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A Yeast-Based Assay for Protein Tyrosine Kinase Substrate Specificity 

and Inhibitor Resistance 

Joseph Michael Taft, Ph.D. 

The University of Texas at Austin, 2017 

Supervisor:  Brent Iverson 

Phosphorylation of tyrosines by protein kinases is a fundamental mode of signal 

transduction in all eukaryotic cells, leading to a wide variety of cellular outcomes, 

including proliferation, differentiation, transcriptional activation, and programmed cell 

death.  Perturbations to tyrosine kinase signaling networks by activation, overexpression, 

or mutation is the driving factor in many diseases, most notably cancers.  The development 

of tyrosine kinase inhibitors, 37 of which are currently FDA-approved, has led to a 

revolution in cancer treatment.  Imatinib, the first FDA-approved kinase inhibitor, has 

drastically improved prognosis for patients with Bcr-abl-positive leukemias.  Despite this 

unprecedented success, however, up to one-third of patients lose response to imatinib due 

to mutations within the tyrosine kinase domain of Bcr-abl.  Subsequent generations of Bcr-

abl inhibitors, including dasatinib and ponatinib, have been developed to overcome these 

resistance mutations, but in each case, novel resistance mutations have arisen.  We present 

a high-throughput yeast-based assay for the prediction of dasatinib- and ponatinib-resistant 

mutations in the ABL1 kinase domain.  Our results not only recapitulate all known 

dasatinib-resistant mutations, but confirm recent patient data emphasizing the importance 

of compound mutations in ponatinib resistance.  
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Furthermore, with hundreds of kinase inhibitors in development for the treatment 

of a wide range of diseases, understanding the cellular pathway of each kinase is critically 

important to the selection of ideal drug targets and avoiding potentially toxic side effects.  

Discovery of novel tyrosine kinase substrates is hindered by the presence of 90 human 

tyrosine kinases, which are often active in the same pathways.  Phosphoproteomics, 

chemical genetics, and in vitro assays have been used to great success, yet only 30% of 

phosphorylated tyrosines in the human proteome have been assigned to a specific kinase.  

Recent advances in predicting tyrosine kinase substrates have been made by combining 

large data sets on kinase domain specificity, cellular localization, and protein-protein 

interactions in probabilistic algorithms.  However, the high-quality data sets required for 

accurate predictions are often lacking.  In chapter 2, we present a high-throughput yeast-

based assay for screening millions of putative kinase substrates, which we then use to build 

a probabilistic model to accurately predict the in vitro phosphorylation of candidate 

substrates. 
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Chapter 1:  Introduction 

In eukaryotic organisms, post-translational modification of proteins by 

phosphorylation plays a central role in signal transduction both between and within cells.  

The three proteinogenic hydroxyl amino acids, serine, threonine, and tyrosine constitute 

the majority of phosphorylated residues.  Post-translational phosphorylation of amino acids 

is catalyzed by a class of enzymes called protein kinases, which are further subdivided into 

those which specifically phosphorylate serine and threonine (serine/threonine-specific 

protein kinases) and those which phosphorylate tyrosine residues (protein tyrosine kinase).  

Over 500 protein kinase genes have been described in the human genome, including 90 

tyrosine kinases (Hunter, 2009; Manning, Whyte, Martinez, Hunter, & Sudarsanam, 2002; 

Robinson, Wu, & Lin, 2000). 

STRUCTURE AND FUNCTION OF PROTEIN TYROSINE KINASES 

Tyrosine kinases can be subdivided into two classes: receptor tyrosine kinases 

(RTK) and non-receptor tyrosine kinases (NRTK) which share a highly conserved catalytic 

domain (Manning et al., 2002; Robinson et al., 2000).  Receptor tyrosine kinases, 58 of 

which have been discovered in humans, transduce extracellular signals into intracellular 

function by initiating signaling complex formation in response to extracellular ligand 

binding (Hunter, 2009; Manning et al., 2002; Manolio et al., 2009).  RTKs share a common 

domain architecture: amino-terminal extracellular ligand-binding domains, a single helical 

transmembrane domain, and an intracellular catalytic kinase domain.  Generally, 

extracellular ligand binding stabilizes RTK dimerization, allowing one kinase domain to 

phosphorylate its binding partner.  Downstream signaling molecules are then recruited via 

phosphotyrosine-binding domains (Hunter, 2009).  Phosphorylation of recruited proteins 

then serves as a binding site for  
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Figure 1.  Primary structure of select tyrosine kinases.   

(A)  Domain architecture of the ErbB family of growth factor receptors, insulin receptor 

kinase, and the PDGFR and FGFR family of receptor tyrosine kinases.  Receptors 

may exist as monomers, homodimers, or heterodimers without ligand bound.  

Upon ligand binding, dimerization and/or conformational changes allow for trans-

autophosphorylation and activation of the kinase domain.  (B)  Non-receptor 

tyrosine kinases are characterized by the lack of a transmembrane region but the 

presence of at least one protein-protein interaction domain, which contributes to 

substrate recruitment, localization, and in some cases, autoinhibition.  (C)  Upon 

ligand binding, dimerized receptors are phosphorylated in trans, leading to 

recruitment of phosphotyrosine-binding proteins, which are in turn 

phosphorylated, initiating an intracellular signaling cascade. 
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further recruitment of effector molecules.  Overactivation of RTKs, through 

overexpression or loss of regulation, plays a central role in a variety of cancers, including 

breast cancer (HER2) (Lemmon & Schlessinger, 2010), non-small cell lung cancer (EGFR, 

ALK) (Yu et al., 2013), and multiple myeloma (FGFR) (Lemmon & Schlessinger, 2010).  

Non-receptor tyrosine kinases lack extracellular domains and are primarily 

localized in the cytoplasm (Hubbard & Till, 2000; Hunter, 2009).  Beyond the defining 

catalytic domain, NRTKs contain at least one domain to mediate protein-protein 

interactions (Hubbard & Till, 2000).  Most frequently, tandem Src-homology 3 (SH3) and 

Src-homology 2 (SH2) domains are found immediately N-terminal to the kinase domain.  

SH3 domains mediate protein-protein interactions by binding to PxxP motifs, while SH2 

domains bind to specific phosphotyrosine motifs (Kuriyan & Cowburn, 1997).  These 

domains, along with others, serve in the formation of complexes to propagate signaling 

cascades (Hubbard & Till, 2000). 

STRUCTURE OF THE TYROSINE KINASE DOMAIN 

The 90 tyrosine kinase domains of the human genome share a conserved protein 

fold, similar to that of serine/threonine kinases (Figure 2) (Turk, 2008).  The catalytic 

domain consists of an N-terminal lobe, containing a five-strand antiparallel beta-sheet and 

a single alpha-helix, and a C-terminal lobe mainly consisting of alpha-helices.  The kinase 

active site, encompassing the ATP and peptide substrate binding sites as well as 

coordination motifs for Mg2+, is shared between these domains.  Conserved residues and 

structures between these subdomains contribute to catalysis and regulation of kinase 

activity (Hantschel, 2012). 

Activation Loop 



 4 

The C-terminal lobe of the tyrosine kinase domain contains the peptide substrate 

binding site and the conserved activation loop.  At the N-terminus of the activation loop is 

a conserved DFG tripeptide which determines the active state of the enzyme (Hantschel, 

2012; Levinson et al., 2006).  When the aspartate of the DFG motif is pointed toward the 

active site, the “DFG-in” state, the aspartate residue co-ordinates an Mg2+ ion, important 

for catalysis.  In the “DFG-out” conformation, the aspartate is pointed away from the active 

site, precluding magnesium binding and catalysis.  Another highly conserved feature of the 

activation loop is one or more tyrosine residues, which in the inactive state occupy the 

peptide substrate binding site (Figure 4).  Phosphorylation of the activation loop tyrosine 

leads to a dramatic repositioning, allowing coordination of magnesium and binding of the 

ATP and peptide substrates (Hubbard & Till, 2000).  Activation loop dynamics and 

phosphorylation state contribute to and are affected by the binding of ATP-competitive 

tyrosine kinase inhibitors (J. Zhang, Yang, & Gray, 2009). 

The N-terminal lobe of the kinase domain contributes to regulation and catalysis 

through coordination of the phosphate of substrate ATP through a glutamate-lysine ion pair 

in neighboring alpha-helices.  In the case of Src, a non-receptor tyrosine kinase, allosteric 

interactions with the SH3 domain rotate the glutamate away from the active site, preventing 

the ion pair from forming and the coordination of substrate ATP (Panjarian, Iacob, Chen, 

Engen, & Smithgall, 2013).  Conversely, the inactive conformation of Abl kinase does not 

involve a similar rearrangement (Levinson et al., 2006). 
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Figure 2.  Sequence alignment of protein tyrosine kinases.   

Structures important for regulation, inhibitor binding, and catalysis are highlighted.  The 

‘glycine-rich’ loop, involved in ATP binding, is located in the N-lobe of the 

kinase domain.  The ‘gatekeeper’ (yellow) position, important for both ATP and 

inhibitor binding, is located in the hinge region between the N-terminal and C-

terminal lobes.  The activation loop, involved in autoregulation and Mg2+
 binding, 

is in the C-lobe of the protein. 
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Figure 3. Structural alignment of tyrosine kinase domains.   

Tyrosine kinase domains (EGFR: orange, Src: yellow, ABL1: green) share a conserved 

protein fold.  The N-terminal lobe is composed of a five-strand beta-sheet and a 

single alpha helix.  The C-terminal lobe is composed of bundled alpha-helices.  

Active site of the kinase domain is located at the interface of the two lobes. The 

kinase activation loop, indicated in the bottom left panel, is a conserved structure 

which blocks the peptide binding site in the inactive conformation (see Figure 4). 
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Figure 4.  Conformational change of the kinase activation loop of ABL1 kinase domain. 

(Top) The conformation of the activation loop changes drastically upon phosphorylation.  

In the top left, the crystal structure of active ABL kinase with ADP and substrate 

analog shows the activation loop (red) in the “open” conformation.  In the top 

right, the activation loop (yellow) tyrosine (Y393) is not phosphorylated and 

occupying the peptide binding site.  In the bottom, the structures are 

superimposed. Bottom right: the activation loop tyrosine (yellow) occupies the 

site where the peptide substrate would bind (green).  Although the activation loop 

tyrosine occupies the active site, autophosphorylation occurs in trans, not 

intramolecularly. 
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Figure 5.  Active site of ABL1 kinase.   

The active site is between the N-terminal lobe (top) and the C-terminal lobe (bottom).  A 

glutamate-lysine ion pair contributes to binding of ATP (ADP in this structure).  

The peptide binding site is in the C-terminal lobe (right).  The catalytic aspartate 

(D363, cyan), lies between the ATP and substrate tyrosine. 
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REGULATION AND SPECIFICITY IN TYROSINE KINASE SIGNALING 

Receptor tyrosine kinases function to transduce extracellular signals, in the form of 

polypeptide growth factor binding, to intracellular functions.  In most cases, receptor 

dimerization is induced or stabilized by extracellular ligand binding.  Upon ligand binding, 

conformational changes in and proximity of the intracellular kinase domains leads to trans-

autophosphorylation in the activation loop of the kinase domain or the juxtamembrane 

region.  Phosphorylation of the kinase domains increases catalytic activity, leading to 

further phosphorylation of the receptor or intracellular ligand proteins (Lemmon & 

Schlessinger, 2010). 

Activity and specificity of non-receptor tyrosine kinases is dictated by post-

translational modifications, localization, and allosteric interactions between domains 

within the tyrosine kinase.  In the case of Src and Abl family kinases, the SH3 and SH2 

domains N-terminal to the kinase domain contact the N-terminal and C-terminal lobes of 

the kinase domain to maintain an autoinhibited conformation (Figure 6) (Levinson et al., 

2006).  This is achieved by binding of the SH3 domain to a proline-rich linker between the 

SH2 and kinase domain, forming a clamp-like structure.  The SH2 domain makes contacts 

in the C-terminal lobe of the kinase, obscuring the SH2 domain’s phosphopeptide binding 

site.  In the case of Src kinase, a phosphorylated tyrosine immediately C-terminal to the 

kinase domain occupies the SH2 phosphopeptide pocket.  In Abl the SH2 is blocked in the 

autoinhibited conformation, rather than being occupied by a phosphopeptide.  Furthermore, 

the N-terminal glycine of Src family kinases and isoform b of Abl family kinases is 

myristoylated.  This 14-carbon aliphatic moiety occupies a binding site within an alpha-

helical bundle in the C-terminal lobe of the kinase domain, further contributing to the 

stability of the auto-inhibited conformation (Hantschel, 2012).  Activation of Abl kinase is 

characterized by phosphorylation of tyrosine-245, within the proline-rich SH2-kinase 
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domain linker where the SH3 binds (Figure 7).  Src, in contrast, is not phosphorylated in 

the active state (Panjarian et al., 2013).  Unphosphorylated tyrosine-527, which stabilizes 

the inactive conformation by occupying the SH2 domain binding pocket, no longer locks 

the enzyme in the closed configuration, allowing both kinase domain activity and binding 

of the SH2 domain to phosphorylated ligands (Roskoski Jr, 2005). 

Kinase Signaling: Modular Design 

Initially, protein tyrosine kinase specificity was thought to be dictated by the ability of the 

kinase domain to phosphorylate peptide substrate motifs and thus effect conformational 

changes in effector molecules (Kemp, Bylund, Huang, & Krebs, 1975).  However, the 

observation that upon growth factor stimulation, the most abundant phosphoprotein in the 

cell was the stimulated growth factor receptor itself led researchers to hunt for non-catalytic 

modes of signal propagation and specificity.  In 1986, Tony Pawson’s group identified a 

non-catalytic region of the oncogenic v-Fps tyrosine kinase N-terminal to the kinase 

domain that was necessary for cellular transformation (Sadowski, Stone, & Pawson, 1986).  

Sequence alignment of this region to Src and Abl kinases showed a conserved stretch of 

approximately 100 amino acids, termed the Src homology 2 (SH2) domain (the kinase 

domain had previously been dubbed the SH1 domain).  The discovery of SH2 domains, 

and another Src-homology domain termed SH3, in non-kinase signaling proteins and 

oncogenes, including Crk and phospholipase C, led Pawson to propose that signaling 

networks are composed of modular domains whose association and specificity dictates 

downstream effects.  In the decades since, a wide array of modular domains recognizing 

virtually every class of biomolecules has been described (Pawson & Nash, 2003). 
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SH2 Domains  

The human genome encodes 120 known SH2 domains (Scott & Pawson, 2009).  In 

the early 1990s, various groups independently demonstrated that SH2 domains bind 

directly to phosphorylated tyrosine motifs and that each SH2 domain preferentially binds 

to motifs dictated by the residues immediately C-terminal to the phosphotyrosine 

(Escobedo et al., 1991; B. J. Mayer, Pk, & Baltimore, 1991; Mohammadi et al., 1991).  In 

the first co-crystal structure of an SH2 domain and its phosphopeptide ligand, it was shown 

that the phosphotyrosine is bound in a conserved pocket where it interacts with a positively-

charged arginine (Waksman et al., 1992).  A series of in vitro phosphopeptide-binding 

experiments established favored and disfavored motifs for a variety of SH2 domains 

(Domchek, Auger, Chatterjee, Burke, & Shoelson, 1992; Liu et al., 2010).  Using these 

data, researchers have been able to identify SH2-interacting motifs and predict protein-

protein interactions, generating testable hypotheses to deduce signaling pathways (Linding 

et al., 2007). 

SH3 Domains 

The second stretch of homology to Src and Abl, termed the SH3 domain was first 

identified in the non-catalytic signaling protein Crk (p38) (Bruce J. Mayer, Hamaguchi, & 

Hanafusa, 1988).  Like SH2 domains, which they frequently appear alongside, the 253 SH3 

domains of the human genome have been found in signaling enzymes, regulators, and 

scaffold proteins.  In 1993, David Baltimore and colleagues first described the preference 

of SH3 domains for proline-rich peptide ligands, specifically the PXXP motif, where ‘X’ 

is any amino acid (R. Ren, BJ, P, & Baltimore, 1993).  Specificity data from peptide array 

experiments has been used to identify putative interaction partners for SH3 domain-

containing proteins (Zarrinpar, Bhattacharyya, & Lim, 2003). 
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Kinase Domain Specificity 

 In addition to the protein-protein interaction domains, which regulate complex 

formation and kinase activity through allosteric inhibition, kinase substrate specificity is in 

part determined by the kinase catalytic domain itself, either through positive interactions 

between kinase and substrate residues leading to binding and phosphorylation or, 

conversely, through negative interactions which preclude substrate binding (Creixell et al., 

2015; Kobe, Kampmann, Forwood, Listwan, & Brinkworth, 2005; Miller et al., 2008).  The 

kinase domain residues responsible for these interactions have been termed “determinants 

of specificity” (DoS).  These residues are distinct from and less conserved than residues 

involved in catalysis, giving rise to kinases with varied substrate specificity over 

evolutionary time (Creixell et al., 2015).  Understanding peptide substrate specificity and 

how it arises is crucial to our ability to predict and validate novel kinase substrates, and 

therefore deduce cellular signaling networks in healthy and diseased states (Mok et al., 

2010; Turk, 2008). 

