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Malaria early warnings based on seasonal climate
forecasts from multi-model ensembles
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The control of epidemic malaria is a priority for the international
health community and specific targets for the early detection and
effective control of epidemics have been agreed1. Interannual
climate variability is an important determinant of epidemics in
parts of Africa2 where climate drives both mosquito vector
dynamics and parasite development rates3. Hence, skilful seasonal
climate forecasts may provide early warning of changes of risk in
epidemic-prone regions. Here we discuss the development of a
system to forecast probabilities of anomalously high and low
malaria incidence with dynamically based, seasonal-timescale,
multi-model ensemble predictions of climate, using leading global
coupled ocean–atmosphere climate models developed in Europe.
This forecast system is successfully applied to the prediction of
malaria risk in Botswana, where links between malaria and
climate variability are well established4, adding up to four months
lead time over malaria warnings issued with observed precipi-
tation and having a comparably high level of probabilistic pre-
diction skill. In years inwhich the forecast probability distribution
is different from that of climatology, malaria decision-makers can
use this information for improved resource allocation.

Malaria is the most important parasitic infection in people,
accounting for an estimated 500 million clinical attacks worldwide
and more than 1 million deaths a year, mostly in sub-Saharan Africa5.
On this continent, epidemic malaria is associated with seasonally
warm semi-arid and highland areas where approximately 124 million
people are considered at risk of climate-related malaria epidemics6.
For improved control in epidemic regions, the World Health
Organisation (WHO) advocates the development of integrated
malaria early warning systems based on vulnerability assessment,
seasonal climate forecasts, weather and environmental monitoring
and case surveillance2,7.

In the semi-arid country of Botswana, malaria is ranked as one of
the major public health problems and consequently there is a well
developed National Malaria Control Programme that supports a set
of key control activities: (1) vector control through annual indoor
residual house spraying in endemic areas and in response to epi-
demics, (2) chemoprophylaxis for target groups during the malaria
season, and (3) prompt and effective case management including
drug therapy to affected individuals. After the devastating regional
malaria epidemic of 1996, malaria control was reinvigorated through
a range of initiatives including the development of an early warning
system for epidemics, which peak in March and April following the
bulk of the rainy season (November–February, NDJF)4. As a notifi-
able disease, malaria cases are reported routinely to the Ministry of
Health and epidemic alerts are based on whether weekly numbers of
cases exceed pre-defined thresholds. An earlier study4 has indicated
that December–February seasonally averaged monitored rainfall and

also sea surface temperature (SST) for the same time period provide
significant predictive skill for the malaria season one month in
advance of its seasonal peak. Using data on yearly malaria incidence
in Botswana, we discuss whether the lead time for providing
reliable early warnings using observed precipitation data (for
improved targeting of insecticides, drug stocks and other control
measures) can be increased significantly using skilful seasonal climate
forecasts.

The results in this Letter are based on re-forecasts (retrospective
forecasts) using models that form the basis of a future real-time
operational multi-model ensemble forecast system developed out of
the original DEMETER (Development of a European Multi-model
Ensemble Forecast System for Seasonal to Interannual Climate
Prediction) project8. DEMETER used a multi-model ensemble fore-
cast system for seasonal-to-interannual climate variability, compris-
ing state-of-the-art coupled ocean–atmosphere global climate
models developed in Europe.

An ensemble climate forecast system predicts not only the most
likely evolution of climate, but also the uncertainty in such a
prediction. More generally, an ensemble climate forecast system
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Figure 1 | Time series of the one-month lead December–February predicted
SST averaged over the tropical Pacific region Niño3.4. The boundaries of
Niño3.4 are 58N–58 S and 1708W–1208W. The multi-model ensemble
spread is depicted by the green box-and-whisker representation, the
whiskers containing one-third of the ensemble members. The blue dots
represent the ensemble mean and the larger red bullets show the ERA-40
anomalies. The horizontal dotted lines indicate the ERA-40 (red) and multi-
model re-forecast (blue) climatological tercile boundaries. The ensemble-
mean correlation with the reference is 0.97, while the ROC score (see text)
for the three tercile categories (above normal, normal and below normal)
ranges between 0.97 and 1.00. By comparison, the ROC scores for SST
predictions based on the persistence of the August–October ERA-40
anomalies take values of the order of 0.85.
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predicts a probability distribution of climate. The uncertainties in
climate prediction that generate such probability distributions arise
from imprecise initial conditions, and numerical approximations to
the underlying partial differential equations that govern climate9. In
the DEMETER ensemble forecast system, model uncertainty is
represented by the fact that the sub-grid parameterizations in
the component models have, to a large extent, been developed
independently. Here we analyse data from six-month integrations
started on 1 November of every year (see Methods).

