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ABSTRACT

Potential and real predictive skill of the frequency of extreme rainfall in southeastern South America for
the December-February season are evaluated in this paper, finding evidence indicating that mechanisms of
climate variability at one time scale contribute to the predictability at another scale; that is, taking into
account the interference of different potential sources of predictability at different time scales increases the
predictive skill. Part I of this study suggested that a set of daily atmospheric circulation regimes, or weather
types, was sensitive to these cross—time scale interferences, conducive to the occurrence of extreme rainfall
events in the region, and could be used as a potential predictor. At seasonal scale, a combination of those
weather types indeed tends to outperform all the other candidate predictors explored (i.e., sea surface
temperature patterns, phases of the Madden—Julian oscillation, and combinations of both). Spatially averaged
Kendall’s 7 improvements of 43% for the potential predictability and 23% for real-time predictions are
attained with respect to standard models considering sea surface temperature fields alone. A new
subseasonal-to-seasonal predictive methodology for extreme rainfall events is proposed based on probability
forecasts of seasonal sequences of these weather types. The cross-validated real-time skill of the new prob-
abilistic approach, as measured by the hit score and the Heidke skill score, is on the order of twice that
associated with climatological values. The approach is designed to offer useful subseasonal-to-seasonal cli-
mate information to decision-makers interested not only in how many extreme events will happen in the
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season but also in how, when, and where those events will probably occur.

1. Introduction

Extreme events are difficult to forecast, but many lo-
cations of the world exhibit some regional predictability
of seasonal amount and frequency of extreme pre-
cipitation that is still useful for decision-making. The
impacts of extreme rainfall events are of key socioeco-
nomic importance for southeast South America (SESA;
Mufioz et al. 2015; Bettolli et al. 2009; Mechoso et al.
2001), especially for the rainy season. The skill of
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seasonal rainfall forecasts in this part of the world ben-
efits from the influence of sea surface temperature (SST)
patterns in both the Pacific and the Atlantic (Muioz
et al. 2015; Pisciottano et al. 1994; Nogués-Paegle and
Mo 1997; Diaz et al. 1998; Barros and Silvestri 2002;
Grimm et al. 1998, 2000). Nonetheless, the predictive
skill for the austral summer [December-February
(DJF)] is considerably lower than for other seasons
(Almeira and Scian 2006; Pisciottano et al. 1994), in part
because of a weaker influence from El Nifio-Southern
Oscillation (ENSO) teleconnections and the potential
interference of other ocean basins on the South Atlantic
convergence zone (Cazes-Boezio et al. 2003; Barreiro
and Tippmann 2008; Chan et al. 2008; Drumond and
Ambrizzi 2008). Other causes involve local drivers, such
as soil moisture availability and its possible influence on
circulation (Grimm 2003; Grimm et al. 2007).

Muiioz et al. (2015, hereafter Part I), identified several
subseasonal-to-seasonal climate drivers linked to daily
circulation regimes, or “weather types” (Huth et al. 2010;
Jolliffe and Philipp 2010), that are conducive to extreme
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rainfall events in SESA, via their imposed synoptic control
on mesoscale physical mechanisms (e.g., mesoscale convec-
tive systems, extratropical cyclones, and heat and moisture
transport). The frequencies and sequencing of these weather
types are sensitive to cross-time scale interferences between
the different climate drivers and therefore are themselves
candidate predictors for extreme rainfall.

More generally, the interactions between different
potential sources of predictability at different time scales
should increase the predictive skill of extreme events in
the region and could also increase the skill for mean
rainfall values. This proposition is based on the idea
that mechanisms of climate variability at one time scale
contribute to predictability at another. For example,
subseasonal climate drivers sometimes dominate the
seasonal frequency of rainfall extreme events, even dur-
ing moderate ENSO phases, and hence must be consid-
ered in order to have skillful forecasts. For concrete
examples see Part I and also Hirata and Grimm (2016).

This idea may sound obvious, but multiple state-of-the-
art dynamical and statistical climate models still lack an
adequate representation of these cross-time scale in-
terferences. Although several authors have diagnosed the
impact of climate drivers at different time scales on rainfall
extremes (see Part I for details), their role in forecast skill
was not analyzed until recently (Moron et al. 2012, 2015).
Indeed, it is expected that including additional predictors
should increase the model’s goodness of fit, but this is not
necessarily true when evaluating forecast performance.
Furthermore, it has not yet been demonstrated how many
or what kind of climate drivers are necessary and sufficient
to increase the predictive skill. Since the skill does not add
up linearly, in part because the different climate drivers are
not completely independent, it is also possible that the im-
provement is so small that there is very little added value.

A hypothesis used in this work is that during cross—time
scale interferences it is possible to define an entangled
state of the predictors; that state leads to better-
quality and higher-skill information of the seasonal cli-
mate and its subseasonal characteristics than using
predictive information on either time scale alone. The
concept of entanglement is borrowed from quantum
mechanics, referring to groups of particles or waves that
interact in such a way that their states cannot be de-
scribed independently, though it is possible to define a
state for the system as a whole. The entanglement idea is
akin to the basis of Bayesian approaches and the re-
duction of the sample space in conditional probability; in
the present context it suggests that a better specification
of the state of the system in the models (via this entan-
glement of predictors) must provide better forecasts.

For decades, statistical and dynamical climate models
have focused on ENSO as the main, and often the only,
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predictor at seasonal scale, and little work has been done
on the simultaneous role of climate drivers at different
time scales (Hoskins 2013). Not only do cross—time scale
interferences allow the possibility of more skillful fore-
casts but they also facilitate delivery of information at
different stages, as in the ready-set-go approach
(Goddard et al. 2014; Braman et al. 2013). In a multistage
prediction system, seasonal and possibly longer-range
time-scale forecasts provide a background signal that is
successively updated as forecasts at shorter time scales
become available. In today’s prediction systems, this
updating is not implemented seamlessly, in part because
subseasonal forecasts are still under development (WMO
2013) and, with a few exceptions (see, e.g., Vitart 2014; Li
and Robertson 2015), lack skill for lead times longer
than a couple of weeks. Considering methodologies that
may advance seamless prediction systems is thus needed.
The weather type approach discussed in Part I identified
several potential sources of predictability conducive to
extreme rainfall events—namely, ENSO, the Atlantic
meridional mode (AMM), the South Atlantic dipole
(SAD), and the southern annular mode (SAM) at seasonal
scale and the Madden-Julian oscillation (MJO) and the
South Atlantic convergence zone (SACZ) at subseasonal
scale; for details, see Part 1. For practical purposes of real-
time prediction, particular combinations (or predictive
state vectors, to use the terminology of Part I) of a rep-
resentative subset of these drivers will be used here.
Since the weather types can be understood as proxies
of the only physically available states of the system, they
represent a sort of alphabet to describe all possible
synoptic states in SESA. Particular sequences (or words)
may be built from that alphabet to indicate the likely
occurrence of extremes. A way to represent those se-
quences is through a Klee diagram (Part I)—a simple
matrix plot that explicitly shows the daily evolution of
weather types both at subseasonal and interannual
scales. In this paper, Klee diagrams are the basis to build
subseasonal-to-seasonal (s2s) states as representative
daily sequences of atmospheric circulation regimes.
The goal of this companion paper of Part I is to ex-
plore whether or not forecasts at one time scale can be
improved by considering information from other time
scales. The research analyzes the associated predictive
skill in the context of extreme rainfall seasonal forecasts
for SESA (i.e., seasonal forecasts of weather statistics)
and explores some of its consequences at shorter time
scales through the use of a new methodology to produce
subseasonal-to-seasonal extreme rainfall scenarios (i.e.,
probable intraseasonal evolution of weather statistics).
The word “‘scenario’ is used here because these are not
traditional forecasts but a description of what could
happen on the coming 3-month season in terms of
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extreme rainfall distributions; these have nothing to do
with climate change scenarios.

