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Abstract 

 

Generic Implementation of CAD  

Models for Nuclear Simulation 

 

Kyle Patrick Kercher M.S.E. 

The University of Texas at Austin, 2019 

 

Supervisor:  Richard Crawford 

 

The goal of this project is to utilize the preexisting framework of GADRAS to simulate the 

radiation leakage from arbitrary CAD models without sacrificing speed or accuracy. The 

proposed solution is to use STL files to define models. Then, a three-dimension binning 

structure is created to contain all the elements of the file. This results in preservation of 

speed, without adding higher performance hardware requirements. Finally, the 

discretization is performed using a three-dimension framework to utilize GADRAS’ 

refinement algorithm. The combination of these two enhancements results in an absolute 

error within 10% for standard conditions, and 20% for edge case conditions. The addition 

of arbitrary models will simplify the modeling process for complex shapes, allow for more 

flexible models, and allow for creation of models that are simply impossible in the current 

framework. 
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Chapter 1:  Introduction 

Nuclear radiation transport simulation is an invaluable asset in design when 

radioactive materials are involved. The governing principles of the emissions of radioactive 

materials are complex and depend not only on the material itself but also on other objects 

around it. These phenomena are generally simulated before experimentation is performed 

due to the high cost associated with working on and around radioactive material. 

A more specific goal for radiation transport simulation is to capture a detector’s 

response to a scene containing radioactive material. This ability allows experimental 

detectors to be tested in a simulation environment before an expensive prototype is created 

and tested. Additionally, obtaining a detector response in a simulation environment allows 

a user to test an existing detector under unique conditions that may be difficult to achieve 

in a lab setting. 

1.1 STATE OF THE ART 

There are two general categories of simulation that exist to solve this problem: 

stochastic and deterministic. The most widely used and trusted simulation package falls in 

the stochastic category: The Monte Carlo N-Particle (MCNP) transport code (LANL, n.d.). 

MCNP is a particle-based simulation technique that tracks an individual emission from a 

radioactive material until it leaves the scene or is somehow annihilated. The user must input 

material properties and source term descriptions in an input file, in addition to describing 

the geometry using shape primitives and Boolean operations to detail the scene. MCNP 

then creates particles based on the statistical descriptions of the materials in a random 

fashion until it has reached the number of particles dictated by the user. The user can then 

determine if the number of particles selected was sufficient for convergence of the problem 
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based on the output statistics from MCNP. For complex scenes, it is not uncommon for 

billions of particles to be required for good convergence. Due to the large number of 

iterations that must be tracked, MCNP is generally run on supercomputers to reduce the 

real time needed to solve a problem. 

In the deterministic method of simulating radiation transport, the Boltzmann 

Transport equation is solved (Brunner, 2002). The transport equation is solvable for simple 

geometries where symmetry approximations and other simplifications apply; however, for 

more interesting scenes, the equation cannot be directly solved. One of the ways 

deterministic transport simulation programs solve the transport equation is to create a 

system of linear equations and approximate the solution by solving that equivalent system. 

Again, these systems are nontrivial to solve and the best way to decrease the time to solve 

is by utilizing supercomputers 

An additional pseudo-deterministic way of solving the transport problem is by 

discretizing the scene into many one-dimensional approximations. A deterministic method 

is then used to solve the collection of 1D problems individually, and they are then 

recombined for a total solution. This is the approach taken by Gamma Detector Response 

and Analysis Software, or GADRAS. A user creates the desired scene using a collection of 

shape primitives (spheres, cones, cylinders, boxes, round-end cylinders, and split spheres) 

to model the desired geometry. Then, GADRAS approximates the primitives as point 

sources by discretizing them, if they are radioactive, into voxels, based on differences in 

five criteria: outside model, self-attenuation, geometric attenuation, external attenuation, 

and source term gradient. The outside model allows two shape primitives to overlap when 

building the scene, and the overlap region is not counted twice. One of the models attempts 

to match the surface of the other model with incremental refinements. The other four 

criteria refine based on the differences in their respective properties across each of the 
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voxels. Voxels within GADRAS are defined to have three dimensions that can be used to 

construct the voxel. For example, a spherical voxel has the three dimensions of radius, 

theta, and azimuth, and a box voxel has the dimensions of length, width, and height. The 

algorithm checks each dimension for differences based on the criteria and splits voxels 

accordingly. Once voxelized, GADRAS traces a ray from the approximate point source to 

the detector to determine the materials the ray passes through. Using those material 

properties, GADRAS determines the contribution of that source to the detector and adds it 

to the solution from the remaining points to determine the total detector response. 

GADRAS also has additional functionality to customize the detector, account for detector 

parameters, and create a spectrum that can be matched to data from lab experiments. 

1.2 PROBLEM STATEMENT 

One of the main limitations of GADRAS is that models are required to be built with 

the provided shape primitives. One can imagine more complex models that would be of 

interest in nuclear engineering, such as a torus, that would require many shape primitives 

to create even an approximation. In addition to complex continuous surfaces, generic 

complex scenes are cumbersome and time consuming to build. In addition to the time 

required to build the model initially, if an object is moved within the scene, every primitive 

needs to be adjusted individually to create this change in the object. 

These approximations and inflexible models give rise to the following research 

task: 

Develop a method for processing generic geometric 

models in GADRAS.  

A generic CAD model implementation would allow simulation of the transport 

problem for complex surfaces and scenes and increase the ease of working with large 
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scenes in GADRAS. This would provide models that are cleaner, easier to interpret, and 

ultimately save researchers time and money. 

A solution to implementing generic CAD models in GADRAS needs to work 

within the framework already provided to be compatible with the existing functionality. 

This means a solution should be fast to ray trace and follow the same 3-dimensions rule 

outlined above. Additionally, it should be represented in a widely used import format to 

provide a CAD software independent solution. 

1.3 PROPOSED SOLUTION 

This thesis examines three problems that need to be solved for generic 

implementation of CAD models in GADRAS: a generic input file type, a fast way to ray 

trace the geometry represented, and a generic, model-independent voxelization method. In 

the next chapter, a literature review describes methods currently used for addressing each 

of these three problems. Chapter 3 discusses implementation of octrees for fast ray tracing 

of STL files, the chosen generic geometry representation. Chapter 4 discusses 

implementation of tetrahedral meshes in GADRAS’ existing framework. In Chapter 5 

generic models are compared with their respective shape primitives, and a complex scene 

is built and compared to an equivalent scene built using shape primitives. Chapter 6 

summarizes the research and points to directions for future research. 
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Chapter 2:  Literature Review 

This chapter examines the current file format standards, methods for solving ray-

triangle intersections, improvements to improve ray tracing of models consisting of large 

numbers of elements, and volumetric mesh generation. The methods are examined for their 

usefulness with respect to implementation for the problem this research seeks to solve. 

2.1 MODEL REPRESENTATION 

The desire to represent an arbitrary CAD model has resulted in proposals for many 

different exchange formats as the industry standards. Some of the more notable file formats 

are STL, STEP, and IGES.  

One of the earliest attempts to standardize CAD models across vendors is the IGES 

(for Initial Graphics Exchange Specification) file format. The IGES standard specified a 

vendor neutral format that is used to define a 3D model. This format was released by 

National Bureau of Standards (now National Institute of Standards and Technology) in 

1980 (ANSI, 1982). Similarly, the STEP (for Standard for the Exchange of Product model 

data) standard, generally called ISO-10303-21, specifies a CAD model using a collection 

of operations to define the surface and was released in 1994 as an attempt to standardize 

CAD models (“Sustainability”, 2017).  Both file types have remained relevant with STEP 

becoming the more common type, and IGES falling off in more recent years. 

