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Seasonal and longer-range forecasts

Simon J. Mason
International Research Institute for Climate and Society, Palisades, NY, USA

11.1 Introduction

As discussed in Chapter 1, verification procedures
should be tailored to the specific questions that are
being asked, and to the nature of the forecasts as
they are presented. Procedures for verifying sea-
sonal and longer-range forecasts need only differ
from those for shorter-range forecasts to the extent
that different questions about the quality and value
of the forecasts are asked, that data are available
to answer those questions, and that the forecasts
at the different timescales are presented in dissim-
ilar formats. In this regard, two key issues have to
be considered when performing verification analy-
ses on forecasts at these longer timescales: limited
sample size and low levels of predictability.

In most parts of the world seasonal forecasts were
initiated only in the 1990s or later, and are rarely
issued more frequently than once per month, and so
there are currently very few examples of operational
forecasts with more than about two decades of his-
tory. [Forecasts for the Indian monsoon, which were
started in the 1880s (Blanford, 1884), are a notable
exception.] Thus, sample sizes of seasonal forecasts
typically are highly limited, while at the longest
timescales there may not be any verifiable earlier
predictions at all. Although it may be possible to

generate hindcasts, it is often difficult to do this in a
way that does not introduce an element of artificial
skill (as discussed in Sections 1.4.2 and 11.3.1), and
so there is a danger of overestimating the quality of
the forecast system. In addition, generating the hind-
casts may not even be viable: in decadal forecast-
ing, for example, potential predictability is believed
to come largely from subsurface ocean conditions,
but observational data for initializing the models are
severely lacking prior to the 1990s. Even when there
is a history of forecasts and corresponding obser-
vations available, the quality of the forecasts over
this period is unlikely to have remained constant
because of model revisions and changes in obser-
vation accuracy. Consequently, verification results
will give an indication of the average performance
of the forecasts over the period of analysis, but will
not necessarily give an accurate indication of the
expected quality of subsequent predictions. The net
effect of this sample size problem is that uncertainty
estimates on measurements of the quality (or value)
of seasonal and longer-range forecasts are typically
large, and so assessing ‘skill’, whether against a
baseline or against a competing forecast system,
can be difficult (Tippett et al., 2005).

The second overriding consideration in the ver-
ification of seasonal and longer-range forecasts is
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that levels of predictability are almost invariably
much lower than those of weather forecasts. This
relatively poor predictability is an inherent part of
the climate system itself, but is compounded by the
fact that computational demands and poor availabil-
ity of observational data mean that the models used
to make predictions, and the initialization of such
models, are of weaker quality than for the weather
forecasting problem. By far the majority of veri-
fication analyses conducted to date have sought to
address the simple question of whether the forecasts
have any ‘skill’. As discussed in Section 11.3.1, this
question is often poorly posed: careful construction
of the verification question, and interpretation of the
results, may be required to avoid unnecessarily pes-
simistic conclusions about the potential usefulness
of some forecasts.

In this chapter the primary focus is on verifi-
cation of seasonal forecasts for the simple reason
that longer-range predictions almost invariably do
not have sufficient sample sizes to perform a ver-
ification analysis. However, that is not to say that
longer-range predictions cannot be evaluated at all,
and some guiding principles are provided in Section
11.5 at the end of this chapter. Before discussing

verification procedures for seasonal forecasts, the
most common forecast formats are briefly described
(Section 11.2) because the appropriate verification
options are constrained by the type of information
that is being communicated in the forecasts. What
constitutes ‘skill’ and ways of measuring it are re-
viewed in Section 11.3. In Section 11.4 some issues
regarding the verification of individual forecasts are
discussed.

11.2 Forecast formats

11.2.1 Deterministic and probabilistic
formats

Most seasonal forecasts fall into one of two
broad categories (Section 2.2): firstly, one or more
‘deterministic’ predictions of a seasonally averaged
or integrated meteorological variable (e.g., mean
temperature or total rainfall; Figure 11.1); and, sec-
ondly, a set of probabilities for the verification to
fall within each of two or more predefined ranges
(e.g. Figure 11.2). The deterministic forecasts are
most often statistical or dynamical model outputs,
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Figure 11.1 Example of a ‘deterministic’ seasonal prediction made in February 2011 using the ECHAM 4.5 model
(Roeckner et al. 1996). The prediction is expressed as the ensemble mean March–May 2011 temperature anomaly
with respect to the model’s 1971–2000 climatology. A full colour version of this figure can be found in the colour
plate section



P1: TIX/XYZ P2: ABC
JWST104-11 JWST104-Jolliffe September 19, 2011 10:8 Printer Name: Yet to Come

CH11 SEASONAL AND LONGER-RANGE FORECASTS 205

10S

EQ

10N

20N

30N

40N

50N

60N

70N

80N

50E 60E 70E 80E 90E 100E 110E 120E 130E 140E 150E 160E 170E 180 170W

40
35
25

25
35
40

40
35
25

25
35
40

25
35
40

25
35
40

25
35
40

D

D

Key
Percentage likelihood of:

A Above-normal Precipitation
N Near-normal Precipitation
B Below-normal Precipitation

White regions over land have
climatological probabilities

D Dry Season Masking

Probability (%) of Most Likely Category
Below-Normal

40 45 50 60 70

Normal

40

Above-Normal

40 45 50 60 70

Figure 11.2 Example of a ‘probabilistic’ seasonal prediction issued in February 2011 by the International Research
Institute for Climate and Society. The prediction shows the probabilities that the March–May 2011 precipitation
total will be in one of the three categories ‘above-normal’, ‘normal’ and ‘below-normal’, with these categories defined
using the terciles of March–May totals between 1971 and 2000. The probabilities of the most likely category are
shaded, but the probability for the normal category is constrained to a maximum of 40% based on prior verification
analyses. Probabilities for all three categories are only shown for large areas and for areas with relatively sharp
probabilities. The three horizontal bars are scaled by the corresponding forecast probability, and the thin vertical
line indicates the climatological probability of 33%. A full colour version of this figure can be found in the colour
plate section

and the predictand is usually expressed as a ‘best-
guess’ value on a continuous scale (van Oldenborgh
et al., 2005). This value may represent an area-
average, which is typically the case for dynamical
model outputs, or the forecast may be for a specific
location, such as a meteorological station. Other
seasonal forecast formats include counts, such as

hurricane frequencies (Owens and Landsea, 2003;
Vitart, 2006; Wang et al., 2009) or rain-day frequen-
cies (Moron et al., 2006; Robertson et al., 2009),
and dates, such as the onset of a rainfall season
(Moron et al., 2009). When a set of deterministic
forecasts is available, the ensemble mean is often
represented as the ‘best-guess’ forecast, and the
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uncertainty in the prediction is represented by some
measure of the ensemble spread, or the model out-
puts may be presented in the probabilistic format de-
scribed below. For statistical models, prediction in-
tervals can be used to represent the uncertainty in the
prediction.

The most common probabilistic format is for
three climatologically equiprobable categories to
be defined using a reference (‘climatological’) pe-
riod, and the probability that the verification will fall
within each of these categories is indicated (Livezey
and Timofeyeva, 2008; Barnston et al., 2010). Fore-
casts from the Regional Climate Outlook Forums
(RCOFs) are typical examples of such forecasts
(Ogallo et al., 2008), and this format is followed
closely by many national meteorological and hy-
drological services (NMHSs). However, examples
of climatologically unequal categories, and of the
use of more than three categories, are not uncom-
mon (Ward and Folland, 1991; Tippett and Barn-
ston, 2008). The Australian Bureau of Meteorology
(BoM) uses an equiprobable two-category system,
providing the probability that the forecast parame-
ter will be above- or below-median (Fawcett, 2008).
This two-category format is followed frequently in
climate change projections, where the proportion of
models indicating a change in one direction is in-
dicated; usually care is taken to communicate that
this proportion should not be taken as a forecast
probability.