The paper is organized as follows: The next section
describes the datasets and summarizes the methods;
then the potential and real-time seasonal predictive skill
of frequency of extremely wet days are studied in section
3, using both empirical and dynamical (Mason and
Baddour 2008) subseasonal-to-seasonal predictors. Since
it is important for decision-makers to know not just the
total amount of (extreme) precipitation or the frequency
of (extremely) wet days but also the probable temporal
distribution of these days along the target period, the
new forecast methodology using s2s states is discussed in
section 4. The reader interested in a few concrete practical
aspects of the experimental forecast system described
in this paper should refer to section 5. The concluding
remarks are presented in section 6.

2. Data and methodologies

This section summarizes information about the data-
sets and methods used in the study. To assess potential
predictability, statistical models are built using observed
candidate predictors that are synchronized with the
predictand, similar to a prefect prognosis approach.
Real-time predictability is evaluated through model
output statistics (MOS) of dynamical model output,
using simultaneous and lagged predictors as indicated in
the following subsections.

a. Datasets

This study uses SST fields, the phases of MJO, and the
frequency of occurrence of a set of weather types as
candidate predictors. Observations and dynamical
model output are considered when analyzing the pre-
dictive skill. The observations involve SST fields, MJO
phases, and weather type frequencies for DJF. The dy-
namical forecast data involve SST field for DJF, 32-day
forecasts of MJO phases (started on 13 November; see
details below), and weather type frequencies for DJF.

Observed datasets are the same as in Part I; the Ex-
tended Reconstructed SST, version 3b, (2° grid; Smith
et al. 2008) is used for sea surface temperatures on the
domain defined by 43°N-60°S and 128°-20°E, while the
phases of the real-time multivariate MJO modes
(Wheeler and Hendon 2004)—RMM1 and RMM2—are
directly available from the Centre for Australian
Weather and Climate Research.' The set of six weather
types are those studied in Part I, computed using a

!See http://www.bom.gov.au/climate/mjo/graphics/rmm.
74toRealtime.txt.
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k-means analysis of the NCEP-NCAR reanalysis project,
version 2 (NNRPv2; Kalnay et al. 1996; Kistler et al.
1999), for geopotential height anomaly at 850 hPa. To
assess the maximum potential skill, all available 28 DJF
seasons for the 1982-2010 period are considered.
Hereafter, the datasets described in this paragraph are
referred to as ““observations.”

Hindcasts, or retrospective forecasts, produced with
October’s initialization of the Climate Forecast System,
version 2 (CFSv2; Saha et al. 2014), are used for SST
fields and to compute the CFSv2’s realizations of the
observed set of weather types mentioned above. The
CFSv2 forecasts are available at monthly and daily
temporal resolutions (SST and geopotential height
anomalies, respectively) and at 0.937° spatial resolution
(Saha et al. 2014). The methodology is the same one
explained in Part I, and no projection is performed onto
the observed weather types. Before performing the
k-means analysis, 10 ensemble members are concatenated
(the use of ensemble means from daily data tends to
produce spurious weather types).

The European Centre for Medium-Range Weather
Forecasts (ECMWF) MJO ensemble forecast (Vitart
2014) is used here for predictions of the MJO phases
(typically, ECMWF MJO forecasts are skillful up to
about one month, compared to around two weeks for
CFSv2). The five-member ensemble of 32-day in-
tegrations involves a sophisticated coupled model at
approximately 1° grid resolution (Vitart 2014), whose
MIJO predictions have improved dramatically since
2002, with an average gain of about 1 day of prediction
skill per year (i.e., the system is now capable of providing
skillful MJO forecasts for the next 32 days, compared to
skillful forecasts for about two weeks in 2002). The
forecast MJO phases are computed from the two leading
principal components (PCs) provided by the ECMWF
forecast for this research. The hindcasts start in 1994.

To have a common period of forecasts for the dy-
namical model output, and for consistency with the
constraints of a real-time prediction system (see section
5), only the products that are available in mid-
November are used for both CFSv2 [initialized in Oc-
tober; see Saha and Tripp (2011) for details] and
ECMWEF forecast (available on 13 November) for the 16
DIJF seasons of the 1994-2010 period. As indicated
above, the CFSv2 SST forecasts and geopotential height
anomalies at 850 hPa correspond to the DJF season.

In all experiments reported here, the predictand cor-
responds to the observed frequency of days with rainfall
amounts exceeding the 95th percentile (dR95p), using
the NOAA-NCEP-CPC unified precipitation gridded
dataset (1° grid; Chen et al. 2008) for the SESA domain
(36°-25.5°S, 65°-53.5°W), and considering daily values
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of all DJF seasons. The frequency of extreme events is
used instead of intensity or rainfall amount because of
its higher predictability (see Part I).

b. Methodologies

Although the predictions of future conditions at dif-
ferent time scales exhibit some common features, dif-
ferent methodologies are used to evaluate the predictive
skill of seasonal forecasts and s2s scenarios. Unless
otherwise indicated, anomalies are always computed
with respect to the long-term mean of the period under
consideration, and tests for statistical significance are
performed using a resampling method (1000 times).

1) SEASONAL FORECASTS

In this study, seasonal forecasts are produced using
canonical correlation analysis (CCA). This is a multi-
variate statistical method commonly used by the climate
forecasting community (Mason and Baddour 2008) that
calculates linear combinations of a set of candidate
predictors and predictands, identifying pairs of combi-
nations (i.e., canonical variates or modes) such that the
correlations between their time series are maximized.
An empirical orthogonal function (EOF) prefiltering is
performed before conducting the CCA. The method
permits the identification of the actual predictors from
the set of candidate predictors (which do not need to be
independent a priori); the canonical modes describe the
preferred coupled spatial patterns relating predictors
and predictands and are presumed to be physically
meaningful. In this study, CCA is conducted using IRI’s
climate predictability tool (CPT), version 15.3.7 (Mason
and Tippet 2016), which first performs supervised modal
truncation of the candidate predictors and the pre-
dictand. CPT provides information that diagnoses the
underlying coupled patterns and also cross-validated
forecast skill metrics that allow the assessment of the
associated predictability.