 Traditional methods for finding novel kinase substrates begin by identifying known 

interaction partners of a kinase of interest (Kobe et al., 2005).  This data may be produced 

from a yeast two-hybrid screen, co-immunoprecipitation, or other screens.  Validation of 

substrates can be done by in vitro kinase reactions with purified proteins, which suffers 

from the loss of cellular context and physiologically-relevant concentrations (Turk, 2008).  

Alternatively, putative substrates can be validated by western blotting for phosphorylated 

tyrosine in untreated and kinase-inhibited or knockout cells (or under different growth 

conditions) (Davis et al., 2011).  This method, however, suffers from the confounding 
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effects of downstream kinases, preventing the differentiation between direct and indirect 

activity of a kinase of interest (Anastassiadis, Deacon, Devarajan, Ma, & Peterson, 2011).  

Furthermore, methods for generating testable hypotheses (i.e. putative substrates) are 

insufficient for finding substrates which interact indirectly or transiently, or both (Horn et 

al., 2014). 

 As with SH2 and SH3 domains, researchers have attempted to use motif-based 

searches to predict novel kinase substrates.  However, the number of possible substrates, 

approximately 1.2 x 105 tyrosines encoded in the human genome, relative to the number of 

known substrate sequences, approximately 103 for even the most well-studied kinases, and 

the lack of stringent consensuses among substrates leaves motifs constructed from known 

substrates with little predictive power (Creixell et al., 2015; Horn et al., 2014; Linding et 

al., 2007; Miller et al., 2008).  Additionally, evolution of kinase substrate motifs is 

constrained by downstream function, whether an induced conformation change in a 

substrate enzyme or binding by and SH2 or PTB domains (Horn et al., 2014).  To overcome 

these limitations, researchers have devised a variety of methods to screen peptide substrates 

in vitro or in vivo, using the resulting data to build models for predicting novel tyrosine 

kinase substrates (Müller et al., 2016; Pinna & Ruzzene, 1996; Schmitz, Baumann, & 

Gram, 1996; Songyang et al.; Turk, 2008). 

 Early work on the determination of kinase catalytic domain specificity was 

confined to the analysis of known substrate sequences to build a ‘consensus’ sequences to 

represent the most favored substrate amino acids at each position relative to the hydroxyl 

acceptor amino acid (serine, threonine, or tyrosine).  While this method was relatively 
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successful in describing the specificity of certain well-studied serine/threonine kinases, 

tyrosine kinase substrates did not appear to fit any consensus motif (Pinna & Ruzzene, 

1996).  In combination with previous descriptions of substrate recruitment via interaction 

modules, like SH2 and SH3 domains, and the formation of signaling complexes, it was 

believed that the specificity of the tyrosine kinase domain was relatively unimportant (al-

Obeidi, Wu, & Lam, 1998).  However, the discovery of an EGFR substrate with no modular 

interaction domains indicated that kinase domain substrate specificity must play some role 

in signal transduction fidelity.  Furthermore, experiments where researchers swapped Abl 

and Src kinase domains within their full-length proteins showed that the specificity was at 

least partly determined by the kinase domain (Mathey-Prevot & Baltimore, 1988). 

 Even when the known substrate sample size is sufficiently large for a kinase of 

interest, consensus motifs have disadvantages which may limit their use as predictive tools 

(Linding et al., 2007).  In vitro kinetics of casein kinase 2 and cyclin-dependent kinase 1, 

both serine/threonine kinases, with preferred and non-preferred residues at the same 

position in different peptide contexts showed that kinase substrate preference is context-

dependent, i.e. there is interaction between substrate residues (Pinna & Ruzzene, 1996).  

This implies that consensus sequences, which are context-independent, are insufficient to 

describe and therefore predict peptide substrates (Linding et al., 2007). 

 Techniques to overcome this limitation included peptide arrays and phage display 

of degenerate peptide libraries (Mok et al., 2010; Schmitz et al., 1996).  Arrays of 

immobilized synthetic peptides containing an invariant phosphate-acceptor residue (S/T/Y) 

are incubated with purified kinase in solution containing ATP and Mg2+ as cofactors.  
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Subsequent staining with a phospho-specific antibody linked to a reporter molecule, such 

as HRP or a fluorophore, allows imaging of the array to detect relative phosphorylation of 

each spot.  While the number of unique peptide sequences assayed exceeds the number of 

physiological substrates in most cases, this number is still dwarfed by the number of 

possible amino acid sequences in even a modest 5-mer library (205 = 3.2 x 106) (Mok et 

al., 2010).  Therefore, deducing the contextual relationships between substrate amino acids 

quickly becomes statistically impossible (Linding et al., 2007). 

 Phage display libraries, which can exceed 109 in diversity, overcome this limitation 

but present their own limitation, namely selecting for kinetic parameters which are not 

physiologically relevant (Schmitz et al., 1996).  In a typical phage-displayed peptide kinase 

reaction, the concentration of a given unique peptide is in the picomolar range, whereas 

most physiological kinase substrates have Michaelis-Menten constants (KM) in the 

micromolar range.  Such a large disparity in substrate concentration versus KM leads to the 

selection of substrates with extremely low KM, ignoring possibly relevant substrates (Pinna 

& Ruzzene, 1996).  Furthermore, given the co-localization and modular domain 

interactions of kinase and substrate that characterizes signaling pathways, it is unlikely that 

in vitro kinetic parameters are a particularly useful filter for describing and predicting 

kinase-substrate interactions.  

Putting it all together: Processive Phosphorylation 

Many Abl1 kinase substrate proteins contain multiple tyrosine phosphorylation 

sites.  This observation led researchers to hypothesize a model of ‘processive 

phosphorylation’, wherein the kinase domain first phosphorylates its substrate at one site, 
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which then becomes a phosphopeptide ligand for the kinase SH2 domain, followed by 

phosphorylation of a second nearby tyrosine.  Mutational analysis of the Abl1 substrate 

RAD51, which contains two Abl1-phosphorylated tyrosines, supported this hypothesis and 

further suggested that phosphorylation occurs in a hierarchical manner (Colicelli, 2010).  

Independent mutational analysis of the two substrate tyrosines to non-phosphorylatable 

phenylalanine showed that the ‘preferred’ substrate sequence could be phosphorylated in 

the absence of phosphorylation at the second site, but the reverse was not true (Popova et 

al., 2009).  Analysis of the tyrosine-flaking amino acid sequences showed that the 

‘preferred’ substrate was characteristic of known Abl1 substrates, whereas the suboptimal 

substrate was not.  This led researchers to hypothesize that non-kinase domain interactions 

can compensate for poor substrate kinetics by virtue of prolonged proximity.  This model 

suggests that the consensus sequences compiled from in vivo substrates may be collapsing 

distinct substrate types: those which require additional interaction via distal domains and 

those which are sufficient substrates for the kinase domain alone.  

 The processive phosphorylation model is not limited to substrate proteins which 

contain multiple tyrosine phosphorylation sites.  In signaling complex formation, adaptor 

proteins, such as Crk and Abl-interactor 1 (Abi1), may be phosphorylated and serve as 

ligands to an SH2 domain.  Additional interaction domains in the adaptor protein may then 

bridge the SH2-pY interaction to a third signaling molecule, bringing it into proximity of 

the kinase domain (Colicelli, 2010).  
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SRC-FAMILY KINASES 

The Src family of kinases (SFK), including Src and Lyn kinases, represents the 

largest family non-receptor tyrosine kinases, with nine members.  The SFK family is 

conserved in both sequence and function, with family members often sharing overlapping 

functions in pathways.  Src kinase, a ubiquitously expressed proto-oncogene, was first 

described as the transformative factor in an oncogenic retrovirus, the Rous sarcoma virus, 

isolated from chickens.  Truncations in the Src gene lead to constitutive activity and 

oncogenesis (L. M. Parsons, An, de Vries, de Haan, & Cipollo, 2017).  Like Abl1 

(discussed below) and Tec family kinases, the Src family of kinases relies on 

intramolecular interactions to adopt an autoinhibited conformation (Boggon & Eck, 2004).  

Nonsense mutations in the C-terminal tail of Src kinase, eliminating an tyrosine residue 

important for autoinhibition, have been found in colorectal cancers and shown to be 

transformative in vitro (Irby & Yeatman, 2000).  Lyn kinase, which is expressed as two 

alternatively spliced isoforms, is mainly present in hematopoietic and neural tissues (S. J. 

Parsons & Parsons, 2004).  Due to its role in B-cell development, overactivation of Lyn 

has been observed in treatment-resistant leukemias.  Dual Bcr-abl/Lyn inhibitors, including 

Bafetinib, have been explored as therapeutic options for patients who do not respond to 

initial treatment with Bcr-abl inhibitors (Santos, Kantarjian, Cortes, & Quintas-Cardama, 

2010). 

THE PROTO-ONCOGENE ABL1  

The ABL1 gene encodes a non-receptor tyrosine kinase that plays a central role in 

transmitting extracellular signals to downstream targets that effect cell growth, adhesion, 

and DNA repair.  The ABL protein family is highly conserved across metazoans.  Within 

vertebrates, a gene duplication gave rise to two closely related paralogs, ABL1 and ABL2 

(Arg), each with distinct cellular functions.  The SH3-SH2-Kinase domain cassette, 
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common among most NRTKs, is conserved in both paralogs.  At the C-terminal half of the 

protein, ABL1 contains DNA-, G-actin-, and F-actin binding domains, whereas ABL2 

lacks the DNA-binding domain but contains a microtubulin-binding domain.  Both 

paralogs are alternatively spliced at exon 1, leading to two isoforms (a and b), distinguished 

by the presence of an N-terminal myristoylation signal in isoform b (Colicelli, 2010; 

Hantschel, 2012). 

The human ABL1 gene was discovered for its causative role in chronic 

myelogenous leukemia (CML).  A chromosomal translocation between chromosomes 9 

and 22 leads to an in-frame fusion of the breakpoint cluster region (BCR) gene and the 

ABL1 gene.  Multiple isoforms of the fusion protein exist, differing in the precise location 

of the translocation.  Bcr-abl(p210) is present in nearly all cases of Chronic Myelogenous 

Leukemia, while Bcr-abl(p185) is present in 20-30% of cases of childhood B-cell acute 

lymphocytic leukemia (B-ALL) (Colicelli, 2010). 

 

Structure and Function of ABL1 

Alternative splicing at exon 1 of the ABL1 transcript leads to two cellular isoforms, 

differing only in the presence of an N-terminal myristoylation signal in isoform b.  The 

SH3-SH2-Kinase domain cassette, conserved among the majority of NRTKs, is C-terminal 

to the myristoylation signal, followed by DNA-binding and tandem actin-binding domains.  

These domains contribute to Abl1 regulation, specificity, and cellular localization 

(Hantschel, 2012). 
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Figure 6.  Autoinhibition of Src and Abl kinases.   

Abl (left) and Src (right) share a conserved autoinhibitory tertiary structure.  The SH3 

domain (yellow) binds to the linker peptide between the SH2 and kinase domains 

(middle left, right), forming a clamp-like structure.  The SH2 domain makes 

contacts with the C-lobe of the kinase domain.  In Abl, this interaction is mediated 

by electrostatic interactions between side chains in the C-lobe and SH2 domains 

(bottom left).  In Src kinase, phosphorylated tyrosine-527, C-terminal to the 

kinase domain, is bound in the phosphopeptide binding pocket of the SH2 

domains.  
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Regulation of Abl1 Activity 

Aberrant activity of Abl kinase is associated with cellular transformation and 

oncogenesis, most notably in the case of the Bcr-abl fusion gene in CML.  Therefore, tight 

control of localization and activity of Abl is necessary.  Cellular Abl (c-Abl) is regulated 

by localization, intra- and intermolecular interactions, and post-translational modification 

(Hantschel, 2012; Nagar et al., 2003).  Unlike Abl2, which is localized in the peripheral 

cytoplasm, the three nuclear localization signals and one nuclear export signal in the C-

terminus of Abl1 facilitate its localization to both the nucleus and the cytoplasm (Taagepera 

et al., 1998). 

Autoinhibition of Abl 

Regulation of Abl kinase catalytic activity is achieved by autoinhibition via 

intramolecular interactions between the domains in the amino-terminal half of the protein, 

including the amino-terminal myristoylation (in isoform b) and the SH3 and SH2 domains.  

In the inactive conformation, the SH3 and SH2 domains are bound to the kinase domain 

distal to the active site.  The SH3 domain forms a clamp-like structure by binding a ‘PxxP’ 

motif in the linker segment between the SH2 and kinase domains.  The SH2 domain binds 

to the C-terminal lobe of the kinase domain, partly blocking its phosphotyrosine-binding 

site.  In isoform b, binding of the N-terminal myristoylation to a hydrophobic pocket in the 

N-terminal lobe of the kinase domain is necessary for SH2 domain binding and the 

adoption of the autoinhibited conformation.  In contrast, isoform a lacks N-terminal 

myristoylation, but achieves the same autoinhibited conformation.  Autoinhibition may be 

relieved by SH2 domain binding to phosphorylated substrates, initiating a positive 

feedback loop of kinase activation (Levinson et al., 2006; Nagar et al., 2003). 
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Phosphorylation of Abl 

Unlike Src-family kinases, the inactive conformation of Abl kinases does not 

require phosphorylated tyrosine residues.  Instead, phosphorylation of two key residues in 

the SH2-kinase domain linker and the activation loop of the kinase domain are necessary 

for full activity.  Phosphorylation of tyrosine-229 (isoform 1b numbering) prevents binding 

of the SH3 domain to the linker between the SH2 and kinase domains, precluding the fully 

autoinhibited conformation.  Phosphorylation of tyrosine-393, in the activation loop of the 

kinase, prevents the loop from occupying the active site of the kinase, where it would block 

substrate and ATP binding (Hantschel, 2012; Nagar et al., 2003). 

Activation of Abl 

Abl kinases are activated by a variety of stimuli, both extracellular and intracellular.  

Receptor tyrosine kinases, including EGFR and PDGFR, have been shown to activate Abl 

upon ligand binding via phosphorylation by Src-family kinases.  Solid tumors 

characterized by dysregulation of receptor tyrosine kinases have higher levels of activating 

tyrosine phosphorylation of Abl1, including breast, lung, prostate, and gastrointestinal 

cancers (Greuber, Smith-Pearson, Wang, & Pendergast, 2013). 

THE BCR-ABL1 ONCOGENE 

Chronic myelogenous leukemia is a myeloproliferative neoplasm with an incidence 

of 1-2 per 100,000 per year which occurs predominately in adults (Marcucci, Perrotti, & 

Caligiuri, 2003).  In over 90% of cases, a chromosomal translocation resulting in a chimeric 

oncogene, Bcr-abl, drives disease progression (Garcia-Manero et al., 2003).  This fusion 

protein is the result of a chromosomal translocation event between chromosomes 9 and 22, 

giving rise to the so-called Philadelphia (Ph) chromosome (Rowley, 1973).  The Bcr-abl 

transcript has been detected in myleloid, erthyroid, and B-cell precursors, indicating a 
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pluripotent hematopoietic stem cell origin (Ruibao Ren, 2005).  The mechanism that 

induces chromosomal rearrangement is unknown, and the Bcr-abl transcript can be 

detected in up to 30% of healthy patients.  No hereditary or genetic predisposition has yet 

been determined (Garcia-Manero et al., 2003). 

Disease Phases 

 CML is marked by three phases: chronic, accelerated, and blast.  The most common 

presentation of chronic phase CML (CP-CML) is an increased leukocyte count 

(leukocytosis), with 50-70% of patients having a ten-fold increase above normal.  In this 

stage, Philadelphia chromosome-positive cells (Ph+) are dependent on the activity of Bcr-

abl for proliferation and survival.  Patients typically progress from chronic phase to 

accelerated phase within 3-5 years (Cortes, Talpaz, & Kantarjian, 1996; Garcia-Manero et 

al., 2003). 

 Accelerated phase CML (AP-CML) is distinguished by the appearance of 

undifferentiated leukocytes (blast cells) in circulation.  When the proportion of circulating 

blast cells exceeds 30% or hematopoiesis is observed outside the bone marrow 

(extramedullary hematopoiesis), the disease has progressed to the blast phase (BP-CML) 

(Ruibao Ren, 2005).  Acquired mutations in the progression from chronic phase to 

accelerated and blast phase relieve the dependence on Bcr-abl activity (Garcia-Manero et 

al., 2003).  Prognosis from BP-CML is typically poor, with median survival of less than 

1.5 years (Ruibao Ren, 2005). 
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Figure 7.  Domain architecture of Src family kinases, Abl family kinases, and oncogenic 

Abl1 fusion proteins.   

