

FLIGHT TEST DATA SYSTEM FOR STRAIN MEASUREMENT

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Mechanical Engineering

by

Zachary David Wilson

December 2019

ii

© 2019

Zachary David Wilson

ALL RIGHTS RESERVED

iii

COMMITTEE MEMBERSHIP

TITLE: Flight Test Data System for Strain Measurement

AUTHOR:

Zachary David Wilson

DATE SUBMITTED:

December 2019

COMMITTEE CHAIR:

Russell V. Westphal, Ph.D.

Professor of Mechanical Engineering

COMMITTEE MEMBER: William R. Murray, Ph.D.

Professor of Mechanical Engineering

COMMITTEE MEMBER:

John R. Ridgely, Ph.D.

Professor of Mechanical Engineering

iv

ABSTRACT

Flight Test Data System for Strain Measurement

Zachary David Wilson

This thesis describes the design and evaluation of two devices to be included in the next generation

of the family of devices called the Boundary Layer Data System (BLDS). The first device, called

the Quasi-Static Strain Data Acquisition System, is a continuation of the BLDS-M series of devices

to be known as the Flight Test Data System (FTDS) that uses a modular approach to acquire non-

flow, quasi-static mechanical strain measurements. Various breakout boards and development

boards were used to synthesize the device, which were housed by a custom PCB board. The system

is controlled by the SimbleeTM System on a Chip (SOC), and strain measurements are acquired

using the HX711 analog-to-digital converter (ADC), and acceleration measurements are acquired

with the ADXL345 accelerometer. The Arduino IDE was used to program and troubleshoot the

device. The second device, called the Dynamic Strain Data Acquisition System, is a laboratory

proof-of-concept device that evaluates various methods of acquiring dynamic strain measurements

that may be used in future FTDS designs. A custom PCB board was designed that houses the

microcontroller and the various passive components and ICs used to acquire and store strain

measurements. The system is controlled by the Atxmega128A4U microcontroller, and

measurements are acquired using the AD7708 external ADC and the on-board ADC of the

microcontroller. Atmel StudioTM was used to program the microcontroller in C/C++ and to

troubleshoot the device. Both devices were tested extensively under room temperature and low

temperature conditions to prove the reliability and survivability of each device. The quasi-static

data acquisition system was validated to acquire and store measurements to a microSD card at

10 Hz, with a peak operating current under 60 mA. The dynamic data acquisition system was

proven to acquire a thousand measurements at 1 kHz and store the data to a microSD card, with a

peak operating current under 60 mA.

Keywords: Strain, Measure, BLDS, Modular, Static, Dynamic, Arduino, C, C++

v

ACKNOWLEDGMENTS

A special thanks to thank Dr. Russell Westphal for his endless support and guidance for the entirety

of the project.

I would also like to thank those on the BLDS project team that I have worked with, specifically:

Charlie Refvem, Nathan Hoyt, Neal Sharma, and Robert Taas. I would also like to thank Isabel

Jellen, who contributed a great deal to the basis of this work.

Finally, I would like to thank my family who have unconditionally supported me through all of my

educational career. I have been extremely fortunate and owe much of my success to the way my

parents taught me to be disciplined and driven in everything I do.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES ... viii

