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Understanding forecast verification statistics
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ABSTRACT: Although there are numerous reasons for performing a verification analysis, there are usually two general
questions that are of interest: are the forecasts good, and can we be confident that the estimate of forecast quality is not
misleading? When calculating a verification score, it is not usually obvious how the score can answer either of these
questions. Some procedures for attempting to answer the questions are reviewed, with particular focus on p-values and
confidence intervals. P -values are shown to be rather unhelpful in answering either question, especially when applied
to probabilistic verification scores, and confidence intervals are to be preferred. However, confidence intervals cannot
reveal biases in the value of a score that arises from an inadequate experimental design for testing on truly out-of-sample
observations. Some specific problems with cross validation are highlighted. Finally, in the interests of increasing the insight
into forecast strengths and weaknesses and in pointing towards methods for improving forecast quality, a plea is made
for a more discriminating selection of verification procedures than has been adopted to date. Copyright  2008 Royal
Meteorological Society
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1. Introduction

There are numerous reasons for verifying forecasts (Jol-
liffe and Stephenson, 2003), but having calculated any
verification score, or performed any verification proce-
dure, two related questions almost invariably arise: do
the results mean that the forecasts are good (is there
a strong correspondence between the forecasts and the
observations (Murphy, 1993)); and do the results provide
an accurate indication of how good (or bad) subsequent
forecasts will be (is the score misleadingly high or low)?
For example, given a set of paired forecasts and observa-
tions of precipitation occurrences for the last 30 days that
give a Brier score of 0.1, the following question arises:
is this score of 0.1 a good score? If the score is good
then it may be concluded that the forecasts are good,
but not if the score is bad. However, neither conclusion
can be drawn if it is suspected that the score is not an
accurate indication of the quality of the forecasts. Specifi-
cally, even if an excellent score was achieved, some kind
of guarantee that these forecasts will continue to score
about as well in the future would be desired. For exam-
ple, if a new forecast procedure has been tested, it would
be desirable to know whether the test results are believ-
able rather than being taken by surprise at the quality
of the forecasts once they are issued in an operational
setting.

In this review article, procedures for addressing these
two questions about the goodness of, and about the
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uncertainty in, the verification score are discussed. In
addition to answering these questions, the procedures
provide a means of comparing forecasts, which may
indicate whether one forecaster is better than another,
or whether the forecasts have improved since they were
last evaluated, for example.

2. Is the score good?

For many verification scores the numerical value of
the score is essentially an abstract number, and so the
inexperienced practitioner may have no idea as to what
the value indicates. Two questions arise when trying to
interpret a score: does the score indicate that the forecasts
are in fact good; and what does the score itself mean?
The second question relates to identifying which of the
many attributes of forecast quality (Wilks, 2006a) are
communicated by the score, and is discussed only briefly
here (further discussion is provided in Section 4.5 and in
Mason and Stephenson (2008)). Instead the focus is on
the first question: is, for example, a Brier score of 0.1 a
good score? Unfortunately, there are too many unknowns
to give a simple answer to this question. Firstly, a score of
0.1 would be a better score if the events occurred about
half the time than if they occurred almost all the time
(or almost never). If the events occur most of the time
(or very infrequently), the forecaster would presumably
learn this fact rather quickly, and would learn to issue
a probability close to 1 (or 0) most of the time. The
forecaster would then frequently be issuing probabilities
very close to perfect forecasts, and so would easily
achieve a low Brier score. The inherent uncertainty, or the
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‘base rate’ (Murphy and Winkler, 1987) of the events has
to be considered when interpreting and comparing Brier
(and many other) scores. Thus, the decomposition of the
Brier score by Murphy (1973) includes an uncertainty
term that is independent of the forecasts, indicating that
a simple comparison of Brier scores for winter compared
to summer daily precipitation occurrence, for example,
is not straightforward if there is some seasonality in the
frequency of precipitation.

2.1. Calculating p-values

Another difficulty in interpreting the value of a score is
that a low score (assuming that it is negatively oriented)
is more convincing if it was calculated using a large
number of forecasts compared to from just a handful
of cases. It is much easier for a good score to be
achieved accidentally given only a few forecasts, but
a large number of forecasts are only likely to score
well if the forecasts are in fact good. This problem of
sensitivity of the score to the sample size of the forecasts
is closely related to the uncertainty in the score (if a
larger sample were available, would the forecasts score
similarly?). It is considered in greater detail in Section 3,
but for the present purposes a suggested solution might
be to calculate the probability that the value that was
achieved could have been bettered by accident. What
are the chances that a Brier score of 0.1 or better (i.e.
less) could have been obtained by accident? It seems that
this probability, known as a p-value could address the
problem of the base rate, as discussed above, as well as
the problem of the sample size, for example if the base
rate is 0.5 achieving a Brier score of 0.1 by accident
for a fixed sample size would be harder than if the base
rate were 0.2. (The fact that this assertion is incorrect is
demonstrated in Section 2.2).