Deterministic cross-validated forecasts were com-
puted for the frequency of DJF days with rainfall ex-
ceeding the 95th percentile. Since the frequency of
extreme rainfall in the region does not exhibit a
Gaussian distribution, it was transformed using a
quantile mapping of the empirical distribution before
building the models. For CCA models that use a com-
bination of different types of predictors (e.g., SST and
MJO), the modes were computed using the variance—
covariance matrix after a unitary variance normalization
was performed.

To avoid artificial skill, CPT verifies the skill of the
resulting predictions using cross validation (Barnston
and Van den Dool 1993). Here, a cross-validation win-
dow of 5 years is used, meaning that the central year of
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the 5-yr window held out from the time series is pre-
dicted and the forecast is then compared to the observed
values, as a simulated independent case outside of the
training sample (e.g., Barnston and Van den Dool 1993;
Jolliffe and Stephenson 2012; Mason and Stephenson
2008). This process is repeated such that each year in the
dataset is forecast after reapplying the fitting algorithm
for each iteration of the process, and with the climato-
logical data redefined each time a new cross-validation
window is withheld. After processing all years, the mean
values of the skill metrics are provided.

The following metrics are used to evaluate the cross-
validated skill of the deterministic forecasts: Kendall’s 7,
Spearman correlation coefficient, and the area of rela-
tive operating characteristics (ROC; Jolliffe and Stephenson
2012; Mason and Stephenson 2008). Additional details
are discussed in section 3. Spatial maps of these metrics
were produced using CPT.

A summary of the forecast methodology is presented
in Fig. 1. Part I determined a set of predictive state
vectors or candidate predictors that could be used to
forecast extreme rainfall in SESA for the DJF season.
The present paper deals with forecast methodologies
that could be easily put to work in national weather
services of developing countries, where computational
resources or highly trained personnel may be scarce.
Since not all of the candidate predictors suggested in
Part I are currently available operationally, the pre-
dictive skill is evaluated here using the following list of
candidate predictors:

(i) SST, the PCs of the first eight EOFs of the SST field
for the domain defined by 43°N-60°S, 128°-20°E;
(i) MJO, the frequency of occurrence of the eight
phases of the Madden—Julian oscillation;
(iii) SST+MJO, combinations of (i) and (ii); and
(iv) weather types, the frequency of occurrence of the
six circulation regimes identified in Part I.

This set, when compared to the list proposed in Part I, is
missing only two candidate predictors (i.e., the SAM and
SACZ indices); nonetheless, it still represents most of
the observed variability.

A large number of statistical models were built using
CCA for each one of the sets of candidate predictors
indicated above, producing retrospective deterministic
forecasts of frequency of extreme rainfall (dR95p) for
the corresponding training period. CCA automatically
computes orthogonal modes, the actual predictors, from
the corresponding set of candidate predictors. The best
models were selected by maximizing the spatially aver-
aged Kendall’s 7; the skill scores were then computed for
these models for the potential and real-time pre-
dictability experiments.
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Forecasts

Model generation and validation

1. Models built with
Canonical Correlation
Analysis

2. Selection of best

(DJF forecasts from Nov')

b) MJO*
(ECMWF)

Realtime Predictability

* MJO forecasts end in Dec 15% (see main text).

cross-validated model

3. Computation of
deterministic hindcasts
and validation metrics

FIG. 1. Summary of the methodology followed to produce extreme rainfall seasonal forecasts.

2) SUBSEASONAL-TO-SEASONAL SCENARIOS

The general methodology used to produce s2s sce-
narios consists of two parts, and it is summarized in
Fig. 2. The diagnostic part (steps 14 below) involves the
identification of weather types and clusters of sequences
of weather types conducive to particular s2s extreme

rainfall scenarios. The prognostic part (steps 5 and 6
below) builds and cross-validates the associated proba-
bilistic forecast model. The steps are the following:

1) Compute the weather types from observations, and
build the weather type daily sequences for each available
season (i.e., the Klee diagram; see Part I for details).

Subseasonal-to-seasonal Scenarios

DJF forecasts from Nov

1982-2010

Diagnostic part
Goal: identification of s2s states and
associated extreme rainfall scenarios

Predictor Predictand

Compute scenarios using
composite analysis/analogs

Prognostic part
Goal: model generation and validation;
probabilistic forecast of s2s states

Predictor

(from Nov)

Predictand

most recent DJF forecast

Associate probabilities for
each s2s state to scenarios
identified in diagnostic part

probabilistic hindcasts
of s2s states; validation
metrics

FIG. 2. Summary of the methodology followed to produce subseasonal-to-seasonal extreme
rainfall scenarios.
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2) Identify clusters of weather type sequences present
in the Klee diagram (e.g., using the k-medoids
algorithm). Each one of these new categorical clus-
ters is a “‘typical representation’ of the intraseasonal
distribution of synoptic circulation regimes that are
present in a particular season of the year (DJF, in this
case). These categorical clusters are also referred to
as s2s states.

3) Verify the physical consistency between the new
categorical clusters and observed phenomenology
(e.g., check that the obtained relationship between
weather types’ occurrence, phases of candidate pre-
dictors, and extreme rainfall occurrence can be
explained on a physical basis).

4) Compute the mean s2s rainfall scenarios. For each
categorical cluster of weather types’ sequences,
compute the associated spatial and temporal distri-
bution of extreme rainfall via a composite analysis.
This step provides information about when to expect
extreme rainfall within a “‘typical season” of the
categorical cluster under consideration and the spa-
tial distribution of that rainfall.

S) Build the cross-validated probabilistic forecast
model and analyze its predictive skill. Compute
probabilities for each s2s state (i.e., for each predic-
tand). There are different ways to do this. For
statistical models this could be done, for example,
via a multinomial logistic regression (see, e.g., Moron
et al. 2015) using combinations of SST and MJO as
predictors. For dynamical model output this could be
done by first computing the model’s weather types
and then linking corresponding categorical clusters
to the observed ones. In this paper, a multinomial
logistic model using frequencies of occurrence of
weather types (forecast by CFSv2) is used to predict
the observed s2s states.

6) Produce the s2s forecast scenarios for extreme
rainfall events. Using the cross-validated forecast
model, compute the probabilities for each one of
the categorical clusters for the target season, and
then use the corresponding s2s scenario identified in
step 4. Note that it is then possible to associate the
same probabilities to the occurrence of extreme
rainfall events at subseasonal scale (e.g., weeks 3
and 4 or all of January), as they correspond to the
complete sequence of weather types typified by the
categorical clusters.

These steps present a basic methodology for producing
s2s scenarios; more sophisticated ones will be explored
elsewhere, as more complex models may be used (e.g., in
steps 5 and 6) if necessary. In this approach the s2s states
are being forecast and not the rainfall itself.
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Toillustrate the approach (see Fig. 2), only CFSv2’s
weather type frequencies are used here as predictors
(1982/83-2009/10) of s2s states, with a cross-validation
window of 3 years, as the maximum likelihood esti-
mator did not converge in several iterations of the
cross-validation process when five years was tried. In
step 5, the probabilities are rounded to the nearest
integer, ensuring that the total probability is always
100%; to decide how to round the probabilities, the
values leading to the best ignorance score (Jolliffe and
Stephenson 2012; Mason et al. 2016) are selected.
More details about the methodology are discussed in
section 4.

