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ABSTRACT

There are numerous reasons for calculating forecast verification scores, and considerable attention has
been given to designing and analyzing the properties of scores that can be used for scientific purposes. Much
less attention has been given to scores that may be useful for administrative reasons, such as communicating
changes in forecast quality to bureaucrats and providing indications of forecast quality to the general public.
The two-alternative forced choice (2AFC) test is proposed as a scoring procedure that is sufficiently generic
to be usable on forecasts ranging from simple yes–no forecasts of dichotomous outcomes to forecasts of
continuous variables, and can be used with deterministic or probabilistic forecasts without seriously reduc-
ing the more complex information when available. Although, as with any single verification score, the
proposed test has limitations, it does have broad intuitive appeal in that the expected score of an unskilled
set of forecasts (random guessing or perpetually identical forecasts) is 50%, and is interpretable as an
indication of how often the forecasts are correct, even when the forecasts are expressed probabilistically
and/or the observations are not discrete.

1. Introduction

Few weather or seasonal climate forecasters with any
experience can have escaped the question: How often
are your forecasts correct? Even when the forecaster
acknowledges that the question itself is a reasonable
one, only rarely is an answer ready to hand, and then it
usually has to be accompanied by various apologies and
explanations to help in the interpretation of the quoted
score. The naïve expectation is that the forecasts should
be correct at least 50% of the time; otherwise, one may
just as well guess. However, against this expectation is
Finley’s accuracy rate of almost 97% (Murphy 1996) on
the one hand, which is arguably unskillful, and, on the
other hand, the Climate Prediction Center’s skillful
long-lead 3-month forecasts with accuracy rates of
around 40% or less (Livezey and Timofeyeva 2008), all
of which makes most simple measures of accuracy para-
doxically complicated metrics of performance. In addi-

tion, when it comes to probabilistic forecasts, the idea
of forecasts being “correct” or “incorrect” is considered
a badly formulated question to start with. The fore-
caster is therefore tempted to present an array of apolo-
gies before presenting any verification statistic. How-
ever, the danger then arises of leaving the impression
that forecast verification practitioners purposely obfus-
cate the whole problem to hide the fact that weather
and climate forecasts are truly as bad as popularly be-
lieved.

Unfortunately, as forecasters, we cannot simply with-
draw into our scientific community where we do not
have to explain concepts like base rates, and where we
can work with metrics like Brier and ignorance scores,
and can be equitable and effective, or local and proper
whenever it suits our particular purposes to be so.
Three broad classes of reasons for performing verifica-
tion analyses have been widely recognized: administra-
tive, scientific, and economic (Brier and Allen 1951;
Jolliffe and Stephenson 2003). Because of the needs of
the forecasters themselves to understand the strengths
and weaknesses of their forecasting algorithms, by far
the most attention in the atmospheric sciences litera-
ture has been devoted to scientific evaluations of fore-
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casts, and to devising and diagnosing various scores and
procedures for such ends. More recently, concerns over
demonstrating the economic value of weather and cli-
mate forecasts have been attracting efforts to address
this third type of forecast “goodness” in Murphy’s
(1993) taxonomy. However, the question of how best to
service the administrative reasons for forecast verifica-
tion has received little attention, and requires address-
ing the apparently competing needs for mathematical
rigor and for understandability referred to above.

Although the “administrative” category incorporates
a wide range of possible motives for conducting a veri-
fication analysis, a common need is for a single score
that can be used to summarize forecast quality. It can
be added that when the purpose is to communicate to
nonspecialists (whether they be bureaucrats who may
be making decisions about resource allocations for on-
going forecasting activities and improvements, or po-
tential clients, or the simply curious) the score should
be as simple as possible (in the sense of being easy to
understand, and not in the sense of capturing only lim-
ited aspects of the scientific quality of the forecasts). Of
course, it has to be accepted upfront that as soon as one
decides to summarize forecast quality into any single
score, information is going to be lost; forecast quality is
multifaceted (Murphy 1991) and so any single number
will have its limitations. Acknowledging that there can
be no perfect score, the purpose in this article is to
recommend a score that does have some excellent in-
tuitive properties and compromises on questions of in-
formation loss as little as possible. The score itself (or
scores themselves; since a generic framework is pro-
posed, the precise formulation of the score depends on
the nature of the forecasts and observations) is not new,
but to the authors’ knowledge the framework presented
in this article has not previously been proposed in the
atmospheric science literature as suitable for the pur-
poses of administrative forecast verification. The pro-
posed scoring framework is sufficiently flexible to be
used with forecasts and observations that cover a wide
range of complexities, but without reducing the more
complex cases to the simpler. Specifically, where the
forecasts contain probabilistic information on a con-
tinuous target variable, and the target variable itself is
measured on the same continuous scale, the score
should not discretize the forecasts and observations. But
at the same time, where the forecasts and observations
are discretized, the score should remain meaningful.

In section 3 of this paper, the proposed framework
for evaluating forecasts is presented, and the specific
verification scores that are defined by the framework
are introduced. The limitations of the scores are then
discussed in section 4. The paper closes with some con-

cluding remarks in section 5. First, however, a set of
example data to illustrate the calculation of the scores is
described.

2. Example data

Forecasts for the Niño-3.4 index from the coupled
ocean–atmosphere model of the Centre National de
Recherches Météorologiques (CNRM) of Météo-
France were compared with observed values. The data
were generated as part of the Development of a Euro-
pean Multimodel Ensemble System for Seasonal to In-
terannual Prediction (DEMETER) project (Palmer et
al. 2004), and only the 40 forecasts for January 1961–
2000 from model runs initialized using data for the pre-
ceding August 1960–99 were considered. There are
nine ensemble members. No attempt was made to cali-
brate the forecasts, but the mean bias is less than 0.3°C,
and the model variance is about 80% that of the ob-
served data. The ensemble-mean forecasts account for
about 88% of the variance of the January Niño-3.4 in-
dex for the 40-yr period, indicating that the model is
highly skillful.

The Finley tornado forecasts mentioned in the intro-
duction are considered also, but only within the context
of dichotomous forecasts of dichotomous observations.

3. A general framework for evaluating forecasts

The standard way of evaluating forecasts is to take
each forecast–observation pair and to compare each in
turn, asking the question of how well the forecast cor-
responds with its respective observation. Given n fore-
cast–observation pairs, this question is addressed n
times, and a summary measure is calculated. An alter-
native procedure is proposed by which a set of two
forecast–observation pairs is considered, and the ques-
tion then becomes whether the forecasts can be used
successfully to distinguish between the observations.
For example, given a day with rain and one without, can
we successfully identify the wet day from the forecasts?
Or can we identify the warmer of two days, again from
the forecasts? Assuming that the observations are dis-
tinguishable, the probability of picking the correct year
given unskillful forecasts is 50%. The aim is to compare
all possible sets of two forecast–observation pairs, ask-
ing the same question each time, and calculating the
proportion of times that the question is answered cor-
rectly. This proportion is known as the probability of a
correct decision, and the question is known as a two-
alternative forced choice (2AFC) test (Green and
Swets 1989; Mason and Graham 2002). Each time the
question is asked, there is a 50% chance of picking the
correct observation in the absence of any useful infor-
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mation, but if the forecasts are skillful, the proportion
of correctly picked observations will exceed 50%, and
the better the forecasts are the closer the proportion
will be to 100%.

In selecting the two pairs, the observations have to be
different in some way, and so it may be the case that not
all sets of two pairs can be assessed (e.g., it is not a
useful question to ask which of two days was wet if
neither of them had observed rainfall). If all the obser-
vations differ from one another, a total of (n

2) � n(n �
1)/2 sets can be evaluated, although not all the results
will be independent1 (if day 1 is warmer than day 2, and
day 2 is warmer than day 3, then it is known that day 1
is warmer than day 3). If some of the observations can-
not be distinguished, then the number of sets of two
forecast–observation pairs that can be meaningfully
compared depends on the numbers of classes of differ-
ent observations and the numbers of observations in
each class, as discussed in detail later.

Technically, a 2AFC test involves asking whether the
forecasts can be used to successfully discriminate be-
tween the observations (Murphy 1991), and so, in the
general framework for forecast verification introduced
by Murphy and Winkler (1987), the 2AFC procedure
proposed in this paper involves a likelihood-base rate
factorization. The precise formulation of the question
in the 2AFC test depends on the nature of the forecasts
and observations, and in some cases the resultant test
reduces to a verification score that is already in wide
use, and/or is more widely known under a different
name. The following sections describe the 2AFC score
under these different formulations, starting with the
simplest cases of yes–no forecasts for dichotomous out-
comes, and proceeding in complexity to probabilistic
forecasts of outcomes measured on a continuous scale.
A brief discussion of forecasts of observations for which
the latter are probability distributions closes this section.

a. Dichotomous observations

The simplest situation is when there is one of only
two possible outcomes; one of the possible outcomes is
labeled an event, and so an event can either occur or
not occur. Let x1, j represent the jth forecast issued
when an event did occur, and let there be n1 events; let
x0, i represent the ith forecast issued when an event did
not occur, and let there be n0 nonevents (n1 � n0 � n).
A 2AFC score for dichotomous observations can be

defined as the proportion of correctly answered 2AFC
tests out of all possible such tests:

p2AFC �
1

n0n1
�
i�1

n0

�
j�1

n1

I�x0, i, x1, j�, �1a�

where the scoring rule I(x0, i, x1, j) is defined as

I�x0, i, x1, j� � �
0.0 if x1, j � x0, i

0.5 if x1, j � x0, i

1.0 if x1, j � x0, i

. �1b�

Note that 2 � I(x0, i, x1, j) � 1 � sgn(x1, j � x0, i). The
precise calculation of Eq. (1) depends on the nature of
the forecasts. Its formulation given different forecast
types is detailed in the following subsections.