In addition to the attempts at international standards for CAD files, there are more 

application specific file types such as SolidWorks .PRT, Catia’s .CATPART, and 

AutoCAD’s .DXF. However, there is no consensus across CAD programs to use one single 

type, and STEP is currently the most widely used exchange format for general CAD 

geometry. 
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This research requires a format that is both universally available and 

computationally simple. This leads to consideration of tessellated models, specifically the 

STL file, which is adopted for this research. The STL file format is a triangulation of the 

surface of a model, where each facet is represented by its three vertices and a surface 

normal. The STL format was first proposed by 3D Systems in 1987 (3D Systems, 1988) 

for use in their Stereolithography Apparatus, the first commercially available 3D printer. 

The STL format has become the de facto standard for communicating geometry 

information for additive manufacturing, and its ubiquity has led to its adoption for many 

other applications. There have been separate attempts to expand on the format by Hiller 

and Lipson (2009), who attempted to add material properties, and Stroud and Xirouchakis 

(2000), who attempted to simplify the format, respectively. Expansion of the format by 

Hiller et al. reduces the simplicity of the STL format by adding complexity where it is not 

needed. The attempt by Stroud et al. to simplify an already simple format resulted in faster 

construction of an STL file, not a simplification of the format. 

2.2 RAY-TRIANGLE INTERSECTION 

Given that a triangulated format is used for this research, a method is needed for 

computing the intersection between a ray and a triangle. Traditional ray-triangle 

intersections have been done by substituting the equation of the ray into the equation of the 

infinite plane of the polygon and solving for the point of intersection, and then determining 

if the intersection point is contained within the finite polygon. The point-in-polygon test 

has many different variations, such as the crossing test, Weiler angle method, and a 

gridding method, outlined by Haines (Haines, 1994).  

These traditional methods are generally considered slow and memory intensive 

because of the need for both the vertices and normal of every triangle, where the normal 
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either needs to be calculated or stored. Algorithms exist that can solve the intersection 

problem without the surface normal, such as those presented by Möller and Trumbore 

(2005), and Badouel (1990). These algorithms take advantage of a transform of the triangle 

into barycentric coordinates, creating a system of equations that can be solved with only 

knowledge of the triangle vertices. Additionally, Shevtsov et al. (2007) eliminated the 

surface normal by translating the triangle using Plucker coordinates and solving the 

resulting problem. Both methods decrease the storage and calculation times of the ray-

triangle intersection; however, the algorithms are based on the assumption that the normal 

is expensive to calculate. In this application the normal is read directly from the STL file 

and stored. Storing the normal does increase the memory footprint of the ray-triangle 

intersection algorithm, but in this case, the surface normal is needed throughout the 

processes as a sense of direction for the surface, so eliminating the normal complicates the 

problem for other operations. 

Another opportunity for speed increases in ray-triangle intersections proposed by 

Reshetov et al. (2005) is to group the rays into a beam, and ray trace with the beam to 

eliminate entire sections of the scene. This proposed solution excels in large scenes with 

many sources of rays, or very large, complex scenes. Although this approach may be useful 

in the graphics industry, many nuclear applications have a limited number of sources, 

decreasing the likelihood that rays can be grouped. GADRAS’ solution method is highly 

directional and already limits the number of rays cast for every point source to a single ray 

directly to the detector face. 

2.3 RAY TRACING DATA STRUCTURES 

The naïve approach of checking every element in a tessellated polygon scene 

against every ray is slow and leaves many opportunities for optimization. Many different 
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data structures have been proposed to sort and bin the polygons to improve efficiency and 

speed. One of the simplest proposed methods is to bound each object into hierarchical lists. 

Kay and Kajiya (1986) propose to bound each convex hull of an object into hierarchical 

lists. The bounding volumes for all the convex hulls of the object are stored together. If the 

bounding volume for the entire object is intersected by the ray, then all the convex hulls 

are searched. This method has two major advantages over the naïve approach: early culling 

can be performed for an entire object if it is not in the field of view of the ray, and each 

subset of the object requires a simple search of a convex object. By forcing each section of 

the object to be convex and using the triangle connectivity information, the ray intersection 

for that section of the object is greatly simplified. In the application of GADRAS, this 

approach increases the precomputing needed to create the convex sets of every object. 

Finding the convex hull of a set of triangles is O(n log(h)), where n is the number of points 

in the set and h is the number of points in the hull, in complexity using Chan’s algorithm 

(1996). This additional time is in addition to the time required to search the hierarchal list, 

and then ultimately to search the convex hull for the intersections. 

One attempt at building a binary tree to hold data for searching is the k-d tree 

proposed by Bentely (1990). The k-d tree is a collection of nodes that contain two pointers 

to the next two nodes, or a null pointer and the data for retrieval if it is a leaf node. A node 

is defined as two half spaces created by an infinite plane. The half space can be recursively 

divided until the object to be searched is adequately partitioned. The binary tree structure 

created by forming the k-d tree can be searched in O(log(n)) time. The proposed data 

structure relies on a relatively sparse object to be sorted. If there is a high concentration of 

elements in one area, the tree becomes extremely unbalanced. Additionally, the structure 

defines the object in infinite space. If more than one object is in the scene, both trees require 
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a search for every ray. This can simply be addressed using bounding boxes for the objects 

and searching for collisions with the bounding boxes first. 

Both problems with k-d-trees can be solved using the octree as proposed by 

Glassner (1984). This special subdivision defines hierarchal bounding boxes across an 

object that recursively divide into eight child nodes to define the space. This structure 

solves the problem of highly concentrated elements by creating a higher number of nodes 

in each level of the tree for locations where objects are concentrated. Although this 

increases the complexity of the search, the trade-off for a more balanced tree creates a more 

consistent search time for the octree. Other researchers have attempted to expand on the 

idea of an octree. Brown (1998) examines the potential for rectangular octants to better 

adapt to the model. Sundar et al. (2008) use a novel encoding scheme and a bottom-up 

population strategy to optimize the balance of the tree. 

2.4 MESH GENERATION 

GADRAS uses a volumetric mesh to determine the point source approximation of 

the sources in a scene to solve the transport problem. The preexisting meshing algorithm 

takes advantage of the geometry of the object, and is therefore specific to the geometric 

primitives supported, creating the need for a more robust meshing algorithm for arbitrary 

models. Tetrahedral elements are commonly used for volume meshing of arbitrary models 

due to their ability to easily fill any volume. One technique proposed by Rebay (1993) 

enhances the Bowyer-Watson algorithm that expands Delaunay triangulation into 3D space 

to form tetrahedra. Rebay proposes a more efficient method by taking advantage of 

simultaneous computation of point positions and connections within the void space created 

in the model through Bowyer-Watson. Both this new method and the traditional Bowyer-

Watson algorithm use Delaunay tetrahedralization to create tetrahedra that are as regular 
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as possible. Regular elements are not useful in the nuclear application of GADRAS, as 

GADRAS aims to minimize the number of elements in a mesh to decrease the number of 

rays created to solve the system. 

