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SUMMARY

Because of the inherently chaotic nature of the atmosphere, ensemble simulations are required to characterize
a model’s response to the prescribed boundary forcing in probabilistic terms, particularly if the focus is on
the probabilities of extreme events. At the same time, substantial computer resources are needed to produce
routinely ensemble seasonal climate forecasts of sufficient size to make suitably reproducible estimates of such
probabilities. We describe a method for artificially expanding the effective number of members in ensemble
climate simulations on a seasonal basis, thereby reducing uncertainty in estimated probability distributions.
As described here, the method involves calculating seasonal statistics using monthly values from all possible
combinations of ensemble members. Under certain assumptions, this method is able to increase the effective
ensemble size of an N-member M-month seasonal forecast by a factor of (asymptotically) M . One key assumption
in this regard is that, aside from the effects of prescribed boundary conditions, the month-to-month values
from a particular ensemble member are linear independent. This paper describes the behaviour of the ensemble
expansion technique using both idealized and actual ensemble forecast data under a variety of conditions, drawing
comparisons with an alternative parametric approach for ensemble expansion. A method for testing the assumption
of linear independence in model simulations is also presented.

KEYWORDS: Probability distributions Re-sampling Seasonal climate prediction

1. INTRODUCTION

Atmospheric general circulation models (AGCMs) driven with observed, or
predicted, sea surface temperatures (SSTs) can reproduce aspects of the observed
interannual variability in the large-scale circulation, and of such socio-economically
important variables as temperature and precipitation (e.g. Graham 1994; Rowell, et al.
1995; Kumar et al. 1996; Davies et al. 1997; Shukla 1998; Mason et al. 1999; Branković
and Palmer 2000; Frederiksen et al. 2001; Goddard et al. 2001). The sensitivity of sim-
ulated atmospheric circulations, and the resulting need for ensemble simulations, has
spurred considerable innovative work concerning the interpretation and potential use
of ensemble seasonal climate predictions. In this regard, ensemble climate simulations
were used first to establish reproducible estimates for certain low-order statistics (e.g.
the mean) of a model’s response to altered boundary conditions (generally SST), and
to explore ‘potential predictability’—the degree to which individual ensemble mem-
bers reproduce aggregate ensemble statistics (i.e. a model’s ability to predict its own
behaviour, e.g. Rowell et al. (1995)). More recently there has been increasing interest
in using ensemble results to establish, compare, and potentially use the information
contained in the probability distributions of the results (Harrison et al. 1995; Anderson
1996; Anderson and Stern 1996; Déqué 1997, 2001; Ward and Navarra 1997; Mason
and Graham 1999, 2002; Palmer et al. 2000; Palmer 2002; Wilks 2002). Indeed, efforts
to apply climate prediction information have shown that, because the predictability of
the actual climate response is inherently limited, and because the cost-benefit functions
for potential applications of climate forecast information are frequently complicated
(or at least discontinuous), probabilistic climate forecasts are a necessity if appropriate
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responses (hedges) to those forecasts are to be developed (e.g. Georgakakos et al. 1998;
Palmer et al. 2000).

Although the number of simulations necessary to obtain an adequately reproducible
estimate of the mean seasonal climate response to particular boundary forcing is gener-
ally not prohibitively large (Déqué 1997; Kumar et al. 2001), and often practicable for
both seasonal predictions and multi-decadal validation simulations, this is not the case
for establishing more or less reproducible estimates of the true underlying probability-
density or cumulative-density functions (PDFs or CDFs) from the discrete probability
mass functions (PMFs) of a simulated variable for an individual season, especially if
the concern is the likelihood of more extreme outcomes. This is true for actual seasonal
climate predictions, as well as for the extended retrospective simulations required to
relate model behaviour to real world outcomes in order to develop appropriate strate-
gies for end users to apply such information, and to quantify potential long-term
socio-economic benefits that could be accrued through the application of such strategies.

The potential practical benefits and computational costs of producing large
ensembles motivate the development of methods for increasing the accuracy of
ensemble-derived PMFs without actually performing additional model integrations
(artificial ensemble expansion). Wilks (2002) has explored this idea in the context of
ensemble numerical weather prediction using a parametric approach. In this method-
ology, the parameters of a selected statistical distribution are fitted to the ensemble
output, and that distribution is then used to estimate exceedence probabilities. The
results showed that parametric ensemble expansion has the potential to improve esti-
mates of the probabilities of extreme events, subject to the character of model errors and
appropriate choice of statistical distribution.

We present a re-sampling-based ensemble expansion method, and explore its
effectiveness from the perspective of seasonal ensemble climate forecasting using both
synthetic and actual AGCM seasonal forecasts. The basis of this method is different
from the parametric approach explored by Wilks (2002) and, as shown in our results,
has both comparative strong points and weaknesses in various situations.

In the presentation that follows section 2 describes the models and model datasets
used in the analyses; section 3 describes the methodology, provides some examples with
idealized and actual data, and outlines a method for testing for linear independence.
Section 4 gives a brief summary and discussion.

2. MODEL DATA

The AGCM data used in this study come from the ECHAM3 climate model
developed at the Max Planck Institute for Meteorology at the University of Hamburg.
For the experiments described here the model was configured using 19 vertical layers
and triangular-42 (T42) spectral truncation, giving a physical grid resolution of approx-
imately 2.8◦ latitude and longitude. The model includes interactive prognostic clouds, a
five-layer soil temperature model, spatially varying vegetation, and an explicit represen-
tation of the planetary boundary layer. The basic formulation of the model is described
in DKRZ (1992), and some baseline characteristics are given in Roeckner et al. (1992).
The model (superseded by newer versions) has been used in a wide variety of studies of
climate variability and predictability (e.g. Bengtsson et al. 1993; Barnett 1995; Graham
and Tyree 1998; Goddard and Graham 1999; Goddard and Mason 2002).