There are numerous ways of calculating p-values, all
of which are based upon determining the distribution of
possible scores under the null hypothesis that there is no
relationship between the forecasts and the observations.
In other words, what scores would be achieved given lots
of sets of completely useless forecasts? For some verifi-
cation scores, the distribution of these values is known
exactly, and the probability of scoring at least as well as
the actual forecasts can be calculated from the left tail-
area (or right tail-area for positively oriented scores) of
this distribution. Examples include the hit rate, which
follows a hyper-geometric distribution (Agresti, 2002,
2007), the correct number, which follows a binomial dis-
tribution (Mason, 2003), and the trapezoidal area beneath
the relative operating characteristics (ROC) curve, which
can be transformed to follow a U -distribution (Mason and
Graham, 2002; Mason, 2003). For other scores this distri-
bution can be approximated; for example, Pearson’s prod-
uct moment correlation coefficient can be transformed to
a Student’s t-statistic (Sheskin, 2007), and the ROC area
can be transformed to follow an approximate Gaussian
distribution, which is easier than using the U -distribution
if the sample size is large (Mason and Graham, 2002).

Where such distributions can be used there is usually
considerable computational advantage and will give exact
p-values in the cases where the distribution is not approx-
imated. However, for many scores, the distributions can-
not be modelled exactly or approximated by theoretical
distributions and even for those that can, assumptions
can be restrictive. The most common assumption is that
each forecast–observation pair has to be independent of
every other pair. This assumption is often violated if the
verification score is calculated using forecasts for differ-
ent locations and when there is spatial correlation among
the locations, or if both the forecasts and observations
are not independent temporally. For some distributions,
such as the Student’s t-statistic for the correlation, it is
assumed that the forecasts and observations are both nor-
mally distributed. Violations of this assumption can be
quite severe. As an example, consider a set of fore-
casts and observations of January–March 1971–2000
seasonal rainfall totals for Brisbane, Australia (Figure 1).
The observed rainfall has a skewness of 1.9, whereas the
forecasts are only slightly positively skewed. The fore-
casts were obtained from a simple linear regression with
the preceding December value of the NIÑO 3.4 index, and
have a correlation with the observed rainfall of about
0.35. Using the Student’s t-approximation, the probabil-
ity of achieving a correlation this strong by accident is
about 2.8%, which is about half the probability obtained
using re-sampling procedures that do address the dis-
tributional assumptions (described below). Spearman’s
correlation, which adjusts for distributional violations, is
about 0.16 and is much weaker than Pearson’s.

An alternative to using a theoretical distribution is to
use re-sampling procedures in order to generate an empir-
ical distribution for the values of the verification score.
Since it is the probability of exceeding the observed score
by accident that is needed, the procedure is to generate
a large number of scores against forecast–observation

Figure 1. Forecasts and observations of January–March 1971–2000
seasonal rainfall totals for Brisbane, Australia (27°27′04′′S,

153°01′55′′E).
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pairs in which there is no prior reason for expecting the
forecasts to provide any useful indication of the obser-
vations. The simplest way to generate these scores is to
reorder the observations randomly (or the forecasts – it
makes no difference) so that the original forecasts are no
longer paired with the original observations (except by
chance). There is now no reason to expect the forecasts
to score well, but some random arrangements of the fore-
casts and observations will make the forecasts look good
by accident. The p-value can be estimated by calculating
the scores for a large number of these random pairings
(typically a few thousand), and calculating the propor-
tion of the scores that exceed the score for the correct
forecast–observation pairing. Because the same data are
used in each permutation, the respective distributions of
the forecasts and of the observations remain unchanged,
and so the calculated scores will account for the effects of
skewness, for example. An example is shown in Figure 2,
where 10 000 correlations have been calculated from per-
mutations of the observed rainfall for Brisbane. Note that
the distribution is symmetric about zero, which is to be
expected given that random forecasts are just as likely to
be accidentally ‘good’ as accidentally ‘bad’. The p-value
for the actual forecasts is calculated as the right tail-area,
as indicated.

Unfortunately, the permutation procedure just des-
cribed is not assumption free. Specifically, it is assumed
that each forecast–observation pair is independent of
every other pair. This same assumption was made when
using a theoretical distribution. One solution is to use
‘block re-sampling’ (Elmore et al., 2006; Wilks, 2006a).
If there is serial correlation in the forecasts and/or

Figure 2. Relative frequencies of 10 000 Pearson’s correlations between
forecasts and observations of January–March 1971–2000 seasonal
rainfall totals for Brisbane after permuting the observations. A dashed
line is drawn at 0.0, which is the expected value of the correlations. A
second dashed line is drawn at 0.35, which is the correlation value
for the correct forecast–observation pairings (from Figure 1), and
correlations in the right tail that are larger than this value are shaded

black.

observations (techniques for spatially correlated data are
discussed later), a random set of consecutive data could
be selected, and the temporal autocorrelation would be
retained within each block. The discontinuities between
blocks may be small enough so that the degree of
dependence in the re-sample is approximately the same
as in the original data. A more flexible approach is
to generate a synthetic set of observations or forecasts
using random numbers with the same distributional
properties and dependencies as the original data. For
example, if the observations are serially correlated, a
random autoregressive series could be used to generate a
random set of observations. More generally, the forecasts
or observations can be replaced with a set of random
numbers with the same distributional and dependency
properties as the original data.