Löhner (1988) proposes another solution aimed at creating regular meshes, 

specifically for transient fluids. His method uses the triangulation of the surface of a 

volume to create a marching front. This front is reduced as the algorithm converges to the 

center of the model. This algorithm can be modified to ignore the bias for regular elements; 

however, the algorithm then has issues with nonconvex objects. The regularization aspect 

of the algorithm helps fuse different sections of the model together in the best way possible, 

and by eliminating this portion of the algorithm, to reduce the number of elements, the 

algorithm will have difficulty converging. 

Below et al. (2000) show that finding the minimum number of elements to represent 

an arbitrary tetrahedron is NP-hard. From this information, we can assume that an attempt 

to find the minimum number of elements, although possible, is not worth the trade-off 

when attempting to maximize speed of the algorithm. 

2.5 SUMMARY 

In order to capture a CAD model with the highest accuracy, many operations need 

to be represented, giving rise to complicated file types. On the other hand, simple types, 

such as the STL file type, exist but add a level of approximation. There are many attempts 

to bridge the gap; however, the best practice is to use the one most suitable for the problem. 

In this case, the STL file is used for its simplicity and universality. 

Speed increases in ray tracing generally come from hardware and parallelization, 

but a few researchers have developed data structures and unique search methods to speed 
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up ray tracing algorithmically. Most notably to this thesis is the Octree, which has been 

implemented, as described in the next chapter. 

Discretization of a problem space, for instance, for finite element analysis (FEA), 

is a vast field with many different methods and algorithms; however, for this application a 

minimum element mesh is desired. This is an open field with few researchers trying to 

solve minimum stacking problems, but no good solutions have been found. Because of this, 

going forward this research merges tetrahedral splitting and initial meshing from FEA 

discretization for use in nuclear simulation. 
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Chapter 3:  Surface Modeling Implementation and Results 

This chapter describes the proposed method of quickly ray tracing large numbers 

of triangular elements. The following sections outline the implementation of an octree, a 

3D spatial binning structure in GADRAS and the resulting speed and edge case analysis. 

The implementation assumes the input file is in the STL format; however, these results can 

be generalized to any convex polygonization of a 3D surface.  

3. 1 RAY-TRIANGLE INTERSECTION 

As stated in Chapter 2, the selection of the STL format for the input surface model 

is based on both the universality and simplicity of the file type. The rise of 3D printers and 

the use of STL files in their slicers has led every CAD vendor to provide the capability of 

producing STL files and has resulted in the creation of online repositories of STL files to 

share designs universally. Additionally, the nature of the STL format, a tessellation of 

surfaces into polygons, allows for the generalization of the code for any arbitrary convex 

polygonal tessellation that may arise. 

In addition to ease of access of STL files, their simplicity allows for easier 

calculations. As discussed earlier, an STL file is a collection of unordered triangles 

represented by three corner vertices and a normal vector. A triangle is a bounded plane. 

Calculation of the ray-plane intersection is well documented. The parametric equation of 

the ray is given by: 

�⃑� = �⃑� 𝑜 + 𝑡�⃑� (1) 

where �⃑� 𝑜is the origin of the ray, �⃑� is the direction of the ray with respect to �⃑� 𝑜, and 𝑡 ∈

ℝ, −∞ < 𝑡 <  ∞, defining the infinite line containing the ray. If the direction �⃑�  is a unit 

vector, then 𝑡 is the distance (positive or negative) between the origin of the ray and the 

point of intersection with the plane. The implicit equation of a plane is given by: 
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(�⃑� − 𝑃1
⃑⃑  ⃑) ∙ �⃑⃑� = 0, (2) 

where �⃑⃑�  is the normal of the plane and 𝑃1
⃑⃑  ⃑ is any point known to lie in the plane. Without 

loss of generally, 𝑃1
⃑⃑  ⃑ can be any of the three vertices of the triangle. To determine the point 

of intersection of the ray with the infinite plane, the parametric equation of the ray is 

substituted into the implicit equation of the plane: 

(�⃑� 𝑜 + 𝑡�⃑� − 𝑃1
⃑⃑  ⃑) ∙ �⃑⃑� = 0. (3) 

This equation can be solved for the value of the parameter 𝑡 at the point of intersection: 

 

𝑡 =  
(𝑃1
⃑⃑  ⃑ − �⃑� 𝑜) ∙ �⃑⃑� 

�⃑� ∙ �⃑⃑� 
(4) 

This holds true if the denominator is not equal to 0, which is the case for a non-parallel 

plane and line. This provides an easy method to determine if the intersection point is 

reasonable distance from the ray origin by comparing the absolute value of the denominator 

to a tolerance. 

Once the point of intersection is calculated, the next step is to determine if the point 

lies within the bounds of the triangle. This can be done by showing that 

𝑠𝑖𝑔𝑛[(𝑉𝑝𝑖
⃑⃑ ⃑⃑  𝑋𝑉𝑖⃑⃑ ) ∙ �⃑⃑� ] (5) 

is equal for i = 1,2,3 where the variables are defined in Figure 1. This leads to the first 

challenge of working with piecewise representations of surfaces. If the point of intersection 

lies on one of the edges or vertices of the triangle, then Equation 5 will evaluate to 0. If we 

consider an intersection on a line or vertex to be outside of the triangle, then we could 

potentially miss an object intersection. Thus, we must consider a hit on the line to be in the 

triangle; however, if we do this, the ray will be considered to hit multiple triangles, as each 

edge is shared by two triangles in a valid STL file. To resolve this, a list of hit points is 
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created for each object on a per ray basis. If an intersection occurs twice, the second one is 

ignored. 

 

 

Figure 1: Point in polygon vector definition 

 Using an STL file allows us to ray trace an arbitrary surface with relative ease. The 

main issue now, as discussed previously, is the number of elements in an STL file. A file 

can range from a minimum of four triangles to an extremely large number depending on 

accuracy and model complexity. 

3.2 OCTREE IMPLEMENTATION 

Directly ray tracing all the elements of a model represented in the STL format, 

results in an algorithmic complexity of O(nm), where m is the number of rays and n is the 

number of elements (triangles) in the STL file. Nonconvex models (e.g., models with 

depressions or holes) create a situation where a ray can enter and exit the model any number 



 15 

of times. Since an STL file is unordered, connectivity is not given explicitly. Thus, every 

element must be searched to ensure that every intersection is found. This means that either 

the number of elements searched, or the number of rays created, must be limited to increase 

the speed of the search. 

The proposed solution to this problem uses an octree to take advantage of spatial 

coherence to reduce the number of elements searched, resulting in an increase in the speed 

of the operation. To do this, an octree is used to bin the elements of the STL file into a 3D 

recursive data structure. A 2D representation of the network can be seen in Figure 2. Each 

element, or node, of the octree comprises six planes defining the boundary, and each node 

has knowledge of its contents and any lower nodes. A split is defined to be the division of 

a node into eight equal sub-nodes, or children. An octree also has tunable parameters of 

maximum depth and fill limit. Maximum depth is defined as the maximum number of times 

a node can be split, and fill limit is defined as the maximum number of elements in a node 

before a split occurs. 

 

Figure 2: Simple Octree Representation (Dybedal, 2019) 

The criterion for addition of an element to a node is that it is either wholly or 

partially contained within the node. This test is performed by determining the relative 
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position of each of the three vertices with respect to a plane. If all six infinite planes of the 

node contain at least one vertex of the element, then the element intersects the node. A 

vertex, 𝑉,⃑⃑  ⃑ is defined to be contained by the plane, with normal, �⃑⃑� , and point, �⃑� , if Equation 

6 is true. 