11.2.2 Defining the predictand

For some forecasts it is not always clear whether
the forecast is for an area-average or is valid for all
specific locations. This problem is most common
where some subjective input has been introduced
into a probabilistic forecast. Since different results
can be realized depending upon how the forecast is
interpreted, this ambiguity is an undesirable prop-
erty. In such cases it may not be possible to verify
the predictand precisely as it has been defined, and
a new interpretation may need to be imposed. Rein-
terpretation of a forecast prior to verification may be
quite intentional even when there is no ambiguity.
For example, seasonal forecasts are often presented
as coarse spatial and temporal averages, which tend
to limit their usefulness because the predictand is

of little relevance in most practical settings (Vogel
and O’Brien, 2006; Hansen et al., 2011), but it is
perfectly valid to transform or reinterpret the fore-
cast to a variable of more direct interest, and then
verify the reinterpreted forecasts. While the verifi-
cation results would no longer necessarily indicate
whether or not the forecasts themselves are ‘good’
in Murphy’s (1993) ‘quality’ sense, they would indi-
cate whether or not the forecasts can be successfully
reinterpreted to be more directly useful for some
specific purpose. See Chapter 9 for a more detailed
discussion of measuring the potential usefulness of
forecasts.

11.2.3 Inclusion of climatological forecasts

Climatological forecasts are frequently issued in
seasonal and longer-range forecasts either because
of no skill or because of no signal for the current
target period. Climatological probabilities are an
explicit indication that each of the possible out-
comes is as likely to occur as it has done over the
climatological period, and they should be seen as
distinct from areas of no-forecast where no state-
ment is made about changed or unchanged probabil-
ities. Climatological forecasts are usually included
in verification analyses, but no-forecasts excluded.
However, if there are a large number of climatolog-
ical forecasts, these can dominate the verification
analyses, and the forecasts may score poorly be-
cause of the lack of sharpness (e.g., Wilks, 2000;
Wilks and Godfrey, 2002; Livezey and Timofeyeva,
2008; Barnston and Mason, 2011). While this poor
scoring is appropriate because the forecasts do not
contain much useful information, it can give the
impression that the occasional non-climatological
forecasts are not particularly useful. When compar-
ing forecasts (perhaps for another region or season,
or from another forecast system), the climatologi-
cal probabilities should be included in the analysis
because credit should be given for issuing sharper
forecasts if those forecasts contain potentially use-
ful information, while if they do not the forecasts
should score badly. However, if the objective is to
determine whether the forecasts are believable there
may be justification in omitting the climatological
forecasts.
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11.3 Measuring attributes of
forecast quality

As discussed in Section 1.1.2, the WMO’s Commis-
sion for Basic Systems (CBS) established a Stan-
dardized Verification System for Long-Range Fore-
casts (SVSLRF; World Meteorological Organiza-
tion, 1992) as part of a set of minimum require-
ments for qualification as a Global Producing Cen-
tre (GPC) for long-range forecasts. The SVSLRF
addresses verification requirements for determinis-
tic and probabilistic forecasts. The recommended
verification scores for deterministic forecasts are
based on the mean-squared error and its decompo-
sition into terms measuring conditional and uncon-
ditional biases and Pearson’s correlation (Chapters
2 and 5). The probabilistic procedures include reli-
ability and relative operating characteristics (ROC)
diagrams. All these procedures are discussed ex-
tensively in Chapters 3 to 5, 7 and 8, and so only
issues related to their specific application to sea-
sonal forecasts are discussed in this Chapter. The
WMO’s Commission for Climatology (CCl) guide-
lines for the verification of seasonal forecasts are tar-
geted exclusively at probabilistic forecasts (Mason,
2011). The CCl guidelines include considerable
overlap with the CBS guidelines for probabilis-
tic forecasts, and so again details of the proce-
dures are provided in Chapters 7 and 8. The aim
in this section and in Section 11.4 is to highlight
some of the peculiar issues in applying such ver-
ification procedures to seasonal and longer-range
forecasts.

11.3.1 Skill

As discussed in Chapter 1, there are many possi-
ble reasons for verifying seasonal and longer-range
forecasts. However, by far the most dominant ques-
tion in the verification of seasonal and longer-range
forecasts has been whether the forecasts have any
‘skill’. There are particular difficulties in addressing
this question with forecasts at these timescales, and
so the measurement of this attribute is considered in
detail here. Of course, other attributes are of inter-
est, and modellers in particular are often interested
in more detailed analyses that can reveal system-

atic errors in their models. Methods for identifying
conditional and unconditional errors are therefore
required, but one problem that often arises in veri-
fication of seasonal forecasts is that procedures are
often selected that measure multiple attributes of
forecast quality making the interpretation of the re-
sults difficult. It is argued in this section that pro-
cedures that measure individual attributes are to be
preferred.

The underlying objective in measuring the skill of
seasonal and longer-range forecasts against a naive
forecast strategy such as guessing or perpetual fore-
casts (always forecasting the same thing) is almost
invariably to answer the question of whether the
forecasts are worth considering. Unfortunately, this
question has often been poorly formulated, which
has resulted in frequent misinterpretation. Much of
the problem is that ‘skill’ is a vague attribute: as
discussed in Sections 1.4 and 2.7, skill is a relative
concept – a forecast has skill if it is better than an-
other set of forecasts. But better in what respect?
Skill requires reference to another attribute of fore-
cast quality, and this attribute is frequently left un-
defined. Instead, skill has often been imprecisely
interpreted as whether the forecasts have outscored
climatological forecasts or some other naive fore-
cast strategy without considering what attributes the
chosen score might be measuring. In seasonal fore-
casting, because of the weak levels of predictability
and suboptimal quality of prediction models, the
diagnosis of skill can generally be reduced to the
search for some potentially useful information. For
deterministic forecasts this interpretation translates
to a requirement that observed values should in-
crease and decrease at least to some degree with
the forecasts, while for probabilistic forecasts cate-
gories should verify more and less frequently as the
probability increases and decreases. Of course, the
forecasts are potentially useful if the observations
vary in the opposite direction to that implied by the
forecasts, and this possibility can be measured by
negative skill.

Given the limited sample sizes of operational
long-range forecasts, skill is often estimated us-
ing hindcasts to obtain larger samples. There are
a number of problems in trying to generate a set of
hindcasts that will give accurate indications of the
expected skill of operational forecasts, and these
problems are discussed separately below.
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When assessing the skill of seasonal forecasts re-
gardless of their format, trends in the data have to
be considered. Correlations, for example, between
two series that both contain trends are likely to be
non-zero, even if the year-to-year variability is not
successfully predicted. Similarly, probabilistic fore-
casts are likely to score well if the probabilities for
the category in the direction of trend are consis-
tently inflated. If trends are ignored, spurious fore-
casts may easily be falsely identified as being skil-
ful, while the quality of low-skill forecasts may be
exaggerated. It is often recommended that trends be
removed before any skill calculations, although an
argument could be made that the successful predic-
tion of a trend should at least be acknowledged. One
solution is to measure the skill of trend and inter-
annual components separately, and to quote both.
Another, related, solution is to consider presenting
the forecast with reference to a shorter and more re-
cent climatological period, which is likely to be of
more relevance to many user communities anyway
since it will focus the forecast on comparisons with
more readily remembered climate variability.

