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ABSTRACT

Potential and real predictive skill of the frequency of extreme rainfall in southeastern South America for

the December–February season are evaluated in this paper, finding evidence indicating that mechanisms of

climate variability at one time scale contribute to the predictability at another scale; that is, taking into

account the interference of different potential sources of predictability at different time scales increases the

predictive skill. Part I of this study suggested that a set of daily atmospheric circulation regimes, or weather

types, was sensitive to these cross–time scale interferences, conducive to the occurrence of extreme rainfall

events in the region, and could be used as a potential predictor. At seasonal scale, a combination of those

weather types indeed tends to outperform all the other candidate predictors explored (i.e., sea surface

temperature patterns, phases of theMadden–Julian oscillation, and combinations of both). Spatially averaged

Kendall’s t improvements of 43% for the potential predictability and 23% for real-time predictions are

attained with respect to standard models considering sea surface temperature fields alone. A new

subseasonal-to-seasonal predictive methodology for extreme rainfall events is proposed based on probability

forecasts of seasonal sequences of these weather types. The cross-validated real-time skill of the new prob-

abilistic approach, as measured by the hit score and the Heidke skill score, is on the order of twice that

associated with climatological values. The approach is designed to offer useful subseasonal-to-seasonal cli-

mate information to decision-makers interested not only in how many extreme events will happen in the

season but also in how, when, and where those events will probably occur.

1. Introduction

Extreme events are difficult to forecast, but many lo-

cations of the world exhibit some regional predictability

of seasonal amount and frequency of extreme pre-

cipitation that is still useful for decision-making. The

impacts of extreme rainfall events are of key socioeco-

nomic importance for southeast South America (SESA;

Muñoz et al. 2015; Bettolli et al. 2009; Mechoso et al.

2001), especially for the rainy season. The skill of

seasonal rainfall forecasts in this part of the world ben-

efits from the influence of sea surface temperature (SST)

patterns in both the Pacific and the Atlantic (Muñoz
et al. 2015; Pisciottano et al. 1994; Nogués-Paegle and

Mo 1997; Diaz et al. 1998; Barros and Silvestri 2002;

Grimm et al. 1998, 2000). Nonetheless, the predictive

skill for the austral summer [December–February

(DJF)] is considerably lower than for other seasons

(Almeira and Scian 2006; Pisciottano et al. 1994), in part

because of a weaker influence from El Niño–Southern
Oscillation (ENSO) teleconnections and the potential

interference of other ocean basins on the South Atlantic

convergence zone (Cazes-Boezio et al. 2003; Barreiro

and Tippmann 2008; Chan et al. 2008; Drumond and

Ambrizzi 2008). Other causes involve local drivers, such

as soil moisture availability and its possible influence on

circulation (Grimm 2003; Grimm et al. 2007).

Muñoz et al. (2015, hereafter Part I), identified several

subseasonal-to-seasonal climate drivers linked to daily

circulation regimes, or ‘‘weather types’’ (Huth et al. 2010;

Jolliffe and Philipp 2010), that are conducive to extreme
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rainfall events in SESA, via their imposed synoptic control

on mesoscale physical mechanisms (e.g., mesoscale convec-

tive systems, extratropical cyclones, and heat and moisture

transport). The frequencies and sequencing of theseweather

types are sensitive to cross–time scale interferences between

the different climate drivers and therefore are themselves

candidate predictors for extreme rainfall.

More generally, the interactions between different

potential sources of predictability at different time scales

should increase the predictive skill of extreme events in

the region and could also increase the skill for mean

rainfall values. This proposition is based on the idea

that mechanisms of climate variability at one time scale

contribute to predictability at another. For example,

subseasonal climate drivers sometimes dominate the

seasonal frequency of rainfall extreme events, even dur-

ing moderate ENSO phases, and hence must be consid-

ered in order to have skillful forecasts. For concrete

examples see Part I and also Hirata and Grimm (2016).

This idea may sound obvious, but multiple state-of-the-

art dynamical and statistical climate models still lack an

adequate representation of these cross–time scale in-

terferences. Although several authors have diagnosed the

impact of climate drivers at different time scales on rainfall

extremes (see Part I for details), their role in forecast skill

was not analyzed until recently (Moron et al. 2012, 2015).

Indeed, it is expected that including additional predictors

should increase the model’s goodness of fit, but this is not

necessarily true when evaluating forecast performance.

Furthermore, it has not yet been demonstrated how many

or what kind of climate drivers are necessary and sufficient

to increase the predictive skill. Since the skill does not add

up linearly, in part because the different climate drivers are

not completely independent, it is also possible that the im-

provement is so small that there is very little added value.

A hypothesis used in this work is that during cross–time

scale interferences it is possible to define an entangled

state of the predictors; that state leads to better-

quality and higher-skill information of the seasonal cli-

mate and its subseasonal characteristics than using

predictive information on either time scale alone. The

concept of entanglement is borrowed from quantum

mechanics, referring to groups of particles or waves that

interact in such a way that their states cannot be de-

scribed independently, though it is possible to define a

state for the system as a whole. The entanglement idea is

akin to the basis of Bayesian approaches and the re-

duction of the sample space in conditional probability; in

the present context it suggests that a better specification

of the state of the system in the models (via this entan-

glement of predictors) must provide better forecasts.

For decades, statistical and dynamical climate models

have focused on ENSO as the main, and often the only,

predictor at seasonal scale, and little work has been done

on the simultaneous role of climate drivers at different

time scales (Hoskins 2013). Not only do cross–time scale

interferences allow the possibility of more skillful fore-

casts but they also facilitate delivery of information at

different stages, as in the ready-set-go approach

(Goddard et al. 2014; Braman et al. 2013). In a multistage

prediction system, seasonal and possibly longer-range

time-scale forecasts provide a background signal that is

successively updated as forecasts at shorter time scales

become available. In today’s prediction systems, this

updating is not implemented seamlessly, in part because

subseasonal forecasts are still under development (WMO

2013) and, with a few exceptions (see, e.g., Vitart 2014; Li

and Robertson 2015), lack skill for lead times longer

than a couple of weeks. Considering methodologies that

may advance seamless prediction systems is thus needed.

Theweather type approach discussed in Part I identified

several potential sources of predictability conducive to

extreme rainfall events—namely, ENSO, the Atlantic

meridional mode (AMM), the South Atlantic dipole

(SAD), and the southern annularmode (SAM) at seasonal

scale and the Madden–Julian oscillation (MJO) and the

South Atlantic convergence zone (SACZ) at subseasonal

scale; for details, see Part I. For practical purposes of real-

time prediction, particular combinations (or predictive

state vectors, to use the terminology of Part I) of a rep-

resentative subset of these drivers will be used here.

Since the weather types can be understood as proxies

of the only physically available states of the system, they

represent a sort of alphabet to describe all possible

synoptic states in SESA. Particular sequences (or words)

may be built from that alphabet to indicate the likely

occurrence of extremes. A way to represent those se-

quences is through a Klee diagram (Part I)—a simple

matrix plot that explicitly shows the daily evolution of

weather types both at subseasonal and interannual

scales. In this paper, Klee diagrams are the basis to build

subseasonal-to-seasonal (s2s) states as representative

daily sequences of atmospheric circulation regimes.