Src and Abl family kinases share a conserved SH3-SH2-kinase domain cassette.  Abl 

family proteins contain a long C-terminal region with actin and DNA-binding 

domains.  Abl1 has three nuclear localization signals and one nuclear export 

signal, facilitating cytoplasmic and nuclear localization.  In contrast, Abl2 lacks 

nuclear localization and export signals as well as DNA-binding domains, 

reflecting its localization in the peripheral cytoplasm.  The oncogenic Bcr-abl1 

fusion protein lacks the cap region and N-terminal myristoylation of c-Abl1.  The 

BCR portion of the fusion protein contains a dimerization domain, leading to 

trans-activation and constitutive activity of the fusion protein. 
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Treatment and Evaluation of CML  

Before the development of specific Bcr-abl inhibitors, allogenic stem cell 

transplantation was the most successful and only curative therapy, with 10-year survival 

rates of 30-60% (Garcia-Manero et al., 2003).  However, the lack of suitable donors and 

age of patients (diagnosis is most common in age 50-60) made this treatment unavailable 

for most patients (Ruibao Ren, 2005).  Disease progression at the time of treatment is 

negatively correlated with long-term survival; disease-free survival at 5 years is 40-80% in 

chronic phase recipients but only 5-20% in blast phase recipients (Garcia-Manero et al., 

2003). 

Evaluation of treatment success is measured at the hematological, cytogenetic, and 

molecular levels.  Hematological response is defined as the normalization of leukocyte 

counts.  Cytogenetic response, the observation of the Ph+ chromosome by traditional 

methods or in situ hybridization, can be major (<35% of Ph+ cells) or complete (no 

observable Ph+ cells) (Cortes et al., 1996).  Molecular response, the most sensitive method, 

is assayed by PCR amplification of the Bcr-abl transcript (Marcucci et al., 2003).   

With the approval of imatinib mesylate (Gleevec) in 2001, long-term progression-

free survival of patients was drastically increased.  In Phase III Clinical Trials, for newly 

diagnosed chronic-phase CML patients the rate of progression-free survival at 18 months 

was 92%, compared to 73% in the contemporary standard of care, interferon-α/Ara-C.  

Furthermore, complete cytogenetic response was increased nearly five-fold, from 14% in 

interferon-α/Ara-C to 76% in imatinib treatment (Santos, Kantarjian, Quintas-Cardama, & 

Cortes, 2011).  Previous studies established a strong correlation between complete 

cytogenetic response and long-term survival rates (Cortes et al., 1996; Garcia-Manero et 

al., 2003). 
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Figure 8.  Structures of the five FDA-approved Bcr-abl inhibitors in complex with the 

Abl1 kinase domain.   

Imatinib, nilotinib, and ponatinib are type 2 inhibitors,  binding the kinase domain in the 

‘DFG’ out, closed activation loop conformation.  Bosutinib, a type 2 inhibitor, 

binds the Abl kinase domain in the ‘DFG’ out inactive conformation, but with the 

activation loop in the open state.  Dasatinib, a second-generation type 1 inhibitor, 

binds the Abl1 kinase domain in the fully active conformation, with the ‘DFG’ 

motif facing inwards (able to bind Mg2+) and the activation loop open. 
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PROTEIN KINASE INHIBITORS 

 

 As of October 2017, 37 protein kinase inhibitors (PKIs), targeting serine/threonine 

and tyrosine kinases, have been approved by the U.S. FDA.  With the exceptions of 

ruxolitinib and nintedinib for fibroses and tofacitinib for rheumatoid arthritis, approved 

PKIs are primarily prescribed for treatment of cancers.  PKIs are classified into major 

types, based on their mode of inhibition, binding site, reversibility, and the conformation 

of the enzymes in the bound state.  Most approved PKIs are type 1 or 2, which bind 

competitively in the ATP pocket of the catalytic site.  Type 1 inhibitors bind the active 

conformation of the enzyme, whereas type 2 inhibitors bind the inactive conformation.  

Imatinib (Gleevec), as discussed above, is a type 2 competitive inhibitor.  Type 3 and 4 

inhibitors, in contrast, do not bind to the ATP binding pocket.  Type 3 inhibitors are 

allosteric inhibitors which bind next to the ATP-binding site either uncompetitively or non-

competitively with respect to ATP.  Type 4 inhibitors, like type 3, are allosteric, but bind 

distal to the catalytic site.  GNF-2, for example, is a lead molecule Bcr-abl inhibitor which 

binds to the myristoylation pocket in the alpha-helical bundle of the kinase C-terminal lobe, 

stabilizing the inactive conformation.  Finally, irreversible inhibitors of EGFR (afatinib) 

and BTK (ibrutinib), which covalently bond to a surface cysteine next to the ATP-binding 

pocket, are type 6 inhibitors (Ponader et al., 2012; Roskoski, 2016). 

 Of the 37 FDA-approved PKIs, 25 are type 1 or type 2 inhibitors (Roskoski, 2016).  

The high degree of conservation of the ATP-binding pocket across kinase domains has 

presented an obstacle in the development of targeted therapeutics which inhibit a narrow 
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spectrum of target kinases.  Due to the high structural homology between kinases in their 

active conformation compared to the relatively diverse inactive conformations, it is 

generally thought that type 2 kinase inhibitors display a narrower range of specificity.  

Imatinib, for instance, is remarkably specific, binding only to its intended target, Bcr-abl, 

and the receptor tyrosine kinases PDGFR A/B, c-KIT, DDR1/2, and the oxidoreductase 

NQO2 (Hantschel, 2012). 

Bcr-abl Inhibitors: Mode of Action 

 Chronic myelogenous leukemia (CML) presents an optimal situation for targeted 

molecular therapy.  The Bcr-abl oncogene is both necessary and sufficient for 

transformation and is generally absent from healthy tissues and healthy individuals.  While 

the c-Abl proto-oncogene is vital to normal cellular signaling and development, clinically-

relevant serum concentrations of Bcr-abl inhibitors are not toxic to cells which are not 

dependent on Bcr-abl for survival (Marcucci et al., 2003).  Inhibitor treatment of Bcr-abl+ 

cells in vitro not only blocks proliferative pathways, but actively induces cell death.  

Annexin V and Caspase-3 staining reveals that Bcr-abl inhibition activates apoptotic 

pathways (Gambacorti-Passerini et al., 2003).  These results indicate that continuous 

inhibition of Bcr-abl activity is not necessary to achieve patient response, but rather that 

transient pulses of high-potency inhibitors are sufficient to initiate programmed cell death 

(N. P. Shah et al., 2008). 

Inhibitor Resistance 

 As discussed above, mutations in the tyrosine kinase domain of Bcr-abl are the 

major cause of patient non-response or relapse during imatinib treatment (Fava, Rege-
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Cambrin, & Saglio, 2015; Santos et al., 2011).  Resistance mutations in Bcr-abl cluster, as 

expected, in kinase domain near the ATP/imatinib binding site.  The glycine-rich loop 

between the first and second beta-strands contains four of the sites most commonly mutated 

in imatinib-resistant patients, G250E, Q252H, Y253H/F, and E255K/V.  The so-called 

gatekeeper residue, T315, forms a hydrogen bond to the aminopyrimidine of imatinib.  

Mutation to isoleucine (T315I) eliminates the threonine hydrogen bond donor, producing 

the most potent and frequently observed imatinib-resistance mutation.  Additional 

mutations are present in the activation loop (H396R) and in residues in direct contact with 

imatinib (F317L, M351T, E355G, F359V) as well as a distal mutation, M244V (Hantschel, 

2012; N. P. Shah et al., 2002; Simona Soverini et al., 2011). 

Second-Generation Bcr-abl Inhibitors 

 Due to the incidence of mutations arising in up to one third of imatinib-treated CML 

patients, researchers developed second-generation inhibitors with the goal of overcoming 

resistance mutations.  Nilotinib, a rationally-designed derivative of imatinib which 

maintains the 2-aminopyrimidine core, is ten-fold more potent than imatinib.  Additionally, 

all the most commonly observed imatinib-resistance mutations, with the exception of the 

potent T315I mutation, are effectively inhibited by nilotinib (Weisberg et al., 2006).  

Dasatinib, a type 1 inhibitor, is even more potent, inhibiting Bcr-abl at 10-fold lower 

concentration than nilotinib and 100-fold lower concentration than imatinib.  Like nilotinib, 

dasatinib inhibits all common imatinib-resistant mutations except for T315I in cell-based 

assays (N. P. Shah et al., 2004).  However, patients treated with nilotinib or dasatinib, either 
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as first-line treatment or as salvage therapy, may develop additional inhibitor-resistant 

kinase domain mutations (S. Soverini et al., 2013). 

Figure 9.  Structures of the five FDA-approved Bcr-abl inhibitors.   

Imatinib and its second-generation derivative nilotinib (top) are based on a 2-

aminopyrimidine lead molecule.  Bosutinib, a second-generation inhibitor, binds a 

unique conformation (see figure 8) with moderate affinity (112 nM).  Dasatinib and 

ponatinib are highly potent inhibitors, with IC50s in the low nanomolar range. 
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Third-Generation Bcr-abl Inhibitors and Beyond 

 Ponatinib, a third-generation Bcr-abl inhibitor (Figure 9), was developed to treat all 

known kinase domain mutations conferring first- and second-line inhibitor resistance (T. 

O'Hare et al., 2009).  Due to the incidence and severity of side effects, ponatinib is currently 

prescribed only to patients who have failed at least two Bcr-abl inhibitors or those who 

have tested positive for the T315I mutation (Zabriskie et al., 2014).  In this treatment 

regime, nearly all patients harbor Bcr-abl kinase domain mutations at the beginning of 

treatment (S. Soverini et al., 2013).  As a result, secondary mutations in the kinase domain 

(compound mutations) have arisen or been enriched in ponatinib-treated patients 

(Khorashad et al., 2013).  In vitro analysis of these compound mutations has indeed shown 

that they confer resistance to ponatinib (Zabriskie et al., 2014).  The importance and 

frequency of these compound mutations in disease progression remains to be established 

(Deininger et al., 2016). 

 While the safety and efficacy of ponatinib as a first-line treatment for newly 

diagnosed CML patients is still under investigation, its potency against all known single 

mutations is promising for the future of kinase inhibitor therapy.  It is yet unknown if novel 

single nucleotide substitutions may confer ponatinib resistance, but its potency against 

previously described mutations indicates that one can successfully screen for drugs with a 

narrow profile of resistance mutations.  In chapter 3, we will present a novel yeast-based 

assay for the rapid and efficient screening of inhibitor resistance mutations to aid in the 

development of such broadly-potent tyrosine kinase inhibitors. 
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 Currently, all five FDA-approved Bcr-abl inhibitors are competitive inhibitors of 

ATP binding.  However, non-ATP competitive type 4 inhibitors have shown promise in 

treating inhibitor-resistant mutations (Wylie et al., 2017).  The lead molecule GNF-2 and 

its derivative ABL001 (Figure 11) bind to the myristoylation pocket in the C-terminal lobe 

of the kinase domain.  N-terminal myristoylation is a conserved feature of Src family 

kinases and isoforms b of Abl family kinases.  Myristoyl binding contributes to the 

stabilization of the autoinhibited conformation of Src and Abl family kinases.  GNF-2 and 

ABL001 occupy the binding pocket in Bcr-abl, which does not have an N-terminal 

myristoylation, allowing the enzyme to adopt the autoinhibited conformation.  The promise 

of this molecule is not just in its potency to type 1 and 2 inhibitor resistant mutation, but as 

a combination therapeutic.  Because the myristoylation- and the ATP-binding pockets are 

on different areas of the kinase domain, it is possible that single mutations will be unable 

to overcome inhibition by type 4 and type 1 or 2 inhibitors simultaneously.  Phase I clinical 

trials with ABL001 therapy alone and in combination with imatinib, nilotinib, and dasatinib 

are currently underway.  In vitro studies have already isolated single mutations (A337V) 

which confer resistance to ABL001, but this mutation alone is sensitive to the second-

generation inhibitor nilotinib.  Likewise, the potent T315I mutation, which confers 

resistance to nilotinib, is inhibited by ABL001 (Wylie et al., 2017).  Thus, the likelihood 

of a single nucleotide mutation conferring resistance may be significantly reduced. 

EGFR and HER2 Inhibitors 

 The ErbB family of receptor tyrosine kinases includes the well-characterized 

oncogenes EGFR (ErbB1/HER1) and HER2 (ErbB2/Neu).  Overexpression of these 
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receptors is observed in a variety of solid tumors, including glioblastoma, non-small cell 

lung cancer, breast, colorectal, bladder, prostate, and ovarian cancers.  Additionally, gain-

of-function mutations within the activation loop of both EGFR and HER2 have been 

observed to drive oncogenesis through ligand- and dimerization-independent tyrosine 

kinase activity.  These gain-of-function mutations typically occur in the autoinhibitory 

activation loop of the kinase (EGFR L858R, HER2 H878Y).  A variety of first- and second-

generation inhibitors have been developed to treat ErbB-dependent malignancies (Hynes 

& Lane, 2005).  

First-generation inhibitors gefitinib and erlotinib are type 1 inhibitors of EGFR 

(Roskoski, 2016).  They are approved for use in non-small cell lung cancer and breast 

cancer (Hynes & Lane, 2005; Ueno & Zhang, 2011; X. Zhang et al., 2015).  As is the case 

with imatinib treatment of CML, patients are observed to develop resistance mediated by 

mutations in the ATP-binding pocket.  The most common EGFR inhibitor-resistant 

mutation, accounting for over half of observed cases of resistance, is the T790M mutation, 

the equivalent of the T315I ‘gatekeeper’ residue in inhibitor-resistant Bcr-abl (Paez et al., 

2004).  The analogous HER2 resistant mutation, T798M, is observed as well, but at a much 

lower frequency than the EGFR T790M mutation.  The mechanism of EGFR T790M 

resistance is controversial.  While the accepted role of the Bcr-abl T315I mutation is steric 

hindrance and elimination of a hydrogen bond donor, recent work suggests that the EGFR 

T790M mutation does not affect drug binding.  Rather, it increases the kinase domain 

affinity for ATP (Yun et al., 2008).  Additional modes of EGFR-inhibitor resistance include 
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amplification of other ErbB family receptors, including ErbB3, which accounts for 20% of 

erlotinib-resistant cases (L. Zhang et al., 2014). 

 

 

Figure 10.  FDA-approved non-covalent inhibitors of EGFR and FLT3. 

(A) Gefitinib and erlotinib, inhibitors of the ErbB family of receptor tyrosine kinases, 

share a similar structure. (B) FLT3 inhibitors include the type 2 inhibitor 

sorafenib and the atypical inhibitor midostaurin, whose mode of inhibition is not 

yet known. 
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Development of second-generation EGFR/HER2 inhibitors, like those for Bcr-abl, was 

focused on potency against the most commonly observed kinase domain resistance 

mutations.  Afatinib, a covalent inhibitor of constitutively active EGFR L858M and the 

resistant T790M mutant, is a type 6 PKI (Ribeiro Gomes & Cruz, 2015).  The irreversible 

inhibition is achieved by a thiol-ene reaction (Michael addition) with the surface-exposed 

cysteine-797, which is conserved among all four human ErbB receptor tyrosine kinases 

(Engel, Lategahn, & Rauh, 2016).  Because all ErbB members are inhibited by afatinib and 

have been implicated in progression of a variety of solid tumors, clinical trials of afatinib 

to treat non-EGFR-dependent cancers are underway (Modjtahedi, Cho, Michel, & Solca, 

2014).  Unsurprisingly, resistance to afatinib can be mediated by the conservative 

substitution of serine for the reactive cysteine (C797S).  In addition, the IC50 of afatinib for 

the T790M mutation is approximately 20-fold greater than for the parental constitutively 

active mutation (L858M) (Kobayashi et al., 2017).  Another covalent EGFR inhibitor, 

dacomitinib, has recently concluded Phase III clinical trials (Wu et al., 2017). 

FLT3 Inhibitors 

 

 In approximately 30% of cases of acute myelogenous leukemia (AML), a 

constitutively active FLT3, a non-receptor tyrosine kinase, drives disease progression.  

Constitutive activity is driven by an internal tandem duplication of the juxtamembrane 

region, the region between the cell membrane and the intracellular kinase domain, or by 
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point mutations which alleviate the need for ligand-dependent activation (Levis, 2013).  