For spatially correlated data, similar techniques to
those used for temporal dependency can be applied.
A random surface could be generated, for example, to
provide a synthetic set of observations, and is likely to be
preferable to some form of block sampling in which the
map of observations is re-shuffled, just like in the classic
‘fifteen puzzle’, and which becomes complicated to apply
in the context of irregularly spaced station data (Lahiri
and Zhu, 2006). However, there are often additional
considerations when working with spatial data. It is first
helpful to distinguish various ways in which forecasts that
have a spatial component may be verified. The simplest
case is when there is one forecast for each location, and
a score is desired for the entire map; the second case is
when there are numerous forecasts for each location, and
a score is desired for all maps and all locations together;
the third case is similar to the second, but a score is
desired for each location. These cases are discussed in
turn.

For a single forecast at numerous locations, perhaps
the primary consideration is the need to consider the
skill obtained from predicting the climatological distribu-
tion of the forecast parameter (e.g. colder temperatures
towards the poles and warmer temperatures in lower lati-
tudes). If the re-sampling or synthetic data do not recog-
nize the climatological distribution of the data, the veri-
fication scores will be unrealistically bad, and so the p-
value for the original data will be artificially low (Hamill
and Juras, 2006). For predictands measured on continu-
ous scales (e.g. 2 m temperature), the spatial effects often
can be removed by converting the data to anomalies by
subtracting the respective mean values for each location
(the so-called anomaly correlation performs exactly this
operation (Wilks, 2006a)), or by dividing by the mean if
the predictand has an absolute lower limit of zero (e.g.
precipitation). For some predictands it may be necessary
to account for spatial differences in variance – an issue
that is not often considered. After removing, or account-
ing for the spatial features of the climatology of the data,
it is then necessary to account for the remaining spatial
correlation, otherwise the spatial degrees of freedom will
be artificially high in the synthetic data. Near surface
temperature anomalies, for example, tend to be spatially
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coherent, and so if a forecast at one location is accurate,
the forecast at a nearby location is likely to be accurate
also. If the synthetic data are not spatially correlated even
after considering the climatology, it will be much harder
to obtain a good score by accident, and so p-value will be
artificially low. Some stochastic multi-site weather gen-
erator procedures (e.g. Wilks, 1998) explicitly consider
all these issues, and so are effective ways of generating
synthetic surfaces for the calculation of p-values.

If forecasts are to be verified by pooling sets of
forecasts for different locations and calculating one
overall score, the procedures for calculating p-values are
essentially identical to those described in the previous
paragraph, although it may be necessary to account
for any temporal correlation from forecast to forecast
for the same reasons as it is necessary to account for
the spatial correlation (Zwiers, 1987). Again, stochastic
multi-site weather generators can be used for the synthetic
forecasts, although this procedure can be cumbersome
(Wilks, 1997).

If verification scores are to be calculated for each loca-
tion to obtain a map of forecast quality, some of the
locations are likely to score well simply by accident. This
problem of ‘multiplicity’ (Katz, 1988; Brown and Katz,
1991; Katz and Brown, 1991) is often addressed by cal-
culating a p-value for the entire map. This so-called ‘field
significance’ (Livezey and Chen, 1983) is an attempt to
estimate the probability of obtaining a map with the same
proportional coverage of locations with good forecasts,
and is distinct from the p-value for a score calculated by
pooling all forecasts as described in the previous para-
graph. The standard procedure is to calculate p-values
for each location by randomly reordering the forecasts
or the observations for all locations simultaneously, and
then for each permutation to go back and count the num-
ber of locations at which the p-value was less than a
threshold amount. From these counts a probability mass
function of frequencies of different numbers of locations
with statistically significant scores is obtained (commonly
p/ < 0.05). The field significance is estimated by count-
ing the proportion of times that the number of locations
with statistically significant verification scores equalled or
exceeded the number for the correct forecast–observation
pairings. As before, the procedure assumes temporally
independent forecasts and observations. If this assump-
tion is invalid, block sampling can be used, or synthetic
sets of forecasts generated using the weather generator
technology described earlier.