Skill of deterministic forecasts
By far the most commonly used skill measure for
deterministic forecasts is Pearson’s product moment
correlation coefficient. This coefficient is discussed
extensively in Section 5.4.4, and so is considered
only briefly here. Pearson’s correlation is implicitly
scaled as a skill score, with reference strategies of
perpetual forecasts and of random forecasts both
having expected scores of zero. Its distributional
properties for random forecasts are well known and
so it is possible to calculate statistical significance
analytically, and to estimate its sampling uncer-
tainty on condition that assumptions about inde-
pendence of the forecasts and the observations, and
of their respective distributions, are met. Pearson’s
correlation is a preferred measure of choice also
because of its wide use and hence familiarity, and
its relationship to the percentage of explained (or
predicted) variance, which provides it with a rea-
sonably intuitive interpretation.

A further feature of Pearson’s correlation is often
considered an advantage: it ignores conditional and
unconditional biases, which can be quite large in
seasonal forecasts derived from global dynamical

models, but which, in principle, should be easily
correctable given a sufficient sample of forecasts to
estimate the biases accurately. In practice, the cor-
relation and the biases are not typically independent
(DelSole and Shukla, 2010; Lee et al., 2010), but
the common variability that the correlation mea-
sures seems a reasonable minimum requirement for
forecasts to have some potentially useful informa-
tion: if observed values do not increase and decrease
with the forecasts at least to some extent then there
seems little reason to consider them.

As discussed in Chapter 5, there are a number
of problems with using Pearson’s correlation coef-
ficient as a skill measure. The interpretation of the
coefficient’s value is complicated by the fact that it
is a function not only of the potential skill of the
forecasts, but also of the precise distribution of the
data. An example is shown in Figure 5.5, which il-
lustrates that large Pearson correlations can result
from the influence of only a few extreme values.
Although this problem can be addressed to some
extent by calculating bootstrapped estimates of un-
certainty in the correlation, the problem remains that
the results can be misleading. Consider the exam-
ple shown in Figure 11.3, which compares a set of
forecasts and observations of January–March sea-
sonal rainfall totals for 1971–2000 for Kalbarri, in
Western Australia. The forecasts were calculated
as the mean of 85 ensemble members, each with
different initial conditions, using the ECHAM4.5
model (Roeckner et al., 1996), and have a correla-
tion with the observed rainfall of about 0.39 (90%
bootstrap confidence limits of 0.08 and 0.64). If the
three wettest years, which are not known a priori,
are omitted from the analysis the correlation drops
to 0.08 (−0.23 to 0.40). Is it to be concluded that
virtually all the skill is provided by only 10% of the
cases? What is clear is that the large bootstrap confi-
dence intervals need to be taken seriously, especially
when distributional assumptions are not strictly met,
and sample sizes are small. Much of the underlying
difficulty is that in small samples the most extreme
values can contribute much of the total variance.
In Figure 11.3, for example, the three wettest years
represent over 50% of the total variance (and the
wettest two years over 45% of the total), and so re-
gardless of the quality of the forecasts the score will
be heavily weighted by the forecasts on only a very
few of the observations.
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Figure 11.3 Forecasts and observations of January–
March seasonal rainfall totals for 1971–2000 for Kalbarri
in Western Australia (27◦42′43′ ′S, 114◦09′54′ ′E). The
forecasts were calculated as the mean of 85 ensemble
members, each with different initial conditions, using
the ECHAM4.5 model (Roeckner et al., 1996)

A difficulty with Pearson’s correlation is that
it imposes a stricter definition of ‘skill’ than the
requirement defined above that observed values
should increase and decrease with the forecasts.
Pearson’s correlation imposes the additional crite-
rion that the observed values should increase and
decrease by precisely defined amounts as the fore-
casts vary. Although a better set of forecasts will
predict more precise increases and decreases in the
observations than will a poorer set, if the objective
is to identify whether forecasts are potentially use-
ful, and if the predictability is inherently weak, the
weaker skill definition is likely to be more appro-
priate.

As argued in Section 5.4., it would be better still
not to use Pearson’s correlation at all in cases where
its assumptions are violated: the intuitive sense of
what constitutes a ‘good’ correlation that experi-
enced practitioners may have is largely irrelevant,
and even misleading, when the data are not normally
distributed. Instead, alternative measures of skill
should be considered, specifically Spearman’s and
Kendall’s correlations. These measures are better
suited to verification of variables with non-Gaussian
distributions, such as precipitation and the counts
and onset dates that were mentioned in Section

11.1. While Spearman’s is the more widely used
of the two correlations because of its close associ-
ation with Pearson’s correlation, the advantages of
Kendall’s τ are worthy of consideration. In addition
to the advantages listed in Section 5.4.6, Kendall’s τ

has an intuitive interpretation: Kendall’s τ (depend-
ing on how ties are handled, as discussed in the
following sub-section) can be transformed simply
to a scale ranging from 0 to 1 to represent the prob-
ability that the forecasts successfully discriminate
the larger value of any two observations (Mason and
Weigel, 2009). A second, related advantage is that
Kendall’s τ has close affinities to other widely used
verification measures such as the area beneath the
ROC curve (Chapters 2 and 7), as discussed in the
following subsection.

Skill of probabilistic forecasts
The most commonly used skill measure for prob-
abilistic forecasts is the ranked probability score
(RPS), and its skill score (RPSS; Sections 7.3.2
and 8.4.2), although the ignorance score (Sections
7.3.2 and 8.4.2) and similar information theory-
based scores are becoming increasingly popular. In
the context of objective forecasts, in which the fore-
cast probabilities are estimated by counting the pro-
portion of ensemble members predicting a value in
each of the categories, the RPSS is biased because
of reliability errors that result in turn from sam-
pling errors in estimating the forecast probabilities
given limited ensemble sizes (Section 8.4.3). Ad-
justments can be made to the score to remove this
source of bias, but such an option is not available
for subjectively derived probabilities. The need for
the correction points to one of the difficulties in in-
terpreting the RPS and its skill score: they measure
multiple attributes, and so forecasts can score im-
perfectly if the forecasts are good in some respects,
but poor in others. The RPS, Brier score, and ig-
norance score can each be decomposed into relia-
bility, resolution and uncertainty terms (see Chap-
ter 7 for further details), and in each case skill is
achieved if the resolution term is larger than the
reliability term. While this requirement for skill
may be meaningful in some contexts, it is unnec-
essarily strict when trying to identify whether fore-
casts might be potentially useful (Mason, 2004).
When verifying seasonal forecasts, which generally
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Table 11.1 Three idealized sets of seasonal forecasts for above-median rainfall, and
corresponding observations (1 indicates above-median and 0 indicates below-median),
with Brier score calculations for the base rate (50%) and for the three sets of forecasts

Forecasts Brier score

Year Observed I II III Base rate I II III

1 1 80% 60% 60% 0.25 0.04 0.16 0.16
2 1 80% 60% 60% 0.25 0.04 0.16 0.16
3 1 80% 60% 60% 0.25 0.04 0.16 0.16
4 0 80% 60% 40% 0.25 0.64 0.36 0.16
5 0 80% 60% 40% 0.25 0.64 0.36 0.16
6 0 20% 40% 40% 0.25 0.04 0.16 0.16
7 0 20% 40% 40% 0.25 0.04 0.16 0.16
8 0 20% 40% 40% 0.25 0.04 0.16 0.16
9 1 20% 40% 60% 0.25 0.64 0.36 0.16
10 1 20% 40% 60% 0.25 0.64 0.36 0.16

Average 0.25 0.28 0.24 0.16

suffer from overconfidence (i.e. poor reliability) and
weak resolution, skill scores can often be negative,
and there is then a danger of rejecting potentially
valuable forecasts as useless.