�⃑⃑�  ∙  (�⃑� − �⃑� ) > 0 (6) 

The method used to populate the octree in this implementation is to add elements 

one by one to a head node until the fill limit is reached. Once the fill limit is reached, the 

node splits and the elements contained within it are added to the child nodes based on the 

criterion for addition. If both the depth limit and fill limit are reached, the last node of the 

tree will be overloaded with more than the fill limit of the tree. 

To search the tree, a ray must retrieve all the lowest level nodes it intersects and 

then search their contents. To retrieve the lowest level nodes, a ray is intersected with the 

head node to either begin the recursive process or eliminate rays that have no chance of 

intersection with the model. The node-ray intersection is performed by checking all six 

faces of the node as planes and checking the sense of the resulting intersections against the 

remaining planes based on Equation 6. Then, if a node is found to be intersected, the ray is 

checked for collisions against the node’s children recursively until all nodes with zero 

children are found. From these nodes, a list of elements with collision potential with the 

ray is compiled and searched in the manner outlined in section 3.1. 

3.3 ALGORITHMIC COMPLEXITY ANALYSIS 

The results of using the octree method to reduce the number of elements searched 

increases the speed of the algorithm. The previous complexity of O(nm) is now reduced to 

O(Xm) where X is the reduced list of elements used for an octree search. This section 

defines a value for X. 
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3.3 1 Worst-Case Analysis 

The worst case for intersection of a ray with an octree with equal depth in every 

node is intersection of the head node on opposite corners, as shown in Figure 3. This 

situation gives rise to the situation where the most nodes need to be checked against the 

ray. This worst-case scenario ray intersects the N unique nodes in an octree of depth, d, as 

defined by: 

𝑁 = 6(2𝑑−2 − 1) + 8(2𝑑−2) (7) 

 

Figure 3: Worst-case ray-node intersection 

For every node intersected, the algorithm will check 𝑛𝑑 elements, all the triangles 

contained in a node, as well as all six of the node faces, for ray intersections. Each node 

face intersection can be approximated as a single element intersection for the sake of this 

analysis. If we assume that every node is at maximum fill depth as governed by the 

properties of the tree, the intersection of the model by m rays is O[(𝑛𝑑 + 6)Nm]. This 

analysis shows that the complexity of the algorithm is dependent on only the depth and 

maximum fill of the tree. If we attempt to characterize the depth of the tree by assuming 
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the depth is a function of total number of elements, N, and maximum fill, 𝑛𝑑 , where the 

tree is perfectly balanced and at maximum depth, the depth is given by: 

𝑑 = 𝑙𝑜𝑔8 (
𝑁

𝑛𝑑
) (8) 

This equation can produce non-integer values, where depth must be an integer, so we round 

up this value to avoid a depth of zero. 

 By combining Equations 7 and 8, the complexity of the algorithm becomes: 

(𝑛𝑑 + 6) [6 (2
𝑙𝑜𝑔8(

𝑁
𝑛𝑑

)−2
− 1) + 8(2

𝑙𝑜𝑔8(
𝑁
𝑛𝑑

)−2
)]𝑚 (9) 

By simplification of constants, the complexity can be seen to be a linear combination of 

three terms: 

[𝐶1(2
𝑙𝑜𝑔8(𝑁)) + 𝐶2(2

𝑙𝑜𝑔8(𝑁)) + 𝐶3]𝑚 (10) 

The highest order term dominates the solutions and becomes the complexity of the 

problem, in this case 2𝑙𝑜𝑔8(𝑁). This term can be rewritten in the form 𝑁𝑋 through use of 

base changes and logarithmic properties. This results in the complexity of the problem 

being 𝑂 [𝑁
1

𝑙𝑜𝑔2(8)]. 

However, in real applications the elements of an STL file are not uniformly 

distributed, and although maximum fill limit is a tunable parameter set by the user, once 

maximum depth is reached, the nodes are capable of overfilling. 

3.3 2 Real Analysis 

If the tree is perfectly balanced and at maximum depth, the above worst-case 

analysis is valid. In our modeling use case of an octree, a uniform distribution of elements 

is almost never achieved, thus we cannot assume that the tree is perfectly balanced. The 

balance of the tree is related to the distribution of the triangles used to define the elements 

of the STL file. As uniformity increases, the complexity of the algorithm approaches the 
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value discussed above as a lower bound. For analysis, assume that 𝑛𝑑,𝑟𝑒𝑎𝑙 is a function of 

the uniformity of the triangular distribution of the model. If uniformity is low, 𝑛𝑑,𝑟𝑒𝑎𝑙 can 

be assumed to be equal to 𝑛𝑑. For the worst case, 𝑛𝑑,𝑟𝑒𝑎𝑙 is equal to the total number of 

elements, divided by N as defined in Equation 8. This means that for a real-world analysis, 

the complexity of the algorithm is bound between 𝑂 [𝑁
1

3𝑚] when uniformity is high, and 

O[Nm], when uniformity is low. From these two bounds, it is shown that the octree is in 

the worst case equal to brute force search, and in the best, and more likely, case, better than 

brute force. 

3.4 ASSUMPTIONS AND LIMITATIONS 

The main limitations imposed on the octree come from three main assumptions: (1) 

the model is relatively uniformly distributed through space; (2) the surface approximation 

of the STL file is within the tolerance of the problem; and (3) the boundary collisions of 

rays are within the element. 

As shown in Section 3.3, assuming the model is uniformly distributed is paramount 

to the speed increase gained by using an octree. This means that a model with a high degree 

of asymmetry will not benefit from the octree. With a higher number of elements on one 

side of the bounding box, the octree will hit its fill depth and over fill the leaf nodes. One 

example of a model that creates an imbalanced tree based in this implementation can be 

seen in Figure 4. The decrease in the speed of the algorithm due to an unbalanced octree 

can be combated by creating design guidelines to follow when using the modeling 

functionality of GADRAS. Although the software will still give a correct answer, 

processing time can be reduced by representing asymmetrical models as multiple separate 

models. For example, a multi-model decomposition of the asymmetric model of Figure 4 
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can be created by forming the circular end of the pendulum separate from the long neck, 

creating two symmetric models, with more well-balanced trees. 

 

Figure 4: Asymmetric model resulting in unbalanced tree 

The approximation of the STL file can be characterized by comparing the volume 

of known geometric shapes to the volume of their STL approximations. Table 1 shows the 

percent volumetric difference between six geometries and their corresponding STL files. 

The STL files were generated using SolidWorks, using the default coarseness value. As 

shown in the Table 1, the highest error is for a Cylinder with a value of 0.5% This 

volumetric error is comparably created by changing the radius by 0.02 units These 

remarkably low values show that STL triangulation should not be a major contributing 

factor to the overall model error. 
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Table 1: STL comparison of volumes 

 

3.5 SUMMARY 

Throughout the implementation and debugging process, rays intersecting a 

boundary have proven to be an issue many times. This led to many features that attempt to 

mitigate the issue and subdue its contribution to the overall model error. As discussed 

previously, when intersecting a model, if the same collision point occurs multiple times, it 

is only recorded once. Additionally, there is a tolerance that can be adjusted to account for 

floating point errors when determining if two points are coincident. During the point-in-

polygon test for points contained in a model, an issue arose where the collision was a 

vertex, or on an edge of the polygon. This was mitigated by allowing for one or both signs 

to be zero. Finally, if all else fails and a model is only intersected an odd number of times 

by an infinite ray, the information from that ray is discarded. The error created by a ray 

that is infinitely contained in a model before leaving the model is much more devastating 

than the loss of information created by discarding the ray. This is a known source of error 

in the model, but it should occur at a low rate due to the other factors attempting to mitigate 

the boundary collision errors imparted by the discretization of the surface. 