This procedure for calculating field significance has
a few limitations, primarily relating to the fact that
it ignores the strength of the results, and to some
conservative effects resulting from the discreteness of the
counting of the number of significant results. Effectively,
the forecasts are considered to be either ‘good’ or ‘bad’
depending on whether the score is statistically significant,
but no consideration is given to exactly how good’ the
forecasts are. Consequently, if the forecasts are very
good over only a small part of the map, and are useless
elsewhere, the forecasts as a whole will probably be

rejected as statistically insignificant. Recently, simpler
and more powerful procedures have been identified that
are insensitive to the effects of spatial correlation and that
can be applied when serial correlation is minimal. These
tests are based on the smallest p-value in the field, and
on the false detection rate (Ventura et al., 2004; Wilks,
2006b). Note that these tests answer a question different
from that of Livezey and Chen (1983). At the risk of
over-simplifying, the latter addresses the question: are the
forecasts good over a large proportion of the field? The
alternative tests address the question: are the forecasts
good anywhere in the field?

2.2. Problems with p-values

Up to now it has been left implicit that p-values are
a useful means of converting an uninterpretable skill
score to a value that helps address the question of
whether the scores are good. Indeed, this assumption is
widespread, and the calculation of p-values is common
in the atmospheric sciences. However, in attempting to
answer the question of whether the score is a good
score, p-values are not necessarily very helpful (Nicholls,
2001; Jolliffe, 2004, 2007). What p-values tell us is how
confident we can be that the forecasts have some skill,
which is not the same as telling us how much skill the
forecasts have. For example, given a very large sample of
marginally good forecasts, the p-value will be very small,
telling us that we can be very confident that the forecasts
are marginally good. To illustrate, Finley’s well-known
tornado forecasts (Murphy, 1996) are frequently cited as
examples of bad forecasts because against a strategy of
perpetual forecasts of no tornadoes they perform very
poorly. Modifying the numbers slightly for the sake
of simplification, over a series of about 2800 forecasts
about 50 tornadoes were observed, 100 were forecast,
and 30 were forecast correctly. Against a strategy of
random guessing, Finley’s forecasts score well on most
verification scores (Mason, 2003), and given the large
sample size the probability of scoring 30 or more hits by
accident is about 1.0 × 10−32 (i.e. virtually impossible).
From this p-value alone it might be concluded that
Finley’s forecasts were miraculously good. However, if
the size of the sample is reduced by a factor of 10, then
even with a perfect hit rate the p-value still increases by
a factor of about 1024. The point of this example is that
p-values are not very helpful in addressing the difficulty
of comparing scores for differently sized forecast sets, as
had been posited at the beginning of the previous Section.

Another problem with p-values arises when trying to
calculate them for probabilistic scores. Imagine two sets
of forecasts: forecaster A issues a probability of 10%
for case 1, and 90% for case 2; forecaster B issues
probabilities of 20 and 80%, respectively. An event
occurs in case 2, but not in case 1. Forecaster A scores
0.01 on the Brier score, and forecaster B scores 0.04.
Forecaster A issues better forecasts than B, but using
a permutation procedure both forecasters have identical
p-values. The problem with the permutation procedure
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is that the sampling distribution of the Brier score (and
other probabilistic scores) under the null hypothesis is
a function of the forecast probabilities (Mason, 2004).
As a result, a simple monotonic transformation of the
forecast probabilities will adjust the Brier score and its
sampling distribution without affecting the p-value. The
effect is to ignore the sharpness of the forecasts in exactly
the same way as the area beneath the ROC curve does
(Mason and Graham, 2002). Effectively, therefore, when
estimating p-values for Brier scores the reliability of the
forecasts is ignored, and instead the p-value for the ROC
area is returned. The situation is somewhat complicated
in the case of multi-category verification scores that are
non-local such as the ranked probability score (Epstein,
1969; Murphy, 1969, 1970, 1971), although the general
principle that the p-values do not adequately consider
differences in reliability still applies.

Given these problems with p-values, their calculation
is perhaps to be discouraged; they tell us only how
confident we can be that the forecasts do not have
zero skill, and they do not adequately account for the
reliability of probabilistic forecasts. Instead, it is more
informative to consider the question of how confident
we can be that the score gives a realistic estimate of
the quality of subsequent forecasts. This question is
addressed in the following Section.

3. Is the score misleading?

In asking whether the verification analysis provides an
accurate indication of the quality of subsequent fore-
casts, there are two possible reasons why the results
may be misleading: only a limited sample of fore-
cast–observation pairs is available, and the forecasts
may have been uncharacteristically good (or bad) over
this period or the experiment may have been inherently
biased.

3.1. Are the results accurate?

Because only a limited number of forecast–observation
pairs is available, the following question arises: would
similar results be obtained if another set of fore-
cast–observation pairs from the same forecast system
were available? For example, it would be desirable to
have some kind of guarantee that when a new fore-
cast procedure is implemented into operations it is not
suddenly going to start performing worse than antici-
pated. As discussed in Section 2.1 on the calculation of
p-values, it is much easier to get a good score by acci-
dent if only a few forecasts are available than if there is
access to a large sample. This problem of sample size is a
much bigger issue for seasonal climate forecasts than for
weather forecasts, since the number of weather forecasts
made per year is at least 30 times larger than the number
of seasonal forecasts. However, even if a large number of
forecast–observation pairs were available, there may still
be an interest in sampling uncertainty because of a con-
cern about how much forecast quality can be expected to

vary ‘naturally’. For example, there is some debate as to
whether the predictability of ENSO varies inter-decadally
(Ji et al., 1996; Kirtman and Schopf, 1998), but how can
it be decided whether this variability is real or simply a
reflection of sampling error?