LIST OF FIGURES .. ix

NOMENCLATURE ... xiii

CHAPTER

1. INTRODUCTION .. 1

1.1 Background ... 1

1.1.1 History of BLDS .. 1

1.1.2 Next Generation Modular BLDS (BLDS-M) .. 3

1.1.3 BLDS-M-RAKE .. 6

1.1.4 Purpose of Work .. 7

1.2 Requirements ... 8

2. QUASI-STATIC DATA ACQUISITION SYSTEM.. 10

2.1 Device Design ... 10

2.1.1 Component Selection and Specifications ... 11

2.1.2 System Design ... 17

2.1.3 Software Design ... 21

2.2 Device Testing and Validation .. 28

2.2.1 Current Draw ... 28

2.2.2 Data Acquisition Testing ... 29

2.2.3 Low Temperature Testing .. 31

2.3 Summary – Quasi-Static Data Acquisition System ... 36

3. DYNAMIC DATA ACQUISITION SYSTEM .. 38

3.1 Device Design ... 38

3.1.1 Component Selection and Specifications ... 39

3.1.2 System Configuration .. 42

3.1.3 Electronics Design and Analysis ... 47

3.1.4 Software Design ... 58

3.2 Device Testing and Validation .. 67

3.2.1 Current Draw ... 68

3.2.2 Static Data Acquisition Testing ... 69

3.2.3 Dynamic Data Acquisition Testing .. 72

vii

3.2.4 Low Temperature Testing .. 78

3.3 Summary – Dynamic Data Acquisition System .. 80

4. CONCLUSIONS AND RECOMMENDATIONS ... 82

4.1 Conclusions ... 82

4.1.1 Quasi-Static Data Acquisition System ... 82

4.1.2 Dynamic Data Acquisition System .. 83

4.1.3 Software ... 83

4.2 Recommendations for Future Work .. 84

4.2.1 Programming IDE .. 84

4.2.2 Electronics and Circuitry ... 84

WORKS CITED .. 86

APPENDICES

A. QUASI-STATIC DATA ACQUISITION SYSTEM SCHEMATIC AND BOARD

LAYOUT .. 89

B. HX711 LOAD CELL AMPLIFIER BREAKOUT SCHEMATIC AND BOARD

LAYOUT .. 92

C. ADXL345 ACCELEROMETER BREAKOUT SCHEMATIC AND BOARD LAYOUT 94

D. HX711 AND ADXL345 ARDUINO DRIVERS .. 96

E. DYNAMIC DATA ACQUISITION SYSTEM SCHEMATIC AND BOARD LAYOUT 105

F. DERIVATIONS OF FILTER TRANSFER FUNCTIONS, CUTOFF FREQUENCIES,

AND MATLAB SIMULATION .. 110

G. DYNAMIC DATA ACQUISITION SYSTEM C++ DRIVERS .. 119

H. DYNAMIC DATA ACQUISITION SYSTEM SCHEDULER, BASE TASK, SHARE,

AND QUEUE C++ FILES.. 165

I. DYNAMIC DATA ACQUISITION SYSTEM DERIVED TASK C++ FILES 196

J. DERIVATION OF CANTILEVER BEAM EQUATION OF MOTION AND FIRST

NATURAL FREQUENCY .. 223

viii

LIST OF TABLES

Table Page

1-1. Initial BLDS Version 3 Requirements (Westphal et al. 2008) ... 2

1-2. Truncated list of SimbleeTM features (RF Digital 2017) ... 5

1-3. Quasi-Static and Dynamic Device Requirements ... 8

2-1. Position of each device shown in Figure 2-1 .. 11

2-2. Truncated list of HX711 features (AVIA Semiconductor, n.d.) 14

2-3. Timing values for Figure 2-5 (AVIA Semiconductor, n.d.) ... 15

2-4. Truncated list of ADXL345 features (Analog Devices, 2015) ... 16

2-5. Current draw and power consumption of device under various operating conditions

(5V source) ... 28

2-6. Sample set of strain and acceleration data acquired at a frequency of 1 Hz 29

2-7. Comparison of the standard deviation in the acceleration data at room temperature

and at -36°C ... 33

2-8. Tabulated strain deviation of device from 22 °C to -36 °C .. 36

3-1. Truncated list of AD7708 features (Analog Devices, 2001) .. 42

3-2. Current draw and power consumption of device under various operating conditions...... 69

3-3. Sample sets of data acquired by both methods ... 70

3-4. Natural frequencies observed in dynamic testing ... 78

ix

LIST OF FIGURES

Figure Page

1-1. BLDS with cover removed to show internal circuitry (Westphal et al. 2008) 2

1-2. BLDS-M module functional diagram (Jellen et al. 2019) ... 4

1-3. BLDS-M Modules with quarter for scale (Jellen et al. 2019) ... 5

1-4. BLDS-M-RAKE Block Diagram (Hoyt 2019) .. 7

2-1. Top view of quasi-static device displaying each component .. 10

2-2. SimbleeTM 29-GPIO breakout board pinout (RF Digital 2015) 12

2-3. RFduinoTM MicroSD shield pinout illustration (RF Digital, 2013) 13

2-4. HX711 block diagram and typical application (AVIA Semiconductor, n.d.) 14

2-5. Data output, input, and gain control timing (AVIA Semiconductor, n.d.) 15

2-6. ADXL345 functional block diagram (Analog Devices, 2015) .. 16

2-7. Quasi-Static data acquisition system device hardware diagram 18

2-8. Top and bottom views of the HX711 breakout provided by SparkFun (SparkFun,

2013) .. 19

2-9. Wheatstone bridge quarter-bridge configuration ... 20

2-10. Top and bottom views of the ADXL345 breakout provided by SparkFun

(SparkFun, 2013) ... 21

2-11. Task diagram for quasi-static data acquisition system .. 24

2-12. Strain Reader (left) and Acceleration Reader (right) task state transition diagrams 25