  

Shape STL Volume True Volume % Error

Sphere 4177.36 4188.7902 0.27%

Cube 1000 1000 0.00%

Cylinder 3127.3 3141.59265 0.45%

HalfSphere 2089.47 2094.3951 0.24%

Cone 1045.22 1047.19755 0.19%

Round End Cylinder 7312.9 7330.38286 0.24%
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Chapter 4:  Voxelization 

This chapter describes the process for generating a mesh of tetrahedral voxels to fit 

within the three-dimensional framework of GADRAS. Tetrahedral meshes provide 

conformity to arbitrary surfaces. Also, a tetrahedron can be split into two tetrahedra in a 

self-similar manner. The ability to create arbitrary self-similar tessellation is useful for 

defining arbitrary geometries; however, fitting tetrahedra into the framework of being 

defined by three fundamental dimensions (detailed in section 1.1) and ultimately the 

framework for GADRAS necessitates some creativity. 

4.1 TETRAHEDRAL VOXEL DEFINITION 

A tetrahedron can be split by a new vertex in three ways: a new edge vertex, a new 

face vertex, and a new interior vertex. These three methods result in two, three and four 

children tetrahedra respectively, as shown in Figure 5. By choosing to split into two 

elements, tetrahedral voxels parallel the other voxels implemented in GADRAS. When one 

of the GADRAS voxel types is split, it is bisected along the dimension of interest. This 

same idea can be applied to tetrahedra if they are defined using three dimensions. A 

tetrahedron, ABCD, divided by point O, as described in Figure 6, is used as an example for 

subsequent definitions and explanations.  

 

Figure 5: Tetrahedral Divisions (Wessner, 2006) 
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Figure 6: Prototype Split with Labels 

Based on the idea that a two-element split results from splitting a tetrahedron across 

a dimension, pairs of features can be identified as potential candidates used to define the 

meaning of a dimension for this geometry. The elements on one side of the plane used to 

divide the tetrahedron in Figure 6 are point A, edges AC and AD, and face ACD, while the 

elements on the other side are point B, edges BC and BD, and face BCD. From this we can 

attempt to pair elements on opposite sides of the split and determine the number of resulting 

dimensions. The results of this analysis are given in Table 2. 

Table 2: Potential Dimensions 

Elements Relation Quantity in Tetrahedron 

A; B Point pair 6 

AC; BC Edges with shared vertex 12 

AD; BC Opposite edges 3 

ACD; BCD Faces with shared edge 6 
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The only pair of elements resulting in three dimensions is opposite edges. Although 

other voxel types use their three dimensions to fully define the geometry, a tetrahedron 

using this opposite edge approach does not. Instead, these dimensions can be used only as 

a means for refinement. The framework provided by GADRAS dictates that a dimension 

must be defined by a direction and two points. For the case of opposite edges, the direction 

is a normalized cross product of the two edges, and the two points are defined as the 

midpoints of the two edges. One issue with this framework is that, as the tetrahedron is 

divided, the dimension is dependent on the two edges that are used. As the tetrahedron 

divides, the order of the points provided changes. One method to solve this is to be 

consistent in providing the points to the constructor by creating a scheme for labeling the 

points. Because the tetrahedron can change its orientation in space as it is divided, and is 

not guaranteed to be regular, this becomes very difficult. Instead, the points are sorted 

within the constructor to keep some form of homogeneity among the dimensions. The 

scheme chosen is to sort the four points from high to low in the absolute coordinate system 

by X value, then Y value, and Z value. By doing this, the dimensions are in the same general 

direction and provide a level of order to the construction of otherwise arbitrary tetrahedra. 

The next major issue is to determine the vertex to add to the tetrahedron to split the 

desired dimension. Each dimension has four edges to which a vertex can potentially be 

added when splitting the voxel. Additionally, the GADRAS framework returns the optimal 

position to split a voxel in terms of the dimension. Figure 7 outlines the four possible 

solutions for a split on the dimension defined by the cross product of AC and BD for our 

prototype tetrahedron. Each option is equally valid and reduces the attenuation seen in the 

AC:BD direction. Because all options are equally valid, the longest side is chosen in an 

attempt to keep the resulting tetrahedra as regular as possible. The division point is then 

calculated by creating a plane using the point desired to split through, and the two points 
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not on the edge the vertex will land on. Then, the edge to be split is intersected with this 

plane to determine the split point on the dimension. This is mathematically represented by: 

 

𝑃 1 + [
𝑎𝑏𝑠((𝑃𝑠 − 𝑃3 × 𝑃𝑠 − 𝑃4) ∙ (𝑃1 − 𝑃𝑠))

‖𝑃𝑠 − 𝑃3  × 𝑃𝑠 − 𝑃4‖
] ‖𝑃1 − 𝑃2‖, (11) 

 

 

where 𝑃𝑠 is the point the split is desired to go through, 𝑃1and 𝑃2 are the points defining the 

edge being split, and 𝑃3 and 𝑃4 are the remaining two points of the tetrahedron. 

 

 

Figure 7: Potential splitting configurations 

4.2 INITIAL MESH GENERATION 

The initial mesh is generated by determining the maximum length of the model 

defined by the STL file. This length is then divided into equally spaced segments. A three-

dimensional grid of cubes is then formed around the center of the model. The cubes are 

then divided into five tetrahedra. Once the field of tetrahedra is created, every voxel is 

checked to determine if the center of the element lies within the model. If it does not, it is 

removed as shown in Figure 8. 
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Figure 8: Initial mesh generation of a sphere 

The space filling initial mesh generation technique provides a solution that is 

independent of external software and provides an opportunity to test the outside model 

refinement detail in section 4.3. Future work will focus on improving the initial mesh 

generation for a faster, more accurate model. 

4.3 OUTSIDE MODEL REFINEMENT 

The adaptive mesher in GADRAS allows for overlapping models. This gives rise 

to a scene with two overlapping models, model A and model B, with model B having higher 

priority. A voxel of model A can be considered to be outside of model A if it exists in the 

overlap zone between model A and model B, because model B has higher priority. This 

happens when composite shapes are formed from the available shape primitives. The 

generic model implementation must do this in order to be useful with the adaptive mesher 

and the preexisting shape primitives. The coarse initial mesh presents the opportunity to 

refine the ability of the tetrahedral voxel to conform to this GADRAS standard. Using the 

splitting rules defined in section 4.1, the model will never fully be contained in the surface 

defining the model. When the desired split point is projected onto the edge to be split, the 
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resulting plane is not guaranteed to completely align with the surface of the model. This 

creates a need for a special case, where a voxel must conform to a surface intersecting it. 