The physical basis for seasonal climate prediction lies, to great

extent, in the predictability of slowly varying interactions between
the atmosphere and the oceans. The prototypical phenomenon
illustrating such predictability is El Niño/Southern Oscillation
(ENSO) which has been shown to be predictable on seasonal time-
scales10,11. It is known that interannual variability in the strength of
ENSO can strongly influence the climate and maize yields of
southern Africa12 and is also a predictor for unusually high or low
malaria anomaly years in Botswana4. To illustrate the ability of the
DEMETER system to forecast atmosphere–ocean interactions, Fig. 1
shows probabilistic predictions of the SST during December–
February averaged over the region in the tropical Pacific known as
Niño3.4. These probabilistic forecasts are the most skilful dynami-
cally based predictions reported to date, and substantially outper-
form deterministic predictions based on persistence of the SST
anomalies of the month previous to the dynamical forecast start
date13.

We now focus on the DEMETER prediction of the climate of
southern Africa, a necessary condition for the accurate prediction of
malaria incidence. Cumulative precipitation anomalies for NDJF
using CMAP-estimated precipitation data (see Methods) are shown in
Fig. 2a and b composited for the five highest and lowest malaria
incidence anomaly years of the data sample (1982–2002). These figures
illustrate that higher than expected malaria years are associated with
above-average precipitation, while the lowest malaria years are
associated with below-average precipitation. In addition, Fig. 2c

Figure 2 | Composites of austral summer precipitation for central and
southern Africa as a function of the standardized malaria annual incidence
for Botswana. Mean precipitation anomalies for the five years with the
highest (a, c) and lowest (b, d) malaria annual incidence in Botswana for
November–February CMAP (a, b) and DEMETER (c, d) ensemble-mean

precipitation. A different colour scale was used for the observed (CMAP)
and re-forecast (DEMETER) precipitation because of the unavoidable
reduction in amplitude of the predicted anomalies when averaging the 27
ensemble members.

Table 1 | ROC areas for annual standardized log malaria incidence
predictions

Event CMAP DEMETER

Very high 0.93 (0.70–1.00) 0.80 (0.59–0.96)
High 0.36 (0.06–0.70) 0.48 (0.18–0.79)
Low 0.33 (0.11–0.58) 0.34 (0.12–0.60)
Very low 0.91 (0.73–1.00) 0.83 (0.61–0.99)

The predictions are carried out using observed CMAP and DEMETER multi-model ensemble
precipitation over NDJF and have similar forecast quality. The four events for values are
described in the Methods section. CMAP predictions are assessed as probabilistic forecasts
with fixed, but unknown uncertainty24. The 95% confidence limits obtained by bootstrapping
with a sample size of 10,000 are shown in parentheses. CMAP-based predictions are
available at the beginning of March, but the DEMETER multi-model predictions would be
available to users four months earlier, at the beginning of November, a potentially crucial
increase in lead time for the management of malaria epidemics.
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and d shows that during the high and low malaria years, the one-to-
four-month NDJF ensemble-mean precipitation from the
DEMETER forecasts (available at the beginning of November)
are above and below average over much of southern Africa,
respectively.

The association between malaria incidence and precipitation
depicted in Fig. 2a and b can be made more precise if we use a
quadratic relationship similar to that described in an earlier study4

between seasonal precipitation averaged over Botswana and the
logarithm of standardized (detrended) confirmed malaria incidence
(per 1,000 of population), as illustrated in Fig. 3. This nonlinear
relationship provides the quantitative link that allows the DEMETER
probability forecasts of precipitation to be transformed into prob-
ability forecasts of malaria incidence. The quadratic relationship can
also be used to issue malaria warnings based on monitored precipi-
tation4, such as NDJF CMAP precipitation, although this would be
available only at the beginning of March, four months later than the
multi-model forecast issue date. As an illustration, Fig. 4 shows
DEMETER forecast probability distributions of malaria incidence
associated with a year of very high malaria incidence, and another
year of very low malaria incidence. For decision-makers, that these
probability distributions are not sharp quantifies the inevitable
uncertainties that exist in forecasting a variable that is strongly
influenced by partially chaotic climatic processes. On the other
hand, forecast probability distributions for the high malaria years
are distinctly different from the probability distributions for the low
malaria years: the null-hypothesis that the distributions for
DEMETER-based predictions in the two categories are not distinct
can be rejected using a Kolmogorov–Smirnov test with a P value
smaller than 0.0001.