Results from two ensemble simulations with the ECHAM3 model are used in this
paper. One of these is a ten-member ensemble covering the period 1950–98. The SST
boundary conditions for this simulation (designated ECHAM-AMIP here) come from
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the ‘reconstructed’ dataset described by Smith et al. (1996). The second ensemble sim-
ulation is a 100-member ensemble (designated ECHAM-100), using September 1997
SST anomalies (US National Centers for Environmental Prediction (NCEP) optimal
interpolation analysis (Reynolds and Smith 1994) from the last week in September
1997) added to the long-term climatologies for September through December (thus these
simulations are a retrospective persisted SST forecast for October–December 1997).

Initial conditions for these simulations were prepared as follows. A set of ten
‘seed’ initial conditions were taken from the ECHAM-AMIP simulations described
above—these initial conditions come from multi-decade ensemble simulations and,
aside from the effects of prescribed SSTs, are completely independent. Simulations
were run out from each of these for 1 September to 31 December 1997, with restart
files written out for 2–10 September. These restart files, re-dated to 1 September,
provided restart conditions for an additional 90 (9 days × 10 ensembles) simulations.
The entire month of September (using the SST data for 1–30 September) was then
used for model equilibration, and to allow the 90 sets of ensemble ‘siblings’ to diverge
(thus, the ensemble members diverge because of different initial conditions rather than
different SSTs). The results from the resulting set of 100 ensembles (10 originals +
90 siblings) for October–December are used for the results presented here. Though the
restart conditions provided by this technique are not completely independent, the 90
individual sibling members do have 30 days in which to diverge (well beyond the time-
scale of dynamical predictability), and it is unlikely that any residual interdependence
has much effect on the results presented here.

3. METHODOLOGY AND RESULTS

(a) Theory
Consider an N -member ensemble of monthly forecasts covering a season composed

of M months, with each member denoted as fN,M . Ordinarily N seasonal totals FN are
formed as:

FJ =
M∑

I=1

fJ,I J = 1, N, (1a)

or equivalently as seasonal averages:

FJ = 1

M

M∑
I=1

fJ,I J = 1, N. (1b)

Such sums will be referred to as ‘ordinary’. Assume for the moment that sequential
monthly values of a given variable within a particular ensemble member are linearly
independent, beyond the effects of prescribed lateral boundary conditions (e.g. SSTs)
common to all ensemble members, so that:

〈fJ,IfJ,I+1〉 = 〈fK,IfL,I+1〉 K ∈ 1, N, L ∈ 1, N, (2)

where the angle brackets indicate the expectation of the enclosed expression. This
assertion (denoted here as ‘internal linear independence’) strictly implies that linear
correlations introduced by dynamical memory, or by such non-prescribed boundary
conditions, are negligible (and, more weakly, that knowledge of fJ,I contains little
information concerning fJ,I+1). (Of course, this is not necessarily the case—such



942 N. E. GRAHAM and S. J. MASON

correlations might arise from: (i) synoptic fluctuations that have sufficiently long time-
scales, and overlap the end of one month and the beginning of the next; (ii) natural low-
frequency atmospheric variability unrelated to horizontal boundary conditions; (iii) the
effects of non-prescribed boundary conditions such as soil moisture and snow cover;
or (iv) interactions between factors (i) to (iii).) Under this assumption of internal linear
independence, a larger and equally probable set of seasonal forecasts can be generated
as:

F ∗
L = fI,1 + fJ,2 + · · · + fK,M I ∈ 1, N, J ∈ 1, N, . . . ,

K ∈ 1, N, L = 1, NM.
(3)

Sums formed in this manner will be denoted ‘permuted’. This larger set of forecasts has
the potential advantage of allowing better characterization of the spread of the actual
PMFs (or CDFs) of forecast values when an ensemble of simulations are conducted
with a particular set of prescribed lateral-boundary conditions (note that the estimated
ensemble mean, and its associated uncertainty, are the same as for the ordinary sums).
To the degree that the forecast model results provide information about the future state
of the real world, this advantage translates into an improved ability to estimate the
probability of actual events. We refer to this technique as ELVIS (EnsembLe Variability
from Inferred Statistics).

If it is assumed that the monthly values (fN,M ; and hence the ordinary and permuted
sums or averages, FJ and F ∗

L) are normally distributed, then the behaviour of the
permuted and ordinary sums can be conveniently compared in terms of variance using
the χ2 distribution and its associated degrees of freedom. If it is found that for an N -
member ensemble and M-month season the central tendency of 〈F ∗2〉 is unbiased, and
the spread of the distribution of 〈F ∗2〉 is smaller for permuted sums than for ordinary
sums (i.e. the degrees of freedom, df, is larger), then the permuted sums will produce
more accurate estimates of the true model probabilities (taken from a hypothetical very
large ensemble).