Consider an idealized example in which ten sea-
sonal rainfall forecasts are to be evaluated against
corresponding observations. For the sake of sim-
plicity it will be assumed that there are only two
equiprobable categories. In one set of ten fore-
casts (marked I) five of the ten forecasts indi-
cate an 80% probability of above-median rainfall,
while the remaining five indicate a 20% probability
(Table 11.1). Above-median rainfall occurs on 60%
(i.e. three out of five) of the occasions that the fore-
cast indicated an 80% probability, and on 40% (i.e.
two out of five) of the occasions that the forecast
indicated a 20% probability. The 80% forecasts cor-
rectly indicated an increase in the probability of
above-median rainfall, and the 20% forecasts cor-
rectly indicated a decrease, but did so (somewhat
typically for seasonal forecasts) overconfidently.
Brier score (Section 7.3.2) calculations are shown
in the Table (similar results are obtained using the
ignorance score), and the skill score is −0.12, which
suggests that the forecasts are worse than climato-
logical forecasts. If the forecasts had been perfectly
reliable (marked II), the score would naturally im-
prove despite there being no gain in resolution, and
the skill becomes marginally positive (0.04). Simi-

larly the skill can be raised by improving the resolu-
tion at the cost of reliability: for forecast set III the
forecasts are under-confident, but have maximum
resolution, which more than offsets the loss in relia-
bility (the Brier skill score is 0.36). The progression
in skill from set I to set III indicates that skill can
increase on this measure, but with no indication of
whether that is because reliability or resolution has
improved, and there is no guarantee that either of
these attributes has not deteriorated.

From a Brier and ignorance score perspective
forecast set I is worse than information only about
the base-rate, but to conclude that it would there-
fore be better not to have the forecasts at all is
surely incorrect: the forecasts successfully indicate
increased and decreased chances of above-median
rainfall. The problem with set I is that the reliabil-
ity errors are larger than the gain in resolution, but
because both components are being measured to-
gether the resolution may be missed unless the skill
is diagnosed carefully. Such difficulties in interpre-
tation result from the skill scores imposing an arbi-
trarily high maximum acceptable level of reliability
error for a given level of resolution. The situation
is somewhat analogous to that of Pearson’s corre-
lation, which requires the observations to increase
and decrease by precise amounts along with the
forecasts, rather than just to increase or decrease;
so also the reliability terms in the Brier and ranked
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probability skill scores require the predicted events
to be more and less frequent by precise amounts as
the forecast probability increases and decreases.

Although the previous examples illustrate that
when reliability is measured with resolution there
are difficulties in interpreting the result, the relia-
bility term cannot be completely ignored for now.
On its own the resolution term is not generally con-
sidered a satisfactory indication of skill: as long as
the observed relative frequency is much higher for
some forecast probabilities than for others the reso-
lution term of the Brier, RPS and ignorance scores
is large. In effect, the resolution term is measur-
ing whether the expected observation differs given
different forecasts, regardless of whether or not the
observations vary arbitrarily with the forecasts. Im-
posing the requirement that the observed relative
frequency should increase as the forecast probabil-
ity increases therefore seems quite reasonable.

The interpretation problems that can affect scores
that measure multiple attributes, or scores such as
the resolution score that have an unsatisfactorily
weak definition of skill arise only if such scores
are calculated in isolation: when accompanied by
analyses of reliability diagrams (Section 7.6.1), for
example, the scores can be valuable summaries, and
their decompositions can be informative. A primary
difficulty in measuring resolution and constructing
reliability diagrams for seasonal and longer-range
forecasts is the severe sample-size restriction. The
sampling errors in constructing the graph are likely
to be prohibitively large, at least for some of the
points (Section 7.6.1; Bröcker and Smith, 2007a).
One possible solution is to bin the forecasts into only
a few bins, although there is then likely to be a de-
terioration in skill (Stephenson et al., 2008b). Typ-
ically reliability diagrams can only be constructed
meaningfully by pooling forecasts over large ar-
eas. When pooling forecasts, corrections need to be
made for the effects of decreasing grid areas towards
the poles, either by sampling fewer grids at higher
latitudes (Wilks, 2000; Wilks and Godfrey, 2002) or
by weighting each grid by its area (Barnston et al.,
2010; Barnston and Mason, 2011).

A more widely adopted approach is to calculate
the frequency of hits only for the category with the
highest probability (e.g. Livezey and Timofeyeva,
2008). If one of two categories with tied highest
probabilities verifies, a half-hit is usually scored, or

a third-hit if one of three categories with tied highest
probabilities verifies. In some of the RCOFs a half-
hit is scored if the middle category has the highest
probability, and one of the outer categories veri-
fies, but the probability for that category is higher
than for the other extreme. Instead of redefining
the score, and thus complicating its interpretation,
a more detailed perspective of the resolution of the
forecasts could be obtained by calculating the fre-
quency of hits for the highest probability category,
but also calculating how often the category with the
second highest probability verifies, etc., through to
how often the category with the lowest probability
verifies.

A widespread criticism of seasonal forecasts is
that the sharpness of the forecasts is low (or over-
confident when sharpness is strong). A major prob-
lem with the frequency of hits is that it does not
consider sharpness at all. However, once the prob-
abilities themselves are considered it is difficult to
avoid mixing measurement of resolution and reli-
ability. As an alternative, measures of discrimina-
tion could be considered. Whereas resolution (in its
more strict sense defined earlier) indicates whether
the frequency of a category occurring increases or
decreases with its forecast probability, so discrim-
ination indicates whether the forecast probability
increases and decreases as the category increases
or decreases in frequency (see Chapter 2). As dis-
cussed below, although measures of discrimination
are insensitive to sharpness, they do at least consider
the rankings in the probabilities, but the analysis
is not complicated by consideration of reliability.
One other advantage of measuring discrimination
instead of resolution for typical seasonal forecast
formats is that it is easier to measure the conditional
distribution of the forecasts on the observations than
vice versa because there are usually only three pos-
sible outcomes (or very few) whereas there are many
possible forecast probabilities. Given small sample
sizes the sampling errors in the conditional distri-
bution of the forecasts are therefore likely to be
smaller than in the conditional distribution of the
observations.

The relative operating characteristics (ROC)
graph (Chapter 3), and the area beneath its curve,
are widely used measures of discrimination in sea-
sonal forecast verification, and these procedures are
explicitly recommended in the SVSLRF and in the
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CCl verification guidelines (Mason, 2011). As a
measure only of discrimination, the area beneath
the ROC curve is insensitive to some reliability er-
rors (Kharin and Zwiers, 2003; Glahn, 2004), which
may render it an inadequate summary measure of
forecast quality, but is a distinct advantage when
combined with measures of other attributes. Its in-
sensitivity to the overconfidence that is commonly
observed in seasonal forecasts makes the score use-
ful for identifying skill, and the graphs can be help-
ful in more detailed diagnoses of forecasts at these
timescales (Mason and Graham, 1999; Kharin and
Zwiers, 2003).