Sorafenib, a type 2 inhibitor (binding to an inactive kinase conformation), is an FDA-

approved treatment for AML with activating mutations in FLT3.  Inhibitor-resistant 

mutations have been observed in patients, frequently occurring at analogous sites to known 

EGFR and Bcr-abl mutations.  These include the F691L mutation, homologous to the 

T315I and T790M ‘gatekeeper’ mutations in Bcr-abl and EGFR, respectively, and 

activation loop mutations Y842C and D835Y/H.  Other FLT3 inhibitors, including 

midostaurin and quizartinib, have also been observed to elicit resistance mutations, both in 

patients and in cell culture assays (Chen & Fu, 2011).  The rapid development of inhibitor 

resistance, leading to disease relapse, via kinase domain mutations further underscores the 

need for methods to predict these mutations during drug development. 

ALK Inhibitors 

 Mutations in the anaplastic lymphoma kinase (ALK) gene, which encodes a 

receptor tyrosine kinase, have been identified as a driver of a significant subset of non-

small cell lung cancers (NSCLC).  A significant portion of these mutations involve a 

chromosomal inversion, producing an in-frame fusion gene with echinoderm microtubule-

associated protein-like 4 gene (EML4-ALK).  As with the Bcr-abl fusion protein in CML, 

the EML4 fusion gene is constitutively active and necessary for cellular transformation.  

This fusion protein oncogene represents approximately 5% of cases of non-small cell lung 

cancer, itself the leading cause of cancer-related death worldwide (Soda et al., 2007).  

Advanced-stage NSCLC patients are responsive to treatment with the type 1 PKI crizotinib.  

However, as is the case with so many promising PKI therapies, resistance invariably arises 
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in a proportion of patients, leading to disease relapse.  Up to 30% of treated patients harbor 

at least one kinase domain mutation conferring resistance.  The most common include the 

gatekeeper mutation, in this case L1196M, and G1269A, in the activation loop (Katayama 

et al., 2012).  The next-generation inhibitor ceritinib, approved in 2014 for treatment of 

ALK+ NSCLC, is effective in treating many of the known resistant mutations, but 

mutations at residues F1174 and G1202 were observed in resistant patients in Phase II 

clinical trials and validated to be resistant in cell culture assays (Dong, Fernandez-Salas, 

Li, & Wang, 2016). There are currently at least eight third-generation ALK inhibitors in 

development, but data on the emergence of resistance has not yet been made available. 

BTK Inhibitors 

 Bruton’s tyrosine kinase (BTK) is a cytoplasmic, non-receptor tyrosine kinase 

which mediates cellular signaling from surface receptors, most notably in the 

hematopoietic cell lineages, including the B-cell antigen receptor (BCR, not to be confused 

with breakpoint-cluster region of Bcr-abl), chemokine receptors, and toll-like receptors.  

Given its role in B-cell development of the immune system, BTK inhibitors have been 

developed to treat various lymphomas, leukemias, and myelomas, as well as autoimmune 

diseases.  The first-in-class BTK inhibitor, ibrutinib, was approved for the treatment of 

mantle cell lymphoma, chronic lymphocytic leukemia, and non-Hodgkin lymphoma.  

Ibrutinib is a type 6 (covalent) inhibitor which forms a covalent bond to cysteine-488 of 

BTK, near the ATP-binding pocket.  This cysteine is conserved across the Tec family 

NRTKs (to which BTK belongs) and the ErbB RTK family (discussed above).  Mutational 

scanning of the C488 nucleophile has validated that the patient-derived C488S mutation, 
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homologous to the afatinib-resistant EGFR C797S mutation, is resistant to ibrutinib in vitro 

(Woyach et al., 2014).  Additional resistant mutations include the ‘gatekeeper’ mutation, 

T474I/S, and L528W (Hamasy et al., 2017). 
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Figure 11. Type 4 Bcr-abl inhibitors, covalent inhibitors, and ALK inhibitors.   

(A) GNF-2, lead molecule inhibitor of Bcr-abl, binds to the myristoyl-binding pocket in 

the C-lobe of the kinase domain, stabilizing the inactive conformation of the 

enzyme.  ABL001 500-fold more potent than GNF-2.  Clinical trials of ABL001 

alone and in combination with ATP-competitive Bcr-abl inhibitors is currently 

underway. (B) Afatinib and ibrutinib, covalent inhibitors of EGFR/HER2 and 

ALK, respectively, react with a surface exposed cysteine via Michael addition.  

The C=C electron donor is highlighted in red.  Mutation of the reactive cysteine to 

serine confers resistance. (C) FDA-approved ALK inhibitors, are effective in the 

treatment of ALK+ non-small cell lung cancer, but susceptible to resistance 

mutations. 

 

The Cost of Failure 

 The cycle of development, clinical approval, and drug failure is enormously costly, 

both in its burden on the health system and clinical outcomes.  The wholesale cost of 

tyrosine kinase inhibitors, despite their overall success as therapeutics, has long been a 

source of controversy (CML, 2013).  While pharmaceutical companies justify these prices, 

typically in the range of $50,000 - $150,000 per year, as necessary to recoup the cost of 

development, the continued need for the development of drugs to overcome acquired 

resistance and the supplanting of existing drugs with improved iterations means that by the 

time a drug is no longer patent-protected, an improved first-line treatment has been 

developed, whose costs in turn must be recouped (Padula et al., 2016).  Clearly, the 

development of kinase inhibitors must include explicit considerations of the ability of 

candidate drugs to overcome all potential resistance mutations.  Such a situation would not 

only benefit patients, whose costs would decrease when an ideal drug is available 

generically, but also the pharmaceutical company, whose mutation-resistant drug would 

not risk being supplanted by a competitor’s successive generation of inhibitor.  



 40 

THE YESS SYSTEM 

 The yeast endoplasmic sequestration screening (YESS) is a system we have 

developed for the directed evolution of a variety of protein-modifying enzymes, including 

proteases, sortases, and tyrosine kinases (Yi et al., 2013).  The YESS system overcomes 

limitations of previous directed evolution methods by combining a eukaryotic expression 

platform (Saccharomyces cerevisiae) with the sequestration of potentially toxic enzymes 

within the endoplasmic reticulum (ER).  Using this method, we have previously reported 

the directed evolution of TEV protease to cleave a novel substrate, increased catalytic 

activity of bacterial sortases, and the activity of human tyrosine kinases.  Additionally, our 

group has utilized this system to assay the substrate specificity of native and evolved TEV 

protease (Li et al., 2017).  In the following chapters, we apply the YESS sequestration 

screening to study the substrate specificity of Abl and Src family kinases as well as the 

development of a platform for the discovery of clinically-relevant kinase inhibitor resistant 

mutations. 

System Overview 

 Directed evolution by yeast surface display of was first reported by the Wittrup 

group in 1997 (Boder & Wittrup, 1997).  The YESS system builds on this system by 

evolving not (only) the surface-displayed peptide, but also a co-expressed protein-

modifying enzyme (Li et al., 2017; Yi et al., 2013).  Surface display of the enzyme substrate 

is achieved by expression of the substrate, along with epitope tags, as a fusion protein with 

the endogenous yeast mating factor a-agglutinin-binding subunit 2 (Aga2).  Both the 

enzyme of interest and its protein substrate fusion are under control of the bidirectional 
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Gal1/Gal10 inducible promoter.  Endoplasmic reticulum-targeting and -retention signals at 

the N- and C-termini of the enzyme and substrate ensure sustained co-localization and 

sequestration within the yeast ER.  The Aga2-substrate fusion is covalently attached to the 

surface glycoprotein Aga1 via disulfide bonds.  The complex is trafficked to the yeast cell 

wall, where Aga1 is covalently attached to beta-glucan polysaccharides.  Finally, post-

translational modifications are probed for with fluorophore-labeled antibodies and 

populations may be screened by fluorescence-activated cell sorting (FACS) (Figure 13). 

Tyrosine Kinases in YESS 

 

 Saccharomyces cerevisiae lacks endogenous tyrosine kinases, making it an ideal 

system to study the activity of an individual exogenously expressed tyrosine kinase.  

Furthermore, while cytosolic expression of human tyrosine kinases Abl1 and Src has been 

shown to be toxic in both E. coli and S. cerevisiae, we have not observed toxicity when 

expressing and sequestering these enzymes to the yeast ER.  In Figure 14, the activity of 

Abl1, Src, and Lyn kinase domains towards in the YESS system is shown.  Of the four 

kinases tested for activity in the YESS system to date, just one had no observable activity 

(FYN, data not shown). 

 Another advantage of the YESS system is that both the enzyme and its substrate 

are genetically encoded, allowing for directed evolution of the substrate, the enzyme, or 

both.  In the case of TEV protease, this insight allowed for the evolution of the enzyme 

towards cleavage of a new substrate and the validation of altered specificity within the 

same system.  In the following chapters, we will discuss the application of both these 
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aspects of the YESS system to human tyrosine kinases.  In chapter two, we present the 

results of a random peptide library screen for activity by Abl1, Src, and Lyn kinase 

domains.  By combining saturation mutagenesis and high-throughput next generation 

sequencing of phosphorylated substrates, we were able to build a predictive model which 

reveals the context-dependence of kinase substrate specificity.  Then, in chapter three, we 

apply the YESS kinase system to the directed evolution of kinase domain activity in the 

presence of FDA-approved inhibitors.  Our results not only recapitulate mutations from 

inhibitor-resistant CML patients, but produce a comprehensive profile of resistance 

mutations, allowing for useful comparisons between inhibitors. 
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Chapter 2: Kinase Substrate Profiling in YESS 

 Tyrosine kinases play a central role in nearly every cellular process, including 

proliferation, differentiation, cell survival, and metabolism (Hubbard & Till, 2000).  It is 

therefore unsurprising that aberrant activity of tyrosine kinases is a hallmark of a wide 

range of malignancies (Scheijen & Griffin, 2002).  Targeted kinase inhibitors, including 

the breakthrough drug imatinib, are a rapidly expanding class of cancer therapeutics 

(Gough, 2013).  Choosing a kinase as a therapeutic target requires understanding it’s role 

not only in pathogenesis, but also in normal physiology, to avoid potentially deleterious 

side effects (Turk, 2008).  At the most basic level, kinase pathways are determined by the 

specificity of a kinase for its substrate.  Discovering cellular substrates for kinases has 

therefore been an active area of research since the description of the first human tyrosine 

kinases nearly 40 years ago. 

METHODS FOR IN VIVO SUBSTRATE DISCOVERY 

Among the thousands of protein species within a typical human cell are hundreds 

of thousands of tyrosine residues.  To ensure the proper outcome for a given signaling 

input, tyrosine kinases must display exquisite substrate specificity (Ubersax & Ferrell Jr, 

2007).  This specificity is achieved at a variety of levels, from spatial and temporal 

regulation, to protein-protein interactions and regulation, down to the specificity of the 

kinase domain itself (Zhu, Liu, & Shaw, 2005).  While the discovery of kinase substrates 

may on its surface seems trivial, the presence of dozens of tyrosine kinases within the same 
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cell, many of which are active in the same pathways, confounds the results of simple gene 

knockouts or chemical inhibition assays (Turk, 2008).  This has led researchers to develop 

a variety of techniques to isolate the activity of a kinase-of-interest and thus better 

understand signaling pathways. 

Phosphoproteomics for Kinase Substrate Discovery 

Novel kinase substrates have traditionally been identified by assaying for 

phosphorylated proteins isolated from cell extracts loaded with radiolabeled ATP.  Cells 

may be stimulated with growth factors to induce the activity of a kinase of interest, or 

treated with a kinase-specific inhibitor (Elphick, Lee, Gouverneur, & Mann, 2007).  

Biochemical purification of the radiolabeled phosphoproteins is then followed by 

identification by any of a variety of methods, including mass spectrometry and Edman 

degradation.  While this method has been useful in identifying novel substrates, it lacks 

sufficient specificity to definitively identify a kinase-substrate pair (Turk, 2008).  First, the 

method of producing differential phosphorylation between treated and untreated cells often 

affects multiple kinases directly.  Tyrosine kinase inhibitors, for instance, are rarely, if ever, 

specific for just one tyrosine kinase (Roskoski, 2016).  Furthermore, even in an ideal case 

where the activity of one tyrosine kinase is induced or inhibited directly, the presence of 

other tyrosine kinases downstream of the kinase of interest in a signaling cascade will 

confound results by the presence of that kinase’s substrates in the group of differentially 

phosphorylated peptides (Turk, 2008).  Finally, traditional phosphoproteomics methods 

suffer from a lack of sensitivity, due to low abundance of cellular substrates and 
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substoichiometric phosphorylation of substrates (Elphick et al., 2007).  In vitro 

phosphorylation of a candidate substrate, either purified or whole-cell extracts followed by 

western-blotting, has been a commonly used method to validate candidate substrates 

identified from in vivo assays.  However, this method ignores the cellular context of kinase-

substrate interactions, including protein-protein interactions and signaling complex 

formation, as well as typically utilizing substrate concentrations well above physiological 

levels.  To overcome these limitations, researchers have devised alternative in vitro and in 

vivo methods to study the activity of individual kinases. 

ATP Analogs  

The major limitation in determining specific kinase-substrate reactions is the fact 

that the reaction product, phosphotyrosine, is the same for each kinase-substrate pair.   In 

order to study the activity of just one kinase in a cell extract, the Shokat lab developed a 

series of analog-sensitive (AS) mutants, which are able to accept an ATP-analog which 

cannot serve as a substrate for endogenous kinases (Knight & Shokat, 2005).  In many 

cases, the ‘gatekeeper’ residue (T315 in Abl1b), can be mutated to glycine or alanine while 

preserving kinase activity.  This mutation allows the kinase to accept an ATP analog with 

a bulky moiety added at the adenine N6 position.  When the AS mutant kinase and 

radiolabeled ATP analog are added to the lysate, all radiolabeled proteins will be direct 

substrates of the AS mutant (Elphick et al., 2007).  However, without a method to 

selectively purify the phosphorylated substrates, this method suffers from the same lack of 

sensitivity as traditional phosphoproteomics. 
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 It has been known since the early 1990s that kinases can utilize a thiophosphate-

ATP analog (ATPγS) as a substrate.  This method offers two advantages over normal ATP.  

First, the thiophosphate group cannot be used as a substrate by cellular phosphatases, 

increasing the proportion of substrate which is phosphorylated.  Second, the thiophosphate 

group can act as a chemical ‘handle’ for subsequent purification, allowing for an 

enrichment of kinase substrates and decreasing the limit of detection (Elphick et al., 2007).  

However, it still suffers from a lack of specificity for which kinase is responsible for the 

phosphorylation.  The Shokat lab overcame this limitation by combining this method with 

their N6-substituted ATP-accepting kinase mutants.  N6-substituted ATPγS is not only a 

specific substrate for a ‘gatekeeper’ mutated AS kinase, but marks its direct substrates with 

a chemical tag, which can be used for both identification and enrichment.  By combining 

these methods, the Shokat lab was able to identify substrates for a wide variety of 

serine/threonine and tyrosine kinases, including Src, ERK2, MAPK, and Abl (Allen et al., 

2007). 

However, this method is not without its limitations.  First, the negatively-charged 

ATP analogs are cell impermeable, limiting their utility to cell extracts and in vitro assays.  

Second, not all kinases are amenable to mutation to accept a the bulky N6-substituted ATP 

(Elphick et al., 2007).  Mutation of the ‘gatekeeper’ residue in some kinase leads to a loss 

of activity.  Even in the cases where the AS mutant is active, the catalytic activity and 

substrate specificity may be different than the wild-type kinase domain (Garske, Peters, 

Cortesi, Perez, & Shokat, 2011). For instance, it has been noted that the Bcr-abl 

‘gatekeeper’ (T315I) mutant, common in imatinib-resistant CML patients, has altered 
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substrate specificity compared to the wild-type Bcr-abl (Griswold et al., 2006).  Therefore, 

mutations made to this residue in order to study substrate specificity may in fact change 

the specificity of the kinase. 

STRUCTURAL AND EVOLUTIONARY BASIS FOR KINASE SUBSTRATE SPECIFICITY 

 While nearly all eukaryotic serine, threonine, and tyrosine kinases share a 

conserved protein fold, evolution of non-catalytic residues surrounding the peptide 

substrate binding site has led to distinct specificities within the protein kinase superfamily 

(Creixell et al., 2015).  The residues in the kinase domain which are responsible for 

substrate specificity have been dubbed determinants of specificity (DoS), and large-scale 

in vitro and computational methods have been utilized to identify these residues (Ia et al., 

2011).  While the DoS cluster, as expected, near the substrate binding site in C-lobe of the 

kinase domain and in the cleft between the N- and C-lobes, residues distal to the binding 

site have also been determined to be important for substrate specificity (Figure 1).  These 

allosteric interactions are thought to function through a network of interactions, with other 

DoS or conserved residues, to affect the ability of the kinase to bind a substrate.  