The method implemented to accomplish this is based on the idea that a ray drawn 

along every edge should not intersect the surface. If it does, the edge needs to be split at 

the point of intersection to drive the model to conform with the surface. This approach 

results in expanding the preexisting framework to allow for six dimensions for this special 

case. For overlapping models of tetrahedral voxel type, every edge is checked for 

intersection. If it intersects the surface, the point of intersection is directly selected to be 

the added vertex discussed in section 4.1. This method is slow and expensive as it must 

execute six ray searches on every tetrahedron on the boundary. A better approach is to 

avoid overlapping models of tetrahedral type. This is easily accomplished due to the 

arbitrary nature of a CAD model. A designer can explicitly create the scene to avoid 

overlaps. This recommendation only works if the initial mesh generation technique creates 

a mesh that was already completely contained in the surface model. 

 

 

Figure 9: Outside model refinement for a sphere 

As discussed previously, the coarse initial mesh generation is the perfect 

opportunity to test the feasibility of this outside model splitter. Figure 9 shows a sphere 
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refined to be completely contained within a surface model. The resulting mesh was 

analyzed using the volume of a sphere of known radius, and the total volume of all the 

mesh elements. For a radius of 10 cm, a volume of 4188 cm2 should be seen. The resulting 

overlapping model has a volume of 4155.61 cm2. This corresponds to an error of 0.79%. 

The volume of the tetrahedral mesh is always less than the theoretical volume, because 

when the edge is split the points are guaranteed to be within the surface mesh. 

Consequently, all the faces and edges of the tetrahedra must also be on or within the 

surface. This causes the surface of the volumetric mesh to always be an 

underapproximation of the true surface mesh. 

4.4 REFINEMENT VERIFICATION 

This section examines the tetrahedral refinement process for three of the four 

remaining refinement criteria. The fourth criterion, source term gradient, requires legacy 

code changes for full functionality. Since this is a proof of concept, this criterion is ignored. 

4.4.1 Self-Attenuation 

Self-attenuation is the attenuation due to the material the model itself is made of, 

as the name suggests. To test the tetrahedral refinement process for this criterion, a model 

is created with an extremely high attenuation. For this model, a cube of attenuation of 100 

cm-1 was chosen. The model should create an extremely dense mesh on the surface facing 

the detector, as these voxels have relatively high importance compared to interior models. 

They become very dense as the mesher attempts to refine the voxels to have the same 

attenuation at both points defining the dimension. To control all other variables, the other 

methods for refinement have been disabled. Figure 10 shows the results of the mesh, and 
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as predicted, a large number of voxels have been created on the surface of the model due 

to importance and self-attenuation. 

 

 

Figure 10: Self-attenuation validation 

4.4.2 External Attenuation 

The second criterion validated is the external attenuation splitter. This refinement 

method checks for different attenuation from outside models on each voxel. To see this 

phenomenon and validate it for the tetrahedral mesh, a slab is created with a sphere between 

it and the detector with an attenuation of 100 cm-1. The mesher should attempt to split 

voxels on the edge of the shadow of the sphere, if the detector were a light source. One 

would expect to see a faint outline of a sphere in the slab’s mesh. Figure 11 shows the 

results of the above situation and validates that this method works for tetrahedral meshes. 
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Figure 11: External attenuation validation 

4.4.3 Geometric Attenuation 

The last, and most difficult to capture refinement criterion is geometric attenuation. 

This attenuation is based on the distance of the detector from the source. A real-world 

display of this attenuation occurs with stars. A more distant star is dimmer than one of 

equal intensity that is closer. To check this refinement method, a detector is placed very 

close to the model. If the splitter is working, there should be a gradient of splits on the 

surface, with more divisions as the model gets further from the detector. Being the most 

difficult to capture refinement method, Figure 12 demonstrates its functionality through 

the scene described above by placing a detector 0.1 cm away from the surface of a 10 cm 

cube with a detector at the center of the face. A large number of divisions can be seen on 

the two elements closest to the detector, and at the point furthest from the detector. This is 

because the method checks for difference in geometric attenuation across a voxel, and 
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geometric attenuation only takes places at large distances. Additionally, the nature of this 

attenuation makes it very difficult to capture. 

 

 

Figure 12: Geometric attenuation validation 
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Chapter 5:  Results and Verification 

This chapter outlines the verification process used to determine the effectiveness of 

the proposed implementation of arbitrary CAD models in GADRAS. The generic 

implementation is first compared to the GADRAS shape primitives to test error on well 

documented and experimentally validated geometries. Then, the tetrahedral mesh is 

compared to the currently existing framework for adaptive meshing within GADRAS to 

compare the performance of more complex shapes. Next, an entire scene is created using 

the adaptive mesher and shape primitives to examine a scenario of interest and the potential 

reductions provided by the tetrahedral mesh. Finally, a model with very complex 

geometries is examined on its own to demonstrate the benefits of creating models that are 

impossible to accurately make using shape primitives. 

5.1 GADRAS PRIMITIVE COMPARISON 

Although the generic CAD model implementation is designed for highly complex 

scenes and impossible to model surfaces, a comparison to the six fundamental shape 

primitives in GADRAS allows for verification. The shape primitives in GADRAS have 

been computationally and experimentally validated. This provides a method of inexpensive 

comparison between the two implementations. 

5.1.1 Experimental Setup 

All six primitives (Spheres, Boxes, Cones, Cylinders, Round Cylinders, and Caps) 

were created using SolidWorks to generate STL files. Each geometry was modeled to have 

a value of 10 cm for every fundamental dimension defining it. Spheres were defined by the 

radius, boxes by the length, width and height, cones by the major radius and the length, 

cylinders and round cylinders by the radius and the length, and caps were forced to be 
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hemispheric and defined by the radius. The equivalent geometries were also created using 

GADRAS and the same parameters. Then meshes were generated for both implementations 

using their respective voxelization. From the mesh, the volume and the center of every 

voxel was recorded and used to determine detector contribution. Detector contribution is 

found by: 

𝐷 =  𝑉 ∗ 𝑒−𝜇1𝑡1−𝜇2𝑡2…−𝜇𝑛𝑡𝑛 (12) 

where V is the volume of the element, 𝜇1is the attenuation coefficient for the material the 

ray passes through, and 𝑡1 is the thickness of that material. Then the error was quantified 

as the percent difference between the GADRAS detector contribution and the tetrahedral 

detector contribution. The error was then found for every geometry with various mesh sizes 

and various attenuations at a detector position 30 cm from the center of the model located 

on the X axis. The mesh settings, and granularity of the initial mesh were held constant for 

every test, in addition to the source being uniformly distributed throughout the volume. 

5.1.2 Results and Discussion 

 Using the overlapping model refinement initial mesh, the detector contribution was 

determined for the tetrahedral mesh and compared to GADRAS for attenuations from 0 to 

100 cm-1, and mesh densities of 25,000, 50,000, 100,000, 125,000. Some common values 

for attenuation are 10 cm-1 , 55 cm-1 and 90 cm-1 for a 60 KeV gamma ray for iron, lead, 

and gold, respectively. Figure 13 shows the attenuation versus error plotted for a cube 

model. As more voxels are allowed, the error converges towards a value of approximately 

8% for all attenuations. This experiment shows that increasing voxel count causes the error 

to trend towards a single value.  
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Figure 13: Cube model error  

Cubes looked promising, but Figure 14 shows the same progression for a spherical model 

with drastically different results. The results of this model do not converge to any 

meaningful value and the error is still significant at attenuations over 10 cm-1. The main 

difference between the two models causing this error was hypothesized to be the initial 

mesh. The meshing strategy outlined in section 4.1 uses an initial cubic mesh, which clearly 

defines the cube model with extreme accuracy. On the other hand, the spherical model must 

use the outside model convergence routine to refine this cubic mesh into a sphere. This 

takes many voxels, and still results in a very high error for the volume. Appendix A presents 

the results of the same test for the other four models which show the trend observed with 

spherical models holds for all models attempting to refine the mesh. 
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Figure 14: Sphere model error with initial mesh refinement 

 The idea of having a poor initial mesh translating into large errors can be 

quantitatively seen by graphing the error at a 100 cm-1 against the initial volume error in 

the mesh as shown in Figure 15. A solution to this source of error is to create a better initial 

mesh to reduce the effect of this error on the models. 