1) DICHOTOMOUS FORECASTS

Dichotomous forecasts are expressed as a yes or a no
for an event to occur. An example is forecasts of rainfall
occurrence: Rainfall either occurs or it does not occur,
and the forecast indicated either that it would or would
not. Such forecasts and observations are most commonly
summarized in a 2 � 2 contingency table, and there are
numerous scores that have been applied for summariz-
ing the quality of such forecasts (Mason 2003). Finley’s
tornado forecasts (Murphy 1996) are a well-known ex-
ample, and the debate around the quality of these fore-
casts effectively illustrates some of the difficulties in
communicating the quality of this type of forecast.

In a 2AFC test, the procedure would be to select one
day on which a tornado occurred, and one on which a
tornado did not occur, and then to decide on which day
the tornado occurred based on the two corresponding
forecasts. This test would be repeated for each possible
pairing of a tornado with a nontornado day. For some
of the pairings, because some of the forecasts may be
incorrect, it may not be possible to decide on which day
a tornado occurred: Sometimes both forecasts may in-
dicate no tornado, and other times both may indicate a
tornado. For these cases a score of one-half should be
recorded. Using the contingency table shown in Table 1
in which a � number of hits, b � number of false
alarms, c � number of misses, and d � number of cor-
rect rejections, the 2AFC score can be calculated as

p2AFC �
ad � 0.5�ab � cd�

�a � c��b � d�
. �2�

The denominator defines the total number of forecast–
observation pairs to consider and is simply the product
of the number of events and nonevents; the numerator
is calculated as the number of correctly discriminated
observations (ad) plus half the number of observations

1 This aspect of dependency does not invalidate the test and
should be considered distinct from the dependency that arises
from spatial and temporal autocorrelation. See section 4 for fur-
ther discussion.
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that cannot be discriminated either way. The term bc,
which is obtained if the denominator is expanded, rep-
resents the number of incorrectly discriminated obser-
vations.

Equation (2) can be shown to be a special case of Eq.
(1). From Table 1, a is the number of times x1, j � 1, b
is the number of times x0, i � 1, c is the number of times
x1, j � 0, and d is the number of times x0, i � 0, while n1

is the number of events (a � c) and n2 is the number of
nonevents (b � d). The denominator of Eq. (2) is there-
fore the same as in Eq. (1a), while in the numerator ad
represents all the cases where x1, j � x0, i and ab � cd
represents all the cases where x1, j � x0, i.

The score defined in Eq. (2) is a version of the area
beneath the relative operating characteristics (ROC)
curve (Mason 2003). Since the forecasts and observa-
tions are both dichotomous, the ROC curve is defined
by a single point connected to the corners. Using the
trapezium rule, the area beneath the curve can be cal-
culated as the sum of the triangular area to the left of
this point, and the trapezoidal area to the right:

ROCarea � 0.5 � �� a

a � c�� b

b � d�
� �2a � c

a � c �� d

b � d��. �3�

Equation (3) reduces to Eq. (2), indicating the equiva-
lence of the 2AFC score and the ROC area in this
context. The area beneath the ROC graph (when it is
calculated using the trapezium rule) can therefore be
interpreted as the probability of successfully discrimi-
nating the observations (Mason and Graham 2002).

For Finley’s forecasts, the 2AFC score is approxi-
mately 76%, indicating that his forecasts successfully
discriminated tornado from nontornado days over
three-quarters of the time. This score is consistent with
the recognition that against a strategy of random guess-
ing—as opposed to Gilbert’s commonly quoted one of
perpetual no tornadoes—Finley’s forecasts are skillful
(Murphy 1996; Mason 2003; Mason 2008). If Gilbert’s
strategy of perpetual no-tornado forecasts can outper-
form Finley’s forecasts on the percent correct score,
how do they fare on the 2AFC score? In this case a and
b are 0, and so Eq. (2) reduces to

p2AFC �
0.5cd

cd
� 50%, �4�

which is the same as for random guessing. At least in
the context of dichotomous forecasts and observations,
therefore, the 2AFC score is equitable.

Given that the 2AFC score has been presented as an
attempt to address the question of how often the fore-
casts are correct, how does the 2AFC score of 76%
relate to the percent correct score of 97% for Finley’s
forecasts (Murphy 1996)? The difference is that the
percent correct score is a simple count of how often the
forecast matched the corresponding observation, and
tells us at least as much about the base rate as it does
about the quality of the forecasts. The 2AFC score,
however, tells us how often the forecasts successfully
distinguish a tornado day from a nontornado day and is
independent of the base rate.

The CNRM ensemble-mean forecasts and observed
values of the Niño-3.4 index were classified as, respec-
tively, predicting and verifying “warm” events if the
index exceeded 27.0°C. The resulting contingency table
is shown in Table 2. From Eq. (2), the probability of
correctly discriminating a warm event from a nonevent
(“cool”) is approximately 93%.

2) POLYCHOTOMOUS FORECASTS

Polychotomous forecasts of dichotomous outcomes
are perfectly reasonable if the forecast categories are
viewed as a set of ordered warning levels, which may or
may not have explicit probability thresholds assigned to
them.2 Setting the dot subscript to represent any out-
come, in terms of Eq. (1), x•, i can take on one of mf

values, where mf is the number of forecast categories.

2 It would seem unreasonable for the numbers of observed and
forecast categories to differ if the categories were not ordinal:
Either at least some of the forecast categories would be incom-
mensurable with the observational categories, or there would be
forecast categories for events that never occur and so there would
be no point in forecasting them. The case of nominal forecast
categories and dichotomous observations is therefore not consid-
ered further.

TABLE 1. 2 � 2 contingency table.

Observations

Forecasts

Yes No

Yes a c
No b d

TABLE 2. Contingency table for January 1961–2000 observed
values and forecasts of the Niño-3.4 index above or below 27.0°C.
Forecasts initialized using data for August 1960–99 are from the
coupled ocean–atmosphere model of CNRM.

Observations

Forecasts

�27.0°C 
27.0°C

�27.0°C 14 1

27.0°C 2 23
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Equation (1b) is independent of the number of possible
values for x•, i and so the 2AFC score retains the same
format as for the case of the dichotomous forecasts. Let
n1,k be the number of forecasts of category k when an
event occurred (i.e., the number of times x1, i � k), and
n0,k the number of forecasts for the same category when
an event did not occur (i.e., the number of times x0, j �
k).3 Then,

p2AFC �

�
i�1

mf �1

�
j�i�1

mf

n0, in1, j � 0.5�
k�1

mf

n0, kn1, k

n0n1
. �5�

Equation (5) is related to Eq. (1) because the first term
in the numerator represents all the cases where x1, j �
x0, i, and the second term represents all the cases where
x1, j � x0, i. In the case of perpetually identical forecasts,
either n0, i � 0 and/or n1, j � 0, and either n0,k � n0 and
n1,k � n1, or n0,k � 0 and n1,k � 0. Therefore, just as Eq.
(2) reduces to Eq. (4), so also Eq. (5) reduces to

p2AFC �
0.5n0n1

n0n1
� 50%, �6�

and the score is again equitable.
The equivalency of the 2AFC score and the area be-

neath the ROC graph in the case of dichotomous ob-
servations and forecasts was noted in section 3a(1). The
same is true in the case of ordinal polychotomous fore-
casts, but, because the forecasts can be ranked, more
than one point on the ROC graph can now be con-
structed. This case is identical to the way that a trap-
ezoidal ROC area is calculated given forecasts ex-
pressed as probabilities for categories [section 3a(3)].
Since the probabilities themselves are ignored when
performing a ROC analysis (Mason and Graham 2002;
Glahn 2004; Wilks 2006), probabilistic forecasts are re-
duced to forecasts of ordinal polychotomous categories.
In the current context, therefore, the 2AFC score is
equivalent to the standard way in which the ROC tech-
nique is performed in forecast verification, except that
the probabilities associated with each point on the
curve are undefined (Mason and Graham 2002).