The k-medoids algorithm (Park and Jun 2009) is
used here to compute the s2s states. It is a parti-
tioning method, similar to k means, commonly used
in problems requiring robustness to outliers, arbi-
trary distance metrics, or when the mean or median
does not have a clear definition. Most importantly,
it works well with categorical data like the weather
types. All the experiments reported here used the
MATLAB implementation of the algorithm, with
the Hamming distance function and 10 replications.
The Hamming distance is an appropriate distance
metric for categorical data, representing the per-
centage of the vector components that differ. After
several experiments and comparison of how well the
algorithm classifies the weather type sequences, the
number of categorical clusters (i.e., medoids) was
selected to be five. Although other values are statis-
tically and physically plausible, increasing the num-
ber of clusters, and thus their actual similarity to the
Klee diagram, reduces the sample available to com-
pute the extreme rainfall s2s scenarios; on the other
hand, using too few medoids tends to cluster states
that have different characteristics.

The forecast models used in this approach are built
using multinomial logistic regressions, fitting the co-
efficients that appear in Eq. (A2) via a maximum like-
lihood estimator and computing the probabilities for
each scenario using Egs. (A3) and (A4). This same type
of model has been used recently by Moron et al. (2015)
for similar purposes. For details see the appendix.

The quantification of the predictive skill of this new
s2s scenario methodology is not straightforward, as it
involves the cross validation of both the weather types’
categorical clusters and the s2s extreme rainfall scenar-
ios. For the purposes of this study, the hit score, hit skill
score, and Kendall’s 7 (Jolliffe and Stephenson 2012;
Mason and Stephenson 2008) are used as exploratory
skill metrics for the models forecasting s2s states. In the
present case the goal is not to forecast precise quanti-
ties (e.g., how many mm of rain) but to forecast the



15 AUGUST 2016

most-likely distribution of days with extreme precipita-
tion (scenarios).

3. Seasonal forecasts of extreme rainfall: Impact of
cross—time scale interference on skill

This section explores the predictive skill of seasonal
forecasts of weather statistics for SESA, in particular
extreme rainfall frequency as measured by dR95p,
comparing the use of predictors acting at multiple time
scales against those acting at only one time scale. The
next section discusses the subseasonal evolution of these
weather statistics.

In a recent paper, Moron et al. (2015) studied the
problem of retrospectively forecasting the frequency of
weather types for the Maritime Continent, given perfect
knowledge of three regional climate drivers—namely,
the annual cycle, the Nifio-3.4 index, and MJO phases.
They found that indeed the predictive skill was higher
when they considered a model with all these predictors
simultaneously. Although their results add evidence to
support the cross—time scale interference idea, more
research is required, for example, to analyze these in-
terferences in global circulation models.

A common assumption is that dynamical models
consider these cross—time scale interactions in a ‘‘natu-
ral” way. However, several global circulation models
are not representing well key observed interferences,
and dynamical downscaling does not necessarily im-
prove the situation (Muiioz and Goddard 2014).

In this section, the predictive skill is analyzed both for
the observed behavior of the selected candidate pre-
dictors (potential skill) and for the case of actual fore-
casts (real-time skill). For the latter the output of two
dynamical models, CFSv2 and the ECMWF, are used as
predictors; for details see section 2.

Although the length of skillful MJO predictions for
CFSv2 is still considerably shorter than that for
ECMWF, CFSv2 does a remarkable job capturing ob-
served cross—time scale interactions. The general spatial
structures associated with the observed weather types
are reproduced by CFSv2 (Fig. 3), at least for the DJF
season, with no need to project the model’s fields into
the observed EOF patterns. Regarding the representa-
tion of the weather types’ temporal evolution, the skill
scores indicate also a good representation of the ob-
served behavior, in spite of the fact that the total pro-
portion of occurrence of each circulation regime still
requires some improvement (cf. number of days in pa-
rentheses for both observed and modeled weather types
in Fig. 3). Further research is required to explore how
well this and other dynamical models reproduce weather
type characteristics and their relation to cross—time scale

MUNOZET AL.

5921

interferences. As discussed in Part I, this analysis can
indicate concrete improvements to be performed on the
global and regional climate models based on physical
interactions.

The skill metrics chosen are a measure of how good
the forecasts are, but they characterize different attri-
butes, and since their values are different in different
locations, they are presented in terms of spatial maps
(Figs. 4 and 5). The Spearman correlation coefficient
shows how in phase the observations and forecasts are.
Discrimination, or how well a forecast distinguishes
between the different categories, indicates whether any
potentially useful information is actually being pro-
vided. ROC area maps (the areas under ROC curves
compare proportion of hit rates versus false alarms) are
used here to show the spatial distribution of the model’s
discrimination. Furthermore, the Kendall’s 7 coefficient
is used as an overall goodness index of the prediction, a
measure of each model’s mean extreme rainfall pre-
dictability over SESA. The analysis of skill is presented
in the following paragraphs at local (Figs. 4 and 5) and
regional scales (Table 1).

In general, when a particular model is considered,
the spatial patterns exhibited in the different skill
metrics are very similar (Figs. 4 and 5), indicating that
there are certain locations in SESA where forecasts are
both in phase with observations and show good dis-
crimination for the above-normal and below-normal
categories. When the different models are considered,
it is noticeable that these regions tend to be confined to
Argentina, northern Uruguay, and Brazil in the SST or
MJO models, but cross-time scale models (i.e.,
SST+MJO and weather types) exhibit wider areas with
even higher skill than the others, including almost all of
Uruguay and southern Brazil. Overall, the lowest skill
is found along the northern and western boundaries
of SESA.

Although the skill scores between the potential and
real-time predictability experiments cannot be directly
compared because of different training periods (28 and
16 yr, respectively), it is noticeable that the skill metrics
for actual forecasts exhibit higher variability (statistical
range of the values): the forecasts tend to be very good in
certain regions and considerably bad in others. In the
potential predictability experiments, the skill is more
spatially homogeneous: forecasts tend to be very good in
most places and not particularly good in a few. Models
considering cross-time scale interferences (SST+MJO
and weather types; Figs. 4 and 5, bottom two rows)
show the best skill scores for both potential and real-
time predictability experiments, in agreement with the
cross—time scale interference hypothesis. Although these
two models show statistically significant Spearman
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FIG. 4. Comparison of different hindcast attributes for the potential predictability experiments (observed predictors) shown in Table 1.

correlation coefficients (>0.30 for p < 0.05) for a very The ROC areas tend to be better for the above-
large number of grid boxes, the weather type model normal category in the cross—time scale models, except
exhibits better skill for basically all of Uruguay aswellas for the potential predictability SST+MJO model
southern Brazil and regions of Argentina. (Fig. 4), which exhibits better discrimination for the
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FIG. 5. Comparison of different hindcast attributes for the real-time predictability experiments (forecast predictors) shown in Table 1.

below-normal category in a region of Argentina close to  metrics show slightly higher values for the weather type
the center of SESA. Although the differences between model, as discussed in the next paragraph.

the cross—time scale models seem to be mainly in the The differences between the models could also be
location and spatial extension of the regions with higher studied at regional scale. Spatially averaged Kendall’s
skill scores (Figs. 4 and 5), regionwide averages of the 7 for the MJO model (potential and real-time hindcasts)
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TABLE 1. Spatially averaged potential (observed predictors,
28yr) and real-time (forecast predictors, 16 yr) skill for the
different models selected. For each column, SST models are
used as reference to compute statistically significant differ-
ences (p = 0.1, denoted by an asterisk).