Determination of these residues is made by phylogenetic comparisons of kinases of interest 

and in vitro peptide specificity data (Creixell et al., 2015).  Therefore, the importance of a 

given residue in this model is determined by its conservation across the kinases of interest 

and the diversity of accepted substrates among these kinases. 
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Figure 1. Location of the Specificity Determining Residues of Akt/PKB Kinase 

Phylogenetic comparison of kinase domains and substrates in the KINspect model 

determines residues important for substrate specificity (cyan).  Red arrows indicate 

“channels” of important residues, mediating distal interactions.  PDB ID: 1O6K.  

Reproduced under Creative Commons Attribution License.(Creixell et al., 2015) 

MOTIF-BASED SEARCHES FOR IDENTIFYING NOVEL SUBSTRATES   

Due to the difficulty in identifying novel kinase substrates from in vivo assays, 

researchers have attempted to predict novel kinase substrates using motifs constructed from 

known kinase substrates (Turk, 2008).  These motifs can range from simple to complex 

representations, and may use data from hundreds to thousands of in vivo substrates, or 

utilize the data from millions of substrates screened in vitro, or both.  Depending on the 



 49 

complexity of the model required to accurately predict substrates, these searches may 

combine kinase domain specificity data with other large data sets, including co-

localization, phosphoproteomics, and predicted interactions via protein-protein interaction 

domains, such as SH2, PTB, or SH3 domains (Horn et al., 2014; Linding et al., 2007; Miller 

et al., 2008).    

In Vitro Determination of Substrate Specificity 

 A wide variety of methods have been devised to determine the intrinsic specificity 

of kinase domains.  All of these methods rely on exogenous expression and purification of 

a tyrosine kinase domain, from bacterial or eukaryotic cells.  They vary widely in the size 

of the peptide library which may be screened and the method for and information obtained 

from subsequent sequencing, if applicable.  Tyrosine kinases generally have a broader (or 

complex) specificity then serine/threonine kinases, so determining specificity with 

predictive detail requires the screening of very large libraries (Bose, Holbert, Pickin, & 

Cole, 2006). 

Synthetic Peptide Arrays 

 In vitro assays for determining kinase substrate specificity have been developed 

using peptide libraries both in solution and immobilized on a surface or on beads.  Solution- 

and bead-based reactions with purified kinase are followed by enrichment with phospho-

specific antibodies and mass spectrometry identification of peptides.  Peptide arrays 

immobilized on a solid support are placed in a known order, so that after development with 

a fluorescent or luminescent phosphor-specific antibody (or with radiometry), each spot 
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can be traced to the phosphorylation of a peptide sequence.  Peptide array methods have 

been used to construct motifs for a variety of kinases, allowing researchers to 

computationally scan the proteome to find putative substrates (Ia et al., 2011; Miller et al., 

2008; Turk, 2008).  However, the number of peptide substrates which may be screened in 

such an assay is limited to approximately 200 per array.  Therefore, positional scanning 

libraries, where each peptide represents a single mutation from a parental sequence, are 

amenable to this method, but combinatorial libraries, covering vast amounts of sequence 

space, are much too large to be comprehensively screened with this method. 

Oriented Peptide Libraries 

 Another in vitro approach to generating consensus sequences for kinase substrates 

is the direct sequencing of synthetic peptides after phosphorylation with a purified kinase.  

In this method, billions of random synthetic peptides with a central phosphorylatable 

residue (S/T/Y) are mixed in solution with a purified kinase.  Phosphopeptides are purified 

by liquid chromatography and sequenced by Edman degradation.  Amino acid frequencies 

in each cycle of degradation can be used to construct a consensus sequence.  The advantage 

of this method over peptide arrays is in the massive throughput.  However, unlike peptide 

arrays, the sequences of phosphorylated peptides are never actually known.  Rather, the 

mixture of amino acids which is removed during each cycle is measured.  Therefore, any 

context-dependence in preferred substrate residues is lost during the process of direct 

sequencing (Songyang et al.).  Recent improvements in this method, using a one-bead one-

compound (OBOC) peptide library sequenced by partial Edman degradation and mass 
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spectrometry (PED-MS), wherein the N-termini of some proportion of the peptides is 

chemically capped, allowing for the sequencing of di-peptides, have allowed for the 

detection of covariance of residues in kinase substrates (Trinh, Xiao, & Pei, 2013).  

Phage Display Libraries 

One method that overcomes limitations on library size and complete substrate 

sequence information is phage display of random peptide libraries.  In this method, a 

degenerate combinatorial peptide library, genetically encoded on a phagemid, is translated 

and displayed as a fusion protein with the PIII coat protein of the filamentous M13 

bacteriophage within E. coli.  Each phage-infect E. coli cell produces a unique PIII-

substrate fusion, which is integrated in the viral capsid.  Purified viral supernatants bearing 

the substrates are then incubated with a purified kinase of interest.  Viral particles bearing 

a phosphorylated substrate can then be purified with a phospho-specific antibody.  Re-

infection of E. coli with the enriched viral supernatant is repeated, as desired, until the pool 

of putative kinase substrates is sequenced (Berwick & Tavaré, 2004).  While this method 

offers the advantage of massive libraries and complete sequence information, it suffers 

from its own shortcomings.  In a typical reaction with phage-displayed peptides and 

purified protein kinase, the concentration of a given peptide is in the picomolar range.  

However, Michaelis-Menten constants of known kinase substrates are often in the 

micromolar range (Pinna & Ruzzene, 1996).  Given the co-localization and complex 

formation mediated by protein-protein interactions in signaling pathways, it is likely that 

such stringent assay conditions lead to the elimination of true substrates.  Furthermore, 

published studies using this methods pre-date the advent of high-throughput DNA 

sequencing, so while the diversity of the peptide libraries screened is on the order of 109, 
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the number of substrates sequenced is typically 100 or fewer (Schmitz et al., 1996).  

Because of this, these data sets suffer from the same drawback as consensus motifs 

constructed from in vitro substrates, oriented peptide libraries, and peptide arrays: small 

sample size prevents statistically-significant co-variances between substrate residues.  

 

Representations of Kinase Specificity 

 

 Initial approaches to finding novel kinase substrates utilized a consensus motif 

assembled from known substrates, either from in vivo or in vitro experiments.  A consensus 

motif consists of the most preferred substrates at each position relative to the 

phosphorylated residue (Berwick & Tavaré, 2004; Turk, 2008).  For instance, the 

consensus motif for kinase domain of Src, as constructed from in vitro screening of phage-

displayed peptides, is DXIYEXLP.  Examination of known substrates, however, reveals 

that many Src substrate sequences do not share any residues in common with the consensus 

motif (Schmitz et al., 1996).  Abl1 Tyr-469, a Src phosphorylation site, for instance, has 

the sequence EKVYELMR.  Many other such examples of ‘non-canonical’ substrates have 

led to the hypothesis of ‘preferred’ substrates, which are sufficient for phosphorylation 

alone, and ‘non-preferred’ substrates, which required distal interactions, either elsewhere 

in the catalytic domain or between other domains in the kinase and its substrate (Colicelli, 

2010).  Regardless of the underlying reason for the insufficiencies of consensus sequences, 

it is clear that a more complex model is necessary to explain and predict the 

phosphorylation of novel kinase substrates. 
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 Position weight matrices (PWM), also known as position-specific scoring matrices 

(PSSM), are a more complex method for the representation of a linear motif. (Creixell et 

al., 2015)  The popular sequence logo representation, for instance, is a representation of 

data from a PWM.  This visualization shows the enrichment of residues at each position 

above a background (i.e. a random distribution or amino acid proportions from a genome 

of interest).  More complex versions of this may also represent residues which are 

disfavored, as well as favored, at each position (O'Shea et al., 2013).  In the case of kinases 

specificity, it is known that negative interactions are important for substrate selectivity in 

addition to the more intuitive positive interactions. 

 In addition to the importance of negative determinants of specificity, interactions 

between kinase residues is known to be important in kinase-substrate interactions (O'Shea 

et al., 2013).  In the case of Csk, a serine/threonine kinase, bead-based peptide screening 

and PED-MS sequencing has shown a strong correlation between substrate residues.  This 

covariance, which cannot be represented by a single linear motif or PSW, leads Csk 

substrates to fall into distinct classes, which may be represented by their own linear motifs 

(Thakkar, Wavreille, & Pei, 2006).  The pLogo web tool, an interactive tool for visualizing 

covariances within linear motifs, is particularly useful for discovering and representing 

these submotifs visually (O'Shea et al., 2013).  This data, along with the data presented in 

this chapter, indicates that motif searches and linear representations which do not account 

for covariance between substrate residues fail to capture the true complexity of kinase 

specificity, and therefore produce inaccurate predictions (Miller et al., 2008).  



 54 

Computational Prediction of Kinase Substrates 

As discussed in chapter 1, specificity and fidelity in kinase signaling is a complex 

phenomenon which relies on regulation at many levels.  Localization, protein-protein 

interactions, and catalytic specificity all influence the ability of a kinase to phosphorylate 

a substrate.  As such, various approaches to increasing the predictive power of models by 

adding additional data have been used, including comparison with validated 

phosphorylation sites from global phosphoproteomic studies, secondary structure 

prediction, and evolutionary conservation of the putative phosphorylation motifs.  One 

such example is the NetworKIN and NetPhorest models, which incorporate subcellular 

localization and phylogenetic conservation, respectively, to predict the kinase-specific 

phosphorylation sites (Horn et al., 2014; Linding et al., 2007; Miller et al., 2008; Obenauer, 

Cantley, & Yaffe, 2003).  These models predict not only phosphorylation by specific 

kinases, but also downstream functions mediated by recruitment of SH2-domain-

containing adaptor proteins, as well as activity by cellular phosphatases.  While these multi-

input models, which often employ machine-learning algorithms to improve predictions, are 

significantly better than motif-based searches alone, they still rely on data from in vitro and 

in vivo experiments to produce those predictions.  And, as the authors of those models 

lament, a large portion of the data available on kinase specificity is insufficient to 

accurately describe the specificity of protein kinases which lack strict linear consensus 

motifs.    
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High-Throughput In Vitro Profiling of Kinase Substrates 

In order to fill this deficiency in the available data for kinase substrate prediction, 

we designed a high-throughput yeast-based assay to screen the human kinase domains from 

Abl1, Src, and Lyn for activity against millions of possible peptide substrates.  Subsequent 

sequencing of millions of phosphorylated substrate genes produced a data set large enough 

to measure co-variance between residues.  Frequencies of combinations of residues were 

then used to construct a model based on the conditional probability of each residue 

combination occurring in a hypothetical substrate.  In the case of Abl1 kinase, a simple 

linear motif produced from our data is insufficient to predict substrate phosphorylation, 

supporting the hypothesis that the co-variance between substrate residues observed in our 

sequence data is biologically significant.  To address this, we designed a probabilistic 

model based on the observed frequencies of single, di-, and tri-nucleotides.  Likelihood 

scores, ranging from the maximum to the minimum, calculated from these frequencies 

were then validated by yeast-based and in vitro phosphorylation assays.  To assess the 

predictive power of our model, twenty-eight peptide sequences not detected in our 

sequencing data were accurately predicted for phosphorylation by Abl1 kinase. 

Kinase Substrate Profiling in YESS 

 The YESS system, discussed in detail in Chapter 1, is a yeast-based system for the 

co-expression and evolution of enzyme and substrate libraries.  Briefly, an enzyme and its 

protein substrate are co-expressed in the yeast endoplasmic reticulum, to both ensure co-

localization and minimize toxicity, before the substrate is subsequently displayed on the 

yeast cell wall.  Upon display, fluorophore-labeled antibodies are used to probe each cell 
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for the post-translation modification of interest.  Fluorescence-activated cell sorting 

(FACS) can then be employed to enrich the population as desired.  Previous iterations of 

the YESS system have been used to evolve TEV protease to cleave an orthogonal substrate 

and the subsequent screening of wild-type and evolved TEV against libraries of random 

peptide substrates to confirm altered specificity. 

 In this chapter, we present a version of the YESS system to screen the catalytic 

domains of non-receptor tyrosine kinases Abl1, Src, and Lyn for activity against a 

combinatorial peptide library.  Saccharomyces cerevisiae lacks typical protein tyrosine 

kinase activity, allowing the activity of an exogenously expressed human tyrosine kinase 

to be studied in isolation.  Saturation mutagenesis with degenerate codon primers was used 

to construct a combinatorial substrate library with a central invariant tyrosine (xxYxxx).  

Libraries were constructed such that each cell contained an expression vector with the 

kinase of interest and a single substrate gene sequence.  Enrichment of cells displaying 

phosphorylated substrate was done by fluorescent-activated cell sorting (FACS).  Illumina 

high-throughput sequencing of the unsorted library and each intermediate round allowed 

the comparison of residue frequencies from millions of substrates.  These data were used 

to construct a probabilistic model based on the observed frequencies of individual and 

combinations of residues for the prediction of novel kinase substrates.  In vitro assays with 

purified kinase and peptide validated the predictive power of the model. 
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Figure 2. FACS Enrichment of Abl1 Kinase Substrates.   

The proportion of phosphorylation-positive cells increased from 9% to 70% through four 

rounds of sorting.  Approximately 5 x 107 cells, 1.5-times the theoretical 

library diversity, were screened in the first round.  In subsequent rounds, 

approximately 5 x 106 cells were sorted. 
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MATERIALS AND METHODS 

Vector Construction 

Human ABL1 isoform 1 (237-630) and substrate 

(FKGSTAENAEYLRVAPQSSEF) were cloned into the pESD vector (Yi et al. 2014) 

under the GAL10/GAL1 bidirectional promoter in place of TEV protease and TEV 

substrate, respectively.  Src (AA 270-523) and Lyn (AA 247-550) were cloned into the 

same vector, along with known substrates (Src: EEPLYWSFP; Lyn: EDPIYEFLP).  For 

the library template vector, the TEV protease substrate was replaced with a minimal Abl 

substrate (AAAAAYAAAAA).  Aga2, ER retention signal, and hexahistidine and FLAG 

epitope tags were retained from the pESD vector. 

Substrate Library Construction 

A 230 bp product from pESD-ABL1 corresponding to the substrate was amplified 

in a standard Phusion polymerase (New England BioLabs) reaction to amplify a.  In a 

separate reaction, primers P2 and P3 (supplementary information) were used to amplify a 

413 bp fragment from pESD-ABL1.  Overlap-extension was used to join the two pieces 

into a 630 bp product.  pESD library template vector was digested with EagI, PacI, and 

EcoRI (New England BioLabs) according to manufacturer’s recommendations.  PCR and 

digested products were purified with silica columns followed by drop dialysis on VSWP 

membranes (Millipore).  EBY100 competent cells were prepared as described previously.   
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Yeast Cell Screening 

Cells were grown overnight to saturation in SD-UT medium. SG-UT induction 

cultures were inoculated from overnight cultures to OD = 0.5 and grown at 20 C for 40-48 

hours.  Cells were washed three times with TBST with 0.5% BSA and 1 mM EDTA.  Cells 

were stained with 6.7 ug/ml PY10-Alexa647 anti-phosphotyrosine antibody (Biolegend) 

and 5.7 ug/mL anti-His6-FITC antibody (Thermo Fisher) in TBS+0.5% BSA for 30 

minutes at 4 C at a concentration of 2.5 x 108 cells/mL.  Excess antibody was removed by 

three washes with TBST+BSA+EDTA.  Cells were resuspended to 106 cells/mL for 

sorting.  Double FITC- and Alexa647-positive cells were collected.  This process was 

repeated for a total of 5 rounds of sorting.  

Sequencing and Analysis 

Plasmids were recovered from 107-108 cells using the Yeast Plasmid Miniprep II 

kit (Zymo Research).  Substrate genes were amplified from library plasmid preps with 

primer P1 and L1-6 (supplementary information), which added a unique 5 nucleotide 

barcode for each round of sorting.  Samples were submitted for a full run of 2x250 paired-

end (Abl1) or 1x300 single-end (Src and Lyn) sequencing on the Illumina MiSeq 

instrument.  FastX Quality Filter was used to remove low quality reads (qphred < 25 in 

>5% of bases).  Translate.py (supplementary Information) was used to split samples based 

on sorting round, compile unique DNA sequences, and translate to protein 

sequences.  Rounds 4 and 5 contained a large number of repeated amino acid sequences, 

approximately 10% of the reads.  Because >95% of these amino acid sequences were 
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derived from the same coding DNA sequence, each DNA sequence was counted only once 

to eliminate skewed results from cell growth or PCR bias.  Prior_Probabilities.py was used 

to count individual amino acid frequencies at each position.  Single_Fixed.py 

(supplementary information) counted the frequencies of amino acids occurring together at 

each combination of positions.  Double_Fixed.py (supplementary information) was used 

to count the frequencies of three positions-amino acid combinations.  Finally, Model3U.py 

(supplementary information) was used to calculate the likelihood of an input sequence 

given the observed amino acid frequencies.  This algorithm multiplies the frequencies of 

each amino acid individually, in pairs, and in triplets from the query sequence.  This 

frequency is calculated from the pool after sorting (round 5) and before sorting (round 

0).  Positive scores indicate that the sequence is more likely to be observed in round 5 than 

before sorting, and vice versa. 