Knowing the sampling uncertainty in verification
statistics not only provides an indication as to whether
the results may be misleading but can also help to address
the question of whether the forecasts are good: We can
only be confident that the forecasts are good if they score
well and if the uncertainty in the score is small. It is quite
easy for forecasts to score well for a short period purely
by accident, and so a good score is much less likely
to be adequate evidence of good forecasts if the score
was calculated using only a small sample compared to
using a large sample. In the previous Section the p-value
was suggested as a way of assessing whether the sam-
pling uncertainty is large enough for us to suspect that
the forecasts may have scored well by accident, but some
problems were raised in the interpretation of the p-values.

A more satisfactory approach is to attempt to answer
the question: what range of scores would be obtained
given different sets of forecasts from the same fore-
cast system? Typically all the forecast–observation pairs
would be used to obtain as accurate an estimate of the
verification score as possible, and thus taking subsets
to recalculate the score will overestimate the sampling
uncertainty. Instead, a bootstrapping procedure is often
used. Bootstrapping is a re-sampling procedure that is dis-
tinct from the permutation procedure used to calculate the
p-values. In the permutation procedure, the objective is to
generate a new set of forecast–observation pairs in which
the observations are unrelated to the forecasts except by
accident. In the bootstrap procedure, however, the objec-
tive is to generate a new set of forecast–observation
pairs in which the quality of the forecasts is consistent
with the quality one would expect from the forecast sys-
tem – i.e. the new forecasts should be as good as for
the original set, subject only to sampling differences
(Wilks, 2006a). Although there are a number of boot-
strapping designs, the most commonly used procedure
is to sample forecast–observation pairs randomly, keep-
ing the forecast and observation together (unlike with
the permutation procedure). The new sample, which for
the method described here should be of the same size as
the original sample, differs from the original because it
is sampled with replacement. It is thus likely to include
some forecast–observation pairs more than once, and is
likely to omit some pairings altogether. If there are only
a few forecasts that contribute strongly to the score being
good, for example, then bootstrap samples that omit one
or more of these forecasts will score very poorly, but
samples that include these forecasts multiple times will
score very well, and so the sampling uncertainty in the
score will be very large.

In the case of the observations being defined as
categories, some care should be taken to ensure that the
definition of the categories remains consistent between
the original data and the bootstrap sample. In some cases
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the observations in the bootstrap sample may need to
be re-classified. For example, if the observations are
defined as a value exceeding the median, observations
that were above median in the original sample may
no longer be above median in the bootstrap sample
unless the median was defined using an independent
climatology. (The same is true of observations below the
median.) In this event the observations would need to
be re-classified. However, if the categories are defined
by independent criteria such as temperatures exceeding
0 °C or precipitation exceeding a trace amount, the
observations should probably not be re-classified. The
simple rule is that if the categories are defined in a way to
ensure that there are at least an approximately set number
of observations in each category, then the observations
need to be re-classified in each bootstrap sample to
ensure that the relative frequencies remain approximately
constant. Similar considerations may need to be taken
for the forecasts as well. Forecast probabilities may
need to be re-estimated to account for changes in model
climatology; the forecasts may have to be re-calibrated
because of differences in systematic errors from bootstrap
sample to bootstrap sample. These problems can be
simplified considerably if independent data are available
for model training and calibration.

As with the permutation procedure, a large number of
bootstrap samples (typically a few thousand) is generated
and the sampling distribution of the score is built up. This
distribution is often summarized by quoting the scores
towards each tail of the distribution, defining confidence
limits for the score. Typically the 0.025 and the 0.975
quantiles are quoted, defining the 95% confidence limits
for the score. An example of bootstrapped correlations is
shown in Figure 3, using the Brisbane data from Figure 1.
The lower and upper confidence limits are −0.13 and
0.63 respectively, and thus contain zero, implying that the
uncertainty in the quality of the forecasts is sufficiently
large for it to be quite possible that there is no skill at
all. Note, however, that the interpretation of confidence
limits is a little complicated (Jolliffe, 2007). It is tempting
to assume that there is a 95% probability that the ‘true’
score lies within the confidence interval, but all that can
be said is that 95% of confidence intervals will contain
the ‘true’ score.

Bootstrapping is not the only way of obtaining confi-
dence intervals. Just as the distribution of scores under
the null hypothesis (that the forecasts are useless) could
be represented by an exact distribution, an approximate
distribution, or empirically (Section 2.1), the distribu-
tion of the sample score too can be represented using
theoretical or empirical distributions. Jolliffe (2007) pro-
vides a detailed description of these and other alternatives
together with examples.