Predictor Kendall’s Kendall’s

and model 7 (potential) 7 (real time)
SST 0.174 0.163
MJO 0.118* 0.134*
SST+MJO 0.231* 0.192%
Weather types (WTs) 0.249%* 0.202*

is significantly different but lower than the SST model
(see top rows of Table 1). For the real-time case, the
MJO and SST models’ difference in Kendall’s 7 is lower
than for the potential predictability experiment.

This relative increase of skill is attributed here to the
fact that the MJO ensemble forecast product provided
by ECMWEF actually includes 121 past observed days
(14 July-12 November) in addition to the 32 forecast
days (13 November-15 December). The analysis of the
different experiments (using only the 121 past observed
days, only the 32 forecast days, and both) suggests that,
because of the quasi-regularity of the MJO, skillful
DIJF forecasts can be achieved using past phases of the
MJO as predictors. The best skill was found when both
observed and forecast phases are mixed and used as
(lagged) predictors for DJF. This is not surprising, as
the relatively long period used is providing 1) a better
specification of the MJO states (phases) for each par-
ticular year considered and 2) a decrease of the sam-
pling error, as a total of 153 days is used instead of
only 32.

The Kendall’s 7 for the SST+MJO model exhibits
higher and significantly different values than the SST
model (Table 1), in agreement with the hypothesis. Note
that the SST+MJO model uses a combination of CFSv2
DJF’s SSTs, initialized in October, and ECMWEF’s MJO
phases from the 13 November forecast cycle. The skill of
the SST+MJO model is high, even when the MJO
forecast is only for 32 days from mid-November, and
thus it does not cover the entire DJF season. This result
suggests that the observed frequency of MJO phases in
the months previous to the target season could be used
as a potential predictor for extreme rainfall in SESA,
and it merits further study.

Although at local scale the SST+MJO model tends to
outperform all the others (Figs. 4 and 5, third row from
top), the spatially averaged Kendall’s 7 of the model
using weather types is the highest (Table 1). The fact
that this model’s regional skill is not significantly (p <
0.05) different than the one associated with the
SST+MIJO model is consistent with what was suggested
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in Part I about the weather types being ‘‘especially
sensitive” to cross—-time scale interactions. It is likely
that these circulation regimes are not only capturing
these interferences at subseasonal-to-seasonal scales but
also sensitive to interferences of climate drivers at other
time scales. Another way to explain that their pre-
dictability is higher than the monoscale models (SST
and MJO) is related to the fact that the weather types
are proxies of the physically available states of the
subsystem associated with distinctive atmospheric cir-
culations in SESA. Hence, any extreme rainfall event
could be written only in terms of these weather types
because they are a filtered version of the physical field
that increases the predictive skill. If the weather types
are a set of vector bases to describe the vector space of
all possible observations, and it is true that multiple
time-scale climate drivers interfere with each other in
order to produce these observations, then it is logical
that the weather types are sensitive to cross—time scale
interactions.

Notwithstanding that DJF’s mean and extreme rainfall
are more difficult to forecast than other seasons (Almeira
and Scian 2006; Pisciottano et al. 1994; Cazes-Boezio
et al. 2003), there is a significant increase in potential and
real-time predictability (Table 1) when cross-time scale
interactions are considered by statistical models. A CCA-
based MOS applied on a combination of CFSv2 and
ECMWEF outputs could be used as an element of an ex-
perimental forecast system for frequency of extreme
events in SESA for DJF and probably for other seasons
(and locations), too. For models using weather types as
predictors, the skill is expected to be even higher than the
one reported here when other methods are used instead
of the CCA approach, as in Moron et al. (2010). This idea
will be analyzed elsewhere.

The next section takes advantage of the high skill
found in the weather type model to build s2s extreme
rainfall scenarios from 3-month daily sequences of
CFSv2’s circulation regimes.

4. Subseasonal-to-seasonal extreme rainfall
scenarios

The previous section provided evidence that the pre-
dictive skill for the occurrence of extreme rainfall events
in SESA increases when the interactions of predictors at
different time scales are considered. This section
discusses a predictive approach for the subseasonal
evolution of these extreme events.

It is possible that the increase of skill is achieved just
by involving additional independent predictors, with no
interference taking place between them. In that case,
even if the predictors do not interact with each other, the
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FIG. 6. Anomalous percentage of occurrence (see color bar) of each weather type for each phase of the MJO for (a) all seasons (DJF
1982-2010), (b) El Nifio events, and (c) La Nifia events. Colored tiles are significant at the p = 0.05 confidence level, obtained using

a bootstrapping method resampling 1000 times.

rainfall field in the region could still be explained by
their complementary signals.

A second possible explanation is that, in addition to
the case above, there is an increase in the predictive skill
because the nonlinear interference of climate drivers is
itself an additional predictor. This would introduce se-
lection rules that could increase predictive capacity: the
interaction is reducing the vector space of all possible
forecasts for a particular target period, from the wide
range of outcomes associated with an El Nifio event to,
for example, the ones that involve simultaneously an El
Nifio event and MJO locked in phase 3.

To explore these ideas, statistically significant (p =
0.05) anomalous percentage of the observed occur-
rences of weather types were computed for each MJO
phase considering all years, the five strongest El Nifios
on record, and the five strongest La Nifias on record
(Figs. 6a, 6b, and 6¢, respectively). Preferred occur-
rences of the weather types in relation to the eight
phases of the MJO were found in each case, indicating
that in general the associated conditional probabilities
are not equal (using Dirac’s notation to be consistent
with Part I and ENSO™ denoting El Nifio, ENSO™ de-
noting La Nifia, and WT the set of weather types):

|{(WT|MJO)|* # [(WT |MJO, ENSO®7)* and (1)
|(WT|MJO,ENSO™")* # [(WT|MJO,ENSO ).  (2)

Also, since Part I showed that the weather types do not
tend to persist for many days (see Table 1 of Part I),
Egs. (1) and (2) suggest that particular weather types’
sequences may be more common in the presence of
specific interactions.

