-surface temperature 
anomalies); and b) if this boundary forcing persists for a long period. The target period 
(Box 7.1) must therefore not be too short lest individual weather events, which are 
unpredictable, mask the effects of the boundary forcing; but the target period must 
not be too long, lest those surface conditions change unpredictably. Because of these 
constraints, in practice, seasonal forecasts are rarely made for periods of less than 
two or three months, and generally for not much longer than four or five months.

The effects of boundary forcing on the climate are modelled using one of two 
approaches, but in both cases the starting point is with observations of Earth’s surface. 
In contrast, the starting point for weather forecasting is with observations of the 
initial conditions (§ 7.4). One of the approaches to seasonal forecasting – empirical 
modelling – effectively addresses the question of how similar boundary conditions in 
the past have affected climate. The other approach – dynamical modelling – considers 
how, in principle, the current boundary forcings might affect the climate.

8.2.2.1 Empirical prediction

Some early, and pre-scientific, methods of seasonal forecasting were based on 
observations that some climate anomalies seemed to be pre-figured by other 
climate anomalies or unusual occurrences in nature. Who has not asked questions 
such as whether we can anticipate an unusually hot summer given the dry winter 
or abundant spring blossoms we may have just experienced, or whether the coming 
wet season will be delayed given the cold winds of the last few weeks? Unfortunately, 
few of these types of observations provide any robust basis for forecasting, and they 
are often highly subjective.

With our improved understanding of how climate operates, empirical 
relation ships between anomalous surface conditions and subsequent climate, when 
supported by theoretical considerations, can be used with confidence as a basis for 
making forecasts. The commonest approach is to use some form of regression or 
classification procedure to relate observations of sea-surface temperature anomalies, 
including those associated with El Niño and La Niña (Box 5.1), with climate 
anomalies over the following few months. A simple example, might consider how 
climate has been affected by episodes of El Niño conditions in the past. Depending 
on the sophistication of the statistical model used, sea-surface temperatures in areas 
beyond the equatorial Pacific may also be considered, as well as observations of 
other boundary forcings (§ 8.2.1). In fact, the first such model was developed in 
1886 to forecast the Indian monsoon, and was based purely on observations of 
Himalayan snowfall.6 However, it took almost 100 years before empirical models 
became more widely adopted. They are used extensively today by many countries 
to make their national seasonal forecasts, most of which are based on sea-surface 
temperatures in various parts of the tropical oceans.
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8.2.2.2 Dynamical prediction

The second approach to seasonal forecasting is similar to the way in which weather 
forecasts are made (Chapter 7). Just as weather forecasting relies heavily on numerical 
models, so dynamical methods of seasonal forecasting use climate models. In many 
respects, a climate model is virtually identical to a numerical weather prediction 
model (NWP; see Box 8.2), and so the forecasting procedure follows the same 
steps as for weather prediction: observation, analysis, initialization, integration and 
post-processing. The details of each of these steps depend on the complexity of how 
Earth’s surface is represented in the climate model (Box 8.2).

BOX 8.2 CLIMATE MODELS

A climate model is very similar to an NWP model (§  7.4). However, there 
are some differences between the two types of models; the most important 
one for the purposes of seasonal forecasts is that a climate model needs to 
have a reasonably realistic representation of conditions at Earth’s surface. In 
particular, some representation of the ocean is required, although the most 
sophisticated models also include ice and land-surface components. Given the 
importance of sea-surface temperatures in seasonal forecasting (§ 8.2.1) only 
the representation of the oceans is discussed here.

There are different ways of representing the oceans in a climate model, 
ranging in complexity from simply specifying the surface conditions, to model-
ling the ocean in a similar way to modelling the atmosphere. A key distinction 
is whether or not the surface conditions are predicted independently of mak-
ing the seasonal climate forecast, or whether the two are predicted together. If 
the surface conditions are predicted first a two-tiered forecast system is used; 
if the surface conditions are predicted as part of the climate forecasting step 
then a one-tiered system is used.