Retaining the definition of observed warm events as

a Niño-3.4 index of greater than 27.0°C used in the
previous section, the CNRM ensemble-mean forecasts
were classified as predicting warm events with very high
confidence if the forecast exceeded 28.0°C, high confi-
dence if the forecast exceeded 27.0°C, low confidence if
the forecast exceeded 26.0°C, and very low confidence
otherwise. The resulting 2 � 4 contingency table is
shown in Table 3. From Eq. (5), the probability of cor-
rectly discriminating a warm from a cool event is ap-
proximately 95%. This value is a slight improvement on
the 93% from the 2 � 2 contingency table because of
the greater resolution in the forecasts available in the
2 � 4 table, resulting in fewer ties in the forecasts.
However, it should be noted that the results are some-
what sensitive to the categorization of the forecasts.

3) DISCRETE PROBABILISTIC FORECASTS

The 2AFC score for discrete probabilistic forecasts is
essentially the same as for the polychotomous forecasts:
The probabilities define a set of ordered categories,
with the number of forecast categories being equal to
the number of discrete forecast probabilities. Consis-
tent with the relationship shown in Eq. (3), the 2AFC
score for discrete probabilistic forecasts is then equiva-
lent to calculating the trapezoidal area under the ROC
curve (Mason and Graham 2002). Let p1, j represent the
jth forecast probability for an event when an event oc-
curred, and let p0, i represent the ith forecast probability
for an event when an event did not occur. Effectively,
the forecasts x0, i and x1, j in Eq. (1) are replaced by
these probabilities, giving

p2AFC �
1

n0n1
�
i�1

n0

�
j�1

n1

I�p0, i, p1, j�, �7a�

where the scoring rule I(p0, i, p1, j) is defined as

I�p0, i, p1, j� � �
0.0 if p1, j � p0, i

0.5 if p1, j � p0, i

1.0 if p1, j � p0, i

�7b�

(see appendix A for further details).

3 In the case of dichotomous forecasts, a forecast of x•, i � 1
implies a forecast of an event, whereas in the case of polychoto-
mous forecasts, a forecast of x•, i � 1 implies a forecast of category
1. In the dichotomous case the forecast categories are labeled 0
and 1 to correspond with the observed values of 0 for nonevents
and 1 for events. In the polychotomous case the forecast catego-
ries are numbered from 1 to mf, and it is implied that the higher
the forecast category, the more likely it is that an event is expected
to occur.

TABLE 3. Contingency table for January 1961–2000 observed
values of the Niño-3.4 index above or below 27.0°C from the
coupled ocean–atmosphere model of CNRM initialized in August
1960–99.

Observations

Forecasts

Very high High Low Very low

�27.0°C 5 9 1 0

27.0°C 0 2 14 9
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One limitation of Eq. (7) is that the score considers
only the ordering of the probabilities, ignoring the ac-
tual probability values themselves, and thus is insensi-
tive to any monotonic transformation of the probabili-
ties. This insensitivity is the same problem as the insen-
sitivity of the ROC to calibration (Glahn 2004).
Although 2AFC scores can be defined that explicitly
consider the actual probabilities (appendix B), these
scores are not proper (appendix C).

For the CNRM data, forecast probabilities were de-
fined as the proportion of the ensemble members fore-
casting an index of greater than 27.0°C.4 With nine en-
semble members, the number of probability bins is
therefore 10. A histogram of the forecast probabilities
for warm and cool events is shown in Fig. 1, indicating
that the warm and cool events are well discriminated by
the forecasts. The corresponding ROC curve for these
forecasts is shown in Fig. 2. The area beneath the curve
is about 0.98 (i.e., the 2AFC score is 98%) and is larger
than for the dichotomous and polychotomous forecasts
because of fewer ties. The ROC curves for the dichoto-
mous and polychotomous forecasts are shown as gray
solid and dashed lines, respectively, and it is clear that
the poorer resolution in these forecasts compared to

the discrete probabilities is responsible for the slightly
smaller area.

4) CONTINUOUS FORECASTS

If the forecasts are continuous, the 2AFC score re-
mains essentially the same as for the polychotomous
forecasts, except that there will be as many categories
as there are distinct forecast values (mf � n; unless
there are ties, which may occur if there is a zero bound,
e.g., in which case mf 
 n). Let the forecasts for events
and nonevents be pooled, and then ranked in ascending
order; if the forecasts are good, the ranks for the fore-
casts when an event occurred should be higher than for
when no event occurred. Setting r1, j as the rank of the
forecast for the jth event, the 2AFC score is derived
from the equation for the Mann–Whitney U statistic
(Conover 1999; Sheskin 2007):

p2AFC �

�
j�1

n1

r1, j �
n1�n1 � 1�

2

n0n1
. �8�

The second term in the numerator represents the sum
of the ranks for the worst possible set of forecasts for
the events (i.e., the forecasts for the events are all
ranked first), and so the numerator as a whole calcu-
lates the number of times a rank for the forecasts for

4 There are more reliable methods of calculating forecast prob-
abilities (e.g., Kharin and Zwiers 2003), but this method is used
purely for the sake of simplifying the example.

FIG. 1. Relative frequencies of numbers of ensemble members
forecasting the Niño-3.4 index to exceed 27.0°C when the index
did exceed 27.0°C (black) and when it did not (gray).

FIG. 2. ROC curve for CNRM forecasts for the Niño-3.4 index
to exceed 27.0°C. The ROC curves for dichotomous (dashed),
polychotomous (dashed–dotted), discrete probabilistic (solid),
and continuous forecasts (dotted) are shown.
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when an event occurs is greater than for forecasts for
when a nonevent occurs (i.e., the number of correct
2AFC tests). Equation (8) can be shown to be a special
case of Eq. (1), because

r1, j � 0.5 � �
i�1

n1

I�x1, i, x1, j� � �
i�1

n0

I�x0, i, x1, j� �9�

and

�
j�1

n1 �0.5 � �
i�1

n1

I�x1, i, x1, j���
n1�n1 � 1�

2
. �10�

Equation (8) is therefore equal to Eq. (5) not just when
mf � n, but also because of the incorporation of fore-
cast ties into the definition of the ranks in Eq. (9), when
mf 
 n.

To illustrate, consider the ensemble-mean CNRM
forecasts for the Niño-3.4 index. These forecasts are to
be used to predict whether the observed value will ex-
ceed 27.0°C (defined as a warm event). To perform an
individual 2AFC test, the forecasts are ranked on the
basis of the forecast temperature, and the forecast with
the higher temperature, for example, is selected as the
indicator of the warm event.5 To calculate the 2AFC
across all warm–cool event pairings, an ROC graph
could be constructed with the forecast with the highest
temperature being assigned as the year most likely to
have experienced a warm event (Fig. 2). In essence, the
procedure is to assign an arbitrary, but monotonically
increasing, probability for a warm event to each fore-
cast as the forecast temperature increases and then to
perform a standard ROC as if the forecasts were proba-
bilistic. This procedure was used by Thomson et al.
(2006) and is a more comprehensive way of evaluating
the quality of continuous forecasts than reducing them
to a probabilistic forecast of 0% or 100% depending
upon whether the forecast exceeds 27.0°C [as in section
3a(1)] because the conversion to probabilistic forecasts
involves considerable loss of information. The 2AFC
score for the Niño-3.4 forecasts is almost 99% and is a
notably higher score than for the 2 � 2 or 2 � 4 con-
tingency tables because of the elimination of ties.

5) CONTINUOUS PROBABILISTIC FORECASTS

If a probability distribution is provided as the fore-
cast, that is, a density function that is defined over a
continuous scale of values, the 2AFC score can be gen-
eralized from that for the discrete probabilistic fore-
casts [section 3a(3)]. Given forecast distributions, the
probability that a value drawn from the one forecast
distribution exceeds that from the other can be calcu-
lated and conditioned on the prior knowledge that the
two observations can be distinguished (appendix A).
This conditional probability, F(p0, i, p1, j), can then be
used as the basis for selecting which of the two corre-
sponding observations represents the event of interest.

If F(p0, i, p1, j) � 0.5, then it would seem reasonable to
select (in this case correctly) the observation corre-
sponding to forecast p1, j as the event, but to select (in
this case incorrectly) the observation corresponding to
forecast p0, i if F(p0, i, p1, j) 
 0.5. Therefore, if p0, i and
p1, j in Eq. (7a) are distributions rather than discrete
probabilities, Eq. (7b) can be modified to

I�p0, i, p1, j� � �
0.0 if F�p0, i, p1, j� � 0.5

0.5 if F�p0, i, p1, j� � 0.5

1.0 if F�p0, i, p1, j� � 0.5

. �11�

Although it would seem reasonable to use F(p0, i, p1, j)
as the scoring rule in place of I(p0, i, p1, j) in Eq. (7a), the
resulting score is improper (appendix C). Note that the
scoring rule for discrete probability forecasts, Eq. (7b),
can be derived as a special case from Eq. (11) (appendix
A, section b). Also note that if the probability distribu-
tions for both forecasts are Gaussian, F(p0, i, p1, j) be-
comes equivalent to a Student’s t test for the difference
in the means of the two forecast distributions [or a
Welch’s t test if the variances of the two distributions
differ; Sheskin (2007)]. Similarly, if the distributions are
similar but non-Gaussian, F(p0, i, p1, j) is equivalent to a
Mann–Whitney U test. The 2AFC score could therefore
be interpreted as being based on a series of Student’s t
or Mann–Whitney U tests (appendix A, section a).