2-13. MicroSD Driver task state transition diagram ... 26

2-14. User Interface task state transition diagram ... 27

2-15. Strain gauge testing setup. Overall testing setup (left), beam and dangling mass

(middle), closeup of strain gauge location (right) .. 30

2-16. Cantilever beam schematic .. 30

2-17. Comparison of HX711 readings to theoretical strain values ... 31

x

2-18. Vacuum chamber test results for variation in acceleration as the chamber

temperature decreases .. 32

2-19. Vacuum chamber test results for absolute variation in mechanical strain as the

chamber temperature decreases ... 33

2-20. Results of freezer testing. Left: Strain readings with aluminum beam and strain

gauge at -36 °C and electronics at 22 °C. Right: Strain readings with

electronics at -36 °C and aluminum beam and strain gauge at 22 °C 35

3-1. Top view of assembled dynamic data acquisition system ... 39

3-2. Pinout/block diagram of the Atxmega architecture (Atmel, 2014).................................. 40

3-3. AD7708/AD7718 pinout/block diagram (Analog Devices, 2001) 41

3-4. Dynamic data acquisition system device hardware diagram ... 43

3-5. Wheatstone half-bridge (left) and full-bridge (right) configurations 46

3-6. Dynamic data acquisition system PCB board outline .. 47

3-7. Power regulation and microcontroller schematic .. 48

3-8. FT232R and microUSB schematic .. 49

3-9. MicroSD socket schematic .. 50

3-10. AD7708 and quarter, half, and full-bridge schematic ... 51

3-11. AD780R voltage reference schematic ... 52

3-12. High-level ADC data acquisition block diagram ... 52

3-13. First-order passive low-pass filter schematic .. 53

3-14. Bode Diagram for first-order low-pass filter ... 54

3-15. First-order active low-pass filter schematic ... 54

3-16. Second-order active low-pass filter schematic .. 55

3-17. Bode Diagram for second-order low-pass filter .. 56

3-18. Differential amplifier + offset circuit schematic ... 56

3-19. Voltage divider circuit for providing a reference voltage of 𝑉𝑐𝑐/2 57

3-20. Task diagram for dynamic data acquisition system ... 63

xi

3-21. AD7708 Driver task state transition diagrams ... 64

3-22. ADC Interface task state transition diagrams .. 64

3-23. MicroSD Driver task state transition diagram ... 65

3-24. User Interface task state transition diagram ... 66

3-25. Quarter-bridge (left), half-bridge (middle), and full-bridge (right) beam

configurations .. 68

3-26. Calibration of the AD7708 (16-bit) ... 71

3-27. Comparison of on-board ADC (12-bit) readings to theoretical strain values 72

3-28. Dynamic cantilever beam model schematic .. 73

3-29. Assumed mode shapes of cantilever beam model for (top) first mode and (bottom)

second mode ... 73

3-30. AD7708 (16-bit) dynamic beam testing results for the quarter-bridge configuration 75

3-31. AD7708 (16-bit) dynamic beam testing results for the half-bridge configuration 75

3-32. AD7708 (16-bit) dynamic beam testing results for the full-bridge configuration 76

3-33. On-board ADC (12-bit) dynamic testing results with passive 1st-order filtering 77

3-34. On-board ADC (12-bit) dynamic testing with active 1st-order filtering 77

3-35. On-board ADC (12-bit) dynamic beam testing with active 2nd-order filtering 77

3-36. Full-bridge low temperature test results acquired by the AD7708 (16-bit) 79