Two-tiered systems

In a two-tiered forecast system the sea-surface temperatures are predicted 
first, and then these predicted temperatures are prescribed when making 
the seasonal forecast.23 The sea temperatures may be predicted as simply as 
by persisting the current anomalies over the next few months, or gradually 
damping them towards average.24 Despite their simplicity, it is difficult to pro-
duce forecasts that are a lot more accurate than such procedures for about the 
first three months. For predicting further than three months, more sophisti-
cated forecasts of sea-surface temperatures are required. These forecasts can 
be made either by empirical procedures or by running dynamical models of 
the oceans. One problem with two-tiered forecasting is that the oceans are 
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8.2.2.2.1 Observation

With a seasonal forecast, the critical problem is not so much to get the initial atmos-
pheric conditions correct (since those will be lost after the first week or two of 
the forecast), but instead to get the boundary conditions and their effects correct. To a 
reasonable approximation the boundary conditions are a mathematical representation 
of the boundary forcings described above. Observations of Earth’s surface are there-
fore required, and most notably of sea-surface temperatures.

With the advent of the satellite era, estimates of sea-surface temperatures over 
the global oceans have become available. These estimates do not have the same 
problems as do the satellite estimates of land-surface temperatures (§ 6.3.2.2) except 
in the presence of persistent cloud. To calibrate and supplement the satellite meas-
urements, arrays of moored buoys have been implemented in the most important 
areas of the oceans. The Tropical Atmosphere Ocean (TAO) / Triangle Trans Ocean 
Buoy Network (TRITON) array is in the Pacific Ocean,26 and was motivated by 
a failure in 1982 to recognize that the largest El Niño then on record was devel-
oping. Similar arrays have been implemented in the tropical Atlantic27 and Indian28 
Oceans. The moored arrays are supplemented by a set of drifting buoys with other 
automated instruments.

The various instruments measure more than just sea-surface temperatures; 
they also take weather observations (winds, atmospheric pressure, etc.; § 6.3.1.1), 
and measure ocean currents and salinity down to 500 m or more beneath the sur-
face. These additional measurements are important for initializing ocean models 

allowed to affect the atmosphere, but changes in wind and temperature, etc., 
are not able to affect the oceans adequately (§ 8.2.1.1). Some climate mod-
els incorporate very simple models of the oceans, perhaps allowing changes 
in temperature and evaporation, but not having ocean currents. However, if 
seasonal forecasts are to consider the development of phenomena such as El 
Niño and La Niña then a proper ocean model is required.

One-tiered systems

One tiered forecasting systems use ‘coupled models’,25 i.e., a model for predicting 
the atmosphere is run together with a model for the ocean. The ocean models 
need to be run at higher spatial resolution than the atmosphere because of 
the importance of small-scale features in the circulation of the oceans. This 
requirement, together with the importance of initializing the ocean model 
(§ 8.2.2), means that forecasting with coupled models requires some of the 
most powerful computers in the world. Only a few of the Global Producing 
Centres (§ 8.3.1) are able to run such models.
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(Box 8.2), and provide essential information if seasonal forecasts beyond about 
three months are required. Because of their remoteness, maintenance of the 
moored buoys is difficult and so data gaps can last weeks if they stop transmitting. 
The buoys are frequently targets of vandalism and theft, especially those near 
South America, The resulting data gaps can create problems for forecasting and 
monitoring.

Observations of sea-ice and land-surface conditions (primarily soil moisture 
and snow cover) have received far less attention for seasonal forecasting than have 
observations of the oceans. Soil moisture is still poorly measured and is rather esti-
mated from rainfall and soil properties. Snow and ice can be measured by satellite, 
although it is much easier to measure extent than thickness. Because of the poor 
availability of data, and the relatively weak influence of soil moisture and snow 
and ice, such observations are used by only a few centres in operational seasonal 
forecasting.

8.2.2.2.2 Analysis

The analysis from weather forecasting can be used for seasonal forecasts, but an 
ocean analysis is also required if an ocean model is being used. The method for 
generating an ocean analysis is similar to that for the weather analysis, although the 
procedure is a little more complicated for the ocean, in part because of poorer data 
availability and because of the greater inertia in the oceans (winds can change much 
more easily than ocean currents). Because of the greater uncertainty in the state 
of the ocean compared to the atmosphere, multiple analyses are made; in contrast, 
a single atmospheric analysis is typically generated. These ocean analyses are then 
perturbed to produce an ensemble (Box 7.6).