As an example, the CNRM forecasts for the Niño-3.4
index were converted to Gaussian forecast distributions
by using the ensemble mean and standard deviation as
parameters for each forecast. The 2AFC score is almost
99%, indicating excellent discrimination between warm
and cool events, and is consistent with the score for the
continuous forecasts [section 3a(4)]. In fact, if the en-
semble distributions are symmetric, then Eq. (11) be-
comes equivalent to Eq. (8) because F(p0, i, p1, j) will
always be greater than 0.5 if the mean of p1, j is greater
than the mean of p0, i, and so it is only the rankings of
the ensemble means that determine the score.

5 Note that both or neither of the forecasts in a specific 2AFC
test may be above or below the event threshold of 27.0°C, but that
a warm event can still successfully be discriminated from a non-
event: if forecast 1 is for 26.5°C and forecast 2 is for 26.0°C, and
observation 1 is the warm event, the 2AFC test will be passed
correctly. This calibration problem is discussed further in sec-
tion 4.
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This score of 99% for the continuous probabilistic
forecasts is larger than that for the discrete probabilistic
forecasts. This result is consistent with the observation
of Doblas-Reyes et al. (2008) that forecast probabilities
should be indicated with as much precision as the fore-
cast system allows since the binning of probabilities
tends to result in a degeneration of skill.

b. Polychotomous observations (nominal and
ordinal)

If there are more than two possible outcomes, the
2AFC test can still be applied. Let the number of ob-
served categories be m�, and let the categories be ordi-
nal, with category 1 representing the lowest values and
category m� the highest; the 2AFC score defined in Eq.
(1) can then be generalized to

p2AFC �

�
k�1

m��1

�
l�k�1

m�

�
i�1

nk

�
j�1

nl

I�xk, i, xl, j�

�
k�1

m��1

�
l�k�1

m�

nknl

, �12a�

where I(xk, i, xl, j) is defined in an analogous way to Eq.
(1b):

I�xk, i, xl, j� � �
0.0 if xl, j � xk, i

0.5 if xl, j � xk, i

1.0 if xl, j � xk, i

. �12b�

As with Eq. (1), the objective is to calculate the pro-
portion of correct 2AFC tests for all possible distin-
guishable pairs of observations. In the case of continu-
ous forecasts, Eq. (12) is equivalent to a simple rescal-
ing of Somer’s � (Agresti 1984), as discussed further in
section 3c(4).

If the observed categories are not ordinal, then the
less than (
) and greater than (�) symbols in Eq. (12b)
do not make sense, and so the score has to be modified
to

p2AFC �

�
l�1

m�

�
k�l

m�

�
i�1

nk

�
j�1

nl

J�xk, i, xl, j�

�
k�1

m�

�
k�l

m�

nknl

, �13a�

where the scoring rule J(xk, i, xl, j) is defined as

J�xk, i, xl, j� � �
0.0 if xl, j � k & xk, i � k

0.5 if xl, j � xk, i

0.5 if xl, j � k & xk, i � k

1.0 if xl, j � k & xk, i � k

. �13b�

In most cases in the atmospheric sciences the categories
will be ordinal, but the nominal case is considered for
completeness.

1) DICHOTOMOUS FORECASTS

This case is not considered since some of the out-
comes can never be forecast, and so the case is unreal-
istic.

2) POLYCHOTOMOUS FORECASTS

When there are more than two categories for the
observations and the forecasts, the 2AFC score for di-
chotomous observations and forecasts [section 3a(1)]
can be generalized to

p2AFC

�

�
k�1

m��1

�
l�k�1

m� � �
i�1

mf �1

�
j�i�1

mf

nk, inl, j � 0.5�
i�1

mf

nk, inl, i�
�
k�1

m��1

�
l�k�1

m�

nknl

,

�14�

where mf is the number of forecast categories. As for
Eq. (5), perpetual forecasts of the same category will
score 0.5.

If the observed and forecast Niño-3.4 indices are clas-
sified as hot, warm, cool, and cold using ranges of

28.0°, 28.0°–27.0°, 27.0°–26.0°, and 
26.0°C, respec-
tively, the resulting contingency table suggests a highly
skillful set of forecasts with most of the cases near the
diagonal (Table 4). However, primarily because of the
large number of forecasts for cool conditions when cold
were observed, the 2AFC score drops to about 90%,
somewhat less than the scores recorded for the dichoto-
mous observations. The model has a slight warm bias,
which is more clearly evident in Table 4 (the model
forecasts cold conditions 9 times whereas they are ob-
served 15 times) than in Table 2, and is affecting the

TABLE 4. Contingency table for January 1961–2000 observed
values of the Niño-3.4 index in the ranges 
26.0° (cold), 26.0°–27°
(cool), 27.0°–28° (warm), and �28.0°C (hot) from the coupled
ocean–atmosphere model of CNRM initialized in August
1960–99.

Observations

Forecasts

Hot Warm Cool Cold

Hot 4 0 0 0
Warm 1 9 1 0
Cool 0 2 7 1
Cold 0 0 7 8
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score for the model. Although the 2AFC score for con-
tinuous forecasts is insensitive to monotonic transfor-
mations of the forecasts (see further discussion in sec-
tion 4), the score for polychotomous forecasts can be
partially affected by biases, depending on how the cat-
egories are defined. This sensitivity to the categoriza-
tion is not unique to the 2AFC score described here and
should be considered an argument against the catego-
rization of forecasts rather than as a weakness of the
score. The flexibility of the 2AFC test is therefore an

advantage: The score can be applied regardless of the
data format.

If the categories are nominal, then any distinguish-
able set of forecast–observation pairs having at least
one pair drawn from the diagonal will be marked as
correct (i.e., at least one of the forecasts has to be for
the correct category). The numbers of observed and
forecast categories need to be identical because other-
wise categories are forecast that cannot be observed or
vice versa. The 2AFC score becomes

p2AFC �

�
k�1

m

�
l�k

m ��
i�k

m

nk,knl, i � 0.5 ��
i�k

m

�
j∉k,l �

m

nk,l ni, j � �
i�l

m

nk, inl, j��
�
k�1

m

�
l�k

m

nknl

, �15�

where m � m� � mf . If the hot, warm, cool, and cold
Niño-3.4 categories defined above are considered as
nominal categories, the contingency table is the same as
shown in Table 4, but the 2AFC score drops to about
80% because of the loss of information about the or-
dering of the categories. Given that the categories in
this example are ordinal but are scored as if they are
nominal, the difference between this score and that
from Eq. (14) can be explained as follows. In cases
where the forecasts are ranked correctly, but the high-
est ranking forecast is incorrect, the forecaster is no
longer able to make a selection since the requested
category is not forecast; in these cases the forecaster
scores 0.5 instead of 1. In cases where the forecasts are
ranked incorrectly, and neither forecast indicates the
requested category, the forecaster is again unable to
make a selection; in these cases the forecaster scores 0.5
instead of 0. In some cases, therefore, the forecaster
gains, but in most cases, if the forecasts are skillful, the
forecaster will lose when using the nominal version of
the score, as in the CNRM example.

3) DISCRETE PROBABILISTIC FORECASTS

For discrete probabilistic forecasts of polychotomous
categories, the 2AFC score is a generalized version of
that for the dichotomous observations [section 3a(3)].
For ordinal categories, the score assesses the ability to
identify the observation in the higher category, just as
for the polychotomous forecasts, but makes the selec-
tion on the basis of the forecast probabilities, just as for
the dichotomous observations. The score is therefore a
generalization of Eqs. (7) and (11), and uses the prob-
ability that a value drawn from the one forecast distri-

bution exceeds a value drawn from the other, condi-
tioned on the prior knowledge that the two observa-
tions can be distinguished (see Appendix A). The
2AFC score is defined as

p2AFC �

�
k�1

m��1

�
l�k�1

m�

�
i�1

nk

�
j�1

nl

I�pk,i , pl, j �

�
k�1

m��1

�
l�k�1

m�

nknl

, �16a�

where pk,i is the vector of forecast probabilities for the
ith forecast given category k, and

I�pk, i , pl, j� � �
0.0 if F�pk, i , pl, j� � 0.5

0.5 if F�pk, i , pl, j� � 0.5 .

1.0 if F�pk, i , pl, j� � 0.5

�16b�

The scoring rule F(pk,i, pl,j) is defined as

F�pk, i , pl, j� �

�
r�1

m�1

�
s�r�1

m

pk,i�r�pl,j�s�

1 � �
r�1

m

pk,i�r�pl,j�r�

. �16c�

where pk,i(r) is the forecast probability for the rth cat-
egory, and for the ith observation in category k. It can-
not be used in place of I(p0,i, p1,j) in Eq. (16a) because
the resulting score is improper (see appendix C).