In Vitro Phosphorylation Assay 

Synthetic peptides were ordered from GenScipt at >95% purity.  Peptides were 

resuspended to 1 mM in ddH2O or a buffered aqueous alternative, as per manufacturer’s 

recommendations.  100 nM Abl1-GST (ProQinase GmbH) was reacted with 100 uM 

peptide in 50 mM Tris pH 8.0, 5 mM MgCl2, and 500 uM ATP at 30°C for 20 

hours.  Reactions were quenched by incubation in 80°C for 10 minutes.  5 ul of the reaction 

was analyzed by LC-MS (Agilent 6100) with a 5-50% 24 minute acetonitrile gradient, 

followed by positive- and negative-mode ESI. 
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Figure 3.  Correlation Between Residues in Abl1 Substrate Specificity.   

The unsorted library is used as the background to calculate the enrichment of each amino 

acid at each position using the pLogo web application.  Top: the log-odds 

probability of each residue/position in the overall data set.  Middle: When 

position Y-2 is fixed as aspartate, the frequencies of other amino acids 

changes.  Bottom: Further fixing of tryptophan at position Y+3 changes 

proline at position Y-1 from disfavored in the whole data set to a favored 

residue.  Red bars indicate a 95% confidence interval based on a binomial 

distribution. 

RESULTS 

Yeast Library Screening and Sequencing 

Library size was estimated to be 5 x 107 transformants per library, exceeding the 

theoretical library diversity of 3.4 x 106.  In the unsorted Abl library, 9% of cells were pY-

positive (Figure 1).  In the unsorted Src library only 0.4% of cells were pY-positive.  In the 

unsorted Lyn library, just 0.1% of cells were pY-positive (Supplementary Figure 1).  At 

the start of the 5th round of sorting, the percentages of pY-positive cells were 70%, 68%, 

and 39% for Abl, Src, and Lyn libraries, respectively. 

Library Sequencing 

From each sorting population, including the unsorted library, plasmids were 

extracted from  >10 times the estimated population diversity.  For the Abl-screened pool, 

a full MiSeq run resulted in 1.9 x 107 250-bp paired-end reads.  Src and Lyn samples were 

pooled for a full MiSeq run that resulted in 1.3 x 107 300-bp single-end reads.  After quality 

filtering and barcode splitting, each Abl kinase round contained between 9.3 x 106 and 3 x 

106 sequence reads, corresponding to 3.5 x 105 to 8.4 x 105 unique substrate DNA 
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sequences.  Src and Lyn sequencing contained between 3.4 x 105 and 2.0 x 106 sequences 

per round, except Lyn round 2, which contained only 1.7 x 104 DNA 

sequences.  Approximately 40% of Abl sequences were unique; only 3% of Src and Lyn 

substrates were unique. 

Sequence Analysis and Modeling 

Amino acid frequencies at each position were observed to be dependent on 

neighboring residues.  For instance, when position Y-2 is fixed as aspartate (DxYxxx), the 

frequencies of leucine and tyrosine at position Y-1 are nearly double that of the overall 

population (Figure 2B).  Further fixing of tyrosine at positions Y+3 (DxYxxY) shows 

enrichment of proline at Y-1, which is de-enriched in the overall recovered data set (Figure 

2C).  These results indicate that there is correlation between substrate residues, resulting in 

a context dependence for residue preference at a given position. 

To attempt to quantify the interdependence of substrate residues, individual and 

combinations of amino acid frequencies observed were used to calculate log-likelihood 

scores for any given substrate.  These log-likelihood scores ranged from -80 to +55 in the 

case of Abl kinase, where positive scores indicate a that a substrate is more likely to occur 

in the final round of sequencing than the unsorted library.  Because this model was 

calculated from frequencies of amino acid-position combinations rather than the whole 6-

mer substrate, likelihood scores were calculated for substrates which were not included in 

the sequencing results.  Scores for all possible 5-mer amino acid sequences, 3.2 million in 
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total, were calculated and ranked.  Src and Lyn pools were under-sampled for sequencing 

and did not contain enough unique sequences to produce a predictive model. 

 

 

 

Figure 4. In vivo and In vitro validation of the Abl1 specificity model.   

In the yeast-based assay, phosphorylation signal was normalized to the signal from 

peptide display to correct for degree of protein expression.  Normalized 

phosphorylation is at baseline when a peptide log-likelihood score is 

below approximately 25.  Twelve of the yeast-validated peptides were 

synthesized and reacted in vitro with purified Abl1 kinase domain, 

represented by colored dots.  Red dots indicate peptides for which no 

phosphorylation was detected, while green dots indicate peptides for 

which phosphorylation was detected by LC-MS. 
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Discovery of Abl1 Substrate Motifs 

The motif-x algorithm, a recursive search for statistically-significant combinations 

of residues in a data set, was used to identify motifs from scored peptide sequences 

(Schwartz & Gygi, 2005).  All human tyrosine containing motifs (~3 x 105) were scored 

using the model described above.  The top 1000 sequences were used as the foreground 

data set, while the entire set was used as the background data.  With a p-value cutoff of 1 

x 10-6 and a minimum of 10 occurrences for each residue pair, the algorithm failed to 

extract motifs within the data set.   

Abl Model Validation 

32 peptide sequences were chosen ranging from the minimum Abl1 substrate score 

to the maximum score observed (-80 and +55, respectively).  These peptides were assayed 

individually by flow cytometry in the YESS system.  To control for different levels of 

substrate expression and display, the ratio of phosphotyrosine to hexahistidine signal was 

used to assess the fraction of substrate phosphorylation.  Individual peptide 

phosphorylation correlated with model prediction (Figure 3A).  Of the 32 substrates tested, 

28 of these were never observed in any of the sorting rounds, indicating that the model was 

able to make correct predictions without prior knowledge of the substrate sequence. 

In vitro phosphorylation assays were performed to validate the results of YESS 

system.  Twelve peptides, also assayed in the YESS system, were synthesized as 12-mers, 

with the central motif flanked by alanines.  7 of the 12 peptides were observed to be 

phosphorylated, with all seven of the phosphorylated substrates having higher log-

likelihood scores than the unreactive substrates (Figure 3A). 
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Figure 5.  Src and Lyn specificity.   

Enrichment of residues is depicted as a probability logo (pLogo).  Src and Lyn display 

broadly similar specificities, with the most notable difference being the 

strong preference of Lyn for glycine at position Y+1.  The number of 

unique amino acid sequences was approximately 10-fold smaller than 

for the Abl1 screening,  

DISCUSSION 

The yeast-based screen for kinase specificity presented here was able to produce a 

predictive model for Abl1 kinase domain peptide substrate specificity in vitro.  By 

combining saturation mutagenesis, large yeast libraries, and deep sequencing, the data set 

produced is large enough to provide statistically-significant correlations between substrate 

amino acids, allowing the construction of a model which accounts for the co-variation of 

residues.  Of the 32 peptides selected for individual validation in the YESS system, the 

nine with the highest model scores were phosphorylated.  The remaining 23 peptides, each 
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of which had a score lower than the phosphorylated substrates, did not display anti-pY 

signal above background.  Empirically, the cutoff for peptide phosphorylation in this 

experiment was a model score greater than 25.  In vitro binary phosphorylation experiments 

with synthetic peptides and purified kinase validated the results of the YESS system. 

In the case of Src and Lyn kinases, the number of unique sequences recovered was 

too small to have statistically-significant intra-residue correlations.  This could be for a 

number of reasons, both technical and biological.  In the first round of sorting, Src and Lyn 

kinase phosphorylated less than 1% of induced library cells, approximately ten-fold less 

than the Abl library.  This may indicate that the kinase domains of Src and Lyn display a 

higher degree of selectivity.  However, sequencing of the unsorted library also yielded a 

smaller-than-expected number of unique DNA sequences.  With a theoretical diversity of 

3.4 x 107, the approximately 1 million sequences recovered from the unsorted library 

should be relatively unpolarized.  Instead, only 104 unique sequences were represented in 

these samples.  This indicates a bottleneck or undersampling which occurred between the 

construction of the library and DNA sequencing.  The same bottleneck affected all samples, 

resulting in just 1-2% of all sequence reads representing unique DNA sequences.  In the 

sorted samples, which were only sequenced to approximately 10% of the depth of the naïve 

library, this left just 103 unique DNA sequences in each sample, far too few to observe 

residue covariation.  For instance, if we assume a random codon distribution, fixing one 

codon decreases the sample size by 32-fold, leaving approximately 31 sequences for further 

analysis.  In comparison, in the Abl1 results, approximately 2 million unique DNA 
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sequences were recovered from each sorting round, leaving a single-fixed codon sample 

pool with 6.25 x 104 sequences for further analysis. 

Analysis of the Abl1 substrates, both statistically and visually with the pLogo web 

tool, indicated significant covariation between substrate residues (Figure 3) (O'Shea et al., 

2013).  However, discovery of submotifs using the motif-x algorithm was unsuccessful 

(Schwartz & Gygi, 2005).  The reason for the lack of convergence on unique motifs is 

unclear.  The motif-x algorithm is biologically naïve, in that it does not account for 

chemical and phylogenetic conservation among amino acids.  It may be that there are too 

many distinct submotifs to be identified within the relatively small input data set (103 

sequences).  Regardless for the reasons of the failure of motif searches, the model presented 

here effectively utilizes the same information, correlation between substrate amino acids, 

to predict in vitro substrates of Abl1 kinase.  
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Chapter 3: Predicting Kinase Inhibitor Resistance in the YESS System 

KINASE INHIBITOR RESISTANCE 

 The emergence of resistance mutations in response to kinase inhibitor therapy has 

become a major challenge in the treatment of solid tumor and hematological malignancies 

(Lovly & Shaw, 2014).  Of the nearly 40 FDA-approved kinase inhibitor therapeutics, 

kinase domain mutations causing resistance have been reported in nearly half.  While the 

mechanism by which each mutation leads to resistance is varied, from decreasing the 

affinity of drug binding to increasing the catalytic rate or ATP binding of the kinase, the 

result is the same: loss of treatment efficacy and progression of disease (Chen & Fu, 2011).  

Design of second- and third-generation drugs has therefore focused on potency toward both 

the parental oncogene and resistant mutants (Lovly & Shaw, 2014).  However, current 

methods for screening inhibitors for activity against kinase domain mutations suffer from 

a variety of drawbacks, limiting their ability to comprehensively predict which and how 

many mutations will arise and restricting their prognostic use in evaluating potential drug 

candidates for sustained efficacy. 

BA/F3 MURINE PRO-B CELL ASSAYS 

 1988, it was already established that the Bcr-abl(p210) fusion protein was 

associated with virtually every case of chronic myelogenous leukemia (CML) (Rowley, 

1973).  What was unknown, however, was whether expression of this putative oncogene 

was sufficient to transform cells.  Previous experiments had shown that exogenous 
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expression of the v-Abl oncogene in murine NIH 3T3 fibroblasts was sufficient for cellular 

transformation, but the Bcr-abl(p210) was unable to transform this cell line on its own.  

The murine Ba/F3 pro-B cell line, isolated from bone marrow, is dependent on IL-3 

supplementation for proliferation.  When transduced with a retrovirus containing the Bcr-

abl oncogene, IL-3 dependence was relieved and cell lines were able to proliferate (G. Q. 

Daley & Baltimore, 1988).  Subsequent experiments established that these transformed 

Ba/F3 cells were tumorigenic in mice.  Thus, Ba/F3 cell line was established as a useful 

model for dissecting mechanisms of Bcr-abl-mediated oncogenesis (G. Daley, Van Etten, 

& Baltimore, 1990). 

 Shortly after the FDA approval of imatinib (Gleevec), multiple research groups in 

the United States and Europe independently reported imatinib-treated CML patients who 

achieved short-lived responses with subsequent disease progression (Gorre et al., 2001; 

von Bubnoff, Schneller, Peschel, & Duyster, 2002).  In 2000, before FDA approval of 

imatinib, it was demonstrated that Bcr-abl(p210)-transformed Ba/F3 and Philadelphia 

chromosome-positive K562 cells could become resistant to increasing concentrations of 

imatinib over the course of months (Mahon et al., 2000).  In both cell lines, the observed 

increase in Bcr-abl mRNA levels and corresponding increased oncoprotein levels were 

assumed to be the mechanism of resistance.  In addition, the Ba/F3 cell line was found to 

have gene amplifications of the Bcr-abl locus, although this may be an artifact of the 

retroviral transduction used to introduce the oncogene.  Sequencing of the kinase domain 

of Bcr-abl revealed no mutations.  It was therefore unknown if point mutations could be 

the mechanism of acquired resistance in imatinib-treated CML patients. 
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 In 2002, Shah et al. examined Bcr-abl genes sequences from 32 patients whose 

imatinib response was short-lived (N. P. Shah et al., 2002).  Of these 32 patients, 29 

harbored mutations within the kinase domain of the Bcr-abl gene.  Among these, there were 

15 unique amino acid substitutions at 13 residues.  To validate that these mutations were 

sufficient for inhibitor resistance, Ba/F3 cells were transduced with Bcr-abl-encoding 

retroviruses containing the observed point mutations.  In vitro inhibition assays were 

performed by incubating transfected cells with various concentrations of imatinib.  Relative 

cell viability, as compared to inhibitor-free cultures, was measured at each concentration 

point to determine the IC50 for each putative imatinib-resistant mutant.  All 15 assayed 

mutations required at least twice as much imatinib to achieve 50% inhibition (i.e. 2-fold 

increase in IC50), with the most resistant point mutant (T315I, the ‘gatekeeper’) displaying 

no growth inhibition below imatinib concentrations that are toxic (10 uM) to the parental 

Ba/F3 cell line (not transduced with Bcr-abl).  The causative role of in vitro imatinib-

resistant mutations in disease progression was further supported by sequencing the 

Philadelphia chromosome-positive cells from CML patients during imatinib-induced 

hematological response. Furthermore, progression-free survival of patients without kinase 

domain mutations was >90% at 18 months, versus 25% in patients with kinase domain 

mutations. 

Imatinib-resistant kinase domain mutations in the above study clustered in sites 

known from co-crystal structures to be in direct contact with imatinib or known from 

structure-function studies to be involved in the conformational dynamics of the active-

inactive states of the kinase domain (Figure 1).  T315I, F317L, and F359V were 
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hypothesized to be mutations which directly affect binding of imatinib.  The remaining 

mutations are grouped into two flexible loops, the glycine-rich loop (also known as the P-

loop) involved in ATP binding, and the activation loop, which in the inactive conformation 

occupies the peptide binding site.  Glycine-rich loop (Figure 1) spans residues 249-255 

(Abl 1b numbering).  Mutations in this loop were observed at four of seven positions 

(G250E, Q252H, Y253H/F, E255K).  In the imatinib-bound structure, the glycine-rich loop 

distorts to form a binding pocket for imatinib.  It was hypothesized that the observed 

mutations alter the equilibrium away from this conformation.  Mutations in the activation 

loop (V379I, L387M, H396R), comprising residues 379-401, are thought to shift the 

equilibrium conformation of the loop away from the inactive state, wherein the activation 

loop tyrosine (Y393) occupies the pocket where a substrate tyrosine would bind. 
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Figure 1. Mutations in the kinase domain of Bcr-abl lead to acquired resistance in CML 

patients.   

The T315I is the most common and the most potent imatinib-resistant mutation.  Most 

mutations are either in direct contact with the bound imatinib or in the glycine-rich 

or activation loops, which both adopt specific conformations to allow imatinib 

binding (PDB: 1IEP). 
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With the mechanism for the majority of acquired resistance to imatinib thus 

demonstrated, it was apparent that predicting which mutations would arise in resistant 

patients would be useful for the evaluation of therapeutic kinase inhibitors before they 

reached the clinic.  To this end, Azam et al. utilized the established Ba/F3 mammalian cell 

culture system developed by the Baltimore lab and validated for analysis of imatinib 

resistance by Shah et al.  Rather than allowing mutations to occur randomly within the Bcr-

abl-transduced Ba/F3 cells, which had previously been shown to select for gene 

duplications and increased expression, mutations were induced by first passaging a Bcr-

abl-containing retroviral shuttle vector in a DNA repair-deficient strain of E. coli (XL1-

red) (Azam, Latek, & Daley, 2003).  Co-transfection of 293T cells with a packaging 

plasmid was followed by transduction of Ba/F3 cells with virus-containing supernatant.  