Regardless of the exact method used, such procedures
for assessing the sampling uncertainty in the results of
verification analyses are useful not only for indicating
whether the results may be misleading but can also be
used to assess whether differences in results (perhaps
between a model with an established and one with a new

Figure 3. Relative frequencies of 10 000 bootstrapped Pearson’s
correlations between forecasts and observations of January–March
1971–2000 seasonal rainfall totals for Brisbane. A dashed line is
drawn at 0.35, which is the correlation value for the correct fore-
cast–observation pairings (from Figure 1), and at −1.14 and 0.64,
which are the 95% confidence limits. The interval contains zero, and

correlations in the left tail less than zero are shaded black.

prototypical convective parameterization scheme, or for
measuring the changes in forecast quality over time, for
example) are meaningful. Given sampling distributions
for the scores of two forecast systems, the probability of
obtaining a score from one of these systems that is better
than another could then be calculated; if this probability
is not substantially different from 50% the quality of
the forecasts from the two systems is indistinguishable.
However, a more powerful procedure is to obtain a
distribution for the difference in the scores of the two
systems, and then to calculate a p-value, or preferably
a confidence interval, for the difference (Jolliffe, 2007).
Remembering the problems in interpreting the p-value
that were discussed in Section 2.2, the p-value will
indicate how confident we can be that the scores differ
by any amount; given a large sample, the p-value may
indicate that it is reasonable to reject the null hypothesis
that the quality of the forecasts from the two systems is
the same, but the difference in the scores may in fact be
very small.

3.2. Are the results biased?

It is well recognized that forecasts should be evalu-
ated using a set of data that is independent of the one
used to train the forecast system (Davis, 1976; Chelton,
1983), and that skill levels can be considerably overes-
timated when search procedures are used to select the
predictors (Rencher and Pun, 1980; Wilkinson and Dal-
lal, 1981). Ideally, a forecast system should be evaluated
by considering those forecasts issued in real-time, but
this requirement can be impractical if forecasts are issued
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infrequently (such as with seasonal forecasts, for exam-
ple). Instead, various procedures have been designed for
generating a series of out-of-sample hindcasts; all such
procedures involve using a subset of historical observa-
tional data to train the forecast model and in generating
a set of hindcasts for the period for which the data have
been withheld.

The most widely used out-of-sample testing procedure
is cross validation (Stone, 1974; Geisser, 1975). In the
atmospheric sciences, cross validation typically involves
leaving out each forecast–observation pair in turn (pos-
sibly with a few additional pairs if the data are autocor-
related) reconstructing the forecast model and predicting
the omitted observation so that if there are n forecasts,
n cross-validated forecasts are generated (Michaelsen,
1987; Elsner and Schmertmann, 1994). Unfortunately,
while this procedure slightly underestimates the qual-
ity of the forecasts when the correct predictors are used
(Barnston and van den Dool, 1993), a less widely rec-
ognized problem is that under certain circumstances it
can substantially overestimate the quality of the forecasts.
Specifically, if there is a candidate pool of predictors, and
one or only a few forecasts are withheld at each step the
skill will be overestimated even if the predictors are re-
selected at each step in an attempt to avoid leakage (Shao,
1993; Rivals and Personnaz, 1999). If the number of can-
didate predictors is large, it may be necessary to withhold
up to 60% of the forecasts (Xu and Liang, 2001).

An alternative to cross validation is to use a retroactive
forecast procedure in which the model initially is trained
to use only the first few forecast–observation pairs (e.g.
Mason and Mimmack, 2002). The first omitted obser-
vation is then forecast (or the first few observations),
and the model is updated using an expanded training
period. Although this procedure gives a realistic indi-
cation of the quality of the forecasts if they had been
issued operationally (as long as there has been no appli-
cation of posterior knowledge about which predictors to
use), the quality of subsequent forecasts may be under-
estimated because the forecast model should improve as
the training periods lengthen (Unger personal communi-
cation; and see Wilks, 2006a).

4. Is the verification score a good score to use?

In the previous Sections the question of how to inter-
pret a specific verification score has been considered,
with a focus on attempting to answer the questions of
whether the forecasts are good, and whether the score
has provided a misleading indication of the quality of the
forecasts. A more elementary question is whether the ver-
ification score itself is a good score to use. Unfortunately,
this question is not asked sufficiently frequently, and
a subset of scores receives wide use apparently simply
because they are widely used. Pearson’s correlation coef-
ficient, for example, is almost invariably used regardless
of distributional assumptions when Spearman’s correla-
tion may be more appropriate, and almost as powerful,

while Kendall’s τ barely receives any notice despite it
having some intuitive properties (Sheskin, 2007). Given
the wide selection of scores available, it is helpful to
have some criteria for selecting an appropriate score
for the immediate context. The following properties are
discussed, namely, propriety, equitability, effectiveness,
locality, and understandability. For much more detailed
discussions of propriety and equitability, see the article
by Jolliffe (2008) in this issue.