For the CNRM data, using the same four categories
for observations and forecasts as for the polychotomous
forecasts [section 3b(2)], and using the simple counting
procedure for assigning forecast probabilities as was
used for the dichotomous forecasts [section 3a(3)], the
2AFC score is about 92%. Although this score contin-
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ues to indicate a high degree of skill in forecasting the
Niño-3.4 index, it remains lower than the scores for the
dichotomous observations, which is attributable to the
poor estimates of forecast probabilities using the count-
ing procedure, and to the relatively poor ability to dis-
tinguish between the cool and cold conditions.

If the categories are nominal, Eq. (13) is simply ap-
plied to the probabilities, just as Eq. (7) was adapted
from Eq. (1), except that each pairing has to be tested
twice to determine whether the correct choice is made
for both outcomes. The 2AFC score is therefore

p2AFC �

�
l�1

m�

�
k�1

m�

�
i�1

nk

�
j�1

nl

I �pk,i�l �, pl, j�l ��

�
l�1

m�

�
k�l

m�

nknl

, �17a�

where

I �pk, i�l�, pl, j�l�� � �
0.0 if pl, j�l � � pk, i�l �

0.5 if pl, j�l � � pk, i�l �

1.0 if pl, j�l � � pk, i�l �

. �17b�

The score for the CNRM data is about 86%. As for
the dichotomous observed categories, the score for the
polychotomous forecasts treated as nominal categories
is less than if they are treated as ordinal. However, if
the categories are considered individually, the score for
being able to identify the hot category is about 99%,
while that for the warm is about 93%. The scores for
the cold and cool categories are notably less (about
78% and 80%, respectively); the scores for these cat-
egories are negatively affected by the previously men-
tioned warm bias in the model.

4) CONTINUOUS FORECASTS

For continuous forecasts of ordinal polychotomous
categories (nominal categories would not make sense),
the 2AFC score is adapted in the same way as for the
dichotomous categories [section 3a(4)]: For n forecasts
(and no ties), there are n categories. The question ad-
dressed by the 2AFC test remains identical: Which is
the observation with the higher value? However, since
there are fewer ties in the observations now that there
are more categories, a larger number of tests can be
conducted. Let the forecasts for categories k and l only
be pooled and then ranked in ascending order. Setting
rl, j as the rank of the forecast for the jth event (where
an “event” is an occurrence of category l, and the ranks
are calculated using only those for forecasts for when

an event l occurred), the 2AFC score is generalized
from Eq. (8):

p2AFC �

�
k�1

m��1

�
l�k�1

m� ��
j�1

nl

rl, j �
nl�nl � 1�

2 �
�
k�1

m��1

�
l�k�1

m�

nknl

. �18�

The 2AFC score for the CNRM data is about 92%
and is most negatively affected by a relatively poor abil-
ity to discriminate cool from cold conditions (73%).
The only other partial scores that were imperfect were
between the warm and cool categories (97%), and be-
tween warm and hot (98%); that is, the model could not
perfectly discriminate between observations in neigh-
boring categories. However, the model’s ability to dis-
criminate between observations in neighboring catego-
ries is better for the warmer compared to the cooler
categories. A similar ability to forecast the warmest
categories most successfully was noted when discussing
the discrete probabilistic forecasts [section 3b(3)].

5) CONTINUOUS PROBABILISTIC FORECASTS

For the dichotomous observed categories, the 2AFC
score was based on tests for the difference between the
forecast probability distribution functions for events
compared to those for nonevents. A similar principle
applies in the case of polychotomous observed catego-
ries except that the forecast probability distributions
are compared to see whether they can be used to iden-
tify the observation in the highest category. Equation
(11) is therefore generalized to

I�pk, i, pl, j� � �
0.0 if F�pk, i, pl, j� � 0.5

0.5 if F�pk, i, pl, j� � 0.5

1.0 if F�pk, i, pl, j� � 0.5

, �19a�

and the 2AFC score becomes

p2AFC �
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which is the same as Eq. (16). Note that again the use of
F(pk, i, pl, j) as the scoring rule in place of I(pk, i, pl, j) in
Eq. (19b) renders the score improper.

Using the same Gaussian assumption for the CNRM
forecasts for the Niño-3.4 index as used for the dichoto-
mous forecasts, the 2AFC score is about 95%, which is
a little worse than for the dichotomous forecasts. This
reduction is primarily because of a relatively weak abil-
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ity to distinguish cold from cool conditions, which has
been noted a number of times in previous sections.
When the observations were categorized only into
warmer or colder than 27.0°C, the cold and cool cat-
egories were grouped together and so the forecasts did
not have to discriminate between them. The 2AFC
score for discriminating cold from cool using the Gauss-
ian forecast distributions is only about 70%. However,
the scores for discriminating all other categories exceed
98%.

c. Continuous observations

If the observations are measured on a continuous
scale,6 the 2AFC score can be generalized in the same
way as for the difference between continuous and dis-
crete probabilistic forecasts: The n observations are
treated as if they were a set of n polychotomous ordinal
categories. Assuming that there are no ties in the ob-
servations, the 2AFC score defined in Eqs. (1) and (12)
can then be generalized to

p2AFC �
2

n�n � 1� �i�1

n�1

�
j�i�1

n

I�xi, xj�, �20a�

where

I�xi, xj� � �
0.0 if xi � xj

0.5 if xi � xj

1.0 if xi � xj

. �20b�

If there are ties in the observations, then the scores
described in section 3b can be applied.

1) DICHOTOMOUS FORECASTS

This case is not considered because the forecasts can-
not be compared with the observations without reduc-
ing the observations to categories.

2) POLYCHOTOMOUS FORECASTS

Similarly, this case is not considered because the
forecasts cannot be compared with the observations
without reducing the observations to categories.

3) DISCRETE PROBABILISTIC FORECASTS

As for the dichotomous and polychotomous fore-
casts, this case is not considered because the forecasts
cannot be compared with the observations without re-
ducing the observations to categories.

4) CONTINUOUS FORECASTS

For continuous forecasts, the 2AFC score could be
calculated using Eq. (18), setting the number of catego-
ries to n. However, it is considered conceptually simpler
to use Eqs. (20a) and (20b). Note that Eqs. (20a) and
(20b) are a simple transformation of Kendall’s correla-
tion coefficient, �. Kendall’s � is defined as

� �
4P

n�n � 1�
� 1, �21�

where P is the number of so-called concordant pairs
(Sheskin 2007). A concordant pair is defined as a pair
of bivariate observations, x � {x1, x2} and y � {y1, y2},
in which sgn(x1 � x2) � sgn(y1 � y2), that is, in which
the ranking of the two values in x is the same as in y.
Recalling from section 3a that sgn(x1 � x2) � 2 � I(x2,
x1) � 1, it is easy to show that

p2AFC �
1
2

�� � 1�. �22�

As mentioned, if there are ties in the observations, the
tests in section 3b can be used instead, and the rescaling
indicated in Eq. (22) can be applied to Eqs. (18) or (12),
defining a simple rescaling of Somer’s � (Agresti 1984).
Somer’s � is an alternative to Kendall’s � for situations
with tied observational values (Sheskin 2007). Com-
pared to Somer’s �, Goodman and Kruskal’s � is a more
commonly used alternative test to Kendall’s � for situ-
ations with ties (Sheskin 2007). However, Goodman
and Kruskal’s � does not draw a distinction between
tied observations and tied forecasts. This distinction is
important in the 2AFC scores: Tied observations can-
not be discriminated and so are not considered in the
score, whereas tied forecasts score 0.5 because of an
inability to discriminate observations that are different.

The CNRM forecasts score 87% using Eq. (22),
which is less than for the continuous forecasts scored
against the polychotomous observations, and less still
than against the dichotomous observations. The added
precision required to correctly rank all the observed
values, rather than just to discriminate successfully be-
tween categories, is responsible for the decreased score.
This decrease in the score as the information content of
the observations increases is not a characteristic pecu-
liar to the scoring procedures proposed in this paper,
but is evident with more traditional scoring procedures

6 The tests in this section apply whether the data are un-
bounded, single bounded, or double bounded, and so can apply to
meteorological variables that can take any value; that have an
absolute zero, for example; and to proportions, which have lower
limits of zero and upper limits of one. However, the tests may not
be easily adaptable to data on a circular scale, such as directions
or calendar dates.
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also. It should not be taken as an argument in favor of
categorizing, but should rather be seen as evidence of a
trade-off between precision and skill: The more precise
the forecasts have to be, the greater the chance that
random errors, whether because of inherent unpredict-
ability or perhaps resulting from observational errors
(Bowler 2008), will adversely affect the score.