The goal of this companion paper of Part I is to ex-

plore whether or not forecasts at one time scale can be

improved by considering information from other time

scales. The research analyzes the associated predictive

skill in the context of extreme rainfall seasonal forecasts

for SESA (i.e., seasonal forecasts of weather statistics)

and explores some of its consequences at shorter time

scales through the use of a new methodology to produce

subseasonal-to-seasonal extreme rainfall scenarios (i.e.,

probable intraseasonal evolution of weather statistics).

The word ‘‘scenario’’ is used here because these are not

traditional forecasts but a description of what could

happen on the coming 3-month season in terms of
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extreme rainfall distributions; these have nothing to do

with climate change scenarios.

The paper is organized as follows: The next section

describes the datasets and summarizes the methods;

then the potential and real-time seasonal predictive skill

of frequency of extremely wet days are studied in section

3, using both empirical and dynamical (Mason and

Baddour 2008) subseasonal-to-seasonal predictors. Since

it is important for decision-makers to know not just the

total amount of (extreme) precipitation or the frequency

of (extremely) wet days but also the probable temporal

distribution of these days along the target period, the

new forecast methodology using s2s states is discussed in

section 4. The reader interested in a few concrete practical

aspects of the experimental forecast system described

in this paper should refer to section 5. The concluding

remarks are presented in section 6.

2. Data and methodologies

This section summarizes information about the data-

sets and methods used in the study. To assess potential

predictability, statistical models are built using observed

candidate predictors that are synchronized with the

predictand, similar to a prefect prognosis approach.

Real-time predictability is evaluated through model

output statistics (MOS) of dynamical model output,

using simultaneous and lagged predictors as indicated in

the following subsections.

a. Datasets

This study uses SST fields, the phases of MJO, and the

frequency of occurrence of a set of weather types as

candidate predictors. Observations and dynamical

model output are considered when analyzing the pre-

dictive skill. The observations involve SST fields, MJO

phases, and weather type frequencies for DJF. The dy-

namical forecast data involve SST field for DJF, 32-day

forecasts of MJO phases (started on 13 November; see

details below), and weather type frequencies for DJF.

Observed datasets are the same as in Part I; the Ex-

tended Reconstructed SST, version 3b, (28 grid; Smith

et al. 2008) is used for sea surface temperatures on the

domain defined by 438N–608S and 1288–208E, while the

phases of the real-time multivariate MJO modes

(Wheeler and Hendon 2004)—RMM1 and RMM2—are

directly available from the Centre for Australian

Weather and Climate Research.1 The set of six weather

types are those studied in Part I, computed using a

k-means analysis of theNCEP–NCARreanalysis project,

version 2 (NNRPv2; Kalnay et al. 1996; Kistler et al.

1999), for geopotential height anomaly at 850 hPa. To

assess themaximum potential skill, all available 28DJF

seasons for the 1982–2010 period are considered.

Hereafter, the datasets described in this paragraph are

referred to as ‘‘observations.’’

Hindcasts, or retrospective forecasts, produced with

October’s initialization of the Climate Forecast System,

version 2 (CFSv2; Saha et al. 2014), are used for SST

fields and to compute the CFSv2’s realizations of the

observed set of weather types mentioned above. The

CFSv2 forecasts are available at monthly and daily

temporal resolutions (SST and geopotential height

anomalies, respectively) and at 0.9378 spatial resolution
(Saha et al. 2014). The methodology is the same one

explained in Part I, and no projection is performed onto

the observed weather types. Before performing the

k-means analysis, 10 ensemblemembers are concatenated

(the use of ensemble means from daily data tends to

produce spurious weather types).

The European Centre for Medium-Range Weather

Forecasts (ECMWF) MJO ensemble forecast (Vitart

2014) is used here for predictions of the MJO phases

(typically, ECMWF MJO forecasts are skillful up to

about one month, compared to around two weeks for

CFSv2). The five-member ensemble of 32-day in-

tegrations involves a sophisticated coupled model at

approximately 18 grid resolution (Vitart 2014), whose

MJO predictions have improved dramatically since

2002, with an average gain of about 1 day of prediction

skill per year (i.e., the system is now capable of providing

skillful MJO forecasts for the next 32 days, compared to

skillful forecasts for about two weeks in 2002). The

forecastMJO phases are computed from the two leading

principal components (PCs) provided by the ECMWF

forecast for this research. The hindcasts start in 1994.

To have a common period of forecasts for the dy-

namical model output, and for consistency with the

constraints of a real-time prediction system (see section

5), only the products that are available in mid-

November are used for both CFSv2 [initialized in Oc-

tober; see Saha and Tripp (2011) for details] and

ECMWF forecast (available on 13November) for the 16

DJF seasons of the 1994–2010 period. As indicated

above, the CFSv2 SST forecasts and geopotential height

anomalies at 850hPa correspond to the DJF season.

In all experiments reported here, the predictand cor-

responds to the observed frequency of days with rainfall

amounts exceeding the 95th percentile (dR95p), using

the NOAA–NCEP–CPC unified precipitation gridded

dataset (18 grid; Chen et al. 2008) for the SESA domain

(368–25.58S, 658–53.58W), and considering daily values

1 See http://www.bom.gov.au/climate/mjo/graphics/rmm.

74toRealtime.txt.
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of all DJF seasons. The frequency of extreme events is

used instead of intensity or rainfall amount because of

its higher predictability (see Part I).

b. Methodologies

Although the predictions of future conditions at dif-

ferent time scales exhibit some common features, dif-

ferent methodologies are used to evaluate the predictive

skill of seasonal forecasts and s2s scenarios. Unless

otherwise indicated, anomalies are always computed

with respect to the long-term mean of the period under

consideration, and tests for statistical significance are

performed using a resampling method (1000 times).

1) SEASONAL FORECASTS

In this study, seasonal forecasts are produced using

canonical correlation analysis (CCA). This is a multi-

variate statistical method commonly used by the climate

forecasting community (Mason and Baddour 2008) that

calculates linear combinations of a set of candidate

predictors and predictands, identifying pairs of combi-

nations (i.e., canonical variates or modes) such that the

correlations between their time series are maximized.

An empirical orthogonal function (EOF) prefiltering is

performed before conducting the CCA. The method

permits the identification of the actual predictors from

the set of candidate predictors (which do not need to be

independent a priori); the canonical modes describe the

preferred coupled spatial patterns relating predictors

and predictands and are presumed to be physically

meaningful. In this study, CCA is conducted using IRI’s

climate predictability tool (CPT), version 15.3.7 (Mason

and Tippet 2016), which first performs supervised modal

truncation of the candidate predictors and the pre-

dictand. CPT provides information that diagnoses the

underlying coupled patterns and also cross-validated

forecast skill metrics that allow the assessment of the

associated predictability.