The ROC area is calculated under the assump-
tion of a two-category forecast system, and separate
ROC areas can be calculated for each of the cate-
gories. Since most probabilistic seasonal forecasts
have three or more categories, a generalized ver-
sion of the ROC area may be a useful summary of
the discriminatory power of the forecasts. This gen-
eralized discrimination score (Mason and Weigel,
2009) calculates the probability that given two ob-
servations the forecasts can successfully discrim-
inate the observation in the higher category. For
example, assuming that the predictand is rainfall,
what is the probability of successfully discriminat-
ing the wetter of two observations? In the classical
ROC, the test can be applied in a three-category
system, for example, to calculate the probability
that an above-normal observation could be success-
fully distinguished from an observation that was not
above-normal, but a separate test would have to be
conducted to distinguish normal and below-normal
observations. A normal and below-normal obser-
vation would therefore be treated as indistinguish-
able when the ROC test is applied to above-normal
events. In the generalized version of the test all the
categories can be distinguished.

The generalized discrimination score, D, can be
calculated as follows. Assume a forecast system
with m mutually exclusive and exhaustive categories
(i.e., each observation has to be in one and only
one of the categories). As mentioned, m typically
is 3, but regardless of how many, the categories are
ranked from lowest values (category 1) to highest
(category m). Each forecast is a vector of probabil-
ities, p, which consists of m probabilities, one for
each category, which must total to 1.0. Next assume
that category k verified nk times, and that the ith of

the nk vector of probabilities for when this category
verified is given by pk,i. The generalized discrimi-
nation score can be defined as

D =

m−1∑
k=1

m∑
l=k+1

nk∑
i=1

nl∑
j=1

I
(
pk,i , pl, j

)
m−1∑
k=1

m∑
l=k+1

nknl

(11.1)

where

I
(
pk,i , pl, j

) =
⎧⎨
⎩

0.0 if F
(
pk,i , pl, j

)
< 0.5

0.5 if F
(
pk,i , pl, j

) = 0.5
1.0 if F

(
pk,i , pl, j

)
> 0.5

(11.2)

and where

F
(
pk,i , pl, j

) =

m−1∑
r=1

m∑
s=r+1

pk,i (r ) pl, j (s)

1 −
m∑

r=1
pk,i (r ) pl, j (r )

(11.3)

In Equation 11.3 pk,i(r) is the forecast probability
for the rth category, and for the ith observation in
category k.

It can be shown that when m = 2, Equation 11.1
reduces to the area beneath the ROC curve (Mason
and Weigel, 2009). Similarly, if m is set in Equations
11.1–11.3 to the number of observations (assuming
there are no ties), and if the forecasts are deter-
ministic (represented by x with a subscript) then D
becomes

D =
2

n−1∑
k=1

n∑
l=k+1

I (xk, xl )

n (n − 1)
(11.4)

which is related to Kendall’s τ by

τ = 2D − 1 (11.5)

(Mason and Weigel, 2009). These relationships
are examples of how the generalized discrimina-
tion score is essentially equivalent to various so-
called non-parametric statistical tests. For example,
Kendall’s τ was compared with Pearson’s correla-
tion in the previous section, where it was explained
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Table 11.2 Example of seasonal forecasts and corresponding observations (A indicates
above-normal, N indicates normal, and B indicates below-normal), with cumulative profits
and losses based on an initial investment of $100. The interest earned or lost each year is
shown in the last column, together with the effective rate of interest over the ten years

Forecasts

Year Observed B N A Profit Interest

$100.00
2001 A 20% 50% 30% $90.00 −10.0%
2002 A 20% 55% 25% $67.50 −25.0%
2003 A 25% 35% 40% $81.00 20.0%
2004 B 15% 30% 55% $36.45 −55.0%
2005 N 45% 35% 20% $38.27 5.0%
2006 A 20% 50% 30% $34.45 −10.0%
2007 N 35% 40% 25% $41.33 20.0%
2008 A 20% 50% 30% $37.20 −10.0%
2009 A 25% 35% 40% $44.64 20.0%
2010 B 40% 35% 25% $53.57 20.0%

Effective −6.1%

that Kendall’s τ is a correlation based on the ranked
values. Similarly, the area beneath the ROC curve
is equivalent to the Mann–Whitney U-statistic (Ma-
son and Graham, 2002), which is a non-parametric
version of the more widely used Student’s t-test
for comparing central tendencies. When applied
to forecasts, the U-test assesses whether there is
any difference in the forecasts when an event oc-
curs compared to when the event does not occur
(and, thus, whether the forecasts can discriminate
between events and non-events). More specifically,
it indicates whether the forecast (whether probabil-
ity or value) was higher, on average, when an event
occurred compared to when not.

Thus, by using the generalized discrimination
score, a consistent test can be applied to measure
whether forecasts of virtually any format have skill
in the sense defined earlier: do the observations in-
crease, whether in value or in frequency, as the fore-
cast value or probability increases, without spec-
ifying by how much the increases and decreases
should be? This measure is useful in low-skill set-
tings, where it may be acknowledged upfront that
the forecasts themselves may be poorly calibrated,
whether overconfident or biased. It is helpful, and
more informative, to measure the quality of the cal-
ibration separately.

To illustrate the importance of considering cal-
ibration separately when testing whether forecasts
may be potentially useful, consider a fictional set
of ten probabilistic forecasts and corresponding
observed categories as shown in Table 11.2. The
ranked probability skill score (RPSS) for these
forecasts is marginally negative (approximately
−0.005); similarly the Brier skill scores for all three
categories are negative. These results suggest the
forecasts are effectively useless. However, given
that the category with the highest probability oc-
curs four times, while that with the lowest prob-
ability occurs only once, it seems reasonable to
assume that the forecasts may have some useful
information. The RPSS and Brier scores are neg-
atively impacted by what appears to be hedging
on the normal category. Acknowledging that the
probabilities are poorly calibrated, but that increases
and decreases in probabilities may be meaningful,
the generalized discrimination score can be used to
indicate whether the forecasts may be potentially
useful.

Instead of comparing each forecast with its corre-
sponding observation, as is typical of most verifica-
tion scores, Equation 11.1 is calculated by com-
paring each year with all other years that have
different observations. For example, starting with
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years with below-normal rainfall (k = 1), the first
year available (i = 1) is 2004. This year is com-
pared to all the years with normal rainfall (l = 2),
the first of which is 2005. Given that the obser-
vations differ, Equation 11.2 indicates whether the
forecast for 2005 successfully indicated that 2005
was likely to be the wetter of the two years. The
answer to this question is based on the probability
that a value randomly drawn from the distribution
represented by the forecast for 2005 will exceed
one randomly drawn from that represented by the
forecast for 2004, conditioned upon the two val-
ues differing (Equation 11.3). For 2004 and 2005,
Equation 11.3 gives approximately 0.20. Because
this value is less than 0.5, the forecasts fail to
discriminate the year with the higher rainfall cat-
egory (Equation 11.2). Proceeding to the next year
with normal rainfall (l = 2), 2004 is compared
with 2007. For these two years Equation 11.3 gives
0.25, and so again the discrimination is incorrect.
Since there are no more years with normal rain-
fall (n2 = 2), 2004 is then compared with all the
years with above-normal rainfall (l = 3). This
procedure is then repeated for 2010 (i = 2), and
then the years with normal rainfall (k = 2) are
compared with the years with above-normal rain-
fall (l = 3). For the example, D ≈ 0.68, indicat-
ing that the forecasts discriminated the observed
categories with a success rate of about 68%, and
suggesting that the forecasts may be potentially
useful.