5) CONTINUOUS PROBABILISTIC FORECASTS

The simple extension of the polychotomous observa-
tions tests for continuous forecasts to the case of con-
tinuous observations by defining n categories can also
be applied for forecasts expressed as probability distri-
bution functions. Equation (19b) therefore becomes

p2AFC �
2

n�n � 1� �i�1

n�1

�
j�i�1

n

I�pi, pj�, �23a�

where

I�pi, pj� � �
0.0 if pi � pj

0.5 if pi � pj

1.0 if pi � pj

. �23b�

The CNRM forecasts score 87% using Eqs. (23a) and
(23b), which is the same as for the continuous forecasts
because of the symmetry assumption for the forecast
probability distributions. Both these scores for the con-
tinuous observations are the lowest of all the scores
reported except for the nominal polychotomous fore-
casts. The added precision required to forecast success-
fully the ranking of all the observations is responsible
for the drop in the scores compared to those for the
categorized observations. For the latter, the forecaster
is not expected to discriminate between observations
within categories.

d. Observations as probability distributions

The observations themselves can be presented as
probability distribution functions (pdfs) to represent
the observational errors, for example. It is possible to
extend the 2AFC scores to apply to such cases. The
observational pdf’s would be ranked in exactly the
same way as the forecast pdf’s in section 3a(5), and the
test would proceed as for the continuous observations
(section 3c) using these ranks rather than those based
on the best guesses of the observations. If the observa-
tional errors are symmetric, then the ranking will be
identical to that from the best guesses.

4. Discussion

A number of potential criticisms that could be tar-
geted at the 2AFC score are addressed in this section.

Questions relating to the versions of the score for
probabilistic forecasts (discrete and continuous) are
discussed first; specifically, the question of its sensitivity
to the calibration of the probabilities is considered.
Then, in section 4b, some problems with the treatment
of continuous observations are discussed. In section 4c
the effects of spatial and temporal autocorrelation are
discussed, and suggestions for addressing these issues
are considered.

a. Propriety and calibration

It was noted in section 3a(3) that Eq. (7) is equivalent
to the calculation of the trapezoidal area beneath the
ROC curve and that, in the context of discrete proba-
bilistic forecasts, the 2AFC score therefore considers
only the ranking of the probabilities, and is insensitive
to monotonic transformations of these probabilities.
This criticism has to be taken seriously within the con-
text of an administrative verification score because a
good score may be misinterpreted as an indication of
well-calibrated forecasts, and because improvements in
the reliability of probabilistic forecasts would not be
registered. Versions of the 2AFC score that do consider
the probabilities are discussed in appendix B, where
they are rejected as being effectively improper. Strictly
speaking, the standard definition of propriety (see
Bröcker and Smith 2007) cannot be applied to the
2AFC because the 2AFC is defined in terms of two
forecast and observation pairs rather than a single pair-
ing. Nevertheless, from idealized examples, it can be
shown that the probabilistic 2AFC scores are not opti-
mized when the forecaster issues probabilities that are
consistent with his or her best judgment (see appendix
C). The lack of propriety of these probabilistic 2AFC
scores may be one of the costs of their equitability,
which is considered a fundamental component of its
simplicity of interpretation. At least in the case of more
traditional scores, which consider single forecast–
observation pairs, equitability precludes propriety (Jol-
liffe and Stephenson 2008).

Given the problems with the lack of propriety with
the probabilistic versions of the 2AFC score, the au-
thors recommend the scores presented in the sections
above that are insensitive to the calibration of the prob-
abilities. The objective of the proposed scoring frame-
work is to provide a simple metric for indicating the
potential usefulness of the forecasts; a score that mea-
sures reliability and resolution (or discrimination) can-
not easily distinguish a reliable, but poorly resolved, set
of forecasts, from an unreliable, but well-resolved, set
of forecasts. The potential usefulness of forecasts with
negative Brier skill scores, because of the strict require-
ment for good reliability, is a case in point (Mason
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2004). Given that the 2AFC considers only the ability
to discriminate observations, may enable a party inter-
ested in using forecasts to identify which of two forecast
systems, for example, is likely to be the more useful.
Thus, the 2AFC score can be considered a measure of
the potential usefulness of the forecasts rather than as a
comprehensive measure of all aspects of forecast qual-
ity. Any serious use of forecasts should consider how
the forecasts may need to be calibrated, and so the
2AFC score is able to indicate the forecasts that will
prove most useful only after proper calibration. Of
course, this argument is not meant to denigrate the
importance of issuing well-calibrated forecasts in the
first place, and so some consideration of reliability
needs to be made, even within administrative contexts.
The authors submit that reliability could be measured
separately, as a more detailed diagnostic, and we rec-
ommend that it be emphasized that a good 2AFC score
does not necessarily indicate that the forecasts can be
taken at face value.

b. Continuous observations

A second criticism of the 2AFC score is that continu-
ous observations are reduced to an ordinal scale. In this
respect, many of the arguments above on the calibra-
tion of probabilistic forecasts apply again, but some
additional comments are warranted. Whereas Pear-
son’s correlation coefficient is widely used for verifica-
tion of forecasts of continuous variables, and does not
reduce the observations to an ordinal scale, this score is
sensitive to distributional assumptions, and so-called
nonparametric alternatives are often to be preferred
especially since they are almost as powerful (Sheskin
2007). Of the best-known nonparametric measures of
association, Spearman’s rank-order correlation coeffi-
cient is much more widely used than Kendall’s �, partly
because of its relative computational efficiency, but
also because of its close relationship to Pearson’s coef-
ficient. However, in addition to its affinity to the 2AFC
score, Kendall’s � has additional advantages over
Spearman’s coefficient: The sample correlation is an
unbiased estimate of the population parameter �, and
the sampling distribution of � closely follows the normal
distribution even for small sample sizes (Lindeman et
al. 1980).

Although the conversion of continuous data to ranks
may well be a disadvantage, one positive implication is
that the 2AFC score can be used effectively on pre-
dictands that are measured on a range of different
scales. It can be used, for example, on unbounded in-
terval data (for most practical purposes temperature
forecasts could be considered an example, although

strictly temperatures do have a lower bound), ratio data
(e.g., quantitative precipitation forecasts), and propor-
tions (e.g., cloud cover). However, it is not clear that
the score would make much sense on circular data (e.g.,
wind directions) because of the inability to rank data on
this scale. Calendar dates are also measured on a cir-
cular scale, but in many cases (specifically when the
dates apply to only a part of the year) a ranking of dates
may be meaningful. Monsoon onset dates, for example,
can be ranked from early to late onset because they do
not span the whole calendar year. In such cases the
2AFC scores can be applied meaningfully as long as the
forecasts display similar properties.7

c. Spatial and temporal autocorrelation

In the introduction to section 3 it was mentioned that
the individual 2AFC tests that compose the 2AFC
scores are not independent. It is often mentioned that
most verification scores assume that each forecast–
observation pair is independent of all the other pairs
(e.g., Wilks 2006). Dependency arises from spatial and/
or temporal correlation and invalidates the standard
tests for statistical significance of verification scores.
However, the authors recommend against calculating
the statistical significance of the 2AFC scores because
difficulties in their interpretation (e.g., Nicholls 2001;
Jolliffe 2004; Mason 2008) are likely to introduce un-
necessary confusions when the results are being com-
municated to nonexperts. Nevertheless, some indica-
tion of the uncertainty in the 2AFC score is desirable
because of potentially large sampling errors when
sample sizes are small. Although they have a close af-
finity to p values, confidence limits are recommended
instead (Jolliffe 2004; Mason 2008), since specifying a
range of 2AFC scores is likely to cause much less con-
fusion than trying to communicate two probabilities
(the score itself and the p value), each of which has a
very different meaning. For some of the versions of the
2AFC score, analytical procedures can be used to ob-
tain confidence intervals [e.g., for the version that is
equivalent to the ROC; Mason and Graham (2002)],
but these procedures will be invalidated given spatial

7 One can imagine a pathologically bad model that forecasts
onset dates that are randomly distributed throughout the year,
making a distinction between very early and very late onsets a
somewhat arbitrary distinction. In some cases, therefore, it would
be difficult to make a selection in a 2AFC test even though the
two forecasts may differ. Ad hoc adjustments to the score could be
made to handle cases when the interpretation of the forecast itself
is unclear (whether the forecast is indicating an early or a late
onset), but this topic is beyond the scope of this paper.
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and/or temporal dependency. Bootstrap procedures
could be used in these instances.

5. Summary

A framework for forecast verification has been de-
scribed that is designed to be sufficiently general to be
applicable to a wide variety of observation and forecast
data types. Most verification situations in the atmo-
spheric sciences can be addressed by this framework,
except for data measured on a circular scale, examples
of which include forecasts of wind directions, or some
forecasts for which the predictand is a calendar date.
The framework is based on the two-alternative forced
choice (2AFC) test that the authors believe is suffi-
ciently intuitive to make it a suitable procedure for
communication of forecast quality to nonspecialists. Al-
though the actual computation of the score and some of
the equations may appear fairly complex, the basic con-
cept remains simple: Given any two differing observa-
tions, what is the probability that the forecaster can
successfully discriminate the observations using the cor-
responding forecasts? For quantitative precipitation
forecasts, for example, the question may be: What is the
probability that the forecaster will successfully identify
the wettest day? For binary outcomes, for example, the
question might be: What is the probability that the fore-
caster will pick the day on which a tornado occurred? In
all cases the score could be loosely interpreted as an
attempt to answer the question: How often are the fore-
casts correct? However, it avoids the numerous inter-
pretive pitfalls of the percent correct score, and various
attempts to normalize this score by calculating a skill
score, and retains the intuitive property of having an
expected value of 50% for forecasts without skill. Be-
cause the score is based upon the ability of the forecasts
to discriminate observations, the authors propose the
name “discrimination score” as a more accessible name
than the “two-alternative forced choice score” or its
acronym.