8.2.2.2.3 Initialization

Regardless of the complexity of the climate model’s representation of Earth’s surface 
(Box 8.2), an ensemble approach (Box 7.6) is essential when forecasting seasonal 
climate using dynamical models. For weather forecasting, the generation of pertur-
bations in the initial conditions is a critical step because predicting the evolution of 
the current weather is the basis for skilful weather forecasts. For seasonal forecast-
ing, however, there is little pretence that the current weather conditions provide 
much useful information for predicting weeks and months into the future, and 
so simpler ensemble generation methods such as lagged averaging (Box 7.6) are 
widely used. In fact, until only a few years ago, the majority of forecasting centres 
did not attempt to initialize their models with recent observations of the weather 
at all.24 However, initializing a climate model using recent weather observations 
does become more important if a dynamical ocean model is being used (Box 8.2), 
or if a seamless prediction system is being operated.29 In a seamless prediction sys-
tem, weather, sub-seasonal and seasonal forecasts may all be made in one process.
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8.2.2.2.4 Integration

Seasonal forecasts are much more uncertain than weather forecasts, and if represent-
ing uncertainty is important in weather forecasting, it is even more so at seasonal 
timescales. In weather forecasting, the main sources of uncertainty are the initial 
conditions and the model errors. For seasonal forecasting, the model errors remain 
as a source of uncertainty, while the initial conditions are effectively forgotten after 
about two weeks, but an additional source of uncertainty is that Earth’s surface 
has only a limited effect on how the weather varies. As for weather forecasting, 
these sources of uncertainty can be addressed, at least in part, by appropriate use of 
ensembles (§ 7.4.4).

The uncertainty from the boundary forcing is addressed by using a large 
ensemble, but also by considering the forecast over a period of a few months rather 
than a shorter period of weeks. Thus, if the surface conditions are conducive to 
the formation of strong and frequent cyclones, for example, strong and frequent 
cyclones may be detectable because of the large sample size, even if the effect of the 
surface is weak. However, because of imperfections in climate models, the response 
to the boundary forcings may not be simulated adequately, and so a large sample 
of predictions from one model may not be helpful, and may even be misleading 
(spurious effects of the surface on climate could be simulated). A multi-model 
ensemble is therefore recommended. Multi-modelling is less important for weather 
forecasting, but has a clear advantage over a large single-model ensemble at seasonal 
and longer timescales.30

Because seasonal forecasting requires the models to be run much further into the 
future than for weather forecasting, climate models are typically run at a coarser res-
olution than for an NWP model. Running at high resolution can be prohibitively 
expensive. In numerical weather prediction, regional models are used widely to 
provide more detailed, and hopefully more accurate, forecasts at national or regional 
scale. Such downscaling models have not been widely used for seasonal forecasts, 
partly because of computational expense, and partly because of a lack of clearly 
demonstrated additional benefit over simpler, empirically-based downscaling 
methods31 (see further discussion in the Post-processing section below).

8.2.2.2.5 Post-processing

As implied in the previous discussion on model integration, one problem when 
running a climate model for many weeks is that there are differences between the 
climate of the model and the climate in the real world because of imperfections in 
the model. The predictions tend to drift fairly quickly towards the model’s climate 
and away from more realistic conditions. This problem of drift has been particularly 
severe for climate models that are coupled to dynamical ocean models, although 
major improvements have been made in the last few years.32

The simplest way to correct for problems of model drift is to express the forecast 
with reference to the model’s own (lead-time dependent) climate. For example, the 
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forecast may be presented as an anomaly compared to the model’s climatological 
average (as is widely performed for forecasts of ENSO), or probabilistic forecasts 
may be derived with reference to the model’s climatological terciles (Box 8.3). 
These procedures are widely adopted for global seasonal forecasts, but do not guar-
antee good reliability29 (see Box 7.4 for a technical definition of reliability). As a 
result, the forecast probabilities from many forecasting centres cannot be taken at 
face value, and have to be interpreted carefully using detailed diagnostics of model 
skill (see further discussion in § 8.4). This task of interpretation is difficult even for 
experts.

BOX 8.3 TERCILE FORECASTS

Because of the large uncertainties inherent in making seasonal forecasts, they 
are generally presented as probabilistic rather than as deterministic forecasts 
(Box 7.5). The most common predictands (Box 7.1) are three- or four-month 
rainfall accumulations, and average temperatures. The forecast indicates the 
probabilities that the accumulation or average for the predicted period will 
fall within pre-defined ranges. These pre-defined ranges, or categories, are 
derived by considering historical values from a recent 30-year climatological 
period (§ 4.3).