Consider a simple idealized case of a two-month seasonal total with linearly
independent, normally distributed, monthly forecast values of equal variance (σ 2

1 = σ 2
2 ),

where:
σ 2

I = 〈(fJ,I − fI )
2〉, J ∈ 1, N, I ∈ 1, 2 (4)

(here the overbar represents the ensemble mean). Clearly there are the N ordinary sums,
and given that:

〈F 2〉 = 1

N − 1

N∑
J=1

(FJ − F)2, (5)

then (N − 1) × 〈F 2〉 is distributed as χ2
N−1, where N − 1 indicates df. In contrast, the

set of permuted sums is made up of NM members, each constructed from M monthly
forecast values. If one such set of N is selected that is constructed without repetition of a
given monthly value (the ordinary sums form one such set), then all the NM − N others
(e.g. all of the non-ordinary sums) are constructed with at least one repeated monthly
term. The appearance of these repeated values greatly reduces the df associated with
estimates of variance of the permuted sums. The result is that for permuted sums the
sum of squares (NM − 1) × 〈F ∗2〉, where:

〈F ∗2〉 = 1

(NM − 1)

NM∑
L=1

(F ∗
L − F

∗
)2, (6)
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Figure 1. Cumulative frequency distributions of the variance of the ordinary (crosses) and permuted (circles)
sums (see text) for simulated ensemble forecasts constructed from linearly independent, normally distributed (0, 1)
random variables, with the number of ‘months’ comprising the ‘season’, M = 2, and the number of ensemble
members, N = 5, from 10 000 Monte Carlo experiments. The solid line shown is for a χ2 distribution with
degrees of freedom, df, given by M × (N − 1) = 8. F 2 is the estimated ensemble variance (as in the discussions

of Eqs. (5) and (6)).

is distributed as χ2 with df = M × (N − 1) rather than df = NM − 1. Nevertheless,
M× (N − 1) is larger than N − 1, and this potential increase in effective sample size
can be realized at modest computational cost.

In the discussion that follows, the inverse χ2 distribution is used to demonstrate
that the formulation of df for 〈F ∗2〉 is correct, and to compare its behaviour under
different circumstances with that of 〈F 2〉. Figure 1 shows distributions of 〈F 2〉 and
〈F ∗2〉 for a case with M = 2, N = 5 and σ1 = σ2 = 1, derived from a hypothetical very
large (n = 10 000) Monte Carlo population of linearly independent, normally distributed
(0, σ 2

I ) monthly forecasts; the χ2 distribution for 〈F ∗2〉 is also shown and the fit is clear.
In this example, the permutation procedure has raised the effective sample size from 5
to 9 (df from 4 to 8).

The second case shown (Fig. 2) is for an ensemble size N = 10, M = 3 and
σ1 = σ2 = σ3 = 1. The large reduction in uncertainty achieved by using the permuted
sums in estimating the ensemble variance is apparent, in this case yielding a nearly
three-fold increase (from 10 to 28) in effective ensemble size (df increases from 9 to
27). Again, the fit of the χ2 distribution is excellent.

Next, consider the case in which the monthly variances are not equal. Let fi,1 =
gi,1 + agi,1 (where a is a scalar constant), fi,2 = hi,2, and assume that both hi,j and
gi,j are linearly independent N ∼ (0, σ 2

I ) random variables. Assuming a is positive, the
variance of fi,1 will be larger than that of fi,2. In such a case with M = 2 the ensemble
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Figure 2. As Fig. 1 but with M = 3, N = 10 and χ2 distribution with df = 27.

sums could be written:
(g1,1 + ag1,1) + h1,2 = F1

(g2,1 + ag2,1) + h2,2 = F2

...

(gN,1 + agN,1) + hN,2 = FN

. (7)

Because the terms inside the brackets in Eq. (7) remain together, the central
tendencies of 〈F 2〉 and 〈F ∗2〉 are equal (i.e. the latter are unbiased). However, as seen
in Fig. 3, the distribution of 〈F ∗2〉 does not follow χ2

(M×(N−1)). This is because the
values from month 1 (fi1 = gi,1 + agi1) dominate the variance of the permuted sums,
thus reducing the df. The effect is to push the distribution of the permuted sums (6)
towards the distribution of the ordinary sums (5). As noted above, the expectation of
〈F ∗2〉 is unaffected, but the benefits of permutation (as expressed by reduction in the
scatter of the estimates of 〈F ∗2〉 in comparison with 〈F 2〉) are diminished. If the monthly
variances (σ 2

i ) are known, an approximate (and ad hoc) correction for the degrees of
freedom in the χ2 test is:

R =
(

T1

T2

)4

, (8a)

where,

T2 =
(

M

M∑
i=1

σ 2
i

)1/2

, (8b)
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Figure 3. As Fig. 1, but for monthly values with unequal variances (σ1 = 1, σ2 = 3). Note that the χ2 distribution
(for df = 8) overestimates the decrease in the spread of the variance of the permuted sums.

and

T1 =
M∑
i=1

σi, (8c)

so that
R × N × M × 〈F ∗2〉 (9)

is distributed approximately as χ2
(R×N×(M−1)).

Note that T2 gives the sum of the monthly standard deviations if the monthly
variances had been equal, while T1 gives the actual value. R has a maximum value of 1.0
when σ1 = σ2 = · · · = σM , and a minimum value of M−2 when all of the variance of the
sums is accounted for by a single month (for example σ1 = 1 and σ2 = · · · = σM = 0).
Figure 4 gives an example for a case where σ1 = 1, σ2 = 3 and σ3 = 6 and N = 10.
The adjusted distribution has a relatively good fit to the data while the unadjusted curve
fits poorly.