4.1. Propriety

One of the most important properties of a verification
score for probabilistic forecasts is whether it encourages
the forecaster to hedge. If the forecaster is concerned
to achieve the best possible score, then it may be in
his/her interests to issue a forecast that is inconsistent
with his/her beliefs about what is likely to happen. A
strictly proper score is one for which the forecaster
uniquely optimizes the expected score by forecasting
his/her true beliefs (Bröcker and Smith, 2007; Jolliffe,
2008). In most situations a strictly proper score would
be desirable so that the forecaster does not issue a
misleading forecast. Scores that are proper also have
an advantage of making comparisons between forecasts
easier. Unfortunately, many of the skill scores used in
the atmospheric sciences are not strictly proper (Murphy,
1973; Gneiting and Raftery, 2007; Jolliffe, 2008).

An additionally interesting problem is that when a
proper score is used in a reward function (e.g. if a
forecaster receives a bonus if his/her Brier score is less
than a threshold, or if the forecaster with the smallest
Brier score receives a bonus) then the score is rendered
improper (Roulston, 2007). Consider the case of the
forecaster who is offered a bonus if his/her weather
forecasts over a 10-day period achieve a Brier score
of less than 0.1. After 9 days the forecaster’s score is
0.11, and thinks that the probability of an event on the
10th day is 20%. The Brier score is strictly proper, thus
the forecaster’s expected score is minimized if (s)he
states that the probability of the event is 20%, i.e. the
expected score is 0.115 if the forecast is consistent with
the forecaster’s beliefs, and is 0.119 if the forecaster
hedges by issuing a probability of 0%. However, if the
forecaster does issue a probability of 20%, the bonus
will not be awarded whether the event occurs (score is
0.163) or does not occur (score is 0.103). Conversely, if
the forecaster issues a probability of 0% for the event
(against his/her true belief) then while (s)he will not get
the bonus if the event does occur (score is 0.199) (s)he
will get the bonus in the more likely event that it does
not (score is 0.099).

4.2. Equitability

Equitable verification scores score all naı̈ve forecast
strategies equally (Gandin and Murphy, 1992). Equitabil-
ity is primarily of interest for scores for so-called deter-
ministic forecasts (i.e. forecasts of specific values without
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an indication of the uncertainty in the forecasts). The
linear error in probability space (LEPS) (Ward and Fol-
land, 1991; Potts et al., 1996) and Gerrity scores (Gerrity,
1992), for example, score random guesses and perpetual
forecasts of any one outcome equally. The same is true
of correlation if the correlation is defined as zero for
forecasts with no variance, but is not true of the mean
squared error. For probabilistic forecasts there is a variety
of forecast strategies that can be viewed as equally naı̈ve
(e.g. random forecasts and perpetual forecasts of constant
probabilities, including those of climatological probabili-
ties), but it is not possible for a probabilistic verification
score to be equitable and proper (Jolliffe and Stephenson,
2008). These strategies for probabilistic scores are recog-
nized as being equally naı̈ve because they all have zero
resolution (the expected outcome is the same regardless
of the forecast), but they do not have equal reliability
(only the climatological forecasts will have perfect reli-
ability), and since reliability is an important attribute of
probabilistic forecasts, it is appropriate that these differ-
ent strategies would receive different scores. Equitability
is therefore not considered an important property for
probabilistic forecasts.

4.3. Effectiveness

An effective score is one which monotonically improves
as the distance (however it is measured) between the
forecast and the observation decreases (Friedman, 1983;
Nau, 1985). The most often quoted example of a score
that is ineffective is the original version of the LEPS
score, which for large numbers of categories could score
a forecast with an extremely large error less severely
than one with only a large error (Potts et al., 1996). For
probabilistic forecasts, because of the way effectiveness
is defined, it is closely related to the property of locality,
which is discussed in the following Section.

4.4. Locality

Locality is a property that applies to verification scores
for probabilistic forecasts. A skill score is local if it
depends only on the probability assigned to the outcome
(Bröcker and Smith, 2007, Mason et al., 2008, Mason
and Stephenson, 2008). Examples of local skill scores
include the quadratic score, which measures the squared
probability error only for the category that verifies, and
the ignorance score (Roulston and Smith, 2002). It has
become widely accepted that locality is not a desirable
property of verification scores for two reasons: The
idea of crediting forecasts that issue high probabilities
to outcomes that are close to the verification (i.e. for
‘near-misses’) seems intuitively appealing, and non-local
scores can be less sensitive to the categorization of
the observed values than local scores – the more the
categories that are used the lower the score tends to be
(Daan, 1985). If a local score is used, the score typically
drops with an increase in the number of categories
because the probability assigned to the verifying category

is divided between neighbouring categories. Although
this latter argument may be appealing in some contexts
(e.g. for comparing forecasts that are presented with
differing degrees of precision), forecast systems that
provide probabilities for large numbers of categories
are attempting to communicate more information than
systems with only a few, and unless this increase in
precision can be matched by an increase in sharpness
the penalty may be warranted.