These results suggest that cross—time scale interferences
produce distinctive preconditioning or entanglements
between the climate drivers whose impacts (e.g., on

extreme rainfall) could be represented in terms of typical
s2s scenarios built using sequences of daily circulation
regimes (weather types). Since the previous section
showed that those seasonal forecasts for DJF are skillful,
in what follows seasonal sequences (i.e., sequences over
the 3-month season) will be used to define s2s states (in
principle, weekly or monthly sequences could be used too,
but no skill analysis has been performed here for those
time scales).

Note that these ideas are in line with the approach to
extract subseasonal scenarios considered by Moron et al.
(2013), although the methodology followed here is dif-
ferent: while their subseasonal scenarios are built in
terms of the rainfall field itself, the present study uses
seasonal sequences of weather types, which are more
predictable than rainfall, to identify states that are then
related to subseasonal-to-seasonal scenarios of occur-
rence of extreme precipitation. One may think of this
approach as a type of analog method (Lorenz 1969;
Zorita and von Storch 1999; Van den Dool 1994) that
uses the s2s states to identify the analog years but that
provides the subseasonal-to-seasonal evolution of the
extreme events. Further details about the present ap-
proach are discussed in the following subsections.

a. Subseasonal-to-seasonal states and extreme rainfall
scenarios

In this subsection we illustrate the general method-
ology, summarized in section 2, for the particular case
in which the predictor is a set of seasonal frequencies
of weather types, computed from daily sequences
produced by CFSv2 (see Fig. 2). These are the same
combinations of weather types used in the pre-
dictability experiments reported in section 3, already
known to provide statistically significant
validated skill.

Cross-
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FIG. 7. Illustration of the methodology followed to generate s2s extreme rainfall scenarios. (a) Klee diagram showing all observed
weather types—blue tends to be related to negative rainfall anomalies, and red tends to be positive rainfall anomalies; (b) subseasonal-to-
seasonal categorical clusters (or states) showing 90-day sequences of weather types; (c) temporal evolution of each observed s2s extreme
rainfall scenario (mean frequency of extreme rainfall events per day per grid box—these values correspond to dividing the fifth column of

Table 2 by the number of days in the season with extreme events);

The weather types and associated Klee diagram,
showing the sequences of circulation regimes for every
day in all the DJF seasons under analysis, were com-
puted following the same methodology reported in Part I
(Fig. 7a).

Then the s2s states were obtained via a categorical
clustering algorithm (Fig. 7b) of the daily sequences of
weather types along the entire season, for all years in
the period. In the present study, after several tests, a set
of five clusters was considered adequate to represent
different entangled states conducive to specific distri-
butions of occurrences of extreme rainfall (dR95p

and (d) spatial distributions of the s2s extreme rainfall scenarios.

index). As mentioned before, the hypothesis is that
these s2s states represent distinctive cross—time scale
interactions and thus are not modulated by just one
climate driver. Although there are s2s states that are
clearly preferred during different ENSO phases (e.g.,
El Nifio events in state I and La Nifia events in state V),
ENSO years tend to appear in other clusters too
(Table 2).

The next step involves the identification of the s2s
rainfall scenarios via a composite analysis of the dR95p
fields associated with each s2s state. The highest fre-
quency of extreme precipitation events, or extremely
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TABLE 2. Years of occurrence for each subseasonal-to-seasonal state, number of years belonging to that state, approximate periods of
occurrence (in calendar days for the DJF season) of extremely wet days, and mean seasonal occurrence per grid box. Years denote the end

of the season (e.g., 1998 corresponds to 1997/98).

S2s state Years Sample Extremely wet spells (calendar days) Extreme occurrence
I 1982, 1986, 1996, 1998, 2003, 2007, 2009, 2010 8 20-30, 55-65, 70-80, and 80-90 Frequent (28.0 days)
11 1989, 1991, 1995, 1997, 2006, 2008 6 5-15, 49-65, and >85 Very infrequent (17.5 days)
111 1980, 1983, 1985, 1988, 1990, 1993, 1994, 2005 8 5-20 and 55-80 Moderate (25.0 days)
v 1981, 1984, 1987, 1992, 2004 5 25-45, 65-75, and >83 Very frequent (30.4 days)
v 1999, 2000, 2001, 2002 4 60-80 Infrequent (19.9 days)

“wet spells,”? tends to occur during specific calendar

days (Table 2 and Fig. 7c). Though these spells are often
associated with sequences of weather types involving
weather type 4 and weather type 6 (Part I), this clearly is
not always the case; persistence, ordering, and alterna-
tion of the different circulation regimes are important to
understand the presence or not of extreme precipitation
events—similar to how a particular set of letters in a
word mean something different when they are re-
arranged. For details, see Part I.

The s2s rainfall scenarios are not only different with
respect to the way spells are distributed along the sea-
son, but also in their seasonal average number of days
with extreme rainfall: scenarios IV and II have the
highest (~30 days) and lowest (~17 days) frequencies of
events, respectively; scenarios I, III, and V are in-
termediate ones (~28, 25, and 20 days, respectively).

Additional information for each scenario could be
obtained in terms of the spatial distribution of (extreme)
rainfall for a particular temporal window (Fig. 7d; e.g.,
days 20-30), the middle month, or the entire season.
This approach allows for the identification of possible
locations where preparatory actions may be im-
plemented before the occurrence of the extreme events.

The same methodology could be used for different
percentiles of precipitation (and other variables), al-
though an evaluation of its performance for these other
cases must still be explored.

b. Forecast skill

In this approach the s2s states (the categorical clusters)
are the ones being forecast and not directly the temporal
or spatial distribution of extreme rainfall. The validation
metrics considered in this section are computed to eval-
uate discrimination, reliability, and resolution (Jolliffe
and Stephenson 2012; Mason and Stephenson 2008) of
the categorical forecasts of sequences of weather types.
The joint validation of both the s2s states and scenarios
will be considered elsewhere.

2 Although these do not correspond to a formal definition of wet
spells, the name has been adopted here for the sake of simplicity.

Despite the fact that the best-guess multinomial lo-
gistic model exhibits hits for only half of the forecasts
(Table 3), it is still a relatively high frequency of hits
when compared to the climatological one (0.2 if equi-
probability is assumed true for this case and 0.14-0.28 if
more precise values are computed from the samples
indicated in Table 2). Further analysis reveals statisti-
cally significant (p < 0.05; bootstrapping method re-
sampling 1000 times) values of the scores under
consideration: hit score (0.5), hit skill score (0.375), and

TABLE 3. Cross-validated forecast probabilities (%) for DJF for
each s2s state and the observed state. Results are shown for the
best-guess multinomial logistic model. Probabilities have been
rounded to the nearest integer leading to the best expected igno-
rance score (see section 2 for details).