Skill of hindcasts
It has long been recognized that in-sample esti-
mates of performance provide overestimates of op-
erational performance (Allen, 1974; Davis, 1976;
Rencher and Pun, 1980; Wilkinson and Dallal,
1981). The need for out-of-sample estimates of skill
is more of an issue with statistical models than it is
with dynamical models (except in the context of
skill-weighted multi-model combinations, which is
essentially a statistical procedure anyway) because
statistical models generally can be more easily tuned
to compare favourably with the verification data.
However, because dynamical model parameteriza-
tions are generally tuned to optimize performance
over a verification period, independent verification
is still required.

Cross-validation (Section 1.4.2) is the most com-
monly used method of trying to obtain independent
estimates of predictive skill (Michaelsen, 1987).
In the atmospheric sciences the most common ap-
proach to cross-validation is to predict each obser-
vation once, omitting that observation, and possi-
bly some adjacent observations, to reconstruct the
model. The re-specification of the model at each
cross-validation step should involve not only recal-
culating the model parameters, but also reselecting
the predictors to be included (Elsner and Schmert-
mann, 1994). In any predictor selection procedure
there is a danger of selecting additional spurious
predictors or the wrong predictors entirely. As the
candidate pool of predictors is enlarged, the dan-
ger of choosing spurious predictors increases, and
thus the probability of the hindcast skill estimates
overestimating those of the operational skill also in-
creases (Barnett et al., 1981; Katz, 1988; Brown and
Katz, 1991). The same is true of cross-validated skill
estimates if the procedure is not implemented care-
fully. The problem can be reduced by leaving more
than one observation out at each step, but there are
few guidelines as to how many observations should
be omitted. Xu and Liang (2001) recommend omit-
ting as much as 40–60% of the observations, and
even more if the candidate pool of predictors is
large. This proportion may be impractical given the
small sample sizes available for seasonal forecast-
ing, but the clear message is that, given the vast pool
of candidate predictors many modellers consider,
the risk of overestimating operational performance
is high.

An alternative to cross-validation is the verifica-
tion of retroactive forecasts (Mason and Baddour,
2008). Retroactive forecasts are generated by with-
holding the later part of a data set, selecting and
parameterizing the model on the first part of the
data, and then predicting the subsequent values,
possibly repeating the model construction process
as observations from the second part are predicted.
This process attempts to reproduce the forecasts that
would have been made operationally given access
to current data sets and models (Mason and Mim-
mack, 2002; van den Dool et al., 2003). There are,
however, two sources of bias. Firstly, even if imple-
mented properly, the procedure is likely to underes-
timate operational performance because the model
should improve gradually over time as more data
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become available. A more serious source of bias,
however, occurs because it is virtually impossible
to avoid including predictors based on knowledge
of their association with the predictand over the full
sample period. Since some of these predictors may
be spurious, it is essential that there is a strong theo-
retical base to their selection prior to producing any
hindcasts.

In conclusion, all hindcasting procedures will un-
avoidably have some biases in their estimates of
operational forecast skill. While there are sources
of both positive and negative bias, the positive bi-
ases are likely to outweigh the negative given how
hindcasts are most frequently calculated. One spe-
cific recommendation is that leave-one-out cross-
validation should almost always be avoided even
if there are no problems with temporal autocorre-
lation. Further research is required to make more
specific recommendations about how many years
to omit in a cross-validation procedure, but consid-
erably larger numbers than those most frequently
used almost certainly need to be considered, es-
pecially when the candidate pool of predictors is
large. Retroactive skill estimates are normally to
be preferred to cross-validated estimates because
they have fewer of the problems outlined above
(Jonathan et al., 2000). They are not calculated as
often as cross-validated skill estimates because of
limited sample sizes, but retroactive verification is
worth attempting even if only 5 or 10 years are pre-
dicted (Landman et al., 2001; Landman and God-
dard, 2002; Shongwe et al., 2006), and even very
wide uncertainty estimates on verification scores
can be useful information.

11.3.2 Other attributes

If skill is to be defined in terms of a single attribute
(discrimination, or possibly resolution), as proposed
in Section 11.3.1, it is essential to measure addi-
tional attributes subsequent to concluding that the
forecasts may be at least worth considering. The
measurement of accuracy and reliability associated
with the central tendency of the ensemble and of
its distribution can be addressed using procedures
detailed in Chapters 7 and 9. For probabilistic pro-
cedures, Chapter 8 provides extensive coverage of
options for diagnosing over- and under-confidence,

and unconditional biases. Attributes or reliability
diagrams are particularly useful in this regard, al-
though forecasts will inevitably have to be pooled
over large areas and possibly different seasons to
allow for sufficiently large sample sizes.

One aspect of seasonal forecasts that is of in-
terest and is partly a reflection of limited sample
size, and partly of longer-term variability, is the
degree to which the seasonal forecasts over a lim-
ited period of perhaps a few years have indicated
the extent to which the observed climate over this
period has differed from that of the reference cli-
matological period. For example, if the forecasts
have successfully indicated that the verification pe-
riod would be generally dry, some skill should be
acknowledged, but this may not be identified using
some of the procedures described above. In areas
of significant decadal variability or with long-term
trends, for example, the discrimination skill may
have been poor because of an inability to distin-
guish which years are drier than others when all or
most of the years are dry. Measurement of the un-
conditional bias in the forecasts is appropriate in this
regard, and procedures for measuring the bias of de-
terministic forecasts are described in Chapter 5. For
probabilistic forecasts, tendency diagrams provide
a simple visual indication of any unconditional bias
(Mason, 2011). These diagrams compare the av-
erage forecast probabilities for each category with
their observed relative frequencies; if the forecasts
had been reliable, one would expect the observed
relative frequencies to be approximately equal to
the average probabilities. In the example provided
in Figure 11.4 based on the data in Table 11.2, it is
evident that above-normal rainfall occurred much
more frequently than the other categories, but the
forecasts implied that the normal category would
be most frequent (perhaps a reflection of a tendency
to hedge).

One attribute that is of common interest subse-
quent to the demonstration of at least some skill,
is the potential economic value of forecasts. Ap-
propriate measures are discussed in Chapter 9, but
one that is particularly well suited to the standard
probabilistic format of seasonal forecasts is the ef-
fective interest rate (Hagedorn and Smith, 2009;
Tippett and Barnston, 2008), which in turn is based
on the ignorance score (Roulston and Smith, 2002;
Benedetti, 2010). The ignorance score, Ign, can be
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Figure 11.4 Example tendency diagram for the data
from Table 11.2. The black bars show the average fore-
cast probabilities for each category, and the grey bars
show the observed relative frequencies for each category

transformed to the effective interest rate using

effective interest rate = (
2Ign(ref )−Ign − 1

)
(11.6)

where Ign(ref ) is the ignorance score for the refer-
ence (base-rate forecasts). The effective interest rate
provides an indication of the average returns an in-
vestor would make if (s)he invested on the forecasts,
and received fair odds against the climatological
probabilities. For example, given three equiproba-
ble categories, the returns on the verifying category
would be three times the investment. The investor
will then make a profit whenever the forecast prob-
ability on the verifying outcome exceeds the base
rate. For the data from Table 11.2, the effective in-
terest rate is about −6% per year, suggesting that
the forecasts are not useful.