Next consider the case where the stipulation of internal linear independence does
not hold, and some internal (non-prescribed) memory in the model climate system
produces some non-zero correlation between sequential monthly values within a given
ensemble member. To explore this case, Eq. (7) is rewritten so that fi,2 = agi,1 + hi,2:

g1,1 + (ag1,1 + h1,2) = F1

g2,1 + (ag2,1 + h2,2) = F2

...

gN,1 + (agN,1 + hN,2) = FN

, (10)
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Figure 4. As in Fig. 2, but for monthly values with unequal variances (σ1 = 1, σ2 = 3, σ3 = 6), and in this case
the χ2 distribution for the ordinary sums is not shown. χ2 distributions are shown for df = 27 (not accounting for

the differences in variance) and for df = 11.8 (from Eq. (7)).

where a now produces the correlation between fi,1 = gi,1 and fi,2 = agi,1 + hi,2. It is
clear that, for ordinary sums, Eqs. (7) and (10) are equivalent and give the familiar
expression for the variance of the sums:

〈F 2〉 = 〈f 2
1 〉 + 2〈f1f2〉 + 〈f 2

2 〉 = σ 2{(1 + a)2 + 1)}, (11)

with correlation (for Eq. (11)):

R1,2 = a

(a2 + 1)1/2
. (12)

Note that the equivalence between Eqs. (7) and (10) for ordinary sums does not hold
for permuted sums, because the expressions inside parentheses in Eq. (10) are bound
together so that the covariance term in Eq. (11) frequently does not contribute to the total
variance (contrast this with the situation for unequal variance in Eq. (7)). For example,
in the M = 2 case, the NM permuted sums are comprised of the N ordinary sums (where
agi,1 remains with gi,1, and the covariance term in Eq. (11) is non-zero), and a group of
NM − N sums where agi,1 is with gj,1 (i 
= j) and the expected value of the covariance
term is zero. For this latter group (and under the stipulation that 〈g2

i,1〉 = 〈h2
i,2〉 = σ 2),

〈F ∗2〉 = σ 2 × (2 + a2) is smaller than Eq. (9) by 2aσ 2, and its distribution behaves
as that of the sums of three random variates (with standard deviations σ , σ , and
aσ ). Thus for correlated monthly values (i.e. with the correlations deriving from
internal processes) in the N = 2 case, the population of 〈F ∗2〉 is comprised of members
from two distributions with different central tendencies (and likely different shapes).
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Figure 5. As Fig. 1, but with the nonlinearly independent variables (R1,2 = 0.5). Note that the permuted sums
are biased low, and that the χ2 distribution (for the expected sum of squares (〈F 2〉 = 2) and df = 8) fits very

poorly.

Figure 5 shows the distributions of 〈F 2〉 and 〈F ∗2〉 for the M = 2, N = 5 case with
σ1 = σ2 = 1 and R1,2 = 0.5. The bias between the central tendencies of the distributions
is obvious, as is the poor fit to 〈F ∗2〉 of the χ2 distribution (calculated using the expected
variance from Eq. (8)). For N > 2 the situation becomes more complicated with varying
numbers of correlated and partially correlated terms involved in the permuted sums, but
the problems of bias and mixed distributions remain.

To summarize: the discussion above, concerning the distributions of the variances
of ordinary and permuted sums constructed from normally distributed monthly values,
highlighted the three main points listed below:

(i) For the case of no internal linear independence and equal monthly variances, the
behaviour of the permuted sums is straightforward, and provides an increase in the
effective ensemble size by a factor of M as measured by the df for the χ2 distribution.

(ii) If the monthly variances are unequal, the effect is to reduce the df of the χ2

distribution for the permuted sums towards that of the ordinary sums. An approximate ad
hoc correction for df is given, for when the variances of the monthly values are known.

(iii) Where internal (and positive) autocorrelations are present:

• they act to inflate the expectation of the variance of the ordinary sums;
• they result in a low bias for 〈F ∗2〉; and
• the distribution of 〈F ∗2〉 is made up of an aggregate of χ2 distributions with

different expectations and degrees of freedom.
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(b) Examples
In this section we present examples of the behaviour of the ELVIS procedure in

idealized and more realistic cases. For the idealized cases, the following procedure is
used:

(i) Generate large samples (typically 10 000) of M-month (typically M = 3) ‘ensemble
realizations’ with month-to-month lag correlations RN,N+1; these comprise the ‘un-
derlying population’, and come either from a specified statistical distribution, or from
AGCM results. Calculate the seasonal sum for each, sort these ‘ordinary’ sums into
equally probable bins (typically 10) and record the breakpoints between bins.

(ii) (a) Randomly draw N of the M-month ‘ensemble forecasts’ from the population
generated in (i) above (typically N = 10 and M = 3) and obtain the N ordinary sums
and NM permuted sums for each sample. Calculate the PMFs and CDFs from each
population using the breakpoints from (i).

(ii) (b) In cases where the parametric expansion method is evaluated, the following
approach is used. From the same N M-month forecasts described in (ii) (a), calculate the
sample mean and standard deviation, and use a t-distribution (df = N − 2) to estimate
the bin probabilities using the breakpoints from step (i).

(iii) Accumulate bin-wise total absolute probability errors (the differences between the
sample probabilities and the reference values from (i)) for the PMFs and CDFs obtained
in (ii) (a) and (b).

(iv) Repeat (ii) and (iii) many (typically 1000 times) to derive average absolute proba-
bility errors (AAPEs) for the PMFs and CDFs.

(Note that because the AAPE is uncorrected for the number of ensembles performed,
its expectation will decrease as the number of ensembles increases (assuming the same
underlying process). The measure is used here specifically because it has this property,
i.e. to show how the magnitude of probability errors changes with ensemble size and
expansion method.)