The most common practice is to define three categories. If, the rainfall is 
more than the 10th wettest within a 30-year climatology, that rainfall would 
be classified as ‘above-normal’, whereas if it is less than the 10th driest it 
would be classified as ‘below-normal’. If the rainfall is neither more than the 
tenth wettest, nor less than the tenth driest then it is classified as ‘normal’. 
An example is shown in Table 8.2, using the same rainfall data from Case 
Study 5.1, i.e., December–February rainfall over Botswana. (For simplicity, 
December 1980–February 1981 is listed as 1981.) The tenth wettest year was 
1994, with 300 mm. This threshold approximates the ‘upper tercile’; one-
third (i.e., ten) of the years had 300 mm or more. (There are various ways of 
calculating the terciles, and a more exact value is somewhere between that 
for 1981 and 1994.) Similarly, the tenth driest year was 2003 with 200 mm. 
This threshold approximates the lower tercile; one-third of the years had 
200 mm or less. Following this standard, there are equal numbers of years in 
each category.

Typically, the range of the ‘normal’ category is narrow, and so ‘above- 
normal’ and ‘below-normal’ may not be particularly extreme (see an additional 
example in Figure 4.5, where the ‘normal’ category is bounded by the two 
vertical dotted lines). In most cases, it is reasonable to interpret ‘normal’ as 
‘close-to-average’, although if the data are strongly positively skewed (as may 
be the case for rainfall in arid areas) it is possible for rainfall to be ‘above-normal’ 
and still be below-average. 
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TABLE 8.2 Country-averaged December–February rainfall accumulations for  
Botswana

Ordered by year Ordered by rainfall

Year Rainfall Category Year Rainfall Category

1981 326 A 1992 153 B

1982 162 B 2002 158 B
1983 163 B 1982 162 B
1984 174 B 1983 163 B
1985 222 N 2007 169 B
1986 214 N 1987 170 B
1987 170 B 1995 171 B
1988 330 A 1984 174 B
1989 354 A 1998 197 B
1990 219 N 2003 200 B
1991 268 N 2001 208 N
1992 153 B 2005 213 N
1993 223 N 1986 214 N
1994 300 A 1990 219 N
1995 171 B 1985 222 N
1996 342 A 2004 223 N
1997 320 A 1993 223 N
1998 197 B 1999 240 N
1999 240 N 2010 267 N
2000 439 A 1991 268 N
2001 208 N 1994 300 A
2002 158 B 1997 320 A
2003 200 B 2008 321 A
2004 223 N 2009 325 A
2005 213 N 1981 326 A
2006 416 A 1988 330 A
2007 169 B 1996 342 A
2008 321 A 1989 354 A
2009 325 A 2006 416 A
2010 267 N 2000 439 A

Data source: Climate Prediction Center Merged Analysis of Precipitation [CMAP]

An alternative way of addressing the problem of drift, and of model systematic 
errors more generally, is to apply some form of model output statistics (MOS) 
correction, similar to that applied in the post-processing step of numerical weather 
prediction (§ 7.4.5). Applying an MOS correction is effectively a hybrid approach 
combining empirical and dynamical prediction, and it can act as a downscaling 
method (i.e., a method of generating a more detailed forecast) in the same way as for 
weather forecasting. The main difficulty is sample size: seasonal forecasts are typically 
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updated about once per month instead of four times per day for weather forecasts. 
Forecasters can pretend to turn back the clock and make ‘forecasts’ for periods that 
are now in the past (hindcasts). However, even generating a reasonable number of 
hindcasts is difficult because of computational expense, but more so because of 
the unavailability of important observational data prior to both the installation of 
oceanic arrays (see the section on Observation) and the satellite era. Without these 
important observations the models cannot be initialized well. However, sample sizes 
of past forecasts are steadily growing, and post-processing schemes are becoming 
increasingly popular options for regional and national forecasting.33 If calibrated 
properly, the seasonal forecast probabilities are more reliable than model outputs 
that are adjusted only for errors in climatology. Unfortunately, this gain in reliability 
makes the forecasts look weak much of the time34 (although appropriately so).