 

Figure 15: Volume error total error correlation 
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 A simple solution to keep the mesher contained entirely within GADRAS and test 

this theory is to use convex geometries and create a voxel using the triangulation of the 

surface for three points and the center of the volume as the fourth point. The results of 

using this initial mesh for cubes is shown in Figure 16 and for spheres in Figure 17. The 

cubic model now demonstrates the same trend, with a significantly higher percent error. 

This is likely due to the nature of the mesh. With the simple initial mesh, the voxels were 

close to regular and evenly distributed across the geometry. With the alternative method, 

the elements are thin and irregular, increasing the number of divisions needed to create a 

point source with the tetrahedron. Spheres on the other hand, now have error that is 

relatively flat for all attenuations, but as the mesh density increases, the error converges to 

a high, positive error. This means that the tetrahedral mesh is now over valuing the detector 

contribution of the model. Appendix B contains the graphs for the other four geometries 

exhibiting the same effect. 

 

Figure 16: Cube model central-STL mesh error 
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Figure 17: Sphere model error with contained initial mesh 

 The error shown from the new initial mesh means that an element is now being 

under attenuated. This is likely due to the approximate nature of the STL file. As the 

elements are reduced to smaller and smaller voxels near the surface of the model, the 

likelihood of hitting the surface at an unfavorable angle increases, amplifying the error 

contributed by the approximation. Figure 18 shows a 2D example of this effect. Ray A and 

Ray B are both traveling to the same location, but Ray A hits the red approximate surface 

significantly before hitting the gray exact surface. This error can occur for many reasons, 

but the most likely is the voxels close to the surface, which have a higher chance of collision 

occurring at a steep angle, making the approximation even worse and amplifying the effect. 
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Figure 18: STL approximation error 

 As a check of this hypothesis, spherical models with decreasing angular tolerance 

for tessellation (and thus increased STL precision) were tested over a truncated range of 

attenuations with a constant mesh density of 50,000. The results in Figure 19 show that, as 

the precision of the STL file (noted as degree for the angular tolerance) increases, the error 

converges towards a negative value. The error shown in Figure 19 is a combination of all 

the sources of error. The error resulting from the STL precision is a positive value. As the 

precision of the STL file increases, the error component from STL precision converges to 

zero. This causes the total error to be dominated by the other negative error sources. This 

means the STL approximation error is no longer the prominent error of the model. As a 

final check of STL error hypothesis, the two leading models were tested over the full range 

of attenuations at a higher voxel count of 125,000 to decrease the error components caused 

by poor point source approximations. Figure 20 shows that at higher values of mesh 

density, the error of the more precise STL file converges towards 0% and the STL file with 

a positive percent error still exhibits the STL approximation error. 
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Figure 19: Spherical refinement study 

 

Figure 20: Leading spherical model confirmation 

 As a final sanity check, all 6 models were run again using more precise STL files 

and the same increasing attenuation and mesh densities of 50,000, 100,000, and 150,000. 

Spheres converge towards a value just under 20% as shown in Figure 21. This means that 

STL approximation error is still causing problems, however, the lower voxel count could 
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be used to create a precise model balancing the error between the STL approximation and 

the point source approximation. Figure 22 shows the error for a Cylinder under the same 

conditions. A cylinder shows significantly less error than the sphere model. This is likely 

due to the simplicity of a cylindrical STL file. Fewer approximations are made due to the 

flat surfaces, thus resulting in a more accurate model that is less susceptible to STL 

approximation error. 

 

Figure 21: Refined spherical model with contained mesh 

 

Figure 22: Refined cylindrical model with contained mesh 
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5.2 GADRAS ADAPTIVE MESHER COMPARISON 

GADRAS currently has an adaptive mesher that allows overlapping models to be 

adjusted. Because of this, the six fundamental voxel types can used to attempt to conform 

to any surface. This section compares the adaptive mesher’s ability to conform to a cube 

for each voxel type to the tetrahedral mesh of a cube and to the GADRAS shape primitive 

mesh of a cube. The models are created to have edge length of 10 cm. The same testing 

procedures are used, with the same constants and the same variations. 

5.2.1 Results and Discussion 

 The aim of this section is to compare the ability of the preexisting adaptive mesher 

to the tetrahedral mesher which could perform this sort of refinement. The adaptive mesher 

runs faster than the tetrahedral mesher and does not use the maximum voxel count. Figure 

23 shows the spherical voxel model’s attempt to conform to a cube. The error is both 

positive and negative as the refinement does not trend towards one side like the tetrahedral 

mesher. The magnitude of the error is greater than that of the tetrahedral mesher; however, 

the tetrahedral mesher has an exact initial mesh and only responds to the point source 

refinement criteria. The large initial error in the volume is more than likely the main source 

of error, much like when a poor initial mesh is used with the tetrahedra. The other four 

shape primitives’ comparison plots can be found in Appendix C and show varying levels 

of success in matching the GADRAS cube mesh. 
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Figure 23: Spherical adaptive mesher comparison 

 This experiment shows that the tetrahedral mesher has a better ability to 

approximate point sources than the adaptive mesher under situations where the voxel shape 

is different than the volume it is representing This better approximation comes at the cost 

of speed and increased voxel count. Additionally, the flat faces of a cube are significantly 

easier to match than a curved surface. If a complex surface can be modeled using the shape 

primitives, the anticipated result will be much less accurate than the tetrahedral 

approximation given a good initial mesh. 

5.3 GADRAS SCENE COMPARISON 

Most situations where GADRAS is useful involve a scene where some radioactive 

material exists in a complex environment. Due to the errors outlined in section 5.1.2, large 

numbers of voxels and very precise STL files are needed for complex surfaces as sources. 

Additionally, a good initial mesh is necessary. This leads to very large computation times 

and, for the simple mesher developed for testing, a convex model. For these reasons, only 
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the ray tracing aspect of the unstructured model was tested for a complex scene. This 

comparison consisted of a cylindrical source inside a rocket as depicted in Figure 24. The 

rocket was created using GADRAS shape primitives as well as a single STL file. Then, the 

error was calculated for varying levels of attenuation for the rocket for increasing level of 

STL precision. Both implementations use a GADRAS cylinder primitive as the source for 

a fair comparison. 