Equation 11.6 is only valid if the forecasts are for
a single location and if all the forecasts are for dis-
crete periods (e.g. a specific 3-month season over a
number of years) since it assumes that earnings (and
losses) are carried over from forecast to forecast. If
some of the forecasts are for different locations or
for overlapping periods (or, more specifically, if any
of the target periods expire after any of the release
dates for subsequent forecasts), then the initial in-
vestment has to be divided between each of the s
locations and periods, and the effective interest rate
has to be averaged using the ignorance score for

each instance:

average effective interest rate

= 1

s

s∑
k=1

(
2Ign(ref )−Ignk − 1

)
(11.7)

where Ignk is the ignorance score for the kth loca-
tion/season. For the data in Table 11.2, the average
interest would have been −2.5% if independent in-
vestments had been made on each forecast. How-
ever, as discussed in Section 11.3.1, the forecasts do
have good discrimination and so could potentially
be useful if they could be calibrated reliably.

Even with very good forecasts, the investor could
occasionally make a loss because categories with
probabilities lower than the base-rate should verify
sometimes (otherwise they would be unreliable).
However, in the long run, if the forecasts are good,
the gains will exceed the losses, and the effective
interest rate will be greater than zero. Given that
the returns on the investments each time are a di-
rect function of the forecast probability, in order for
the effective interest rate to be positive the reliabil-
ity of the forecasts is important, and the forecasts
therefore must have skill higher than the minimum
requirement as defined in Section 11.3.1. A plot of
gains and losses over time provides a useful graph-
ical illustration of potential forecast value. Such a
graph can be constructed by plotting

(∏
i

(
1

s

s∑
k=1

pk,i

ck,i

))
− 1 (11.8)

on the y-axis against time, i, on the x-axis, where s
is the number of locations/seasons, pk,i is the fore-
cast probability for the verifying category at loca-
tion/in season k, and ci is the corresponding base
rate. An example is provided in Figure 11.5, with
corresponding data in Table 11.2, using the same
forecasts and observations as for the generalized
discrimination score example.

11.3.3 Statistical significance and
uncertainty estimates

Regardless of whether it is the skill of operational
forecasts or of hindcasts that is being estimated,
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Figure 11.5 Cumulative profits and losses diagram
based on data from Table 11.2

some indication of whether the measured skill pro-
vides a basis for concluding that the forecasts are
good or bad is required (Section 1.4.3). The pre-
ferred approach has been to calculate statistical sig-
nificance, or p-values, which indicate the proba-
bility that a result at least as good as that mea-
sured could have been achieved by chance. Some of
the problems in interpreting p-values when sample
sizes are large (Mason, 2008) are rarely an issue
for seasonal and longer-range forecasts, but other
problems of interpretation remain (Nicholls, 2001;
Jolliffe, 2004, 2007). Confidence intervals remain
underutilized. Statistical procedures for calculating
p-values and confidence intervals for the measures
discussed above are described in other chapters, and
so only a few comments are included here that per-
tain specifically to seasonal forecasts.

When skill is calculated for specific seasons and
locations, temporal autocorrelation in the data is of-
ten not a major problem except in the presence of
trends, and so confidence intervals and p-values can
often be calculated using distributional assumptions
(Jolliffe, 2007) when available. However, when data
are pooled from different locations, or if field signif-
icance is being assessed (Livezey and Chen, 1983;
Wilks, 2006a), then spatial correlation has to be ac-
counted for. Similarly, if data from overlapping or
adjacent seasons are being pooled, temporal corre-
lation can affect the results, and block bootstrapping
may be required (Barnston and Mason, 2011).

Statistical significance for differences in model
skill levels is rarely calculated. When considering

whether a model revision improves the forecast skill
compared to an earlier version it is generally im-
practical to demonstrate a significant improvement
because the uncertainty estimates on the skill levels
are so large due to limited sample sizes, and so any
improvement in skill may be acceptable. However,
when considering how to weight different models
in some form of skill-based multi-model average
the need to demonstrate robust differences in model
skill levels becomes more important, otherwise the
unequally weighted model average will reflect sam-
pling errors in differences in model skill, and will
therefore likely perform less well than an equally
weighted average (Kang and Yoo, 2006; Weigel
et al., 2010).

11.4 Measuring the quality of
individual forecasts

It is a perfectly reasonable question to ask whether
the forecast for a specific season was good or bad
even if the forecasts are probabilistic. Mathemati-
cally, most of the probabilistic verification scores
discussed in this book could be calculated using
forecasts representing different locations rather than
different times. However, many such calculations
would involve incorrect interpretations of the fore-
casts. For example, consider a set of forecasts for ten
locations all for the same season, and all of which
indicate an 80% probability of above-median rain-
fall. If above-median rainfall occurred at 60% of the
stations rather than at 80%, one cannot necessar-
ily conclude that the forecasts were overconfident:
the forecasts were not stating that 80% of the area
would be wet, only that at each station on 80% of the
occasions on which an 80% probability of above-
median rainfall is issued can above-median rainfall
be expected to occur. Any attempt to measure the re-
liability of the forecast probabilities by considering
the forecasts at different locations for an individual
season represents an incorrect interpretation of the
forecast.

The primary reason why the reliability of the
forecasts cannot be measured by verifying spa-
tially rather than temporally is that in most prac-
tical settings forecasts for different locations will
not be independent. In effect, there is a sample size
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problem: because of strong spatial correlation there
are very few independent realizations in a forecast
for any individual season.

Unfortunately, although the generalized discrim-
ination score may be useful for a relatively short
series of forecasts, there may be problems of in-
terpretation when it is used for verifying individ-
ual forecasts, especially when the spatial domain is
small. When a discrimination score is applied spa-
tially, it indicates whether the forecast correctly dis-
criminated wet from dry areas, not whether the fore-
cast gave a good indication of whether the specific
season would be unusually wet or dry. The forecast
may successfully have indicated a high likelihood
of unusually wet or dry conditions over the entire
domain, but this information is ignored because of
the score’s insensitivity to calibration, To answer
this second question, the specific contribution that
the forecast in question would make to the gen-
eralized discrimination score could be calculated:
the probability that the specific season of interest
would have been correctly identified as wetter or
drier (or warmer or colder, or whatever) than each
other season for which forecasts are available, could
be calculated. [To calculate this probability, set k or
l in Equation 11.1 to the verifying category, and then
nk or nl to 1.]

The frequency of hits is widely calculated as a
verification measure for individual forecasts. The
score indicates the proportion of the area in which
the verifying categories had the highest probabil-
ity, but, as discussed in Section 11.3.1, the score is
more informative when scores for the second high-
est probability category, etc., are calculated. The fre-
quency of hits for the various probability rankings
still ignore much of the information in the probabili-
ties, and are unable to credit sharp probabilities. The
linear probability score (Wilson et al., 1999) and
the average interest rate (Equation 11.7) are worth
considering, despite the fact that both scores lack
propriety (Bröcker and Smith, 2007b). This lack of
propriety is not necessarily a problem if no attempt
is made to optimize these values or conclude naively
that one forecast is better than another simply be-
cause the score is higher. Scores for individual years
are generally calculated to tell us something about
the temporal variability of predictability (Livezey
and Timofeyeva, 2008), just as in Figure 11.4, for
example.

Instead of calculating scores for individual sea-
sons, much more can be discerned from a detailed
diagnostic of dynamical model outputs (Jakob,
2010). By diagnosing the model’s atmospheric
structure, useful insights into its strengths and weak-
nesses can be derived (e.g., Lyon and Mason, 2009).