3-37. On-board ADC (12-bit) half-bridge low temperature test results 79

A-1. Quasi-static Data Acquisition System PCB top layer layout .. 90

A-2. Quasi-static Data Acquisition System PCB bottom layer layout 90

A-3. Quasi-static Data Acquisition System PCB top render.. 91

A-4. Quasi-static Data Acquisition System PCB bottom render ... 91

B-1. HX711 breakout board top layer layout ... 93

B-2. HX711 breakout board bottom layer layout .. 93

C-1. ADXL345 breakout board top layer layout ... 95

xii

C-2. ADXL345 breakout board bottom layer layout ... 95

E-1. Dynamic Data Acquisition System PCB top layer layout .. 108

E-2. Dynamic Data Acquisition System PCB bottom layer layout 108

E-3. Dynamic Data Acquisition System PCB top render .. 109

E-4. Dynamic Data Acquisition System PCB bottom render .. 109

F-1. First-order active low-pass filter schematic ... 110

F-2. First-order low-pass filter linear graph (left) and normal tree (right) 111

F-3. Second-order active low-pass filter schematic ... 113

F-4. Second-order low-pass filter linear graph (left) and normal tree (right) 113

F-5. SimulinkTM block diagram of first-order filter simulation.. 115

F-6. SimulinkTM block diagram of second-order filter simulation ... 115

F-7. Bode Diagram for first-order low-pass filter .. 117

F-8. First-order low-pass filter response with noisy input ... 117

F-9. Bode Diagram for second-order low-pass filter ... 118

F-10. Second-order low-pass filter response with noisy input ... 118

J-1. Dynamic cantilever beam model schematic .. 223

J-2. Assumed mode shapes of cantilever beam model for (top) first mode and (bottom)

second mode ... 224

xiii

NOMENCLATURE

𝐴 = cross-sectional area, m2

𝑏 = width, m

𝑐 = mechanical damping, N-s/m

𝐶 = capacitance, F

𝐸 = elastic modulus, Pa

𝑓𝑐 = cutoff frequency, Hz

𝐹 = force, N

𝐺𝐹 = strain gauge factor

ℎ = height, m

𝑖 = electric current, A

𝐼 = second moment of inertia, m4

𝐿 = length, m

𝐿𝑆𝐺 = strain gauge location, m

𝑀 = moment, N-m

𝑞 = solution to equation of motion

𝑅 = electrical resistance, Ω

𝑅𝑟𝑒𝑓 = nominal electrical resistance, Ω

𝑇 = temperature, °C

𝑇𝑟𝑒𝑓 = reference temperature, °C

𝑉 = voltage, V

𝑉𝑟𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 = voltage across a Wheatstone bridge with loaded strain gauge, V

𝑉𝑟𝑢𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 = voltage across a Wheatstone bridge with unloaded strain gauge, V

𝛼𝑇 = temperature coefficient of resistance, Ω/Ω°C

𝛼𝑙 = thermal expansion coefficient, m/m°C

𝜀 = mechanical strain

𝜎 = mechanical stress, Pa

𝜌 = density, kg/m3

𝜐 = transverse deflection, m

𝜓 = assumed mode shape

𝜔𝑛 = natural frequency, Hz

1

1. INTRODUCTION

This paper details the development of two prototype devices to support the development

of the family of devices collectively called the Boundary Layer Data System (BLDS) (Westphal et

al. 2006). A BLDS is a small, autonomous, self-contained instrument capable of acquiring

measurements of the flow near the surface of an aircraft during flight. These new devices are the

first BLDS devices to incorporate the ability to acquire timestamped mechanical strain data and

save the data to an on-board micro-SD card. The BLDS devices were developed especially for

boundary layer data acquisition with configurations available for various modes of operation

(Westphal et al. 2008). The next generation of BLDS devices, known as BLDS-M, took a modular

approach with separate devices responsible for various operations. The motivation and

requirements for the new prototype BLDS devices will be discussed after presenting an overview

of the development of the BLDS device family.

1.1 Background

1.1.1 History of BLDS

A BLDS device is an instrument used to measure various parameters in the boundary layer

on the outside surface of an aircraft during flight. The basic requirements for the BLDS family are

that each device must weigh less than a pound, operate autonomously and independent of any

aircraft systems, and be mountable to the outside of an aircraft using adhesives (Westphal et al.