The quality of these forecast probability distributions of malaria
incidence has been assessed using the area under the Receiver
Operating Characteristic (ROC) curve14 for the events ‘values higher
than the top quartile’ (very high), ‘between the top quartile and the
median’ (high), ‘between the median and the lowest quartile’ (low)
and ‘lower than the lowest quartile’ (very low). The ROC score is an
appropriate measure for assessing the value of probability climate
forecasts for decision-making14,15. Suppose it is decided to take
precautionary action (targeting drug or insecticide supplies to a
particular region) if the probability of malaria in the highest-quartile
category exceeds some chosen threshold probability. Over the full
forecast data sample, the number of correct and incorrect decisions

can be assessed for this particular threshold probability: these are
referred to in terms of ‘hit rate’ and ‘false-alarm rate’, respectively.
The ROC score is a measure of the mean hit rate to false-alarm rate,
averaging over all threshold probabilities. A ROC score larger than
0.5 indicates a forecast system more skilful than a forecast based on
climatological probabilities; a ROC score of 1.0 indicates a perfect
forecast system.

Table 1 shows the ROC scores for predictions of standardized
malaria incidence, first using the CMAP precipitation and second
with the DEMETER multi-model ensemble forecasts initialized on 1
November. For forecasts of both very low and very high malaria
incidence, the multi-model DEMETER forecasts have significantly
positive ROC scores. The DEMETER scores are slightly lower than
the CMAP scores, but we point out that the DEMETER forecasts are
available at least four months before the CMAP data becomes
available in early March.

Our evidence supports the use of multi-model ensemble climate
predictions initialized at least five months before the peak malaria
season in Botswana and four months earlier than a prediction based
on monitored precipitation for early warning of epidemic malaria
risks. The significant gain in lead time with small reduction in
prediction skill suggests that probabilistic seasonal climate forecasts
can be used to predict malaria incidence, not only in Botswana, but
also in neighbouring epidemic-prone areas, as shown in Fig. 2. These
results are not only of importance to the malaria control managers in
the region who are actively involved in using climate information to
achieve malaria-reduction targets16, but are also relevant to other
resource managers (health, hydrology, agriculture, and so on) faced
with climate-sensitive decisions. Unlike the products that would be
derived from single forecast models, the malaria incidence forecasts
described here allow the user to obtain a probability distribution of
disease risk, thus indicating to the user the uncertainty of the
information available in the forecast and the extent to which it differs
from climatology.

Although the greatest burden of malaria in Africa is suffered by
those living in endemic regions, epidemics pose a serious threat to
many millions of people6 and their prevention remains a priority1.
The ability of a malaria early-warning system to improve resource
allocation and assist in the reduction of malaria morbidity and
mortality depend on decision-makers’ capacity to make effective
use of new information within their own control paradigm. To this
end we have focused our efforts on the integration of the multi-
model DEMETER forecast system into the routine epidemic malaria
control activities currently promoted by the WHO-AFRO Southern
Africa Inter-Country Malaria Team (SAMC) in Zimbabwe and
undertaken by the National Malaria Control Unit in Botswana. It

Figure 3 | Relationship between standardized log malaria annual incidence
and summer precipitation for Botswana. Standardized log malaria annual
incidence (per 1,000 population) versus November–February CMAP
precipitation for the period 1982–2002 as obtained from fitting a
quadratic function to observations4. The quadratic function is
y ¼ 28.9 þ 5.9x 2 0.8x2, where x denotes precipitation (measured in
mm day21) and y the standardized log malaria incidence index. The
horizontal and vertical dotted lines denote the quartiles of the standardized
log malaria incidence index, and precipitation, respectively.

Figure 4 | Forecast probability distribution function of standardized log
malaria annual incidence for Botswana. The probability distribution
functions of predicted standardized log malaria annual incidence for the
years 1992 (anomalously low incidence, left) and 1993 (anomalously high
incidence, right) computed with the DEMETER multi-model ensemble
forecast system are depicted in red. The vertical dashed lines denote the
quartiles of the distribution of the standardized log malaria incidence index
and the vertical blue arrows indicate the values recorded by the Botswana
Ministry of Health.
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is here that the final arbiters of the utility of the forecasts will be
found.