Depending upon the nature of the observations and
forecasts, the 2AFC score takes different formats be-
cause of an attempt to use as much of the information
in the observations and forecasts as possible. The aim is
to minimize the reduction of the more complex to the
simple, although differences in the various formulations
of the score using CNRM forecasts of the Niño-3.4 in-
dex as examples have indicated some notable condi-
tioning of the quality of the forecasts upon the out-
come.

Rather than constituting a suite of entirely new
scores, in some cases the 2AFC score has been shown
to be equivalent to, or closely related to, statistical tests

known under different names. Some of these tests are
already widely used in forecast verification (e.g., the
trapezoidal area beneath the ROC curve), others are
based on tests widely used for purposes other than fore-
cast verification (Student’s t test), while still others are
not yet widely used in the atmospheric sciences (e.g.,
Somer’s � and Kendall’s �).

Unavoidably, the 2AFC score has a number of limi-
tations that preclude its use as a generic score for all
verification analyses, and that present opportunities for
misinterpretation. Its primary weakness is that in some
of its formulations the score is insensitive to the cali-
bration of the forecasts. As a result, the score should be
interpreted as a measure only of potential usefulness
and should not be seen as an infallible indication of
whether the forecasts can be taken at face value. These
limitations, however, are inevitable products of any at-
tempt to summarize forecast quality in a single number.
It is proposed only that the 2AFC score may be a good
starting point for beginning a more in-depth discussion
with forecast user communities on the quality of fore-
cast sets.
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APPENDIX A

The 2AFC for Probabilistic Forecasts

Let p0, i(x) represent the probability density of the ith
forecast for an event when an event did not occur, and
let p1, j(x) be the jth forecast probability density when
an event did occur. The quantities P0, i(x) and P1, j(x)
are the corresponding cumulative distributions. Let X0, i

be a random sample drawn from p0, i(x), and let X1, j be
a random sample drawn from p1, j(x). The probability
that X1, j � X0, j [p(X1, j � X0, i)] is given by
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p�X1, j � X0, i� � 1� p�X1, j � X0, i�

� 1 � �
��

�

p0, i�x� �
��

x

p1, j�y� dy dx

� 1 � �
��

�

p0, i�x�P1, j�x� dx. �A1�

Thus, p(X1, j � X0, i) is an obvious basis for a 2AFC
score. However, one must consider that, by the nature
of the 2AFC test, it is known a priori that the two
observations can be discriminated. Therefore, p(X1, j �
X0, i) needs to be conditioned on the prior knowledge
that X1, j � X0, i. Using Bayes’s theorem,

p�X1, j � X0, i |X1, j � X0, i�

�
p�X1, j � X0, i�

p�X1, j � X0, i�
�

p�X1, j � X0, i�

p�X0, i � X1, j� � p�X1, j � X0, i�
.

�A2�

Setting F(p0, i, p1, j) � P(X1, j � X0, i |X1, j � X0, i), and
using Eq. (A2) in Eq. (A1), one obtains

F �p0, i, p1, j�

�

1 � �
��

�

p0, i�x�P1, j�x� dx

2 � �
��

�

p0, i�x�P1, j�x� dx � �
��

�

p1, j�x�P0, i�x� dx

.

�A3�

If F(p0, i, p1, j) � 0.5, then it would seem reasonable to
select (in this case correctly) the observation corre-
sponding to forecast p1, j, but to select (in this incor-
rectly) the observation corresponding to forecast p0, i if
F(p0, i, p1, j) 
 0.5. It can be shown that

F�p0, i, p1, j� � 0.5 ⇔ �
��

�

p0, i�x�P1, j�x� dx

� �
��

�

p1, j�x�P0, i�x� dx. �A4�

Therefore, the scoring rule formulated in Eq. (11) is
equivalent to

I�p0, i, p1, j� �

0.0 if �
��

�

p1,,j�x�P0, i�x� dx � �
��

�

p0, i�x�P1, j�x� dx

0.5 if �
��

�

p1, j�x�P0, i�x� dx � �
��

�

p0, i�x�P1, j�x� dx

1.0 if �
��

�

p1, j�x�P0, i�x� dx � �
��

�

p0, i�x�P1, j�x� dx

. �A5��
Now consider two special cases: first, the case that

the probability distributions for both forecasts are truly
continuous functions, and, second, that only discrete
probabilities for the event to happen are issued.

a. Probability distributions that are continuous
functions

If both probability distributions are continuous func-
tions, then p(X1, j � X0, i) � p(X1, j � X0, i) and p(X1, j �
X0, i) � 1. Equation (A3) then simplifies to

F �p0, i , p1, j� � 1 � �
��

�

p0, i�x�P1, j�x� dx

� �
��

�

p1, j�x�P0, i�x� dx, �A6�

and Eq. (A5) becomes

I�p0, i, p1, j� � �
0.0 if �

��

�

p1, j�x�P0, i�x� dx � 0.5

0.5 if �
��

�

p1, j�x�P0, i�x� dx � 0.5

1.0 if �
��

�

p1, j�x�P0, i�x� dx � 0.5

.

�A7�

Note that if the probability distributions for both fore-
casts are symmetric, Eq. (A7) is equivalent to compar-
ing the ensemble means. If the two distributions are
Gaussian, the test becomes equivalent to a Student’s t
test for the difference in the means of the two forecast
distributions, or a Welch’s t test if the variances of the
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two distributions differ. Otherwise, the test is equiva-
lent to a Mann–Whitney U test.

If the probability distributions reveal delta peaks
(e.g., precipitation forecasts that allow the explicit
value 0), then the assumption of a continuous distribu-
tion is violated and the more general Eqs. (A3) and
(A5), respectively, must be applied.

b. Discrete probability forecasts

Equation (7b) for discrete probability forecasts can
be derived as a special case from Eq. (A5) above. Con-
sider two discrete probabilities, p0, i and p1, j, with p0, i

representing the ith forecast probability for an event
when an event did not occur and p1, j representing the
jth forecast probability when an event did occur. Let
the event have a value of 1, and the nonevent a value of
0. Using Dirac’s delta distribution, p0, i and p1, j can be
formulated in distributional form as follows:

p0, i�x� � �1 � p0, i�	�x� � p0, i	�x � 1�

p1, j�x� � �1 � p1, j�	�x� � p1, j	�x � 1�. �A8�

The corresponding cumulative distributions are given by

P0, i�x� � �
0 if x � 0

1 � p0, i if 0 � x � 1

1 if x � 1

�A9a�

and

P1, j�x� � �
0 if x � 0

1 � p1, j if 0 � x � 1

1 if x � 1

. �A9b�

Using the central property of Dirac’s delta distribution,
namely that ��

�� f(x)�(x � a) � f(a) for any function f,
one obtains the following with Eqs. (A8) and (A9) in
Eq. (A3):

F �p0, i, p1, j� �
1 � �1 � p0, i�P1, j�0� � p0, iP1, j�1�

2 � �1 � p0, i�P1, j�0� � p0, iP1, j�1� � �1 � p1, j�P0, i�0� � p1, jP0i�1�

�
p1, j�1 � p0, i�

p1, j�1 � p0, i� � p0, i�1 � p1, j�
. �A10�

From Eq. (A10) it can be shown that F(p0, i, p1, j) � 0.5
if and only if p1, j � p0, i. Thus, for this special case, Eq.
(A5) simplifies to

I�p0, i, p1, j� � �
0.0 if p1, j � p0, i

0.5 if p1, j � p0, i

1.0 if p1, j � p0, i

; �A11�

that is, Eq. (7b) is retained.