Approximately one million cells were then selected on soft agar medium in the presence 

of 5 or 10 uM imatinib.  Cells which were able to proliferate and produce visible colonies, 

presumed to be imatinib-resistant, were picked and expanded individually in liquid culture.  

Finally, Bcr-abl genes were amplified for sequencing.   

Of the 283 colonies sequenced, 112 amino acid substitutions at 90 positions were 

observed within the Abl portion of Bcr-abl.  All 13 of the mutations which had been 

observed in patients and validated in vitro were observed in this screen.  Of the 65 

mutations which were re-cloned and transduced into the Ba/F3 cell line, 59 displayed 

increased growth in the presence of imatinib.  However, only nine of these had an IC50 

increase of greater than 5-fold (all of them in the kinase domain).  While the authors claim 

a false-positive rate of just 9% (6/65) based on this data, its use as a predictive tool is 
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limited.  In the intervening years, the novel mutations identified in this screen have not 

been observed in imatinib-resistant patients. Therefore, without the known patient data to 

compare to, it is impossible to know which of these mutations may arise and cause 

resistance in CML patients.   

Nonetheless, Ba/F3-based screening of inhibitor-resistant Bcr-abl mutations has 

been applied to two FDA-approved second generation Bcr-abl inhibitors, nilotinib and 

dasatinib.  In 2005, Burgess et al. performed the same mutagenesis and screening protocol 

as Azam et al. with the then-newly approved inhibitor dasatinib (BMS-354825) (Burgess, 

Skaggs, Shah, Lee, & Sawyers, 2005), which is 100-fold more potent than imatinib for 

wild-type Bcr-abl and inhibits many of the previously described imatinib-resistant 

mutations.  In an effort to demonstrate the reproducibility of the experiment, five 

independent libraries were created from mutagenesis through screening with various 

concentrations of imatinib, dasatinib, or both.  While the authors claim that reproducibility 

was established by the presence of 7 mutations seen in the previously published Azam et 

al. screen, the remaining 9 patient-derived mutations from the original screen were not 

observed in the imatinib-screened library.  Furthermore, while the original experimental 

results included a relatively unpolarized group of resistant clones (112 unique of 218 

sequences), Burgess et al. selected for a highly polarized group of resistant clones, with 

just 7 unique amino acid substitutions accounting for all 80 colonies sequenced, despite the 

identical mutagenesis and screening protocols. 

Ray et al. performed a similar Bcr-abl mutagenesis and screening technique to 

discover nilotinib-resistant mutations (Ray, Cowan-Jacob, Manley, Mestan, & Griffin, 
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2007).  Nilotinib is a rationally-designed derivative of imatinib with a 10-fold higher 

affinity for wild-type and improved potency against many known imatinib-resistant 

mutations.  Unlike the two previously published studies, selection for inhibitor-resistant 

clones was performed in liquid culture rather than on soft agar.  After culturing in bulk 

solution, cells were diluted and transferred to 150 96-well plates at approximately one cell 

per well.  Of these 14,400 wells, just 86 (0.06%) had proliferating cells after 17 days.  While 

the experiment was performed with six independently mutagenized and screened libraries, 

the data is presented without information on which are clones derived from which library, 

once again bringing the reproducibility of this method into question. 

THE KCL-22 CELL LINE 

Another published method for the selection of inhibitor-resistant Bcr-abl mutations 

utilizes the human KCL-22 cell line, derived from pleural effusion cells from a female 

blast-phase CML patient in 1983 (Kubonishi & Miyoshi, 1983).  Unlike the Bcr-abl-

transduced Ba/F3 cell model, the KCL-22 cell line is derived from CML cells bearing the 

Philadelphia chromosome, raising the possibility that it could be a more realistic tissue 

culture model for acquired resistance to Bcr-abl inhibitors (Ohmine et al., 2003).  While 

studying the Bcr-abl mutation in situ has possible benefits, it is well documented that the 

blast phase of CML is characterized by chromosomal instability, hypermutation, and Bcr-

abl-independent oncogenic pathways.  Indeed, in addition to being homozygous for the 

Philadelphia chromosome, this cell line bears additional chromosomal abnormalities.  

Furthermore, it has since been documented that Bcr-abl-positive cells overexpress DNA 
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polymerase beta, the lowest fidelity human DNA polymerase, resulting in a 3- to 5-fold 

increase in mutation rate (Canitrot et al., 1999). 

Bhang et al. reported in 2015 a KCL-22-derived cell line dubbed ClonTracer, 

developed in collaboration with Novartis, wherein cell lineages can be traced by unique 

DNA barcodes (Bhang et al., 2015).  Cells were split and treated with imatinib, nilotinib, 

or the lead molecule GNF-5, which inhibits Bcr-abl by non-ATP-competitive inhibition 

via allosteric binding to the myristoyl-binding pocket.  Cell proliferation was negligible 

until 14 days (GNF-5 treatment) or 20 days (imatinib and nilotinib), after which cell density 

increased linearly until cells were harvested 7-9 days later.  While the authors assessed 

barcode frequencies in the populations to validate that clonal expansion could be traced, 

mechanisms of inhibitor resistance were not addressed in detail.  The known imatinib- and 

nilotinib-resistant mutation T315I was observed on the population level, but samples were 

not investigated for the presence of other resistance mutations, nor was the proportion of 

T315I-positive cells in the resistant population reported.  Finally, the authors indicate that 

the T315I mutation was detected in the pre-treatment population, indicating that this 

mutation was pre-existing in the blast-phase CML patient, an interesting observation due 

to the fact that this cell line was generated in 1983, nearly two decades before the approval 

of imatinib. 

While the KCL-22/ClonTracer method may provide valuable insights into the 

population dynamics of treatment-resistant blast phase CML cells, the current iteration 

does not provide a comprehensive assessment of acquired resistance to Bcr-abl inhibitors, 

for a variety of reasons.  First, the KCL-22 cell line is derived from a blast phase CML 
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patient, a stage of disease characterized by high mutational load, chromosomal 

abnormalities, and activation of secondary, non-Bcr-abl-dependent oncogenic pathways 

(Kelman et al., 1989; Mashal et al., 1990).  The prognosis for patients who reach blast 

phase CML is poor, even with kinase inhibitor therapy.  Although TKI therapy may induce 

regression to chronic phase disease temporarily, responses are short lived, with progression 

and return to blast phase occurring within weeks or months in most cases (Hehlmann, 

2012).  Therefore, blast phase-derived CML cells are a poor model for assessing the 

efficacy of Bcr-abl inhibitors against a wide variety of possible resistance mutations. 

Given the great disparity in the success of imatinib therapy in the treatment of 

chronic phase versus blast phase CML, and the frequent Bcr-abl-independence of the latter, 

development of next-generation inhibitors should be focused on prevention of progression 

from chronic phase disease to accelerated and blast phases (Neil P. Shah, 2005).  Disease 

progression occurs in up to 1/3 of chronic phase patients who initially respond to imatinib 

treatment.  Mutations within the Bcr-abl kinase domain are responsible for loss of efficacy 

in over 90% of these cases.  Therefore, inhibitors which are effective against all possible 

point mutations could prevent disease progression in up to 30% of cases of chronic-phase 

CML.  

Development of current second- and third-generation inhibitors was spurred by the 

observation of imatinib-resistance mutations shortly after FDA approval.  In nearly every 

case, publications describing novel Bcr-abl inhibitors feature cell-based assays describing 

in vitro potency against a panel of known resistance mutations (T. O'Hare et al., 2009; 

Redaelli et al., 2009; N. P. Shah et al., 2004; Weisberg et al., 2006).  And while FDA-
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approved second-generation inhibitors dasatinib, bosutinib, and nilotinib are indeed 

effective against a broad array of imatinib-resistant mutations, acquired mutations leading 

to disease progression have been reported for each.  None of the three is effective against 

the most potent and prevalent Bcr-abl mutation, T315I.  Additionally, novel resistance 

mutations not previously observed in imatinib-resistant CML have been observed for each 

of these three inhibitors (S. Soverini et al., 2013; Simona Soverini et al., 2011).   

The third-generation inhibitor ponatinib was FDA-approved in 2012 for the 

treatment of CML resistant to first- and second-generation inhibitors (T. O'Hare et al., 

2009).  Like imatinib and nilotinib, ponatinib is a type 2 inhibitor, binding to the DFG-out, 

closed activation loop (inactive) conformation of Bcr-abl.  Ponatinib is the first FDA-

approved inhibitor to effectively inhibit the potent T315I gatekeeper mutation, which 

occurs in up to 70% of patients with acquired resistance to first- and second- line treatment.  

In addition, ponatinib is claimed to suppress all single nucleotide mutations so far observed 

in TKI-treated patients.  However, in vitro IC50 measurements of the first- and second-line 

resistant G250E and E255V mutants shows they are 10-fold less sensitive to ponatinib than 

wild-type Bcr-abl (Zabriskie et al., 2014).  Because ponatinib is approved only for 

treatment of CML resistant to first- and second-line inhibitors, data on acquired resistance 

to ponatinib is confounded by the presence of resistance mutations enriched by failed 

treatments.  Therefore, it is unknown if novel single nucleotide mutations which do not 

appear in current first- and second-line therapies may arise from ponatinib treatment alone. 

In 2014, Zabriskie et al. published a thorough study of mutations observed in 

patients treated with ponatinib following acquired resistance to at least one first- or second-
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generation inhibitor (Zabriskie et al., 2014).  Baseline mutational analysis by conventional 

sequencing showed that approximately 60% of patients harbored at least one resistance 

mutation.  Of these, more than half had the T315I mutation.  Within the remaining non-

T315I inclusive group, six patients had compound mutations (i.e. two mutations within the 

same allele).  Following ponatinib treatment, relapsed patients were observed to harbor 

both the I315M (arising from a second mutation in the T315I codon) and compound 

mutations combining key residues known to confer resistance to first- and second-

generation inhibitors.  In vitro analysis of 18 compound mutations combining these key 

residues confirmed that compound mutations confer resistance.  Therefore, while ponatinib 

represents an important new therapy for treatment-resistant CML, especially in patients 

harboring the recalcitrant T315I mutation, its use as a salvage therapy may be compromised 

by the selection of resistant compound mutations. 

Clearly, the effectiveness of ponatinib in treating Bcr-abl mutants arising from 

single nucleotide substitutions raises the possibility of using ponatinib as a first-line 

treatment in newly diagnosed Philadelphia chromosome-positive leukemia.  In a 2015 

Phase II clinical trial of ponatinib in newly diagnosed CML patients without previous TKI 

treatment, 94% of patients achieved complete cytogenic response at 6 months (Jain et al., 

2015).  However, due to the frequency and severity of side effects, including hypertension 

a myelosuppression, 88% of patients required dose reductions and 85% needed interruption 

of therapy.  In June 2014, the study was terminated at the recommendation of the FDA due 

to the concern of thromboembolisms (blood clots). 
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While the promise of ponatinib as a pan-Bcr-abl inhibitor for use as a first line 

treatment is attenuated by the severity and frequency of serious side effects compared to 

the current first-line therapies, its narrow profile of known resistance mutations as 

compared to first- and second-generation inhibitors, along with the general trend of 

decreasing numbers of resistant mutations from generation to generation, indicates that a 

kinase inhibitor development pipeline which focuses on potency to all possible single 

mutation may be successful in suppressing acquired resistance and disease progression.     

YEAST-BASED SCREEN FOR KINASE INHIBITOR RESISTANCE 

In this chapter, we present a novel high-throughput, scalable yeast-based assay 

capable of screening kinase inhibitors for their potency to all possible single mutations and 

a significant portion of possible double mutations.  The utility of this assay is as a 

comparative tool for lead molecules and their derivatives in the development of potent 

therapeutic kinase inhibitors with narrow resistance mutation profiles.  As a proof-of-

concept, we screened in parallel the FDA-approved second-generation inhibitor dasatinib 

and third-generation inhibitor ponatinib against a random library of Abl kinase domain 

mutations.  Our screen found mutations at all residues previously characterized in 

dasatinib-resistant patients (Krijanovski et al., 2008; Simona Soverini et al., 2007).  In the 

case of ponatinib, resistant mutants were highly enriched for compound mutations, despite 

the lack of pre-treatment to enrich for single mutations.  From these results, we conclude 

that our yeast-based screen produces the same array of resistance mutations as seen in 
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patients and mammalian cell-based assays, with a library which can be rapidly screened 

and indefinitely regenerated. 

We previously reported the yeast endoplasmic sequestration screening (YESS) 

system, wherein an enzyme of interest and its peptide substrate are co-expressed and 

localized to the yeast endoplasmic reticulum (ER) (Yi et al., 2013).  Substrates are 

expressed as fusion proteins with the endogenous yeast mating factor, a-agglutinin-binding 

subunit 2 (Aga2), which is trafficked and displayed on the cell surface via disulfide bonds 

to the glycoprotein Aga1, which itself is anchored to the cell wall via a covalent beta-glycan 

linkage (Boder & Wittrup, 1997).  The EBY100 yeast display strain, originally developed 

for the surface display and screening of single-chain variable fragment (scFv) libraries, has 

the endogenous Aga1 protein under the galactose inducible promoter.  The YESS system 

utilizes this strain and a plasmid containing enzyme and substrate under the bidirectional 

galactose-inducible promoter.  The addition of ER targeting and retention peptides at the 

N- and C-terminus of the enzyme and Aga2-substrate fusion ensures co-localization to 

allow for catalysis to occur.  Sequestration of enzymes within the ER also minimizes 

potentially toxic effects of exogenous enzyme expression.  For instance, cytoplasmic 

expression of the human tyrosine kinase Src has been shown to be toxic, whereas our ER-

targeting constructs do not display significant growth rate inhibition (Boschelli, Uptain, & 

Lightbody, 1993).  Previous studies have utilized the YESS system for the evolution of 

proteases and sortases for novel substrate specificities and improved kinetics.  

Additionally, libraries of putative substrates have been screened against various proteases 

and kinases to determine enzyme substrate specificity profiles (see Chapter 2) (Li et al., 
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2017).  In this study, we apply the YESS system to select for activity of random kinase 

domain mutants in the presence of inhibitor, thus recapitulating mutations observed in 

CML patients with acquired resistance. 
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Figure 2. Experimental Overview.   

(A) A library of random kinase domain mutations is created by amplification of the 

kinase domain with an error-prone polymerase.  S. cereivisiae are transformed 

with plasmid and error-prone PCR, assembling the plasmid by homologous 

recombination.  (B) Library cells are induced for Abl1 and substrate expression in 

the presence of 25 uM inhibitor.  Phosphotyrosine-positive cells are enriched by 

fluorescence-activated cell sorting (FACS).  Kinase domain genes are PCR 

amplified from enriched and unsorted libraries and whole genes are sequenced by 

PacBio RSII next-gen sequencing.  (C) Individual mutations are cloned into the 

YESS system and tested for inhibitor resistance.  Select mutations are then cloned 

into the murine Ba/F3 cell line to external validation and IC50 determination.  

MATERIALS AND METHODS 

Vector Construction 

Amino acids 237-630 of human Abl isoform 1a were cloned into the pESD vector under 

the GAL10/GAL1 bidirectional promoter in place of TEV protease (Boder & Wittrup, 

1997; Yi et al., 2013).  TEV protease substrate was replaced with a minimal kinase 

substrate (AAAAAYAAAAA) (Clark & Peterson, 2005).  Yeast receptor adhesion subunit 

Aga2, ER retention signal, and hexahistidine and FLAG epitope tags were retained from 

the pESD vector (Boder & Wittrup, 1997) (Yi et al., 2013).  

Validation of YESS-based Inhibitor Resistance Assay 

Abl wild-type and T315I mutant cultures were induced by growth in SG-UT (Benatuil, 

Perez, Belk, & Hsieh, 2010) medium containing 125 uM dasatinib, ponatinib, or equivalent 

volume of DMSO.  After 40 hours of growth at 20°C, cells were washed three times with 

TBS + 0.5% BSA + 0.05% Tween20.  Cells were stained with anti-His6-FITC (Thermo 

Fisher, MA1-81891) and anti-phosphotyrosine-PE (BioLegend) at 4°C for 30 minutes, 
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followed by three washes with TBS + 0.5% BSA + 0.05% Tween20.  FACS analysis was 

performed on either the FACS Aria IIu or FACSCalibur (BD Biosciences). 