Deterministic cross-validated forecasts were com-

puted for the frequency of DJF days with rainfall ex-

ceeding the 95th percentile. Since the frequency of

extreme rainfall in the region does not exhibit a

Gaussian distribution, it was transformed using a

quantile mapping of the empirical distribution before

building the models. For CCA models that use a com-

bination of different types of predictors (e.g., SST and

MJO), the modes were computed using the variance–

covariancematrix after a unitary variance normalization

was performed.

To avoid artificial skill, CPT verifies the skill of the

resulting predictions using cross validation (Barnston

and Van den Dool 1993). Here, a cross-validation win-

dow of 5 years is used, meaning that the central year of

the 5-yr window held out from the time series is pre-

dicted and the forecast is then compared to the observed

values, as a simulated independent case outside of the

training sample (e.g., Barnston and Van den Dool 1993;

Jolliffe and Stephenson 2012; Mason and Stephenson

2008). This process is repeated such that each year in the

dataset is forecast after reapplying the fitting algorithm

for each iteration of the process, and with the climato-

logical data redefined each time a new cross-validation

window is withheld. After processing all years, the mean

values of the skill metrics are provided.

The following metrics are used to evaluate the cross-

validated skill of the deterministic forecasts: Kendall’s t,

Spearman correlation coefficient, and the area of rela-

tive operating characteristics (ROC; Jolliffe andStephenson

2012; Mason and Stephenson 2008). Additional details

are discussed in section 3. Spatial maps of these metrics

were produced using CPT.

A summary of the forecast methodology is presented

in Fig. 1. Part I determined a set of predictive state

vectors or candidate predictors that could be used to

forecast extreme rainfall in SESA for the DJF season.

The present paper deals with forecast methodologies

that could be easily put to work in national weather

services of developing countries, where computational

resources or highly trained personnel may be scarce.

Since not all of the candidate predictors suggested in

Part I are currently available operationally, the pre-

dictive skill is evaluated here using the following list of

candidate predictors:

(i) SST, the PCs of the first eight EOFs of the SST field

for the domain defined by 438N–608S, 1288–208E;
(ii) MJO, the frequency of occurrence of the eight

phases of the Madden–Julian oscillation;

(iii) SST1MJO, combinations of (i) and (ii); and

(iv) weather types, the frequency of occurrence of the

six circulation regimes identified in Part I.

This set, when compared to the list proposed in Part I, is

missing only two candidate predictors (i.e., the SAMand

SACZ indices); nonetheless, it still represents most of

the observed variability.

A large number of statistical models were built using

CCA for each one of the sets of candidate predictors

indicated above, producing retrospective deterministic

forecasts of frequency of extreme rainfall (dR95p) for

the corresponding training period. CCA automatically

computes orthogonal modes, the actual predictors, from

the corresponding set of candidate predictors. The best

models were selected by maximizing the spatially aver-

agedKendall’s t; the skill scores were then computed for

these models for the potential and real-time pre-

dictability experiments.
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2) SUBSEASONAL-TO-SEASONAL SCENARIOS

The general methodology used to produce s2s sce-

narios consists of two parts, and it is summarized in

Fig. 2. The diagnostic part (steps 1–4 below) involves the

identification of weather types and clusters of sequences

of weather types conducive to particular s2s extreme

rainfall scenarios. The prognostic part (steps 5 and 6

below) builds and cross-validates the associated proba-

bilistic forecast model. The steps are the following:

1) Compute the weather types from observations, and

build theweather typedaily sequences for eachavailable

season (i.e., the Klee diagram; see Part I for details).

FIG. 1. Summary of the methodology followed to produce extreme rainfall seasonal forecasts.

FIG. 2. Summary of the methodology followed to produce subseasonal-to-seasonal extreme

rainfall scenarios.
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2) Identify clusters of weather type sequences present

in the Klee diagram (e.g., using the k-medoids

algorithm). Each one of these new categorical clus-

ters is a ‘‘typical representation’’ of the intraseasonal

distribution of synoptic circulation regimes that are

present in a particular season of the year (DJF, in this

case). These categorical clusters are also referred to

as s2s states.

3) Verify the physical consistency between the new

categorical clusters and observed phenomenology

(e.g., check that the obtained relationship between

weather types’ occurrence, phases of candidate pre-

dictors, and extreme rainfall occurrence can be

explained on a physical basis).

4) Compute the mean s2s rainfall scenarios. For each

categorical cluster of weather types’ sequences,

compute the associated spatial and temporal distri-

bution of extreme rainfall via a composite analysis.

This step provides information about when to expect

extreme rainfall within a ‘‘typical season’’ of the

categorical cluster under consideration and the spa-

tial distribution of that rainfall.

5) Build the cross-validated probabilistic forecast

model and analyze its predictive skill. Compute

probabilities for each s2s state (i.e., for each predic-

tand). There are different ways to do this. For

statistical models this could be done, for example,

via amultinomial logistic regression (see, e.g.,Moron

et al. 2015) using combinations of SST and MJO as

predictors. For dynamical model output this could be

done by first computing the model’s weather types

and then linking corresponding categorical clusters

to the observed ones. In this paper, a multinomial

logistic model using frequencies of occurrence of

weather types (forecast by CFSv2) is used to predict

the observed s2s states.

6) Produce the s2s forecast scenarios for extreme

rainfall events. Using the cross-validated forecast

model, compute the probabilities for each one of

the categorical clusters for the target season, and

then use the corresponding s2s scenario identified in

step 4. Note that it is then possible to associate the

same probabilities to the occurrence of extreme

rainfall events at subseasonal scale (e.g., weeks 3

and 4 or all of January), as they correspond to the

complete sequence of weather types typified by the

categorical clusters.

These steps present a basic methodology for producing

s2s scenarios; more sophisticated ones will be explored

elsewhere, as more complexmodelsmay be used (e.g., in

steps 5 and 6) if necessary. In this approach the s2s states

are being forecast and not the rainfall itself.

To illustrate the approach (see Fig. 2), only CFSv2’s

weather type frequencies are used here as predictors

(1982/83–2009/10) of s2s states, with a cross-validation

window of 3 years, as the maximum likelihood esti-

mator did not converge in several iterations of the

cross-validation process when five years was tried. In

step 5, the probabilities are rounded to the nearest

integer, ensuring that the total probability is always

100%; to decide how to round the probabilities, the

values leading to the best ignorance score (Jolliffe and

Stephenson 2012; Mason et al. 2016) are selected.

More details about the methodology are discussed in

section 4.

The k-medoids algorithm (Park and Jun 2009) is

used here to compute the s2s states. It is a parti-

tioning method, similar to k means, commonly used

in problems requiring robustness to outliers, arbi-

trary distance metrics, or when the mean or median

does not have a clear definition. Most importantly,

it works well with categorical data like the weather

types. All the experiments reported here used the

MATLAB implementation of the algorithm, with

the Hamming distance function and 10 replications.