APPENDIX B

A Probabilistic Version of the 2AFC

In Eq. (7) the 2AFC score is calculated by selecting
the forecast with the higher probability as correspond-
ing to the event. If this selection is correct, the fore-
caster scores 1, if incorrect 0, and if the two forecasts
are identical, the forecaster scores 0.5. However, given
that the forecasts are probabilities, the forecaster can
indicate a degree of belief that a specific selection will
be correct. This degree of belief can be expressed as a
probability that is not the same as the forecast prob-
ability for the event: By the nature of the 2AFC test, it
is known a priori that one and only one of the two
observations is an event, but when making these fore-

casts, no such prior knowledge was available. It would
seem reasonable to score the forecasts using this prob-
ability (see appendix A) rather than using the simple
scoring metric defined above. These probabilistic ver-
sions of the 2AFC score are described in the following
sections, using the same breakdown of observations
into dichotomous, polychotomous, and continuous scal-
ings, and of forecasts into discrete and continuous prob-
ability distributions.

a. Dichotomous observations

Let p1, i represent the ith forecast probability for an
event when an event occurred, and let p0, i represent the
ith forecast probability for an event when an event did
not occur. The appropriate level of belief in a correct
selection of the event, F(p0, i, p1, j), would replace I(x0, i,
x1, j) in Eq. (1), which would then become

p2AFC �
1

n0n1
�
i�1

n0

�
j�1

n1

F �p0, i, p1, j�. �B1�

The calculation of Eq. (B1) depends on whether p0, i

and p1, j represent discrete probabilities or continuous
probability distributions.
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1) DISCRETE PROBABILISTIC FORECASTS

The appropriate level of belief in a correct selection
of the event, F(p0, i, p1, j), has been derived in Eq. (A10)
and is given by

F �p0, i, p1, j� �
p1, j�1 � p0, i�

p1, j�1 � p0, i� � p0, i�1 � p1, j�
. �B2�

Equation (A2) is greater than 50% if p1, j � p0, i, and
F(p0, i, p1, j) � 100% only if p1, j � p0, i and p1, j � 100%
or p0,I � 0%, and so for deterministic forecasts, in
which the implied probabilities are 0% or 100%, Eq.
(A2) reduces to Eq. (1b). The 2AFC score for discrete
probabilistic forecasts becomes

p2AFC �
1

n0n1
�
i�1

n0

�
j�1

nj p1, j�1 � p0, i�

p1, j�1 � p0, i� � p0, i�1 � p1, j�
.

�B3�

Note that if p1, j � p0, i, the fraction on the right-hand
side of Eq. (B3) reduces to

p2AFC � 0.5. �B4�

This result is appropriate because the equal probabili-
ties do not enable the forecaster to decide which of the
two cases was an event and is consistent with Eq. (1b),
which scores 0.5 if x1, j � x0, i.

2) CONTINUOUS PROBABILISTIC FORECASTS

If a probability distribution is provided as the fore-
cast, that is, a density function that is defined over a
continuous scale of values, the 2AFC score can be gen-
eralized from that for the discrete probabilistic fore-
casts [Eq. (B3)]. Given forecast distributions, the prob-
ability that a value drawn from the one forecast distri-
bution exceeds that drawn from the other can be
calculated, and is used in place of Eq. (1b) again. Let
p•, i(x) and P•, i(x) represent, respectively, the probabil-
ity density and the cumulative probability at x. Based
on the derivation in Eq. (A3), the 2AFC score is

p2AFC �
1

n0n1
�
i�1

n0

�
j�1

n1 � 1 � �
��

�

p0, i�x�P1, j�x� dx

2 � �
��

�

p1, j�x�P0, i�x� dx � �
��

�

p0, i�x�P1, j�x� dx�. �B5�

Note that if the shape of the density functions is math-
ematically continuous (i.e., it does not reveal steps or
delta peaks), then the 2AFC score of Eq. (B5) can be
based on the much simpler Eq. (A6) rather than (A3).

b. Polychotomous observations

If there are m� possible outcomes, Eq. (B1) can be
generalized to

p2AFC �

�
k�1

m��1

�
l�k�1

m�

�
i�1

nk

�
j�1

nl

F �pk,i, pl, j�

�
k�1

m��1

�
l�k�1

m�

nknl

. �B6�

As with Eq. (B1), the exact calculation of Eq. (B6)
depends on whether p0, i and p1, j represent discrete
probabilities or continuous probability distributions.

1) DISCRETE PROBABILISTIC FORECASTS

For ordinal categories, the score assesses the ability
to identify the observation in the higher category, just
as for the polychotomous forecast, but makes the se-
lection on the basis of the forecast probabilities. The
score is a generalization of Eq. (B3) but uses the cu-
mulative probabilities of the first k categories for the ith
forecast given that category l occurred, Pl, i(k). The
2AFC score is defined as

p2AFC �

�
k�1

m��1

�
l�k�1

m�

�
i�1

nk

�
j�1

nl �1 � Pl ,j�k��Pk,i�k�

�1 � Pl, j�k��Pk,i�k� � Pl, j�k��1 � Pk,i�k��

�
k�1

m��1

�
l�k�1

m�

nknl

. �B7�
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If the categories are nominal, Eq. (B6) is simply applied across each of them. The 2AFC score is therefore

p2AFC �

�
k�1

m��1

�
l�k�1

m�

�
i�1

nk

�
j�1

nl pl, j�l ��1 � pk,i�l ��

pl, j�l ��1 � pk,i�l �� � �1 � pl, j�l ��pk,i�l �

�
k�1

m��1

�
l�k�1

m�

nknl

. �B8�

The summation over j is across the forecasts for all the
observations not in category k. In contrast to Eq. (B7),
Eq. (B8) is based on the probability assigned to the
category in question only (category l).

2) CONTINUOUS PROBABILISTIC FORECASTS

For the dichotomous observed categories, the 2AFC
score on continuous probabilistic forecasts used the

probability that a value drawn from the forecast distri-
bution for the event exceeds that drawn from the one
for the nonevent. A similar principle applies in the case
of polychotomous observed categories except that the
forecast probability distributions are compared to see
whether they can be used to identify the observation in
the highest category. Equation (B5) is therefore gener-
alized to

p2AFC �

�
k�1

m��1

�
l�k�1

m�

�
i�1

nk

�
j�1

n l � 1 � �
��

�

pk,i�x�Pl, j�x� dx

2 � �
��

�

pk,i�x�Pl, j�x� dx � �
��

�

pl, j�x�Pk,i�x� dx�
�
k�1

m��1

�
l�k�1

m�

nknl

. �B9�

Again, this expression simplifies significantly if the distributions are continuous functions, that is, if the 2AFC
scores can then be based on Eq. (A6) rather than Eq. (A3).

c. Continuous observations

For continuous observations, only continuous probabilistic forecasts are considered. The number of categories,
m�, in Eq. (B6) is equal to the number of cases, n, and so the equation becomes

p2AFC �
2

n�n � 1� �i�1

n�1

�
j�i�1

n � 1 � �
��

�

pi�x�Pj�x� dx

2 � �
��

�

pi�x�Pj�x� dx � �
��

�

pj�x�Pi�x� dx� , �B10�

APPENDIX C

Is the Probabilistic Version of the 2AFC
Proper?

As mentioned in section 3a(3) and elsewhere, the
standard definition of propriety (see Bröcker and Smith
2007) cannot be applied to the probabilistic version of
the 2AFC in appendix B because the 2AFC is defined
in terms of two forecast and observation pairs rather
than a single pairing. This makes a theoretical proof of
the 2AFC score’s impropriety problematic. Neverthe-
less, from a simple constructed example it can be shown

that the 2AFC scores for probabilistic forecasts are not
optimized when the forecaster issues probabilities that
are consistent with his or her best judgment.

Consider the situation of issuing discrete probabilis-
tic forecasts for an event E to happen. Assume that 2n
forecast–observation pairs are available for the verifi-
cation. Further assume that n of these pairs (group A)
were sampled under a climatologic regime under which
E occurs with a probability pA � 0.8, while the remain-
ing n pairs (group B) were sampled under a regime
which allows E to happen only with, say, pB � 0.2.
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Finally, assume a forecaster based his or her forecasts
on distinguishing between the two climatologic regimes
and issued the same probability forecast p*A (p*B) for all

samples of group A (group B). Applying Eq. (B1), the
expectation of the probabilistic version of the 2AFC
score can be calculated:

�p2AFC� �
n2 �pA�1 � pB�F �p*B, p*A� � pA�1 � pA�F �p*A, p*A� � �1 � pA�pBF �p*A, p*B� � pB�1 � pB�F �p*B, p*B��

n2 �pA�1 � pB� � pA�1 � pA� � �1 � pA�pB � pB�1 � pB��

� 0.64F �p*B, p*A� � 0.16F �p*A, p*A� � 0.04F �p*A, p*B� � 0.16F �p*B, p*B�. �C1�

The first summand on the r.h.s. of Eq. (C1) is the ex-
pected contribution of those 2AFC tests that compare
forecasts corresponding to events in group A with fore-
casts corresponding to nonevents in group B. (The sec-
ond summand is for events in group A with nonevents
in group A, third summand for events in group B with
nonevents in group A, and fourth summand for events
in group B with nonevents in group B.)

Using Eq. (B2) in (C1), and choosing p*A � pA and
p*B � pB, �p2AFC� becomes 76.5%. However, by choos-
ing p*A � 1 and p*B � 0, �p2AFC� becomes 80%. In other
words, if the forecaster issues forecasts that are over-
confident w.r.t. his or her own true belief, the skill score
can be enhanced, implying that the probabilistic version
of the p2AFC as formulated in appendix B is not proper.
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