 

Figure 24: Mock rocket for ray tracer test 

5.3.1 Results and Discussion 

 Although this section does not deal with the tetrahedral volume mesh, the ray tracer 

is a critical element in deciding if and where a voxel needs to be split. By examining the 

ray tracer error, the contribution to the total error can be seen and further understood for 



 44 

future work. Figure 25 shows the contribution of the source cylinder to a detector on the x-

axis (radial to the rocket). Since the graph has such large outliers, the only information 

gained, is that there are extreme outliers. These may be caused by poor handling of the ray 

when it intersects a triangle on the edge, or somehow gets through the STL file without 

being attenuated. Figure 26 shows the same data with the outliers removed. Without 

outliers (error over 100%), the trend holds that as the precision of the STL file increases, 

the error decreases. Using only the ray tracer through unstructured meshes, the error from 

the STL file is much less pronounced, as the data is more than likely polluted by the same 

error that caused the extreme outliers to a lesser extent. More instances of this experiment 

can be seen with different detector positions in Appendix D. 

 

 

Figure 25: Extreme outlier ray tracer example 
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Figure 26: Polluted ray tracer data 

 Using a different detector position of (30,30,0), the true ray tracer error correlation 

with STL precision can be seen without major influence from outliers contributing to the 

totals as shown in Figure 27. Increasing the precision of the STL file clearly reduces the 

error of the ray tracer. This plot exemplifies the error that is compounded on the tetrahedral 

mesher caused by the STL file error. 

 

 

Figure 27: STL precision trend on ray tracer 
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5.4 Summary 

 Through three different simulation experiments, the error of the unstructured model 

is better understood. The comparison to GADRAS models showed that the initial mesh for 

a tetrahedral object is paramount and strongly dictates the computation of the higher 

attenuations. Once that was corrected, the STL file precision contributed substantially to 

the error. It was shown that increasing the precision of the model decreases the influence 

of the STL precision error on the total error. However, it was shown that there is a balance 

between mesh density and STL precision that needs to be carefully examined for each 

model. By using the existing adaptive mesher, it was determined that the tetrahedral mesher 

results in less error than the adaptive mesher for some primitives, and on par with the 

adaptive mesher for others. Finally, by ray tracing a complex scene, the floating-point 

errors and possible unattenuated rays demonstrated influence on the error. Once eliminated, 

it was shown that the effect due to STL approximation can be resolved by increasing 

precision. 
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Chapter 6: Conclusion 

This research developed the capability to use unstructured models in GADRAS, a 

nuclear radiation transport simulation package. A prototype was developed with the 

restrictions that the input file type be universal and fit within the existing framework for 

compatibility with existing algorithms. The prototype utilizes the STL file format for the 

input file due to its simplicity and ubiquitous nature. To increase the computational 

efficiency of intersecting large numbers of triangles, an octree data structure was created 

to take advantage of spatial coherence of the STL objects.  

Given that the STL format only defines the surface of an object, a method to 

generate the volumetric meshes needed for nuclear simulation was developed. Tetrahedral 

meshing was chosen, as tetrahedra, compared to other mesh element shapes, can most 

easily be generated to approximate a general object. Thus, tetrahedral voxels were used in 

the GADRAS framework. The framework calls for each voxel to be defined by three 

dimensions. By using opposite edge pairs as “dimensions”, tetrahedra integrate well with 

GADRAS algorithms. This was visually tested to ensure that split criteria were triggered 

correctly. 

Once both the surface mesh, and volumetric mesh were fully integrated, the full 

unstructured model implementation was compared with existing GADRAS models as a 

form of validation. These tests revealed three critical components to the total error 

associated with an unstructured model: point source refinement, STL precision, and 

unattenuated rays. Point source refinement error reduction requires finer meshes and more 

voxels to decrease error. STL precision captures all error resulting from the approximate 

nature of the STL file. This error increases as voxel count increases. Finally, by testing the 

ray tracer, unattenuated rays can cause large amounts of error in the final value.  
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Through testing and debugging, the unstructured modeling implementation 

developed in this research has been shown to be a viable method that is competitive with 

an existing adaptive mesher in GADRAS, with the added benefit of conforming to complex 

surfaces. This modeling flexibility comes at the expense of execution speed. 

6.1 FUTURE WORK 

As a proof of concept, this implementation shows a viable path forward. In order 

to achieve the best result, the three main components of error must be addressed. A 

proposed solution to the large number of voxels generated is a better initial mesh. Many of 

the early refinements of the voxels are necessary to guarantee that the initial mesh is 

contained within the surface model. Once done, they are generally irregular and not optimal 

for point source refinement. This can be solved by generating a better initial mesh that can 

deal with nonconvex objects and create regular tetrahedra with the minimum number of 

elements possible. 

STL precision error can be mitigated by increasing the STL file precision in the 

CAD software of choice. This will cause the time to ray trace the model to increase, so 

refinement of the octree subdivision depth should be considered. Additionally, time can be 

saved by streamlining error handling in the ray tracer for nonconvex objects. This error 

handling also needs to be improved to decrease the likelihood of unattenuated rays, thus 

eliminating this problem. 

By decreasing the impact of the three main causes of error, unstructured modeling 

can be fully implemented in GADRAS. This would decrease the time needed to create 

models in GADRAS and allow complex geometries to be modeled that could not 

previously be modeled. 
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Appendices 

APPENDIX A 

The following charts show the error of tetrahedral implementation compared to 

GADRAS shape primitives for varying levels of attenuation and maximum voxel count. 

The initial mesh is formed using a space filling tetrahedral pattern and then refined to be 

contained in the surface model. 

 

 

Figure 28: Sphere model bad initial mesh 
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Figure 29: Cube model bad initial mesh 

 

Figure 30: Cone model bad initial mesh 

 

Figure 31: Cylinder model bad initial mesh 
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Figure 32: Round Cylinder model bad initial mesh 

 

Figure 33: Hemisphere model bad initial mesh 
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APPENDIX B 
The following charts show the error of tetrahedral implementation compared to 

GADRAS shape primitives for varying levels of attenuation and maximum voxel count. 

The initial mesh is formed by using the triangles of the surface mesh and the center of the 

model. This method is only viable for convex geometries. 

 

 

Figure 34: Sphere model contained initial mesh 

 

Figure 35: Cube model contained initial mesh 
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Figure 36: Cone model contained initial mesh 

 

Figure 37: Cylinder model contained initial mesh 
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Figure 38: Round Cylinder model contained initial mesh 

 

Figure 39: Hemisphere model contained initial mesh 
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APPENDIX C 

The following charts show the error of tetrahedral implementation compared to 

GADRAS shape primitives for varying levels of attenuation and maximum voxel count. 

The initial mesh is formed by using the triangles of the surface mesh and the center of the 

model. This method is only viable for convex geometries. The models used are very precise 

STL files, where the allowed angle is 2 degrees. 

 

 

Figure 40: Sphere model contained initial mesh refined 

 

Figure 41: Cube model contained initial mesh refined 
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Figure 42: Cone model contained initial mesh refined 

 

Figure 43: Cylinder model contained initial mesh refined 
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Figure 44: Hemisphere model contained initial mesh refined 

 

Figure 45: Round Cylinder model contained initial mesh refined 
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APPENDIX D 
The following charts show the error of tetrahedral implementation compared to 

GADRAS implementation of a mock rocket for use with the ray tracer. These graphs show 

various detector positions and have the outliers removed. 

 

 

Figure 46: Ray tracer validation det (30, 30, 0) 

 

Figure 47: Ray tracer validation det (0, 30, 0) 
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Figure 48: Ray tracer validation det (30, 30, 0) 

 

Figure 49: Ray tracer validation det (0, 30, 30) 



 60 

 

Figure 50: Ray tracer validation det (30, 30, 30) 
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