The Hamming distance is an appropriate distance

metric for categorical data, representing the per-

centage of the vector components that differ. After

several experiments and comparison of how well the

algorithm classifies the weather type sequences, the

number of categorical clusters (i.e., medoids) was

selected to be five. Although other values are statis-

tically and physically plausible, increasing the num-

ber of clusters, and thus their actual similarity to the

Klee diagram, reduces the sample available to com-

pute the extreme rainfall s2s scenarios; on the other

hand, using too few medoids tends to cluster states

that have different characteristics.

The forecast models used in this approach are built

using multinomial logistic regressions, fitting the co-

efficients that appear in Eq. (A2) via a maximum like-

lihood estimator and computing the probabilities for

each scenario using Eqs. (A3) and (A4). This same type

of model has been used recently by Moron et al. (2015)

for similar purposes. For details see the appendix.

The quantification of the predictive skill of this new

s2s scenario methodology is not straightforward, as it

involves the cross validation of both the weather types’

categorical clusters and the s2s extreme rainfall scenar-

ios. For the purposes of this study, the hit score, hit skill

score, and Kendall’s t (Jolliffe and Stephenson 2012;

Mason and Stephenson 2008) are used as exploratory

skill metrics for themodels forecasting s2s states. In the

present case the goal is not to forecast precise quanti-

ties (e.g., how many mm of rain) but to forecast the
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most-likely distribution of days with extreme precipita-

tion (scenarios).

3. Seasonal forecasts of extreme rainfall: Impact of
cross–time scale interference on skill

This section explores the predictive skill of seasonal

forecasts of weather statistics for SESA, in particular

extreme rainfall frequency as measured by dR95p,

comparing the use of predictors acting at multiple time

scales against those acting at only one time scale. The

next section discusses the subseasonal evolution of these

weather statistics.

In a recent paper, Moron et al. (2015) studied the

problem of retrospectively forecasting the frequency of

weather types for theMaritime Continent, given perfect

knowledge of three regional climate drivers—namely,

the annual cycle, the Niño-3.4 index, and MJO phases.

They found that indeed the predictive skill was higher

when they considered a model with all these predictors

simultaneously. Although their results add evidence to

support the cross–time scale interference idea, more

research is required, for example, to analyze these in-

terferences in global circulation models.

A common assumption is that dynamical models

consider these cross–time scale interactions in a ‘‘natu-

ral’’ way. However, several global circulation models

are not representing well key observed interferences,

and dynamical downscaling does not necessarily im-

prove the situation (Muñoz and Goddard 2014).

In this section, the predictive skill is analyzed both for

the observed behavior of the selected candidate pre-

dictors (potential skill) and for the case of actual fore-

casts (real-time skill). For the latter the output of two

dynamical models, CFSv2 and the ECMWF, are used as

predictors; for details see section 2.

Although the length of skillful MJO predictions for

CFSv2 is still considerably shorter than that for

ECMWF, CFSv2 does a remarkable job capturing ob-

served cross–time scale interactions. The general spatial

structures associated with the observed weather types

are reproduced by CFSv2 (Fig. 3), at least for the DJF

season, with no need to project the model’s fields into

the observed EOF patterns. Regarding the representa-

tion of the weather types’ temporal evolution, the skill

scores indicate also a good representation of the ob-

served behavior, in spite of the fact that the total pro-

portion of occurrence of each circulation regime still

requires some improvement (cf. number of days in pa-

rentheses for both observed and modeled weather types

in Fig. 3). Further research is required to explore how

well this and other dynamicalmodels reproduceweather

type characteristics and their relation to cross–time scale

interferences. As discussed in Part I, this analysis can

indicate concrete improvements to be performed on the

global and regional climate models based on physical

interactions.

The skill metrics chosen are a measure of how good

the forecasts are, but they characterize different attri-

butes, and since their values are different in different

locations, they are presented in terms of spatial maps

(Figs. 4 and 5). The Spearman correlation coefficient

shows how in phase the observations and forecasts are.

Discrimination, or how well a forecast distinguishes

between the different categories, indicates whether any

potentially useful information is actually being pro-

vided. ROC area maps (the areas under ROC curves

compare proportion of hit rates versus false alarms) are

used here to show the spatial distribution of the model’s

discrimination. Furthermore, the Kendall’s t coefficient

is used as an overall goodness index of the prediction, a

measure of each model’s mean extreme rainfall pre-

dictability over SESA. The analysis of skill is presented

in the following paragraphs at local (Figs. 4 and 5) and

regional scales (Table 1).

In general, when a particular model is considered,

the spatial patterns exhibited in the different skill

metrics are very similar (Figs. 4 and 5), indicating that

there are certain locations in SESA where forecasts are

both in phase with observations and show good dis-

crimination for the above-normal and below-normal

categories. When the different models are considered,

it is noticeable that these regions tend to be confined to

Argentina, northern Uruguay, and Brazil in the SST or

MJO models, but cross–time scale models (i.e.,

SST1MJO and weather types) exhibit wider areas with

even higher skill than the others, including almost all of

Uruguay and southern Brazil. Overall, the lowest skill

is found along the northern and western boundaries

of SESA.

Although the skill scores between the potential and

real-time predictability experiments cannot be directly

compared because of different training periods (28 and

16 yr, respectively), it is noticeable that the skill metrics

for actual forecasts exhibit higher variability (statistical

range of the values): the forecasts tend to be very good in

certain regions and considerably bad in others. In the

potential predictability experiments, the skill is more

spatially homogeneous: forecasts tend to be very good in

most places and not particularly good in a few. Models

considering cross–time scale interferences (SST1MJO

and weather types; Figs. 4 and 5, bottom two rows)

show the best skill scores for both potential and real-

time predictability experiments, in agreement with the

cross–time scale interference hypothesis. Although these

two models show statistically significant Spearman
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FIG. 3. (top) Observed (designated as NNRPv2) and (bottom) modeled (designated as CFSv2) weather types for the DJF season.

Contours sketch geopotential height anomalies (gpm; contour interval is 5 gpm), and shaded regions indicate statistically significant

(p# 0.05, Student’s t test) anomalies. Panel titles give the accumulated number of days for all the DJF seasons assigned to each weather

type (WT). Note that the CFSv2 weather types were computed after concatenating 10 members, and thus the total number of days is 10

times that of one member.
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correlation coefficients (.0.30 for p , 0.05) for a very

large number of grid boxes, the weather type model

exhibits better skill for basically all of Uruguay as well as

southern Brazil and regions of Argentina.

The ROC areas tend to be better for the above-

normal category in the cross–time scale models, except

for the potential predictability SST1MJO model

(Fig. 4), which exhibits better discrimination for the

FIG. 4. Comparison of different hindcast attributes for the potential predictability experiments (observed predictors) shown in Table 1.
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below-normal category in a region of Argentina close to

the center of SESA. Although the differences between

the cross–time scale models seem to be mainly in the

location and spatial extension of the regions with higher

skill scores (Figs. 4 and 5), regionwide averages of the

metrics show slightly higher values for the weather type

model, as discussed in the next paragraph.