Hit (H) or
Year I II I IV V  Observed miss (M)
1982/83 1 53 41 4 1 111 M
1983/84 1 8 60 30 1 v M
1984/85 1 31 57 11 1 111 H
1985/86 96 1 1 1 1 1 H
1986/87 1 33 43 21 1 v M
1987/88 1 9 24 65 1 il M
1988/89 1 50 44 4 1 11 H
1989/90 1 29 49 20 1 11 H
1990/91 1 2 1 1 95 1I M
1991/92 1 25 64 1 v H
1992/93 82 1 15 1 1 111 M
1993/94 1 15 66 17 1 111 H
1994/95 1 44 17 36 1 11 H
1995/96 58 18 21 2 1 1 H
1996/97 1 18 36 44 1 11 M
1997/98 96 1 1 1 1 1 H
1998/99 1 1 1 1 96 \% H
1999/00 18 1 10 38 33 A% M
2000/01 96 1 1 1 1 A% M
2001/02 1 67 1 2 28 A% M
2002/03 96 1 1 1 1 1 H
2003/04 1 31 13 54 1 v H
2004/05 66 11 19 3 1 111 M
2005/06 1 4 7 1 87 I M
2006/07 96 1 1 1 1 H
2007/08 1 94 1 2 1 i H
2008/09 25 18 37 3 17 1 M
2009/10 1 56 38 5 1 1 M
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TABLE 4. Contingency table (% of the total no. of years) for the
hindcasts reported in Table 3.

Observed
Forecast 1 11 11 v A\
1 18.0 0.0 7.1 0.0 3.6
11 3.6 10.7 3.6 0.0 3.6
111 3.6 0.0 10.7 7.1 0.0
v 0.0 3.6 3.6 7.1 3.6
\% 0.0 7.1 0.0 0.0 3.6

Kendall’s 7 (0.338). The last one is considerably higher
than the corresponding potential skill value obtained in
section 3 for the seasonal frequency of extremely wet
days (see Table 1; note that the present results use the
same number of years as the potential skill experiments).

Additional characteristics of the predictive model
are summarized with a contingency table (or confu-
sion matrix; Table 4). The model’s forecasts are
better for state I (18% of all years), followed by states
IT and III (both with 10.7%). The worst forecast oc-
curs for state V (3.6%), with a tendency to be con-
fused only by state II. Note that the latter is similar to
state V, having the second minimum average fre-
quency of days with extreme rainfall in the entire
season. State IV (7.1%) tends to be equally confused
with states II, III, and V, but not with state I (see
Table 4).

The present version of the method does not provide
specific forecasts of the expected extreme rainfall dis-
tribution, but rather a composite analysis involving
similar years in the historical record. That is why the
outputs have been called ‘‘scenarios” here. Nonethe-
less, it is argued that the information provided is useful
for decision-makers, as each s2s extreme rainfall sce-
nario involves only a handful of real historical cases
that stakeholders directly know or have indirect expe-
rience with. For instance, to suggest that DJF 2015/16
could be classified as state I, with an extreme rainfall
scenario similar to the one presented at the top of
Fig. 7c, provides information about the typical distri-
bution of extremes (e.g., mainly at the end of Decem-
ber and during the second half of February), and also
indicates that it belongs to a particular set of years that,
in the most part, were moderate and strong El Nifio
events. Decision-makers can then refer to past expe-
rience to understand and estimate possible impacts.

Finally, note that the best forecast category, state I, is
one of the most impactful, as it is associated with high
seasonal frequency of extreme rainfall events. It is also
one of the most common categories, and thus society
may be more used to dealing with the associated hazard
under its present vulnerabilities. Those two facts give
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additional value to the use of this methodology to pro-
duce subseasonal-to-seasonal scenarios.

¢. Two contrasting examples: 2006/07 versus 2000/01

This subsection discusses the s2s states and extreme
rainfall scenarios obtained for two particular DJF sea-
sons, 2006/07 and 2000/01. The forecast model assigned
the same probability distribution for each s2s state in
those years (Table 3), but it was only correct in one of
those cases: 2006/07.

Analysis of the observed daily evolution of the cir-
culation regimes (Fig. 8a) indicates that the 90-day se-
quence for 2006/07 was correctly identified by the
multinomial logistic model using the corresponding
seasonal frequency of weather types.

On the other hand, the k-medoids algorithm identified
the observed sequences for 2000/01 as a realization of
state V (Fig. 8a). The wrong 2000/01 forecast is attributed
to a close similarity between the weather type’s seasonal
frequencies for that period, and the corresponding values
for state I. This is the only case in the study in which the
CFSv2’s frequency distribution of the circulation regimes
failed as a classifier for state I (Table 3).

The extreme rainfall evolution for 2006/07 exhibits a
statistically significant Spearman correlation (p < 0.01;
see Fig. 8b) with scenario I. In contrast, the evolution of
extremes for 2000/01 is only significantly correlated (p <
0.01) with scenario V, as one should expect.

The spatial distribution of the frequency of rainfall
extremes is consistent with the temporal evolution
analysis. Statistically significant pattern correlations
(p <0.01) are only achieved between scenario I (Fig. 9a)
and the 2006/07 season (Fig. 9b) and for scenario V and
the 2000/01 season (Figs. 9c,d).

The 2006/07 season involved the occurrence of ex-
treme rainfall events distributed more or less homoge-
neously over all SESA, as in scenario I, while 2000/01
presented a spatial pattern with more extremes along
the western and northern boundaries of SESA; note that
although scenario V shows the same distribution, it has a
noticeable accumulation of extremes along the south-
western boundary of SESA that does not appear in the
2000/01 map.

The failure in the 2000/01 forecast is mostly related
to a misidentification of the correct scenario (V, and not I).
This situation, at least for the cases considered, is ex-
pected to improve if the actual forecast sequence of
weather types is used instead of the forecast seasonal
frequency of the regimes. Although this idea involves
some methodological experimentation to identify the
best way to use multimember sequences of weather
types, it is considered feasible and it will be treated in a
future work.
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bars; red curves show 3-day moving averages). States I-V and scenarios I-V were produced by the methodology
discussed in section 2. DJF 2006/07 and 2000/01 correspond to observations.

5. Real-time forecast constraints Itis recommended to use the best predictors found in

the present study (i.e., SST+MJO and weather types).

This section briefly describes some operational as- As indicated, the required forecasts involve both

pects of an experimental forecast system for s2s extreme the ECMWF (MJO) and CFSv2 (SST and weather
rainfall scenarios in SESA. types) models.
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FIG. 9. Spatial distribution of the frequency of extreme rainfall events for (a) scenario I, (b) DJF 2006/07,
(c) scenario V, and (d) DJF 2000/01. Units are frequency of extreme events per season per grid box. The contour

interval is unitary.

The analysis performed in the present study involved
data made available each year around 15 November for
CFSv2 [initialized in October; see details in Saha and
Tripp (2011)] and around 13 November for ECMWF.
This means that the operational forecasts could start on
15 November and thus use all the required fields. An
alternative is to use October’s observed SST fields made
available around 5 November (or even CFSv2 output
made available in October, initialized in September)
and the ECMWF MJO forecasts made available on
6 November, which means that the start date for the
operational forecast in this case could be 6 November
(note that the skill for this alternative has not been an-
alyzed in this paper).