Sample size problems are also an issue when combining predictions from mul-
tiple models. In theory one would expect that a better forecast could be obtained 
if the more skilful models were given greater consideration than the weaker ones. 
In practice, however, it is difficult to demonstrate that one model is unequivocally 
better than another given only a small number of forecasts. It is therefore hard to 
improve upon treating each model equally, although perhaps after selecting a subset 
of what appear to be the better models.

8.3 What seasonal forecasts are available?

Since the late-1990s, the World Meteorological Organization (WMO) has been 
facilitating and directing the establishment of a seasonal forecasting infrastructure 
to support countries around the world to make regular operational forecasts. The 
vision for this infrastructure is similar to that of the World Weather Watch (§ 6.2), 
and is now being implemented through the Global Framework for Climate Ser-
vices.35 The main components of this infrastructure are described in the following 
sub-sections.

8.3.1 Global Producing Centres of Long-Range Forecasts

In 2006, the WMO established a process for designating centres that produce global 
seasonal forecasts and that make these products available to countries for producing 
their own official forecasts. There are currently 13 of these Global Producing Cen-
tres of Long-Range Forecasts (GPCs),36,ii most of which provide a range of pub-
licly available forecast products. Their predictions are collected by the Lead-Centre 
for Multi-Model Ensembling,iii which produces multi-model predictions that are 
accessible by National Meteorological and Hydrological Services, and a few graph-
ical products that are accessible publicly.  These forecasts are updated monthly. As 
part of the designation process, a set of hindcasts has to be produced and verifi-
cation information must be provided to the Lead-Centre for Standardized Verifi-
cation System of Long-Range Forecasts.iv Most of this verification information is 
likely to be too technical for most purposes in public health work.
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Two additional centres provide global seasonal forecasts, but are not formally 
designated as GPCs: the Asia-Pacific Economic Cooperation (APEC) Climate 
Center (APCC), and the International Research Institute for Climate and Society 
(IRI). The APCC has played an important role in research on multi-model fore-
casting. It has recently been developing some experimental sub-seasonal forecast-
ing products (Box 7.2) that are available publicly. The IRI has a long history of 
producing multi-model seasonal forecasts, and is one of only a few centres that cal-
ibrates its forecasts in an effort to provide reliable forecast probabilities (Box 7.4). As 
well as a forecasting centre, the IRI is a World Health Organization Collaborating 
Center (USA 430) for early warning systems for malaria and other climate sensi-
tive diseases.v As such, the IRI engages in developing climate services for particular 
health issues – such as Zika virus transmission in the Americas (see Case Study 8.1).

CASE STUDY 8.1 UNDERSTANDING AND PREDICTING  
LATIN AEDES-BORNE DISEASES IN LATIN AMERICA  
AND THE CARIBBEAN USING CLIMATE INFORMATION
Madeleine C. Thomson and Ángel G. Muñoz, IRI, Columbia  
 University, New York, USA

The Zika virus (ZIKV), which emerged in Brazil in 2015 to devastating effects, 
is principally transmitted globally, and in Latin America and the Caribbean 
(LAC), by the container breeder mosquito Aedes aegypti. Aedes albopictus (the 
Tiger mosquito) is identified as a possible significant future vector because of 
its recent rapid spread.37 Both species also transmit dengue fever, chikungunya 
and yellow fever viruses, and other viral diseases making their presence in the 
region a significant public health concern.

Ae. aegypti is common in urban environments in the tropics and sub-trop-
ics. Its success comes from its preference for ovipositing in both natural and 
artificial water-filled receptacles, where the eggs can survive when the water 
contents fluctuate and regularly expose them to drying conditions.38 Although 
ZIKV transmission depends on several factors including human behaviour, 
temperature is a significant driver of the development rates of juvenile Aedes 
aegypti and Aedes albopictus and adult feeding/egg-laying cycles along with 
the length of extrinsic incubation period and viral replication of arbovirus-
es.39 Both drought and excess rainfall have been implicated in the creation of 
indoor and outdoor breeding sites for Aedes vectors of ZIKV and associated 
epidemics of dengue and chikungunya. Climate-based early warning systems 
for dengue, a related virus that is transmitted by the same vectors, have been 
suggested in different regions of the world.