11.5 Decadal and longer-range
forecast verification

For forecasts at decadal and longer timescales there
are at best too few realizations to perform any mean-
ingful significance testing on the kind of scores
described above. Hindcasting is not a realistic op-
tion to expand the sample size of decadal forecasts
because of the lack of subsurface ocean observa-
tions required to initialize the models (Smith et al.,
2008), and unpredictable events such as major vol-
canic eruptions add an important noise component
to the observed climate that exacerbates the sam-
pling problem. Traditional verification analyses that
compare a set of forecasts with the corresponding
observations may therefore not be a viable option.
However, there are some evaluations that can be
usefully performed that may not directly answer
the most immediate questions of interest regarding
forecast quality at these long timescales, but do at
least provide some information that may help in de-
ciding whether the forecasts are worth considering
(Fildes and Kourentzes, 2011).

A common starting point in place of rigorous
verification analyses is some measurement of con-
sistency in predictions. Perhaps the simplest such
measure that is widely used for climate change pro-
jections is the proportion of models agreeing upon
the sign of the anomaly in the target variable (Whet-
ton et al., 2007; Hawkins and Sutton, 2009). It is
usually assumed that if this proportion is close to
50% then there is little agreement between the mod-
els, and so confidence in any prediction should be
low. However, this procedure rests upon the rather
unreasonable assumption that the models are inde-
pendent, and upon the only sometimes reasonable
assumption that the underlying data are symmetri-
cally distributed. Further, in the situation that mod-
els are closely agreed upon minimal change, the
level of agreement in the sign of the anomaly may
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be very low, and some measure of spread in the
predictions would be more informative.

Following a similar principle of consistency in
predictions, but involving more sophisticated diag-
nostics, so-called ‘perfect model’ experiments test
how well the model is able to predict one of its
own ensemble members (typically as measured by
the root mean squared error) as additional data are
assimilated into the model (Dunstone and Smith,
2010; Meehl et al., 2010). If the model is able to
predict its own behaviour more successfully as more
data thought to be relevant to predictability are as-
similated then there is some basis for suspecting
that the assimilated data indicate a process of vari-
ability in the real world that the model may be able
to predict. This assumption is, of course, problem-
atic (Stainforth et al., 2007), but there seems little
point in verifying a model that cannot even predict
itself, and in the absence of any verification results
against real-world observations, such improvements
in the signal-to-noise ratio provide some grounds for
credibility. However, ensemble-member and inter-
model consistency should, at best, be considered a
very weak form of validation, and at least some at-
tempt at comparison between model outputs and ob-
served data should be made (Fildes and Kourentzes,
2011).

A starting point of any verification procedure
should be to evaluate the accuracy with which the
model’s climatology matches that of the observa-
tions (Caminade and Terray, 2010; Gent et al.,
2010). If possible, this assessment should be per-
formed over a number of climatological periods to
test for robustness of results, especially if the skill
levels of models are being compared (Macadam
et al., 2010). The mean squared error and its decom-
position into conditional and unconditional biases
(Chapter 5) can be used, although the interpreta-
tion of results given non-normally distributed data
can be complicated, and the calculation of abso-
lute errors may be more appropriate (Section 5.3).
A variety of other statistics have been proposed, all
generally based on mean squared or absolute errors,
and differences are largely a matter of scaling, and
sensitivity to extremes (Watterson, 1996). Regard-
less of the measure, if a model is not reproducing
the observed climate realistically, there is no com-
pelling reason to assume that simulated variability
and change in its climate will match that of the

real world. This assertion is certainly borne out at
the seasonal timescale, where skill is a function of
models’ unconditional biases (DelSole and Shukla,
2010; Lee et al., 2010), but it is not necessarily
the case that an accurate model climatology implies
forecast skill (Knutti et al., 2010).

Even though the number of realizations may be
trivially small, it is still worth calculating verifica-
tion scores with whatever data are available. While
it may be impossible to demonstrate statistically
significant skill, the extent to which the models im-
prove their simulation of the observed large-scale
climate variability as improved data sets are as-
similated, for example, reinforces the belief that
the models may be able to make useful predictions
(Doblas-Reyes et al., 2006; Keenlyside et al., 2008;
Mochizuki et al., 2010). Some account may need to
be taken for the loss of skill resulting from the un-
predictability of major volcanic eruptions and their
effects on climate. Selecting start dates that avoid
periods with major eruptions (Troccoli and Palmer,
2007) may be useful for model validation, but gives
a biased estimate of operational forecast skill.

While there is no guarantee that models that pro-
duce skilful forecasts at one timescale will be skil-
ful at other timescales, verification information for
timescales for which more data are available can be
informative. For example, predictability at decadal
timescales is premised partly on the ability to pre-
dict sea-surface temperatures from subsurface con-
ditions (Meehl et al., 2009), and so skill at the
seasonal scale, which depends largely on ocean-
atmosphere coupling, may provide some indication
of skill at decadal scales (Palmer et al., 2008; Cam-
inade and Terray, 2010). Of course, there may be
other sources of predictability at decadal scales such
as ‘committed climate change’ and future green-
house gas emissions (Meehl et al., 2009), the effects
of recent volcanic eruptions (Troccoli and Palmer,
2007), land-surface feedbacks and cryospheric ef-
fects, and so more detailed diagnostics are therefore
usually to be recommended (Scaife et al., 2009),
including investigations into the processes of cli-
mate variability (Giannini, 2010). Even where there
is no discrimination or resolution skill at seasonal
timescales, information about the reliability of the
ensemble spread provides some basis for assess-
ing the reliability of the spread at longer timescales
(Palmer et al., 2009).
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11.6 Summary

Although many of the procedures used in seasonal
forecast verification are similar to those used at
shorter timescales, problems of limited sample size
and low levels of predictability are invariably major
factors in verification analyses at these and longer
timescales. Both limitations contribute to a strong
focus on measuring ‘skill’, although conclusions
can be misleading if skill is not precisely defined.
It has been argued in this chapter that widely used
definitions of ‘skill’ for seasonal forecasts are un-
duly strict, and that some commonly used verifica-
tion measures may therefore not be the most ap-
propriate ones to use. For deterministic forecasts,
for example, skill can be defined as increases and
decreases in the observed values as the forecasts
increase and decrease. This definition points to a
measure of association based on the ranks of the
forecasts. Similarly, for probabilistic forecasts, skill
can be defined as increases and decreases in the
frequency of events or a verifying category as the
probability increases and decreases. This definition
can be measured either by resolution or by discrim-
ination, although the latter is usually easier to mea-
sure when sample sizes are small. In either case,
it is helpful, and more informative, to consider the
measurement of reliability as a separate verifica-
tion question. The generalized discrimination score

is proposed since it can be applied to an exten-
sive range of forecast and verification data formats,
and provides a useful indication of whether there is
any potentially useful information in the forecasts.
Separate tests for conditional and unconditional bi-
ases, and other reliability checks should be applied
subsequently.

Partly because of the infrequency with which
seasonal and longer-ranger forecasts verify, there
is widespread interest in whether a specific fore-
cast was good or bad. When forecasts are expressed
probabilistically this question becomes complicated
because attributes such as resolution, discrimination
and reliability can change their meaning, and may
become inappropriate. Much of the difficulty arises
from the fact that the number of spatially indepen-
dent forecasts is likely to be very low, and so these
attributes cannot be measured meaningfully. How-
ever, some measures can be informative, including
ones that are not strictly proper, as long as they
are interpreted appropriately and their limitations
recognized.

At longer timescales the sample sizes can become
so small that no meaningful verification results can
be realized. However, even in these cases measures
of adequacy of model climate, and of forecast and/or
model consistency can be helpful. It is also possible
to use verification results for shorter timescales to
provide some indication of credibility.