The differences between the models could also be

studied at regional scale. Spatially averaged Kendall’s

t for the MJOmodel (potential and real-time hindcasts)

FIG. 5. Comparison of different hindcast attributes for the real-time predictability experiments (forecast predictors) shown in Table 1.
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is significantly different but lower than the SST model

(see top rows of Table 1). For the real-time case, the

MJO and SST models’ difference in Kendall’s t is lower

than for the potential predictability experiment.

This relative increase of skill is attributed here to the

fact that the MJO ensemble forecast product provided

by ECMWF actually includes 121 past observed days

(14 July–12 November) in addition to the 32 forecast

days (13 November–15 December). The analysis of the

different experiments (using only the 121 past observed

days, only the 32 forecast days, and both) suggests that,

because of the quasi-regularity of the MJO, skillful

DJF forecasts can be achieved using past phases of the

MJO as predictors. The best skill was found when both

observed and forecast phases are mixed and used as

(lagged) predictors for DJF. This is not surprising, as

the relatively long period used is providing 1) a better

specification of the MJO states (phases) for each par-

ticular year considered and 2) a decrease of the sam-

pling error, as a total of 153 days is used instead of

only 32.

The Kendall’s t for the SST1MJO model exhibits

higher and significantly different values than the SST

model (Table 1), in agreement with the hypothesis. Note

that the SST1MJOmodel uses a combination of CFSv2

DJF’s SSTs, initialized in October, and ECMWF’s MJO

phases from the 13 November forecast cycle. The skill of

the SST1MJO model is high, even when the MJO

forecast is only for 32 days from mid-November, and

thus it does not cover the entire DJF season. This result

suggests that the observed frequency of MJO phases in

the months previous to the target season could be used

as a potential predictor for extreme rainfall in SESA,

and it merits further study.

Although at local scale the SST1MJOmodel tends to

outperform all the others (Figs. 4 and 5, third row from

top), the spatially averaged Kendall’s t of the model

using weather types is the highest (Table 1). The fact

that this model’s regional skill is not significantly (p ,
0.05) different than the one associated with the

SST1MJO model is consistent with what was suggested

in Part I about the weather types being ‘‘especially

sensitive’’ to cross–time scale interactions. It is likely

that these circulation regimes are not only capturing

these interferences at subseasonal-to-seasonal scales but

also sensitive to interferences of climate drivers at other

time scales. Another way to explain that their pre-

dictability is higher than the monoscale models (SST

and MJO) is related to the fact that the weather types

are proxies of the physically available states of the

subsystem associated with distinctive atmospheric cir-

culations in SESA. Hence, any extreme rainfall event

could be written only in terms of these weather types

because they are a filtered version of the physical field

that increases the predictive skill. If the weather types

are a set of vector bases to describe the vector space of

all possible observations, and it is true that multiple

time-scale climate drivers interfere with each other in

order to produce these observations, then it is logical

that the weather types are sensitive to cross–time scale

interactions.

Notwithstanding that DJF’s mean and extreme rainfall

are more difficult to forecast than other seasons (Almeira

and Scian 2006; Pisciottano et al. 1994; Cazes-Boezio

et al. 2003), there is a significant increase in potential and

real-time predictability (Table 1) when cross–time scale

interactions are considered by statisticalmodels. ACCA-

based MOS applied on a combination of CFSv2 and

ECMWF outputs could be used as an element of an ex-

perimental forecast system for frequency of extreme

events in SESA for DJF and probably for other seasons

(and locations), too. For models using weather types as

predictors, the skill is expected to be even higher than the

one reported here when other methods are used instead

of the CCA approach, as inMoron et al. (2010). This idea

will be analyzed elsewhere.

The next section takes advantage of the high skill

found in the weather type model to build s2s extreme

rainfall scenarios from 3-month daily sequences of

CFSv2’s circulation regimes.

4. Subseasonal-to-seasonal extreme rainfall
scenarios

The previous section provided evidence that the pre-

dictive skill for the occurrence of extreme rainfall events

in SESA increases when the interactions of predictors at

different time scales are considered. This section

discusses a predictive approach for the subseasonal

evolution of these extreme events.

It is possible that the increase of skill is achieved just

by involving additional independent predictors, with no

interference taking place between them. In that case,

even if the predictors do not interact with each other, the

TABLE 1. Spatially averaged potential (observed predictors,

28 yr) and real-time (forecast predictors, 16 yr) skill for the

different models selected. For each column, SST models are

used as reference to compute statistically significant differ-

ences (p # 0.1, denoted by an asterisk).

Predictor

and model

Kendall’s

t (potential)

Kendall’s

t (real time)

SST 0.174 0.163

MJO 0.118* 0.134*

SST1MJO 0.231* 0.192*

Weather types (WTs) 0.249* 0.202*
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rainfall field in the region could still be explained by

their complementary signals.

A second possible explanation is that, in addition to

the case above, there is an increase in the predictive skill

because the nonlinear interference of climate drivers is

itself an additional predictor. This would introduce se-

lection rules that could increase predictive capacity: the

interaction is reducing the vector space of all possible

forecasts for a particular target period, from the wide

range of outcomes associated with an El Niño event to,

for example, the ones that involve simultaneously an El

Niño event and MJO locked in phase 3.

To explore these ideas, statistically significant (p #

0.05) anomalous percentage of the observed occur-

rences of weather types were computed for each MJO

phase considering all years, the five strongest El Niños
on record, and the five strongest La Niñas on record

(Figs. 6a, 6b, and 6c, respectively). Preferred occur-

rences of the weather types in relation to the eight

phases of the MJO were found in each case, indicating

that in general the associated conditional probabilities

are not equal (using Dirac’s notation to be consistent

with Part I and ENSO1 denoting El Niño, ENSO2 de-

noting La Niña, and WT the set of weather types):

jhWT jMJOij2 6¼ jhWT jMJO, ENSO(1,2)ij2 and (1)

jhWT jMJO,ENSO1ij2 6¼ jhWT jMJO,ENSO2ij2. (2)

Also, since Part I showed that the weather types do not

tend to persist for many days (see Table 1 of Part I),

Eqs. (1) and (2) suggest that particular weather types’

sequences may be more common in the presence of

specific interactions.

These results suggest that cross–time scale interferences

produce distinctive preconditioning or entanglements

between the climate drivers whose impacts (e.g., on

extreme rainfall) could be represented in terms of typical

s2s scenarios built using sequences of daily circulation

regimes (weather types). Since the previous section

showed that those seasonal forecasts for DJF are skillful,

in what follows seasonal sequences (i.e., sequences over

the 3-month season) will be used to define s2s states (in

principle, weekly ormonthly sequences could be used too,

but no skill analysis has been performed here for those

time scales).

Note that these ideas are in line with the approach to

extract subseasonal scenarios considered byMoron et al.