Figure 6(a) shows the AAPEs for the PMF for idealized linearly independent,
normally distributed ensemble forecasts with M = 3 and N = 10. For the ordinary sums,
the errors AAPEs are nearly constant at 0.07, or 70% of the underlying PMF values of
0.10. For permuted sums, the AAPE curve is U-shaped, with the smallest improvements
at the extremes and the largest improvements near the middle of the distribution (about
70% and 15% of the AAPEs for the ordinary sums, respectively). For comparison, the
AAPEs for the χ2-equivalent ensemble size (i.e. N = 28, df = 27) are also shown. As
with the ordinary sums for N = 10, the curve is flat, with the AAPEs at the tails of
the distribution close to those from the permuted sums but considerably larger in the
middle of the distribution. The distribution of AAPEs for the parametric method is also
U-shaped, with errors generally slightly larger than for the permuted sums.

The U-shaped distribution of the AAPEs for the permuted and parametric sums
is the result of improvements in the estimation of the spread of the forecast PDF (e.g.
in the Gaussian case, better estimates of the standard deviation) in the absence of any
reduction in uncertainty in the central tendency (e.g. the mean). For the permuted sums,
this improvement arises from the larger sample size. For the parametric distribution,
the reduction in uncertainty arises from the correct assumption that the underlying
population is normally distributed. In either case, errors in the means of the ordinary
sums are unchanged, resulting in increasing errors towards the tails of the distribution.
Tests (not shown) reveal that if the permuted and parametric distributions are adjusted
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Figure 6. Average absolute probability errors (AAPEs) for a season with the number of months M = 3, having
individual variances σ1 = 1, σ2 = 1, σ3 = 1, and no serial correlation: (a) discrete probability mass functions
(PMFs)) for ordinary and for permuted sums, with numbers of ensemble members N = 10 and N = 28; see the
key for details. (b) As (a) but for cumulative-density function (CDFs)—accumulation begins at the left. All values

are plotted at the mid-point of the respective bin.
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to have the correct means, the AAPE curves become essentially flat except for the most
extreme bins (where the effects of errors in the spread are concentrated).

Figure 6(b) uses the same data as Fig. 6(a), but shows the CDF’s, thus giving an
idea how the errors shown in Fig. 6(a) accumulate and affect estimates of exceedence
probabilities. In this case, although the AAPEs obtained from the permuted sums
are considerably smaller than those from the ordinary sums, the improvements are
smaller than for the PMFs. Also, the AAPEs for the ordinary sums from the larger
ensemble (N = 28) are now smaller than those for the permuted sums (tests (not
shown) show that this difference is due primarily to errors in the mean of the permuted
sums). Nevertheless, the ELVIS procedure gives 90th percentile AAPEs only slightly
larger than those for ordinary sums from a 28-member ensemble. The AAPEs for the
parametric distribution CDFs are very close to those for the permuted sums.

It is also of interest to examine the behaviour of the permuted sums in cases
where the model climate variables have skewed distributions. In this instance, the
underlying population was generated from random, linearly independent, log-normally
distributed monthly values. The resulting distribution of the seasonal totals from the
underlying population is mildly skewed (Fig. 7(a), and resembles that for historical
annual precipitation in coastal central California). From the CDF of the AAPEs for
this case, Fig. 7(b), it is apparent that although the skew negatively influences the
performance of the ELVIS methodology for extreme positive values, the results are
nevertheless an improvement over those obtained with ordinary sums. Also shown are
the AAPEs obtained from the parametric expansion method, here using the incorrect
assumption that the underlying population is normally distributed. The results are
inferior to those both for ordinary and permuted sums for bins above the 50th percentile.
The relatively poorer performance results from the difference between the actual and
assumed background distributions, emphasizing the need for appropriate choice of
parametric distribution when using the parametric approach.

The final example using idealized data, addresses the effects of violations of the
assumption of linear independence (the presence of internally derived autocorrelations
between the monthly values). Figure 8 compares the CDF AAPEs for ordinary and
permuted sums, and as derived using the parametric method, for three cases (each with
M = 3, N = 10, and equal monthly variances) in which the month-to-month correla-
tions (R1,2 and R2,3) are set to 0.0, 0.2 and 0.4, respectively (the results for the first
repeated from Fig. 6(b)). The AAPE curves for the permuted sums for these cases
progressively approach that for the ordinary sums (N = 10) as the correlation increases.
Interestingly, the effects at the high extreme (values exceeding the 90th percentile) show
little deterioration in performance compared to the ordinary sums from 28-member
ensembles. These results (and others not shown) suggest that for this case the ELVIS
technique performs no worse than ordinary sums with internally derived autocorrela-
tions up to 0.5, and continues to provide improved performance in the 90th percentile
bin. This result is heartening for, as shown later, estimates derived from AGCM simula-
tions suggest that internally derived month-to-month autocorrelations exceeding 0.4 are
relatively rare for 2 m air temperature and even more so for precipitation.

The AAPE’s for the parametrically fitted distributions are unaffected by the increas-
ing autocorrelations, as both the underlying population and ordinary sums (from which
the distribution parameters are estimated) are normally distributed. Thus, in cases where
internally derived autocorrelations are high, and assuming the underlying distribution is
well known, the parametric method has advantages over the resampling approach.

Analyses similar to the idealized cases described above were also conducted
using the ECHAM-100 100-member AGCM ensemble data described in section 2.
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Figure 7. (a) Histogram of the frequency distribution of the underlying log-normal distribution used for the
results shown in (b). (b) As Fig. 6(b), but for seasonal totals constructed from log-normally distributed monthly

values (the seasonal distribution is shown in Fig. 7(a)). See text for details.
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Figure 8. As Fig. 6(b), but showing the effects of increasing lack of linear independence on the average absolute
probability errors (AAPEs) of the permuted sums. Curves show the AAPEs for ordinary sums (solid), and
permuted sums with month to month correlations: R1,2 = R2,3 = 0.0 (dashed), R1,2 = R2,3 = 0.2 (dashed with
squares), and R1,2 = R2,3 = 0.4 (dashed with open triangles). The AAPE curve for the parametric approach is

repeated from Fig. 6(b) for reference (correlations have no effect on the parametric estimates).