The ZIKV epidemic that emerged in Brazil in 2015 occurred during a peri-
od of exceptionally high temperatures and drought in association with an El 
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8.3.2 Regional Climate Centres and Regional Climate  
Outlook Forums

Regional Climate Outlook Forums (RCOFs) were initiated in 1997 to promote 
the production of an authoritative seasonal forecast through regional consensus.43 
They have since been established in most regions of the world,44,45 and are an impor-
tant source of seasonal forecasts. The Forums themselves are intended as a means of 
interaction between forecast producers and users,46 and may serve as an opportunity 
for public health specialists to provide feedback on existing forecast products and 
their broader needs for climate services. In Southern Africa, the Malaria Outlook 
Forum (MALOF) was initiated by the health community after evidence emerged 
of the significant predictability of malaria incidence using climate information.47 
Instead of the malaria control managers attending the RCOF, members of the 
climate community participated in the preparatory malaria meeting, which was 
held immediately prior to the rainy season. At this meeting the seasonal climate 
forecast was integrated directly into the planning process for the coming malaria 
season.48 The MALOF was run successfully between 2004 and 2007, but was then 
discontinued when external donor funding dried up.

Niño event. However, the extreme climate anomalies observed in most parts 
of South America during the 2015 epidemic were not caused exclusively by 
El Niño or climate change, but by a combination of climate signals acting at 
multiple timescales.40

Aedes vectors can respond to both unusually dry and wet conditions (as 
they may switch from indoor domestic breeding sites to outdoor sites made 
temporarily available). This change in dominant breeding sites has implications 
for the development of control measures for wet or dry years. Given the im-
portance of climate’s year-to-year variability in determining ZIKV risk potential, 
an early warning prototype for environmental suitability of Aedes spp. disease 
transmission was developed using a basic reproduction number -R0- model,41 
combined with state-of-the-art seasonal forecasts from the North American  
Multi-Model Ensemble (NMME).42 Using this approach, probabilistic predic-
tions of above-normal, normal or below-normal potential risk of transmission 
for at least the following season (three months) are made. Such information 
is deemed useful for health practitioners and other decision-makers. The pre-
dictive capacity is highest for multiple countries in LAC during the Decem-
ber–February and March–May seasons and it is slightly lower – although still 
of potential use to decision-makers – for the rest of the year. It is important to 
emphasize that although it is possible at seasonal timescale to forecast suitable 
environmental conditions for transmission of Aedes-borne diseases, this does 
not mean that the actual transmission, or even epidemic events, are predicta-
ble with this type of forecast system.
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While also subject to fluctuating donor funds, the RCOFs have become 
a routine fixture in the annual climate services calendar. They are convened up 
to three times per year in a given region, but monthly updates to the seasonal 
forecasts are coordinated by Regional Climate Centres,vi and participating National 
Meteorological and Hydrological Services (NMHSs) are encouraged to update 
their own national forecasts.

There is broad diversity amongst the RCOFs, but all produce a standard seasonal 
forecast indicating probabilities of ‘below-normal’, ‘normal’ and ‘above-normal’ 
accumulated rainfall and/or average temperature (§ 4.3.3 and Box 8.3). The prob-
abilistic tercile-based formats have been justly criticized as being unnecessarily 
obtuse and of minimal relevance,44 but are likely to remain the staple output of the 
RCOFs for the foreseeable future. These forecasts may be of some value for indicat-
ing suitable climate conditions for supporting pathogens, pests and diseases (§ 7.2), 
but are unlikely to be good indicators of hazardous or inhospitable conditions. For 
example, even perfect seasonal forecasts of rainfall would still be poor indicators of 
flood risk because of a weak relationship between seasonally accumulated rainfall 
and flooding.49 A few of the RCOFs are attempting to address these limitations 
by developing experimental forecasts of extreme events.50 However, as discussed 
in § 8.4 the reliability (Box 7.4) of many of the RCOF forecasts is problematic, 
and rigorous skill assessments have yet to be published. Some of the RCOFs make 
archives of past forecasts available so that some assessment of their value in specific 
applications can be conducted.

8.3.3 National meteorological and hydrological services

In general, climate services in most countries are much less well-developed than 
weather services. This lack of capacity is being addressed by the Global Framework 
for Climate Services,35 but the capacity of many NMHSs to interact with public 
health specialists is likely to be limited, especially in developing countries. Never-
theless, most countries where there is some predictability of seasonal climate (see 
§ 8.4) have developed a seasonal forecasting capability through their participation 
in the RCOFs.