As explained in section 2, the required CFSv2’s fore-
casts are SST anomalies (DJF, monthly resolution) and
geopotential height anomalies at 850 hPa (DJF, daily
resolution), from which the frequency of occurrence of
the set of six weather types can be easily obtained (see
Part T and section 2 for details). In the case of the
ECMWEF, the ensemble forecast for the two PCs is used
to compute the frequency of occurrence of MJO phases.
Their five-member ensemble contains a total of 153 days
(121 past observations plus 32 actual days of forecast),
which are to be used without subtracting any subset.

With these datasets, it is possible to produce both
seasonal forecasts of occurrence of extreme rainfall and
s2s extreme rainfall scenarios, following the methodol-
ogy discussed in the previous pages. Automating the
process will decrease the probability of mistakes and
guarantee that the products will be issued on time; while

the details are out of the scope of the present paper, it
will only be mentioned here that both types of products
could be run automatically using scripts for the Linux
version of CPT and MATLAB, providing also updated
cross-validated skill metrics.

6. Conclusions

The forecast skill of extreme rainfall frequency in
southeastern South America is improved for the DJF
season when the interference of predictors at different
time scales is considered. This is attributed to mecha-
nisms of climate variability acting at one time scale that
contribute to predictability at other time scales.

Seasonal forecasts for frequency of daily rainfall ex-
ceeding the 95th percentile are, at regional scale, sig-
nificantly more skillful when cross—time scale predictors
are used, compared to models employing SST fields
alone (e.g., Kendall’s 7 increases ~23%-43%). This
improvement allows for the provision of skillful fore-
casts to decision-makers in the region as a whole, in
terms of seasonal probabilities of occurrence of extreme
rainfall events for the three traditional categories: above
normal, below normal, and normal. However, at the
local scale of a particular grid box, the use of cross—-time
scale predictors may not always increase the skill, pos-
sibly as a result of local noise patterns that are filtered
out when a regional average is performed.

Since additional climate information at shorter time
scales, such as the likely evolution of the extreme events
within the season, is widely desired by decision-makers,
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a seamless subseasonal-to-seasonal forecast methodology
was developed and tested. The new predictive approach is
based on cross-time scale interferences in order to
provide a better specification of the state of the predictor(s)
in the models and thus achieve more skillful forecasts.

These interactions provide seasonal predictability of
weather statistics (extreme rainfall frequency in this
case) that can be exploited to produce subseasonal-scale
climate information about the evolution of such weather
statistics. The approach described in this paper allows
for the probabilities to be computed for each one of five
(in the case analyzed here) states that describe seasonal
sequences of daily circulation regimes conducive to
particular extreme rainfall distributions. These scenar-
ios are associated with distinctive periods of time and
frequencies of occurrence of extremely wet spells (e.g.,
during the first 20 days of the season or along the entire
month of February, like in scenario III). Although these
are not forecasts of the weather evolution per se (i.e., the
subseasonal-to-seasonal states are the ones being fore-
cast), the approach offers useful information to decision-
makers interested not only in how many extreme events
will happen in the season but also in how, when, and
where those events will occur.

Besides exploiting seasonal predictability to provide
information at subseasonal scale, the subseasonal-to-
seasonal states have the advantage of being more pre-
dictable than rainfall scenarios, because the atmospheric
circulation patterns are in general more predictable than
rainfall regimes. Moreover, preliminary results show that
this approach provides consistent results when applied to
other parts of the world, and it also seems to increase the
skill of mean seasonal values (i.e., not only extremes).

The particular processes by which cross—time scale
interferences increase forecast skill in different parts of
the world are not well understood. Although the role of
weather types and their relationship to different physical
mechanisms was discussed in Part I to explain the oc-
currence of extreme rainfall events in SESA, further
research is required in order to better understand how
the cross—time scale interactions produce the
subseasonal-to-seasonal states associated with specific
intraseasonal evolution of extremes. The physical
mechanisms behind sequences of weather types (or
words, to use the analogy of Part I) are more complex
than just adding up the processes associated with daily
events (i.e., the memory of the system is important),
underscoring the nonlinear nature of the interferences.

Indeed, from a system dynamics perspective (Palmer
1999), extreme rainfall in SESA and its predictability
may be ruled by the effect of a linear or nonlinear su-
perposition of noninteracting or interacting climate
drivers. Which one is the case for SESA? The present
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research indicates that the best predictor is a nonlinear
function of the original climate drivers considered.
Moreover, the best forecasts for extreme rainfall fre-
quency (at least for SESA and DJF) are obtained via a
nonlinear function of the candidate predictors. Studies
in other parts of the world have found similar results
when studying interactions between climate drivers (see,
e.g., Yoo et al. 2010; Krishnamurthy and Shukla 2008;
and references therein).

From this perspective, the nonlinearity of the in-
terferences, the seasonal weather statistics, and the
subseasonal evolution are all related. Once the entan-
gled state is established, in addition to modulating the
seasonal frequency of extreme events, the cross—time
scale interactions lead to intraseasonal evolution of ex-
treme rainfall that happens in a more organized, or less
random, way throughout the season. For example, the
subseasonal-to-seasonal state I (Fig. 7), which tends to
occur during El Nifio events and thus with the presence
of frequent meridionally propagating Rossby waves af-
fecting SESA (Part I), is associated not only with the
highest seasonal frequency of extreme rainfall events,
but this state tends to happen during the end of De-
cember and the middle of February.

As a final comment, a simple version of the subseasonal-
to-seasonal scenario approach was discussed in this paper.
It is recommended the extensions of this method be ex-
plored, for example, using Markov chains instead of a
composite analysis.
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APPENDIX

Multinomial Logistic Models

This study employs multinomial logistic models, as
mentioned in step 5 of section 2b(2), to forecast the s2s
states using the chosen set of predictors.



15 AUGUST 2016

If 7r; denotes the conditional probability associated with
the ith s2s state (categorical cluster Y;, Vi=1, ..., n),
given a predictive state vector X—that is, a combination
of p predictors (X, Vj=1, ..., p)—then, using Dirac’s
notation to be consistent with Part I,

m, = (Y, |X)]" = P(Y,]X), (A1)

and the multinomial logistic model can be written as

T,
log—=a, +B,X,, (A2)
a

where the Einstein summation convention is used, 7
denotes the probability of the n — 1 reference category
logits, «; is a constant associated with the ith s2s state,
and B; is the coefficient of each predictor Xj, repre-
senting the effects of the predictor variables on the rel-
ative risk or log odds of being in one category versus the
reference category.

From Eq. (A2) itis possible towrite Vi=1, ..., n—1
as follows:

el +B,X)

T explay B X)),
1

T+ Texpa By X)),

and (A3)

T =

(A4)

with k =1, ...,n — 1 a summation index. The reference
category is arbitrary, and thus it was chosen to be the last
one: 7 =m,. The MATLAB implementation of the
maximum likelihood estimator was used to determine
the coefficients B; for this model (via the mnrfit
function).
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