(2013), although the methodology followed here is dif-

ferent: while their subseasonal scenarios are built in

terms of the rainfall field itself, the present study uses

seasonal sequences of weather types, which are more

predictable than rainfall, to identify states that are then

related to subseasonal-to-seasonal scenarios of occur-

rence of extreme precipitation. One may think of this

approach as a type of analog method (Lorenz 1969;

Zorita and von Storch 1999; Van den Dool 1994) that

uses the s2s states to identify the analog years but that

provides the subseasonal-to-seasonal evolution of the

extreme events. Further details about the present ap-

proach are discussed in the following subsections.

a. Subseasonal-to-seasonal states and extreme rainfall
scenarios

In this subsection we illustrate the general method-

ology, summarized in section 2, for the particular case

in which the predictor is a set of seasonal frequencies

of weather types, computed from daily sequences

produced by CFSv2 (see Fig. 2). These are the same

combinations of weather types used in the pre-

dictability experiments reported in section 3, already

known to provide statistically significant cross-

validated skill.

FIG. 6. Anomalous percentage of occurrence (see color bar) of each weather type for each phase of the MJO for (a) all seasons (DJF

1982–2010), (b) El Niño events, and (c) La Niña events. Colored tiles are significant at the p # 0.05 confidence level, obtained using

a bootstrapping method resampling 1000 times.
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The weather types and associated Klee diagram,

showing the sequences of circulation regimes for every

day in all the DJF seasons under analysis, were com-

puted following the same methodology reported in Part I

(Fig. 7a).

Then the s2s states were obtained via a categorical

clustering algorithm (Fig. 7b) of the daily sequences of

weather types along the entire season, for all years in

the period. In the present study, after several tests, a set

of five clusters was considered adequate to represent

different entangled states conducive to specific distri-

butions of occurrences of extreme rainfall (dR95p

index). As mentioned before, the hypothesis is that

these s2s states represent distinctive cross–time scale

interactions and thus are not modulated by just one

climate driver. Although there are s2s states that are

clearly preferred during different ENSO phases (e.g.,

El Niño events in state I and La Niña events in state V),

ENSO years tend to appear in other clusters too

(Table 2).

The next step involves the identification of the s2s

rainfall scenarios via a composite analysis of the dR95p

fields associated with each s2s state. The highest fre-

quency of extreme precipitation events, or extremely

FIG. 7. Illustration of the methodology followed to generate s2s extreme rainfall scenarios. (a) Klee diagram showing all observed

weather types—blue tends to be related to negative rainfall anomalies, and red tends to be positive rainfall anomalies; (b) subseasonal-to-

seasonal categorical clusters (or states) showing 90-day sequences of weather types; (c) temporal evolution of each observed s2s extreme

rainfall scenario (mean frequency of extreme rainfall events per day per grid box—these values correspond to dividing the fifth column of

Table 2 by the number of days in the season with extreme events); and (d) spatial distributions of the s2s extreme rainfall scenarios.
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‘‘wet spells,’’2 tends to occur during specific calendar

days (Table 2 and Fig. 7c). Though these spells are often

associated with sequences of weather types involving

weather type 4 and weather type 6 (Part I), this clearly is

not always the case; persistence, ordering, and alterna-

tion of the different circulation regimes are important to

understand the presence or not of extreme precipitation

events—similar to how a particular set of letters in a

word mean something different when they are re-

arranged. For details, see Part I.

The s2s rainfall scenarios are not only different with

respect to the way spells are distributed along the sea-

son, but also in their seasonal average number of days

with extreme rainfall: scenarios IV and II have the

highest (;30 days) and lowest (;17 days) frequencies of

events, respectively; scenarios I, III, and V are in-

termediate ones (;28, 25, and 20 days, respectively).

Additional information for each scenario could be

obtained in terms of the spatial distribution of (extreme)

rainfall for a particular temporal window (Fig. 7d; e.g.,

days 20–30), the middle month, or the entire season.

This approach allows for the identification of possible

locations where preparatory actions may be im-

plemented before the occurrence of the extreme events.

The same methodology could be used for different

percentiles of precipitation (and other variables), al-

though an evaluation of its performance for these other

cases must still be explored.

b. Forecast skill

In this approach the s2s states (the categorical clusters)

are the ones being forecast and not directly the temporal

or spatial distribution of extreme rainfall. The validation

metrics considered in this section are computed to eval-

uate discrimination, reliability, and resolution (Jolliffe

and Stephenson 2012; Mason and Stephenson 2008) of

the categorical forecasts of sequences of weather types.

The joint validation of both the s2s states and scenarios

will be considered elsewhere.

Despite the fact that the best-guess multinomial lo-

gistic model exhibits hits for only half of the forecasts

(Table 3), it is still a relatively high frequency of hits

when compared to the climatological one (0.2 if equi-

probability is assumed true for this case and 0.14–0.28 if

more precise values are computed from the samples

indicated in Table 2). Further analysis reveals statisti-

cally significant (p , 0.05; bootstrapping method re-

sampling 1000 times) values of the scores under

consideration: hit score (0.5), hit skill score (0.375), and

TABLE 2. Years of occurrence for each subseasonal-to-seasonal state, number of years belonging to that state, approximate periods of

occurrence (in calendar days for theDJF season) of extremely wet days, andmean seasonal occurrence per grid box. Years denote the end

of the season (e.g., 1998 corresponds to 1997/98).

S2s state Years Sample Extremely wet spells (calendar days) Extreme occurrence

I 1982, 1986, 1996, 1998, 2003, 2007, 2009, 2010 8 20–30, 55–65, 70–80, and 80–90 Frequent (28.0 days)

II 1989, 1991, 1995, 1997, 2006, 2008 6 5–15, 49–65, and .85 Very infrequent (17.5 days)

III 1980, 1983, 1985, 1988, 1990, 1993, 1994, 2005 8 5–20 and 55–80 Moderate (25.0 days)

IV 1981, 1984, 1987, 1992, 2004 5 25–45, 65–75, and .83 Very frequent (30.4 days)

V 1999, 2000, 2001, 2002 4 60–80 Infrequent (19.9 days)

TABLE 3. Cross-validated forecast probabilities (%) for DJF for

each s2s state and the observed state. Results are shown for the

best-guess multinomial logistic model. Probabilities have been

rounded to the nearest integer leading to the best expected igno-

rance score (see section 2 for details).