The WMO is promoting the production of national climate watches, along 
similar lines to weather alerts (§ 7.6.1). These watches will act as official national 
alerts of developing and expected hazardous climate conditions. As with the 
weather alerts, it is important to work with alerts from mandated government 
authorities. Standards for climate watches have yet to be set, but some countries 
have implemented systems already. The watches combine monitoring and forecast 
information, and are particularly useful for slow-onset hazards like drought.

8.3.4 Additional global products

The Global Seasonal Climate Updatevii is intended as a quarterly forecast and 
monitoring product that is coordinated by the WMO. The Update is not yet fully 
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operational, and is initially targeted at Regional Climate Centres and NMHSs to 
assist in the production of their own information products. However, the inten-
tion is for the Update to be of value to public users with global and regional-scale 
interests.

The idea for the Global Seasonal Climate Update emerged from interest in 
WMO’s El Niño/La Niña Updates. These Updates summarize the current status 
of the ENSO (see Box 5.1) and review the available predictions. Amongst other 
sources, the El Niño/La Niña Update draws from the Climate Prediction Center/
IRI joint ENSO Diagnostic Discussion. This information is updated monthly, and 
provides a comprehensive review of ENSO forecasts from around the world.

8.4 Do seasonal forecasts work well?

A key message when considering the possible value of seasonal forecasts is that, 
unlike weather forecasts, seasonal forecasts only work in some parts of the globe, 
for some times of the year, and even for some years. Whereas a weather fore-
cast should be available every day, seasonal forecasts may only provide indica-
tions of possible anomalous climate conditions occasionally. The reason for this 
intermittency is simple: in many places and for much of the time the climate is 
insufficiently affected by unusual conditions at Earth’s surface. Consider ENSO, 
for example, which is the primary reason seasonal forecasts are possible (§ 8.2.1). 
Despite its importance, ENSO affects less than a third of global land areas in a 
predictable way,51 and El Niño and La Niña episodes occur less than half the 
time. Therefore, just like volcanoes, ENSO (and other influences on the cli-
mate) provides a basis for making a seasonal forecast only sometimes. In addition, 
the frequency and intensity of El Niño and La Niña vary inter-decadally and 
inter-millennially,52,53 and the predictability of ENSO, and of climate variability in 
general, is relatively poor during the quiescent phases. We have been experiencing 
a relatively active phase of ENSO since the last few decades of the 20th century, 
but in the mid-20th century, ENSO variability was relatively weak, and some 
early operational seasonal forecasts performed poorly in this period. It is unclear 
how long this current active period, and therefore this period of good seasonal 
predictability, will last.

If seasonal forecasts do not work everywhere, where do they work? An indica-
tion is provided in Figure 8.1, which illustrates the skill (Box 7.4) of IRI’s seasonal 
forecasts over the last 20 years. Since the forecasts are in the standard probabilistic 
format (Box 8.3), measuring the skill in a simple manner is a non-trivial matter 
(Box 7.4). Figure 8.1 uses a measure that scores the forecasts well if the observed 
category had a high probability rather than only considering whether the cate-
gory with the highest probability occurred. Hence, if the observed category had a 
60% probability that forecast will score more highly than if the forecast probability 
was 50%.

The skill of the seasonal temperature forecasts (top) is notably higher than that 
for rainfall (bottom). (Note that the grey-scales are different for the two maps; the 
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FIGURE 8.1 A measure of value of IRI’s seasonal (three-month) average temperature 
(top) and accumulated rainfall (bottom) forecasts for 1997–2017. The value is estimat-
ed by calculating the percentage return on investments on IRI’s shortest lead-time 
probabilistic forecasts if paid out with fair odds.54 For temperature, the value is calcu-
lated using forecasts year-round, and the score is classified as ‘excellent’ (> 30%), ‘good’ 
(20–30%), ‘moderate’ (10–20%), ‘weak’ (1–10%) or ‘poor’ (< 1%). For rainfall, only the 
value for the highest-scoring season is shown, and the score is classified as ‘moderate’ 
(> 10%), ‘fair’ (5–10%), ‘weak’ (2.5–5%), ‘marginal’ (1–2.5%) or ‘poor’ (< 1%). Clima-
tological forecasts would score 0%.