METHODS
Malaria incidence data.Botswana has compiled national annual data on cases of
laboratory-confirmed malaria incidence for the period 1982–2002. This data set
offers a unique opportunity to analyse and predict malaria incidence in a desert-
fringe area. Confirmed incidence per 1,000 population was modelled4 to remove
non-climate trends, largely attributed to chloroquine resistance17 and the impact
of a major policy intervention, which included the change of the first-line drug.
The residual, a standardized log malaria incidence index, is the variable used in
this study. Epidemiological and population data were obtained from the
Ministry of Health’s Epidemiology and Disease Control Unit, and the Central
Statistics Office in the capital city, Gaborone.
Precipitation data. Precipitation in Botswana is concentrated in the period
November to March and is subject to high interannual variability18. For this
analysis, the 2.58-resolution monthly data from the Climate Prediction Center
Merged Analysis of Precipitation (CMAP)19 were averaged across the 20 grid
points between 17.58–27.58 S and 17.58–30.08E for the rainy season before the
peak malaria season (NDJF) from 1979 to date. Calendar years for precipitation
are referred to by the year of the January used in the seasonal average. The best
relationship between seasonally averaged precipitation is described by the
quadratic model depicted in Fig. 3 (ref. 4).
DEMETER climate predictions. The DEMETER multi-model ensemble system
for climate prediction comprises seven global coupled ocean–atmosphere
models8,20. Re-forecasts have been produced over the period 1958–2001,
although the period common to the seven models is 1980–2001. The three
models used in this study comprise the operational DEMETER system and are
from the following institutions: the ECMWF (European Centre for Medium-
Range Weather Forecasts), Centre National de Recherches Météorologiques
(Météo-France, France), and The Met Office (UK). The corresponding re-
forecasts have a common period of 1959–2001. The uncertainty in the initial
conditions derives from the fact that each DEMETER model is integrated from
nine different initial conditions, each with different estimates of initial-con-
dition uncertainty. Atmospheric and land-surface initial conditions are taken
directly from the ECMWF re-analysis ERA-40 (ref. 21). The nine-member
ensemble re-forecasts from each model were integrated for 180 days. Because
of the computational cost of running multi-model ensembles, DEMETER re-
forecast start dates were quarterly rather than monthly: 1 February, 1 May, 1
August and 1 November. More detailed information on the models and the
initialization procedures can be found on http://www.ecmwf.int/research/
demeter/general/docmodel/index.html. According to the set of available start
dates, predictions for NDJF (months one to four of the simulations) were used.
DEMETER multi-model ensemble predictions were averaged over Botswana in
the same manner as the CMAP data.
Climate prediction calibration. Given the typical systematic errors of coupled
model simulations, each prediction is corrected to have statistical properties
similar to those of the observed precipitation. To allow robust estimates of the
correction, the CMAP precipitation time series for Botswana starting in 1979 has
been extended back to 1959 using the Climate Research Unit of the University of
East Anglia (CRU) precipitation data22,23, which is highly correlated with CMAP.
This also limits the number of coupled models available from DEMETER to the
three mentioned above. A scheme that mimics an operational prediction system
has been used to correct the precipitation ensemble predictions. Mean and
variance estimates for a specific year are obtained for each single model and for
CMAP/CRU for the period from 1960 to the year before the target year. The
difference in means and ratio of variances between each model and the reference
is then computed and applied to the predictions of the target year. The same
procedure is used for subsequent years. This scheme makes available each year a
longer sample to compare the CMAP/CRU data with each single model. The
corrected DEMETER-predicted precipitation was used to create ensemble
predictions of standardized log malaria incidence for the period 1982–2002.
The quadratic relationship between CMAP precipitation and malaria incidence
is applied to the corrected predicted precipitation of each ensemble member to
obtain the malaria incidence predictions.
Formulation of probability forecasts. Probabilistic predictions have been
formulated for four different categories defined using quartiles: very high,
high, low, and very low (see text). The most useful for assessing malaria epidemic
risk are the very low and high categories, defined by the values below and above
the first and third quartile, respectively. Probabilities have been estimated as the
relative number of members of a given ensemble of predicted standardized log
malaria incidence falling within a given category, a simple method that assigns
the same weight to every single model.
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