Year I II III IV V Observed

Hit (H) or

miss (M)

1982/83 1 53 41 4 1 III M

1983/84 1 8 60 30 1 IV M

1984/85 1 31 57 11 1 III H

1985/86 96 1 1 1 1 I H

1986/87 1 33 43 21 1 IV M

1987/88 1 9 24 65 1 III M

1988/89 1 50 44 4 1 II H

1989/90 1 29 49 20 1 III H

1990/91 1 2 1 1 95 II M

1991/92 1 9 25 64 1 IV H

1992/93 82 1 15 1 1 III M

1993/94 1 15 66 17 1 III H

1994/95 1 44 17 36 1 II H

1995/96 58 18 21 2 1 I H

1996/97 1 18 36 44 1 II M

1997/98 96 1 1 1 1 I H

1998/99 1 1 1 1 96 V H

1999/00 18 1 10 38 33 V M

2000/01 96 1 1 1 1 V M

2001/02 1 67 1 2 28 V M

2002/03 96 1 1 1 1 I H

2003/04 1 31 13 54 1 IV H

2004/05 66 11 19 3 1 III M

2005/06 1 4 7 1 87 II M

2006/07 96 1 1 1 1 I H

2007/08 1 94 1 2 1 II H

2008/09 25 18 37 3 17 I M

2009/10 1 56 38 5 1 I M
2Although these do not correspond to a formal definition of wet

spells, the name has been adopted here for the sake of simplicity.
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Kendall’s t (0.338). The last one is considerably higher

than the corresponding potential skill value obtained in

section 3 for the seasonal frequency of extremely wet

days (see Table 1; note that the present results use the

same number of years as the potential skill experiments).

Additional characteristics of the predictive model

are summarized with a contingency table (or confu-

sion matrix; Table 4). The model’s forecasts are

better for state I (18% of all years), followed by states

II and III (both with 10.7%). The worst forecast oc-

curs for state V (3.6%), with a tendency to be con-

fused only by state II. Note that the latter is similar to

state V, having the second minimum average fre-

quency of days with extreme rainfall in the entire

season. State IV (7.1%) tends to be equally confused

with states II, III, and V, but not with state I (see

Table 4).

The present version of the method does not provide

specific forecasts of the expected extreme rainfall dis-

tribution, but rather a composite analysis involving

similar years in the historical record. That is why the

outputs have been called ‘‘scenarios’’ here. Nonethe-

less, it is argued that the information provided is useful

for decision-makers, as each s2s extreme rainfall sce-

nario involves only a handful of real historical cases

that stakeholders directly know or have indirect expe-

rience with. For instance, to suggest that DJF 2015/16

could be classified as state I, with an extreme rainfall

scenario similar to the one presented at the top of

Fig. 7c, provides information about the typical distri-

bution of extremes (e.g., mainly at the end of Decem-

ber and during the second half of February), and also

indicates that it belongs to a particular set of years that,

in the most part, were moderate and strong El Niño
events. Decision-makers can then refer to past expe-

rience to understand and estimate possible impacts.

Finally, note that the best forecast category, state I, is

one of the most impactful, as it is associated with high

seasonal frequency of extreme rainfall events. It is also

one of the most common categories, and thus society

may be more used to dealing with the associated hazard

under its present vulnerabilities. Those two facts give

additional value to the use of this methodology to pro-

duce subseasonal-to-seasonal scenarios.

c. Two contrasting examples: 2006/07 versus 2000/01

This subsection discusses the s2s states and extreme

rainfall scenarios obtained for two particular DJF sea-

sons, 2006/07 and 2000/01. The forecast model assigned

the same probability distribution for each s2s state in

those years (Table 3), but it was only correct in one of

those cases: 2006/07.

Analysis of the observed daily evolution of the cir-

culation regimes (Fig. 8a) indicates that the 90-day se-

quence for 2006/07 was correctly identified by the

multinomial logistic model using the corresponding

seasonal frequency of weather types.

On the other hand, the k-medoids algorithm identified

the observed sequences for 2000/01 as a realization of

state V (Fig. 8a). The wrong 2000/01 forecast is attributed

to a close similarity between the weather type’s seasonal

frequencies for that period, and the corresponding values

for state I. This is the only case in the study in which the

CFSv2’s frequency distribution of the circulation regimes

failed as a classifier for state I (Table 3).

The extreme rainfall evolution for 2006/07 exhibits a

statistically significant Spearman correlation (p , 0.01;

see Fig. 8b) with scenario I. In contrast, the evolution of

extremes for 2000/01 is only significantly correlated (p,
0.01) with scenario V, as one should expect.

The spatial distribution of the frequency of rainfall

extremes is consistent with the temporal evolution

analysis. Statistically significant pattern correlations

(p, 0.01) are only achieved between scenario I (Fig. 9a)

and the 2006/07 season (Fig. 9b) and for scenario V and

the 2000/01 season (Figs. 9c,d).

The 2006/07 season involved the occurrence of ex-

treme rainfall events distributed more or less homoge-

neously over all SESA, as in scenario I, while 2000/01

presented a spatial pattern with more extremes along

the western and northern boundaries of SESA; note that

although scenario V shows the same distribution, it has a

noticeable accumulation of extremes along the south-

western boundary of SESA that does not appear in the

2000/01 map.

The failure in the 2000/01 forecast is mostly related

to amisidentification of the correct scenario (V, and not I).

This situation, at least for the cases considered, is ex-

pected to improve if the actual forecast sequence of

weather types is used instead of the forecast seasonal

frequency of the regimes. Although this idea involves

some methodological experimentation to identify the

best way to use multimember sequences of weather

types, it is considered feasible and it will be treated in a

future work.

TABLE 4. Contingency table (% of the total no. of years) for the

hindcasts reported in Table 3.

Forecast

Observed

I II III IV V

I 18.0 0.0 7.1 0.0 3.6

II 3.6 10.7 3.6 0.0 3.6

III 3.6 0.0 10.7 7.1 0.0

IV 0.0 3.6 3.6 7.1 3.6

V 0.0 7.1 0.0 0.0 3.6
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5. Real-time forecast constraints

This section briefly describes some operational as-

pects of an experimental forecast system for s2s extreme

rainfall scenarios in SESA.

It is recommended to use the best predictors found in

the present study (i.e., SST1MJO and weather types).

As indicated, the required forecasts involve both

the ECMWF (MJO) and CFSv2 (SST and weather

types) models.

FIG. 8. Temporal evolution of (a) daily WT sequences and (b) frequency of rainfall extreme events (dark blue

bars; red curves show 3-day moving averages). States I–V and scenarios I–V were produced by the methodology

discussed in section 2. DJF 2006/07 and 2000/01 correspond to observations.
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The analysis performed in the present study involved

data made available each year around 15 November for

CFSv2 [initialized in October; see details in Saha and

Tripp (2011)] and around 13 November for ECMWF.

This means that the operational forecasts could start on

15 November and thus use all the required fields. An

alternative is to use October’s observed SST fields made

available around 5 November (or even CFSv2 output

made available in October, initialized in September)

and the ECMWF MJO forecasts made available on

6 November, which means that the start date for the

operational forecast in this case could be 6 November

(note that the skill for this alternative has not been an-

alyzed in this paper).

As explained in section 2, the required CFSv2’s fore-

casts are SST anomalies (DJF, monthly resolution) and

geopotential height anomalies at 850 hPa (DJF, daily

resolution), from which the frequency of occurrence of

the set of six weather types can be easily obtained (see

Part I and section 2 for details). In the case of the

ECMWF, the ensemble forecast for the two PCs is used

to compute the frequency of occurrence of MJO phases.