online colour versions of the maps use consistent colours and so the difference in 
skill is easier to see.) This difference is actually under-represented by the maps since 
the skill for the temperature forecasts is calculated using forecasts throughout the 
year, whereas for rainfall the skill is shown only for the season that is easiest to fore-
cast. One reason why the temperature forecasts are much better than the seasonal 
forecasts is because of global warming. Above-normal temperatures have occurred 
far more frequently than below-normal over at least the last 20 years as a result of 
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global warming, and because the seasonal forecasts have been able to predict this 
ongoing trend, they have been scored well. The usefulness of such information is 
open to debate, and discussions about how best to communicate variability in tem-
perature from year-to-year rather than the longer-term trends would be beneficial.

The skill of the rainfall forecasts is generally poor partly because of the difficulty 
of predicting accumulated rainfall. At the weather forecasting timescale, it is harder 
to predict rainfall amount than occurrence (§ 7.5.2); this difficulty translates into 
the seasonal timescale. A simple principle is that it is easy to forecast (at all times-
cales) a meteorological parameter that is spatially coherent than one that is localized. 
Since rainfall intensity tends to be highly localized, whereas rainfall occurrence is 
more coherent, intensity is harder to predict. For the same reason, it may be possible 
to make more accurate forecasts of climate impacts, such as crop yields55 or disease  
incidence,47 directly from the drivers of climate variability rather than using the 
predicted climate per se. Perhaps regrettably, seasonal accumulations, rather than 
some other measure, continue to be the main predictand for seasonal rainfall fore-
casts. Some of the RCOFs are beginning to experiment with new seasonal forecast 
products such as numbers of wet-days and wetspells,46 but products of this nature 
are not yet part of standard practice.

One other strong message from Figure 8.1 is that, in general, seasonal forecasts 
work much better in the tropics than in the extratropics.56 This pattern is the oppo-
site of that for weather forecasts (Figure 7.1); weather forecasts work better in the 
extratropics than in the tropics. The better quality of the seasonal forecasts in the 
tropics is a result of the stronger effect of sea-surface temperatures there (§ 8.2.1).

The IRI’s forecasts are carefully calibrated, and so the forecast probabilities are 
broadly reliable.34 However, unfortunately, the same cannot be said of some of the 
RCOF and national forecasts,57 where there has been an ongoing problem in assign-
ing too much probability to the ‘normal’ category. That is not to say that these forecasts 
are unskilful, but only that care needs to be taken in interpreting the probabilities.

The health community has a strong focus on using evidence-based policies and 
practices. An evidence-based approach should also be taken when incorporating 
climate information into health decision-making. With increased knowledge about 
the way forecasts are made, their strengths and their limitations, we believe that the 
health community will be better placed to work with climate scientists to improve 
the transparency, relevance and quality of the information provided.

8.5 Conclusions

Seasonal climate forecasts are predictions of the general rather than the specific 
weather conditions of the coming few months. In contrast to weather forecasts, 
seasonal forecasts generally work better in the tropics than in the extratropics, but 
even in the tropics, seasonal forecasts are only useful intermittently, and there are 
many parts of the world where there is no skill at all. Most available operational 
seasonal forecasts may be of some value for indicating suitable climate conditions 
for supporting pathogens, pests and diseases, but further research is required to 



196 Simon J. Mason

assess their value as indicators of hazardous or inhospitable weather conditions over 
the coming few months. Despite their limitations, seasonal forecasts create a gap 
in forecast skill between the next few days and the next few months. This gap is 
being explored through research on sub-seasonal forecasting. There is another gap 
between seasonal forecasts and long-term climate change projections; timescales 
beyond seasonal are discussed in the subsequent chapter.

Notes

i https://www.nytimes.com/interactive/projects/spot-the-ball/2014/06/17.
ii A map is available online: www.wmo.int/pages/prog/wcp/wcasp/gpc/gpc.php.
iii https://www.wmolc.org/.
iv www.bom.gov.au/wmo/lrfvs/.
v http://apps.who.int/whocc/.
vi www.wmo.int/pages/prog/wcp/wcasp/rcc/rcc.php.
vii https://www.wmo.int/pages/prog/wcp/ccl/opace/opace3/documents/GSCU-Brief.pdf.
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