For these analyses, the statistically derived ‘underlying’ population of monthly values
(see step (i) above) has been replaced with ensemble model values of central USA pre-
cipitation for October, November and December 1997 (a number of other variables and
areas were also tested, with similar results). As with the idealized data, Monte Carlo
tests were performed drawing random samples of 10 (and 28) 3-month ensembles and
calculating ordinary and permuted seasonal sums†. In this example, the variances of the
ensemble monthly means are not equal (the standard deviations for October–December
are 0.99, 1.27 and 1.13, respectively), but the ad hoc correction given in Eq. (7) suggests
that these minor departures from equality have negligible impact on the results. Intra-
ensemble month-to-month correlations are also relatively low (0.15, 0.04, and –0.09,
respectively), suggesting a minimal level of internally derived memory for regional pre-
cipitation in this instance. Figure 9(a) shows the PMF AAPEs for these data. As with
the idealized data (Fig. 6(a)) the ELVIS permuted sums give better performance than the
ordinary sums. The U-shaped curve seen in the idealized data (Fig. 6(a)) is not apparent
(tests (not shown) with idealized data show this is due to the small size of the under-
lying population). The results for the CDF AAPEs using the AGCM data (Fig. 9(b))
are similar to those obtained from the idealized Gaussian data (integration smoothes the

† An obvious limitation to these trials is that the relatively small size (100) of the underlying population results
in considerable repetition in the sampling. Tests with idealized data (not shown) show that this degree of over-
sampling produces AAPE curves considerably rougher than those for the much larger populations used in the
idealized cases.
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Figure 9. (a) As Fig. 6(a), but for atmospheric general circulation model ensemble forecasts of October–
December 1997 precipitation in the central USA; for ordinary sums with N = 10 and N = 28, and permuted
sums from the N = 10 population (see key). (b) As (a), but for cumulative-density function average absolute

probability errors.
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effects of over-sampling). The precipitation data used here are approximately normally
distributed, so the parametric method gives results (not shown) much like those from the
permuted sums.

(c) A test for internal linear independence
The discussions earlier (for example, see Figs. 5 and 8) emphasize the need for

estimates of the magnitude of internally derived month-to-month memory in model
variables. One way to quantify the level of internal memory is to perform repeated
ensemble control simulations with fixed prescribed boundary conditions (e.g. SST), and
directly measure (for example) month-to-month lagged correlations (see discussions
in Koster and Suarez 2001). In this section, we suggest a method to obtain (at least)
first order expectations for internal autocorrelations if such control simulations are not
available.

Consider an extended (multi-decade) ensemble of N simulations driven with pre-
scribed observed SST. For a given variable, location and month a matrix of autocorrela-
tions like that shown schematically below (for N = 5) can be constructed.

Month 2

Month 1




R1,1 R∗
1,2 R∗

1,3 R∗
1,4 R∗

1,5

R∗
2,1 R2,2 R∗

2,3 R∗
2,4 R∗

2,5

R∗
3,1 R∗

3,2 R3,3 R∗
3,4 R∗

3,5

R∗
4,1 R∗

4,2 R∗
4,3 R4,4 R∗

2,5

R∗
5,1 R∗

5,2 R∗
5,3 R∗

5,4 R5,5




The rows and columns represent the ensemble members, the rows are for month 1
(e.g. June), and the columns for month 2 (e.g. July). Intra-ensemble lagged correlations
(R) are along the diagonal, and inter-ensemble correlations (R∗) are the off-diagonal
values. Because the prescribed boundary conditions affect all ensemble members,
systematic differences between on- and off-diagonal correlations indicate the effects
of ‘memory’ arising from sources other than the prescribed boundary conditions, for
example from soil moisture or snow cover. In practice, the intra- and inter-ensemble
correlations are calculated as single values. For example, if there are five ensemble
members and a 20-year simulation, the covariances and variances required to calculate
the intra-ensemble lagged correlation are formed through a series of 100 pairs (20 years
and five inter-ensemble pairs), yielding a single value of R. Similarly, the inter-ensemble
lagged correlation would be calculated from a series of 400 pairs (20 years and 20 intra-
ensemble pairs), yielding a single value of R∗. The effect of internal memory is then
estimated (assuming linearity) as a residual fraction of variance, then re-scaled as a
correlation-like value: RMEM = (R2 − R∗2)1/2.

In the examples given here, RMEM is defined only where the difference inside the
parenthesis is positive; the few cases of inferred negative correlations are ignored.

As an example of application of this method, we show intra-ensemble and inter-
ensemble 1-month lagged correlations (R and R∗, respectively), and their differences
(RMEM), for 2 m air temperature and precipitation from the 49-year, ten-member
prescribed SST ensemble simulation (ECHAM-AMIP) described in section 2. Figure 10
shows the results for January and February 2 m temperature. The results suggest
that, for this model, month-to-month correlations arising from internal processes are
generally less than 0.3 over eastern Europe, the north-east of Africa, much of northern
North America, and northern Asia. Correlations above 0.4 cover extensive portions
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(a)

(b)

(c)

Figure 10. (a) Intra-ensemble correlations R, and (b) inter-ensemble pointwise correlations R∗, between 2 m
air temperatures in January and February from a ten-member 50-year ensemble atmospheric general circulation
model simulation; (c) the internal memory variance fraction RMEM, scaled as a correlation-like variable (see text),
for February arising from internal model processes. Areas shown as white are: oceanic regions, areas where the
results did not exceed the 90% significance level from Monte Carlo tests, and the few areas of inferred negative

internally derived autocorrelations.
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(a)