Their five-member ensemble contains a total of 153 days

(121 past observations plus 32 actual days of forecast),

which are to be used without subtracting any subset.

With these datasets, it is possible to produce both

seasonal forecasts of occurrence of extreme rainfall and

s2s extreme rainfall scenarios, following the methodol-

ogy discussed in the previous pages. Automating the

process will decrease the probability of mistakes and

guarantee that the products will be issued on time; while

the details are out of the scope of the present paper, it

will only be mentioned here that both types of products

could be run automatically using scripts for the Linux

version of CPT and MATLAB, providing also updated

cross-validated skill metrics.

6. Conclusions

The forecast skill of extreme rainfall frequency in

southeastern South America is improved for the DJF

season when the interference of predictors at different

time scales is considered. This is attributed to mecha-

nisms of climate variability acting at one time scale that

contribute to predictability at other time scales.

Seasonal forecasts for frequency of daily rainfall ex-

ceeding the 95th percentile are, at regional scale, sig-

nificantly more skillful when cross–time scale predictors

are used, compared to models employing SST fields

alone (e.g., Kendall’s t increases ;23%–43%). This

improvement allows for the provision of skillful fore-

casts to decision-makers in the region as a whole, in

terms of seasonal probabilities of occurrence of extreme

rainfall events for the three traditional categories: above

normal, below normal, and normal. However, at the

local scale of a particular grid box, the use of cross–time

scale predictors may not always increase the skill, pos-

sibly as a result of local noise patterns that are filtered

out when a regional average is performed.

Since additional climate information at shorter time

scales, such as the likely evolution of the extreme events

within the season, is widely desired by decision-makers,

FIG. 9. Spatial distribution of the frequency of extreme rainfall events for (a) scenario I, (b) DJF 2006/07,

(c) scenario V, and (d) DJF 2000/01. Units are frequency of extreme events per season per grid box. The contour

interval is unitary.

15 AUGUST 2016 MUÑOZ ET AL . 5931



a seamless subseasonal-to-seasonal forecast methodology

was developed and tested. The new predictive approach is

based on cross–time scale interferences in order to

provide a better specification of the state of the predictor(s)

in the models and thus achieve more skillful forecasts.

These interactions provide seasonal predictability of

weather statistics (extreme rainfall frequency in this

case) that can be exploited to produce subseasonal-scale

climate information about the evolution of such weather

statistics. The approach described in this paper allows

for the probabilities to be computed for each one of five

(in the case analyzed here) states that describe seasonal

sequences of daily circulation regimes conducive to

particular extreme rainfall distributions. These scenar-

ios are associated with distinctive periods of time and

frequencies of occurrence of extremely wet spells (e.g.,

during the first 20 days of the season or along the entire

month of February, like in scenario III). Although these

are not forecasts of the weather evolution per se (i.e., the

subseasonal-to-seasonal states are the ones being fore-

cast), the approach offers useful information to decision-

makers interested not only in how many extreme events

will happen in the season but also in how, when, and

where those events will occur.

Besides exploiting seasonal predictability to provide

information at subseasonal scale, the subseasonal-to-

seasonal states have the advantage of being more pre-

dictable than rainfall scenarios, because the atmospheric

circulation patterns are in general more predictable than

rainfall regimes. Moreover, preliminary results show that

this approach provides consistent results when applied to

other parts of the world, and it also seems to increase the

skill of mean seasonal values (i.e., not only extremes).

The particular processes by which cross–time scale

interferences increase forecast skill in different parts of

the world are not well understood. Although the role of

weather types and their relationship to different physical

mechanisms was discussed in Part I to explain the oc-

currence of extreme rainfall events in SESA, further

research is required in order to better understand how

the cross–time scale interactions produce the

subseasonal-to-seasonal states associated with specific

intraseasonal evolution of extremes. The physical

mechanisms behind sequences of weather types (or

words, to use the analogy of Part I) are more complex

than just adding up the processes associated with daily

events (i.e., the memory of the system is important),

underscoring the nonlinear nature of the interferences.

Indeed, from a system dynamics perspective (Palmer

1999), extreme rainfall in SESA and its predictability

may be ruled by the effect of a linear or nonlinear su-

perposition of noninteracting or interacting climate

drivers. Which one is the case for SESA? The present

research indicates that the best predictor is a nonlinear

function of the original climate drivers considered.

Moreover, the best forecasts for extreme rainfall fre-

quency (at least for SESA and DJF) are obtained via a

nonlinear function of the candidate predictors. Studies

in other parts of the world have found similar results

when studying interactions between climate drivers (see,

e.g., Yoo et al. 2010; Krishnamurthy and Shukla 2008;

and references therein).

From this perspective, the nonlinearity of the in-

terferences, the seasonal weather statistics, and the

subseasonal evolution are all related. Once the entan-

gled state is established, in addition to modulating the

seasonal frequency of extreme events, the cross–time

scale interactions lead to intraseasonal evolution of ex-

treme rainfall that happens in a more organized, or less

random, way throughout the season. For example, the

subseasonal-to-seasonal state I (Fig. 7), which tends to

occur during El Niño events and thus with the presence

of frequent meridionally propagating Rossby waves af-

fecting SESA (Part I), is associated not only with the

highest seasonal frequency of extreme rainfall events,

but this state tends to happen during the end of De-

cember and the middle of February.

As a final comment, a simple version of the subseasonal-

to-seasonal scenario approach was discussed in this paper.

It is recommended the extensions of this method be ex-

plored, for example, using Markov chains instead of a

composite analysis.
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APPENDIX

Multinomial Logistic Models

This study employs multinomial logistic models, as

mentioned in step 5 of section 2b(2), to forecast the s2s

states using the chosen set of predictors.
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Ifpi denotes the conditional probability associatedwith

the ith s2s state (categorical cluster Yi, "i5 1, . . . , n),

given a predictive state vector X—that is, a combination

of p predictors (Xj, "j5 1, . . . , p)—then, using Dirac’s

notation to be consistent with Part I,

p
i
5 jhY

i
jXij2 5P(Y

i
jX) , (A1)

and the multinomial logistic model can be written as

log
p

i

~p
5a

i
1b

ij
X

j
, (A2)

where the Einstein summation convention is used, ~p

denotes the probability of the n 2 1 reference category

logits, ai is a constant associated with the ith s2s state,

and bij is the coefficient of each predictor Xj, repre-

senting the effects of the predictor variables on the rel-

ative risk or log odds of being in one category versus the

reference category.

From Eq. (A2) it is possible to write "i5 1, . . . , n2 1

as follows:

p
i
5

exp(a
i
1b

ij
X

j
)

11 [exp(a
k
1b

kj
X

j
)]

k

and (A3)

~p5
1

11 [exp(a
k
1b

kj
X

j
)]

k

, (A4)

with k5 1, . . . , n2 1 a summation index. The reference

category is arbitrary, and thus it was chosen to be the last

one: ~p5pn. The MATLAB implementation of the

maximum likelihood estimator was used to determine

the coefficients bij for this model (via the mnrfit

function).
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