Error-Prone Library Construction 

Abl kinase domain was amplified with an error-prone variant of KOD polymerase to 

generate a pool of random mutants.  Vector was prepared by digestion of pESD-ABL1 

plasmid with SalI-HF, XhoI, and NcoI-HF.  PCR product and digested vector were column 

purified and drop dialyzed in ddH2O on VSWP membranes for one 

hour.  Electrocompetent EBY100 were prepared as described previously (Boder & 

Wittrup, 1997) (Benatuil et al., 2010).  In each of three 2 mm electroporation cuvettes 

(Thermo Fisher Scientific), 350 ul electrocompetent EBY100 cells were combined with 10 

ug ABL1 error-prone PCR product and 3 ug digested pESD-derived vector to a maximum 

volume of 400 ul.  Transformed cells were passaged in SD-UT medium three times before 

proceeding to sorting experiments.  Library size was estimated by colony counts from 

dilution series of transformed cells plated on SD-UT agar. Sanger sequencing was carried 

out on 32 randomly selected clones, as well as high throughput sequencing (described 

below) on an aliquot of the entire sample.  In addition, the unsorted library was subjected 

to the same NextGen sequencing as the sorted samples (see below). 

Library Screening by FACS 

Library cells were induced by growth in 10 mL SG-UT with 25 uM inhibitor (Selleckchem) 

or equivalent volume of DMSO.  Wild-type ABL with and without inhibitor was used to 

determine the location of the sorting gates.  PE+/FITC+ cells were collected and re-sorted, 
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then transferred to SD-UT medium for growth at 30C until dense, 1-2 days depending on 

number of cells collected.  Subsequent rounds were performed identically until PE+/FITC+ 

cells accounted for 60-90% of the population.  

High-Throughput Sequencing 

Plasmids were recovered from saturated overnight cultures using Zymoprep II kit (Zymo 

Research).  DNA from unsorted, dasatinib-, and ponatinib-sorted libraries was barcoded 

on both ends using primers with identical annealing sequences but unique 16-mer 

sequences.  After barcoding PCR, concentrations were quantified by Qbit (Thermo Fisher).  

Samples were pooled, then sequenced using the PacBio RSII sequencer at the Arizona 

Genomics Institute at the University of Arizona. 

Sequence Analysis 

Sequences were assigned to their origin by unique barcodes for each sorting pool.  Those 

without a 5’ or a 3’ barcode were discarded.  Sequences were aligned to wild-type ABL 

kinase domain using an implementation of NCBI BLAST on the Texas Advanced 

Computing Core.  Mutations in aligned sequences were then translated and compiled into 

a database. 

YESS Validation of Resistant Mutants 

Mutations to be characterized were selected from the most frequently recovered sequences 

in each pool.  Mutations were then introduced using mismatched primers followed by 

overlap-extension PCR.  Sequence-validated clones were then grown overnight in SD-UT 
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medium followed by induction in SG-UT medium for two days at 20°C in the presence of 

25 uM inhibitor or DMSO.  Cells were stained as previously described and analyzed on a 

FACSCalibur HTS. 

Ba/F3 Validation of Resistance Mutants 

Mutants were generated on a pDONR Bcr-Abl p210 template using the QuickChange site 

directed mutagenesis kit (Agilent) and then transferred into the pfMIG retroviral expression 

vector using Gateway site-specific recombination (Thermo Fisher Scientific). The murine 

pro B-cell line BaF3 (DSMZ ACC-300) was retrovirally transduced with the human Bcr-

Abl p210 wildtype and mutant cDNAs as previously described (Reckel et al., 2017).  The 

transduced cells were then FACS-sorted for GFP (co-expressed with Bcr-Abl) and Bcr-

Abl protein expression levels were checked by immunoblotting. 

Bcr-Abl-transduced Ba/F3 cells were grown in RPMI medium (Lonza) supplemented with 

10% FBS, 100 U/mL penicillin, and 100 ug/mL streptomycin.  Cells thawed from freezer 

stocks were passaged twice in media additionally supplemented with 10 ng/mL IL-3 

(PeproTech), followed by two passages in the absence of IL-3.  5 x 104 cells were seeded 

in 100 ul in each well of a 96-well plate.  50 ul of inhibitor diluted in RPMI + FBS + 

Pen/Strep was added to each well.  After 24 hours, cell viability was quantified using the 

CellTiter Glo kit (Promega) according to manufacturer’s instructions, with the exception 

that the reagent was diluted 1:5 in sterile PBS.  Luminescence was detected using 96-well 

plate reader (Tecan).  Titration curves were fitted using a four-parameter dose-response 

curve using GraphPad Prism. 
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RESULTS 

Library Construction and Quality 

 Titration plating of transformed yeast cells gave an estimated library size of 3.2 x 

107.  With a gene length of 1197 base pairs, the theoretical diversity of single and double 

nucleotide mutants is 3591 and 1.3 x 107, respectively.  Therefore, we estimate that 

essentially every single nucleotide substitution and approximately half of the double 

mutants are sampled in this library.  Sanger sequencing of ABL kinase domain genes from 

thirty-two isolated colonies gave an estimated mutation rate of 0.07%, or about 0.8 

mutations per gene.  In next-generation whole-gene sequencing of the unsorted library (n 

= 2 x 104), approximately 77% of all possible nucleotide substitutions were observed.  The 

error-prone mutagenesis technique was significantly biased towards transitions versus 

transitions, with G  A and C  T comprising approximately 20% of observed mutations 

each, whereas G  C and C  G were the least frequently observed, approximately 1% 

of observed mutations.  Despite this significant bias, we reason that the 104-fold coverage 

over single mutations space was sufficient to proceed. 
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Figure 3.  Mutation frequencies in the unsorted ABL1 kinase domain library.   

Data is from approximately 2 x 104 sequences.  Transitions account for 61.4% of all 

mutations observed, versus the expectation of 33% in an unbiased library (4 

transitions / 12 possible mutations). 

Yeast Library Sorting 

Induced libraries were enriched for activity in the presence of inhibitor by 

fluorescence activated cell sorting (FACS) over the course of several rounds (Figure 4).  

Cells bearing the wild-type ABL1 kinase treated with dasatinib and ponatinib were used to 

draw the sorting gates to exclude all wild-type cells.  In the first round of sorting, greater 

than 107 cells were screened.  In the unsorted libraries, approximately 1.8% and 0.3% of 

cells were phosphotyrosine positive in the dasatinib- and ponatinib-treated samples, 

respectively.  In subsequent rounds, the number of sorted cells always exceeded this first 

bottleneck by 10-fold.  The dasatinib-treated library increased to 87.7% phosphotyrosine-

positive cells over the course of six sorts.  The ponatinib-treated library increased to 57.9% 

phosphorylation-positive over the course of four rounds.  Plasmids from approximately 107 

cells from the enriched libraries and the unsorted libraries were isolated separately and 

amplified with unique barcoded primers before being pooled for next-generation 

sequencing. 
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Figure 4. FACS Enrichment of Inhibitor-Resistant Abl1 Mutations.   

(Top) In the dasatinib-treated sample, the percentage phosphotyrosine-positive cells 

increased from 1.8 to 87.7% over the course of 6 rounds of sorting.  (Bottom) 

Ponatinib-treated phosphotyrosine-positive cells increased from 0.3% to 57.9% 

over 4 rounds of sorting. 

 

Sequencing and Analysis 

PacBio RSII sequencing yielded approximately 5 x 104 sequences, of which greater 

than 90% contained at least one identifying barcode.  Due to the high frequency of indels 

in PacBio sequencing data and the corresponding frameshifts they incur, sequences were 
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aligned to the wild-type ABL1 sequence using an implementation of NCBI BLAST on the 

Texas Advanced Computer Core.  Custom Python scripts then identified mismatches and 

their corresponding amino acid change.  In total, approximately 2 x 104 quality-filtered 

sequences were analyzed for the unsorted and dasatinib-treated library.  Sequencing of 

ponatinib-sorted library yielded 104 quality-filtered sequences. 

Mutation rate and distributions are summarized in figure 3.  The overall mutation 

rate of the unsorted library was 0.05%.  The distribution of mutations per gene fits closely 

with the expectation from a Poisson distribution where λ = 0.05% x 1200 = 0.6 (error-rate 

times gene length), with 61%, 29%, and 7.7% of sequences containing zero, one, or two 

mutations, respectively.  The dasatinib- and ponatinib-treated libraries were enriched for 

one or more mutations, as expected.  In particular, the ponatinib-treated library contained 

more than four times as many compound mutations as the unsorted library.  The dasatinib-

treated library was 2.5-fold enriched for compound mutations versus unsorted. 

Next, the polarization of the three sequenced pools was assessed by rank-ordering 

the frequency of each observed amino acid change (Figure 5).  The unsorted library, as 

expected, was relatively unpolarized, with the top 1250 mutations comprising 80% of the 

library.  The dasatinib- and ponatinib-treated libraries, in contrast, were highly polarized.  

In the dasatinib screen, the top 73 sequences accounted for 80% of all observed.  The 

ponatinib-screened library was even more polarized, with just 10 sequences accounting for 

80% of the total. 



 93 

 

Figure 5.  Mutation distribution in the naïve and sorted libraries.   

Top left: frequencies of wild-type, single, and compound mutations in each of the three 

sorted populations.  The ponatinib-screened library was 4-fold enriched for 

compound mutations compared to wild-type, while the dasatinib-screened library 

was 2.5-fold enriched.  Top right: the naïve library is relatively unpolarized.  

Bottom left, right: the dasatinib- and ponatinib-screened libraries are highly 

polarized compared to wild-type.  

Dasatinib-Resistant Mutations 

Individual mutations from each screen were compared to known mutations seen in 

kinase inhibitor resistant CML patients.  All five of the most dasatinib-resistant mutations 

observed in patients were found in our screen (G250E, Y253H, E255V, T315I, and F317L) 

(Table 1).  Each of these mutations confers at least a two-fold increase in IC50 compared to 
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wild-type.  Of our 20 most frequently observed variants, eleven contained mutations 

observed in resistant patients.  Four of  

 

Table 1.  Top Sequence Reads from TKI-Screened Abl1 Mutant Libraries.   

Sequences recovered are ranked by number of read counts.  When available, published 

IC50s are included for previously described mutations.  Bold entries indicate 

variants for which IC50 values were determined in this study (see Figure 9). 
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the top twenty most frequent variants were compound mutants, each of which contained 

one known dasatinib-resistance mutations (E255V/V448L, F317L/V448L, F317L/F493L, 

Y253H/V448L). 

Generally, dasatinib-resistant mutations clustered in structures known to be 

important for drug binding (Figure 6).  Four of the seven residues of the glycine-rich loop, 

known to undergo rearrangements upon drug binding, are mutated in our top 20 sequences 

(G250E, Q252H, Y253H, E255V).  Additionally, Y253 is in direct contact with dasatinib 

in the co-crystal structure (PDB: 2G2I).  Two previously described mutations (F317L, 

V299L) contact dasatinib on the opposite side of the binding pocket.  Although these 

mutations are chemically conservative, mutation of each to leucine may sterically hinder 

dasatinib binding.  A third group of mutated residues (F359I, L384M, and F401) is 

clustered in and around the kinase activation loop (AA 379-401).  As a type 1 kinase 

inhibitor, dasatinib binds to Abl kinase in the open, active conformation.  It is possible that 

these mutations alter the conformational equilibrium of the activation loop, thereby 

inhibiting dasatinib binding.  Finally, five mutations are located distally to the dasatinib-

binding pocket (R239H, V448L/M, D455G, F493L, F497L).  
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Figure 6.  Dasatinib-resistant mutations from YESS screening.   

Mutations clustered in the dasatinib (green) binding pocket and the activation loop.  

Dasatinib, a type 1 inhibitor, binds to the kinase in the activation loop open 

conformation (PDB: 2GQG). 

Ponatinib-Resistant Mutations 

Of the top 20 ponatinib-resistant variants in this screen, 12 contain multiple 

mutations (Table 1).  In all but one of these, at least one of the mutations has been 

previously described in patients.  The remaining mutation, M351L in our data, is at a 

residue know to confer resistance to imatinib (M351T) (Thomas O'Hare, Eide, & 



 97 

Deininger, 2007).  The most frequent individual mutation, E255V, also occurs frequently 

as part of a compound mutant.  In published in vitro studies, this mutation is the most 

ponatinib-resistant single nucleotide substitution of those seen in ponatinib-treated 

patients, with an IC50 nearly 15-fold greater than wild-type Bcr-abl (Zabriskie et al., 2014).  

As with dasatinib, mutations cluster in the glycine-rich loop (G250E, Y253H, E255V) 

(Figure 7).  On the opposite side of the binding site, M351L and K285N, both residues 

previously described in literature, are within 8 angstroms of the bound ponatinib (PDB: 

3OXZ) (Thomas O'Hare et al., 2007; S. Soverini et al., 2013).  Within the activation loop, 

the T392I mutation occurs next to Y393, which is trans-autophosphorylated in active Abl 

kinase.  An additional two mutations (V448M, E450G) are located in the same alpha helix 

containing dasatinib-resistant mutations (V448L/M, D455G). 

 

Figure 7. Ponatinib-resistant mutations from YESS screening.   

The activation loop, containing the T392I mutations, is not resolved in this structure 

(PDB: 3OXZ).  The approximate conformation was drawn from a crystal structure 

of imatinib, also a type 1 inhibitor, in complex with Abl1 (PDB: 1IEP). 
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In Vitro Validation of Novel Ponatinib-Resistant Mutations 

Seven variants and wild-type Bcr-abl were cloned into the BaF3 cell line to measure 

ponatinib and dasatinib potency.  Four single mutants (E255V, G303R, D325N, and T392I) 

and three compound mutations containing these mutations (E255V/G303R, 

E255V/D325N, and E255V/T392I) were assayed for sensitivity to ponatinib and dasatinib 

(Figure 8).  All three of the compound mutants had significantly higher IC50 for both 

ponatinib and dasatinib compared to wild-type.  The two single mutants which were in the 

top 20 most frequent sequences were more resistant to both inhibitors than wild-type.  The 

remaining two single mutants (D325N, rank 73; T392I, rank 35) were no more resistant to 

ponatinib or dasatinib than wild-type. 
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Figure 8.  In Vitro Validation of Selected Mutants.     

Ponatinib-selected mutants were cloned into p210 Bcr-abl retroviral vectors and 

integrated into the Ba/F3 murine pro-B cell line.   Cell viability was measured 

after 24-hour incubation with inhibitor.  Three of three compound mutations 

assayed had statistically significantly higher IC50s for ponatinib than wild-type.  

Two of four single mutants assayed had higher IC50s for ponatinib than wild-

type. 
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DISCUSSION 

 The yeast-based assay presented here offers a method to predict mutations which 

may arise upon treatment with kinase inhibitors.  In the case of dasatinib, we have 

recapitulated previously described mutations which lead to inhibitor resistance and disease 

relapse (S. Soverini et al., 2013).  Four of the five most frequent sequence reads from the 

dasatinib-selected pool have been previously isolated from patients and validated in cell-

based assays.  In the case of ponatinib, we have not only recapitulated the most ponatinib-

resistant known single nucleotide mutation (E255V), but have also observed that 

compound mutations in the Abl kinase domain are highly enriched among resistant variants 

(Khorashad et al., 2013; Radich, 2014; S. Soverini et al., 2013; Zabriskie et al., 2014).  This 

observation agrees with previously published data from patients treated sequentially with 

kinase inhibitors. 

Our data suggest that resistance to ponatinib is more likely to require multiple 

mutations, compared to resistance to dasatinib.  The stochastic nature of error-prone PCR 

means that double mutations are much less common than single mutations in the naïve 

library.  Enrichment of these double mutations among ponatinib-selected (and to a lesser 

extent dasatinib-selected) sequences is an intriguing result supported by data from CML 

patients harboring multiple Abl1 kinase domain mutations within a single allele (Deininger 

et al., 2016; Khorashad et al., 2013; S. Soverini et al., 2013; Zabriskie et al., 2014).  

Whereas compound mutations observed in patients are the result of enrichment by 

sequential treatment with first- and second-line TKI-therapy, our assay shows de novo 

enrichment of compound Abl1 mutations which are highly resistant to both ponatinib and 
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dasatinib.  We believe these results support the hypothesis that ponatinib treatment is less 

likely to lead to resistance from single point mutations. 

The yeast-based assay presented here represents a method to screen candidate 

kinase inhibitors for their potential to elicit resistance mutations.  In comparison to the 

dasatinib-treated library, the ponatinib-treated pool is both highly polarized and enriched 

for compound mutations.  We believe this shows that there are fewer possible single 

mutations to confer ponatinib resistance.  In the absence of first-line TKI therapy, which 

enriches for resistant mutations upon which compound mutations accumulate, we believe 

that ponatinib-resistant mutations would be less common than mutations resistant to 

current first-line therapeutics, such as dasatinib (Zabriskie et al., 2014).  In addition to 

screening for specificity, potency, and side-effects, we believe that our assay to predict 

resistance mutations among candidate molecules will be a valuable addition to the 

repertoire of assays for TKI discovery and development. 
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