(b)

(c)

Figure 11. As Fig. 10 but for June and July 2 m temperatures.
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(a)

(b)

(c)

Figure 12. As Fig. 10 but for June and July precipitation.
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of South America, southern Africa, southern Asia (particularly the Tibetan Plateau),
and Australia. In these regions, the enhanced internal memory is likely to result from
changes in snow cover and soil moisture. Interestingly, Monte Carlo tests indicate
that the correlation differences are significant above the 90% level nearly everywhere,
including areas where the autocorrelations are quite small (this is also true over large
areas of the oceans (not shown)). Note that from the perspective of independence, it is
the magnitude of the internal memory rather than the statistical significance that is of
concern.

Figure 11 is like Fig. 10, but for June to July. For these months, the inter-ensemble
correlations tend to be much higher than for January to February, with large areas of the
northern USA and Canada, Europe, central and southern Asia, central South America,
Australia, and Africa showing RMEM values above 0.3 (reaching 0.6 in some areas).
Again, changes in soil moisture (and snow cover in a few areas) probably produce these
signals. Significance levels are above the 90% level over all continental regions.

Figure 12 is like Figs. 10 and 11, but for simulated June–July precipitation.
For precipitation, the intra- and inter-ensemble correlations, and the values of RMEM
(Fig. 12(c)) are generally much lower than for 2 m air temperature. Correlations above
0.2 do appear in small regions of North and South America, and in a larger east–west
oriented region extending across southern Europe and into west-central Asia, suggesting
that the character of simulated precipitation variability in this region is modified some-
what by soil moisture. A similar analysis of January–February precipitation (not shown)
shows values of RMEM above 0.2 in only a few scattered areas.

From the perspective of the efficacy of the ELVIS technique, these results, together
with those shown in Fig. 8, suggest that for this model ELVIS will provide improved
estimates of probability distributions of simulated boreal winter season 2 m air tem-
perature averages in many regions. For boreal summer, improvements can be realized in
some areas, but these are less extensive than for winter. For simulated precipitation (sub-
ject to analysis of differences between monthly variances and distribution skewnesses)
improvements can be realized in most areas for both seasons. Other tests with 500 hPa
heights for January–February and June–July (not shown) indicate very low levels of
internal memory. This finding is consistent with the idea that month-to-month internal
memory in these simulations is principally controlled by soil moisture (snow cover in
some areas) and has its most obvious (atmospheric) effects on near-surface variables
(e.g. temperature), but little impact on simulated large-dynamics. Tests with another set
of ensemble simulations performed with the NCEP MRF9 GCM (not shown), which is
also T42 resolution, produced qualitatively similar results and suggests similar conclu-
sions.

4. CONCLUSIONS

For seasonal climate forecasts (or retrospective simulations), ensembles are re-
quired to adequately resolve model response to a given evolution of boundary forcing.
The potential utility of such forecasts requires that the following four conditions have
been met.

(a) Suitably accurate forecasts of the boundary conditions are available.

(b) The AGCM response (described by statistics) to those boundary conditions carries
some quantitative information about the response the of actual atmosphere, and thus the
future state of the real world.
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(c) Extended retrospective simulations are available to relate model behaviour to real
world outcomes.

(d) The ensembles (both for retrospective and forecast simulations) are sufficiently large
to allow the derivation of suitably reproducible statistics.

This paper deals with the last of these requirements (though it should be pointed out
that satisfaction of (c) and (d) is required if (b) is to be satisfied). Many climate centres
have the resources necessary to generate ensembles large enough to produce reasonably
well constrained estimates of first order statistics such as the mean or the median. This
is not generally the case if the desire is to make statements regarding the probabilities
of more extreme model outcomes. We outline a resampling procedure, ELVIS, that
allows the derivation of improved (more reproducible) estimates of simulated PMFs
and CDFs of seasonal statistics (derived from monthly values) without increasing the
number of ensemble members (see also Clark and Déqué 2003). The methodology uses
exhaustive permutations of the individual monthly values from each ensemble member
when deriving seasonal totals—essentially, for these monthly values the month index is
retained but the ensemble index is not. The primary assumption underlying the utility of
this approach is that, aside from the effects of prescribed boundary forcing, the month-
to-month values of a given variable at a given location are more-or-less independent (in
terms of internal memory). For some variables in some seasons which show relatively
high internally derived autocorrelations (e.g. summer near-surface air temperature), this
requirement represents a drawback of the re-sampling method. On the other hand, aside
from improved estimates of ensemble spread, the method has the positive attributes that
(i) derived values are consistent with model physical constraints, and (ii) cross-variable
and cross-spatial relationships are conserved.

An alternative methodology for artificial ensemble expansion is to fit a statistical
distribution to the ensemble results (e.g. the seasonal totals), and use that distribution
to estimate event probabilities. This parametric approach has been explored by Wilks
(2002), who documented the potential for reduced uncertainty in probability estimates in
the context of ensemble numerical weather prediction. As it might be applied to seasonal
simulations, the parametric technique has the positive attribute of being unaffected by
serial independence, but has the following drawbacks.

• It requires choice of an appropriate statistical distribution.
• There is possible inconsistency with model physical constraints (events that are

not possible within model physics may be given a finite probability).
• Cross-variable or cross-spatial relationships are not automatically retained.