The intuitive argument for the consideration of ‘dis-
tance’ is perhaps more appealing than the argument about
the sensitivity of the local scores. However, the con-
sideration of distance does not always produce intuitive
results. For example, the ranked probability skill score
(Epstein, 1969; Murphy, 1969, 1970, 1971) was explicitly
designed to account for the ranking of the categories in
a multi-category system and to credit those forecasts that
have high probabilities close to the verifying category.
This consideration of distance means that a forecast with
a higher probability assigned to the verifying category
will not necessarily achieve a better score than a fore-
cast with a lower probability. Imagine one forecast with
probabilities of 52, 33, and 15% to the categories one to
three, respectively, and a second forecast with probabil-
ities of 50, 45, and 5%. If the first category verifies, the
first forecast with the highest probability on the verifying
category scores worse than the second forecast (0.2529
compared to 0.2525). Perhaps more fundamentally, prob-
abilistic forecasts provide indications of the likelihoods
of different outcomes, and it seems consistent with the
interpretation of these probabilities to verify the forecast
only on the basis of the probability assigned to the verifi-
cation. The desirable properties of probabilistic forecasts
are that these probabilities be high, subject to reliability.
Local scores will measure these two properties of sharp-
ness and reliability, whereas it is unclear exactly what
non-local scores will measure (Mason et al., 2008). How-
ever, as with the other properties of verification scores, it
is important to consider what properties are relevant for
the specific context since locality may not always be a
desirable property.

4.5. Understandability

A neglected property of verification scores is their under-
standability. While, for example, the Gerrity and LEPS
scores have a number of desirable and elegant mathemat-
ical properties (Section 4.2), they are not easily under-
standable by non-specialists. Similarly, in Section 4.4,
the ranked probability skill score was criticized for fail-
ing to represent a simple measure of the reliability and
sharpness of probability forecasts. Conversely, for prob-
abilistic forecasts, the simple linear score (Wilson et al.,
1999) may not be proper, but it is intuitively appealing,
and so may be an appropriate score for communicating
the quality of forecasts to non-specialists. In general, it
is important to consider what questions the practitioner
wants answered when performing a verification analy-
sis, and to understand the strengths and weaknesses of
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each verification score. Is the score sensitive to distri-
butional assumptions? Does it matter that biases in the
mean and variance are ignored by correlation measures?
To whom is the score to be communicated, and what is
it meant to convey? Is the score to be used to compare
forecast systems? If so, what properties of the forecasts
are most important? For example, how important is reli-
ability? More generally, Jolliffe and Stephenson (2003)
ask the key question: is the score informative?

The question about the desirability of different proper-
ties of the forecasts deserves further attention, since too
often the generic question is asked: which is the better
forecast system? Given the multi-faceted nature of fore-
cast quality (Murphy, 1991) comparing forecasts using a
single score is likely to be unfruitful because it is unlikely
to indicate in what respect a set of forecasts is better
or worse than the other. It needs to be realized more
widely that quality may differ between two forecast sys-
tems without one being better in every respect than the
other. Even if there is a genuine difference, which specific
attribute of the forecasts has improved?

5. Summary

This article has presented a review of some procedures
for interpreting the results of a verification analysis of
forecasts. The focus has been on interpreting verification
scores, with the specific objective of trying to answer
the questions: Are the forecasts good, and can we
be confident that the estimate of forecast quality is
not misleading? A widely used procedure for deciding
whether forecasts are good is to calculate the probability
that useless forecasts could have scored at least as
well simply by accident. These so-called p-values are
estimated from the left or right tail of a distribution for the
values of the verification score under the null hypothesis
that there is no relationship between the forecasts and
the observations. Four approaches were described for
defining the distribution of the scores, namely, using an
exact theoretical distribution, an approximate theoretical
distribution, or an empirical distribution using either
permuted or synthetic data. Regardless of the type
of distribution used, however, p-values are not very
informative since they leave the question of whether
the forecasts have ‘good’ skill unanswered. Further
problems with p-values apply when calculating the
statistical significance of probabilistic verification scores.
Specifically, standard permutation techniques do not
address the reliability component of forecast quality.

Instead of using p-values, confidence intervals for ver-
ification scores are to be preferred. Confidence intervals
may provide not only an indication of how misleading the
verification results might be but also some insights to the
question of how good the forecasts are. However, they
will not point to problems in experimental design that
may have introduced some biases into skill estimates.
While cross validation is widely used in an attempt to
minimize biases in skill estimates, the commonly used
leave-one-out procedure can be ineffective.

A more general problem relates to the selection of
the verification score per se rather than the interpreta-
tion of the values of the score. Too often, scores seem
to be selected without due consideration for the specific
information that is actually desired from a verification
analysis. Scientists should consider questions of the desir-
able attributes of verification scores in the context of the
specific objectives of the analysis. A more discriminating
selection of verification procedures than has been adopted
to date in the atmospheric sciences is encouraged, and
should facilitate a more insightful assessment of forecast
quality.
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