The behaviour of normal and permuted sums from idealized ensembles (constructed
from monthly values with normal or log-normal distributions) are investigated from
several perspectives. Using the χ2 distribution, it is shown that for an M-month season
and an ensemble of size N , and under the assumptions of linear independence and
equal monthly standard deviations, the permuted sums behave as if they come from an
ensemble of M × (N − 1) + 1{χ2 df M × (N − 1)}. Thus, a relative increase (of order
M) in effective ensemble size can be realized with negligible computational effort.

In the case that monthly variances are not equal, the effective ensemble size (df) of
the permuted sums is decreased (leading to incorrect assumptions about the uncertainty
of probability estimates). An ad hoc correction factor giving the fractional reduction in
df is suggested. The behaviour of the permuted sums in situations where the assumption
of linear independence is violated is also examined. It is shown that the variance of
the permuted sums is biased low, and that the (theoretical true) CDF of the variance of
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those sums is composed of a multiple of cumulative χ2 distributions. It seems likely that
expressions for the bias and true CDF could be derived; on the other hand, in practice,
estimated levels of linear dependence for a particular set of initial conditions would have
large associated uncertainties (e.g. Koster and Suarez 2001). This uncertainty argues
for a recognition of the potential effects arising from linear dependence, but against a
formal correction scheme. This presentation has not discussed the impact of nonlinear
dependence, and it is suggested that the ELVIS method be used with caution where
antecedent conditions are known to have more than a modest impact on a particular
variable and a particular point.

A second set of analyses examined the behaviour of ELVIS sums in terms of bin
AAPEs for PMFs or CDFs of ordinary and permuted sums generated from specified
statistical distributions. In general, the results show that permuted sums reduce the errors
in estimating probabilities in comparison to ordinary sums. For normally distributed
underlying populations, the reduction in PMF errors is largest near the centre of
the distribution; for CDFs, the relative improvements (considering the upper part of
the distribution) are largest for the uppermost (most extreme) bins. The parametric
approach (applied under the correct assumption of an underlying Gaussian distribution)
gives results close to those from the resampling method. For a mildly skewed (log-
normal) distribution, the relative improvements in probability estimates from permuted
sums (over ordinary sums) are somewhat reduced in comparison to a symmetrical
distribution. An application of the parametric method to the log-normal case, and
incorrectly assuming an underlying normal distribution, emphasized the need to select
the correct form of underlying distribution when this approach is used.

Other tests examined the effects when the assumption of (internal) linear indepen-
dence is violated. The results showed the expected increase in probability errors with
increasing correlations, but revealed that for a 3-month season, ten-member ensemble
and month-to-month internal autocorrelations of 0.4, probability errors for permuted
sums remain smaller than those for ordinary sums. As noted, the parametric approach is
insensitive to serial dependence.

The AAPE measure was also applied to a 100-member 3-month AGCM ensemble
simulation. The results are basically consistent with those noted above, i.e. better results
with both the resampling and permutation approach. The relatively small size of the
underlying population and resulting over-sampling introduced ‘noise’ in the results, so
that only qualitative conclusions are to be drawn from these tests. For this example, with
approximately normally distributed monthly values and low (total) month-to-month
autocorrelations, the performance of the parametric approach was essentially identical
to the permutation method.

A final set of analyses examined a simple method for detecting internally derived
memory from ensemble AGCM simulations with temporally varying prescribed bound-
ary conditions (i.e. where extended multi-member control runs are not available). The
technique appears to be effective in distinguishing cases where internal memory has a
substantial effect on model behaviour. For the GCM used for these analyses (ECHAM3),
the inferred internal memory is much larger for 2 m air temperature than for precipita-
tion; this is consistent with the idea that the memory is driven largely by soil moisture
and snow cover, and principally results from near-surface interactions rather than large-
scale dynamics.

The improvements in effective ensemble size that can be realized through the
ELVIS approach suggest extensions of the method. For example, in many applications
of climate forecast information the interest is in the joint behaviour of two variables
(e.g. temperature and precipitation). The larger sample afforded by permutation may
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make it possible to better quantify the probabilities of particular outcomes in this regard.
In a related manner, the method could be expanded to joint probabilities in the spatial
sense—allowing, for example, better quantification of the simulated joint probabilities
of low seasonal rainfall in one region and above normal rainfall in another.

A concluding point regarding the resampling approach concerns the time-scales of
the aggregation and sub-aggregate sampling. In the work described here, seasons (aggre-
gation) and months (sub-aggregate sampling) were used for convenience—monthly data
were available—and because seasonal values are of some relevance to users. Probably
somewhat shorter sub-aggregate scales could be used in some instances, thus allowing
larger effective sample sizes. However, as sampling time-scales approach synoptic time-
scales, the effects of dynamical internal memory will begin to have relatively larger—
and likely less statistically benign—effects than those related to surface boundary con-
ditions (e.g. see discussions in Wilks (2002)). Different aggregation times are also a
possibility, with shorter periods allowing more precise forecast targets, and longer ones
giving better sampling characteristics (but perhaps with less relevance).

A variety of studies make it clear that ensemble approaches to dynamical sea-
sonal climate prediction allow the characteristics and performance of climate prediction
systems to be described with much more refinement than deterministic measures
(e.g. Barnett 1995; Anderson 1996; Branković and Palmer 1997; Mason and Graham
1999). Further, it is well established that climate forecasts framed in the form of prob-
abilities are the most useful to end users (whose responses can be regarded as hedges,
e.g. Palmer et al. (2000)). From either of these perspectives, more accurate estimates of
the true PDF of model response to boundary forcing would be useful. In many cases, the
ELVIS technique does allow improvements in the accuracy of such estimates through
a simple, computationally efficient non-parametric approach, and it may prove a useful
tool in a variety of applications.
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