2006). The first generation of these devices flew in 2005. The base design of the BLDS system was

solidified and tested in 2008 with the third generation of these devices. The third generation

(Version 3) boasted improvements such as a dual microcontroller system, longer test times at low

temperatures with better power management, and the addition of satellite devices for measuring

skin friction as well as boundary layer profile measurements (Westphal et al. 2008). The

2

requirements of the base design for these devices are shown in Table 1-1 and a photo of the base

device with the cover removed is shown in Figure 1-1.

Table 1-1: Initial BLDS Version 3 Requirements (Westphal et al. 2008).

Requirement Quantity or Description

Operating Altitude 30,000+ ft (-55 C)

Attachment design load criteria

(2/3 in2 tape/lb design load

gives safety factor=3)

3 g dynamic loading, 5 yaw,

Vertical or horizontal surface

Dynamic pressure (local-at

instrument mount location)

Up to 150 psf

Probes/sensors Preston tube (fixed); freestream total

pressure (fixed); temperature (fixed)

total pressure (moving), rotatable

single-hole probe (moving)

Battery life > 2 hrs.

Weight < 1 lb

Operation Autonomous; no pilot involvement

Figure 1-1: BLDS with cover removed to show internal circuitry (Westphal et al. 2008).

The design of Version 3 of the BLDS device has served as the basis for all BLDS devices

up until 2017. The device was flown on missions between 2008 and 2018, and developments were

3

made during that time to improve the functionality of the base device. Functionality was added to

the device by implementing a Conrad probe, which added the ability to read and record information

about the flow direction in addition to magnitude (Ulk 2010). To acquire unsteady boundary layer

data, solutions such as the addition of a Kulite sensor and microphones were explored to capture

time-varying pressure data (Karasawa 2011), (Lillywhite 2013). The ability to measure skin friction

was also added by incorporating devices such as a Preston tube and a modified Stanton gauge

(Kinkade 2014). Finally, Version 3 was altered to accommodate a 16-tube rake to instantaneously

capture the entire boundary layer. Key specifications for the Version 3 system include 128KB of

volatile random-access memory (RAM) program memory, 2 MB of non-volatile serial Flash

memory, 11 analog inputs of 0-5 V range and 12-bit resolution, and a typical sample rate of 100 Hz

(Westphal et al. 2017).

1.1.2 Next Generation Modular BLDS (BLDS-M)

Work on the next version of the BLDS, called the BLDS-M, began in 2017 as a proof-of-

concept which incorporated newer components with lower power consumption and wireless

communication. Rather than one device with multiple configurations, the next generation of BLDS

devices took a modular approach which decreased power consumption and increased the

functionality of the device family. The modular approach allows for lower power consumption and

incorporation of only the necessary capabilities for a particular mission. Figure 1-2 displays the

functional diagram for the first three modules that were designed and tested.

4

Figure 1-2: BLDS-M module functional diagram (Jellen et al. 2019).

The first three modules were named “Cricket”, “Monitor”, and “Recorder”. The Cricket

module houses and controls the sensors used for data acquisition and communicates to the Monitor

and Recorder modules that provide live data monitoring and recording, respectively (Jellen et al.

2019). These devices utilize the SimbleeTM development board, a microcontroller system with

Bluetooth Low Energy (BLE) wireless capabilities. SimbleeTM is an Internet of Things (IOT)

System on a Chip (SOC) device that supports the Arduino IDE and includes an on-board radio

antenna. The three modules were assembled using various breakout boards provided by SimbleeTM.

The Cricket and Recorder modules incorporate the 7 GPIO Breakout and the 2x AAA shield

provided by RF DigitalTM. The Recorder module includes a microSD shield for recording data. The

Monitor module includes only the 29 GPIO Breakout and USB Shield for monitoring data over a

computer serial port. Figure 1-3 shows an image of the three modules with a quarter for scale.

5

Figure 1-3: BLDS-M Modules with quarter for scale (Jellen et al. 2019).

The SimbleeTM SOC boasts many characteristics that increase the functionality and

effectiveness of the BLDS family, displayed in Table 1-2. The most notable features are the 3.3 V

compatibility and 12mA current draw, the package dimensions, and the integrated antenna and

shield which increases the efficiency, integrability, and functionality of the device, respectively.

Table 1-2: Truncated list of SimbleeTM features (RF Digital 2017).

Features

7 x 10 x 2.2 mm package dimension

29 General Purpose I/O

12 mA typical operational current draw

600 uA sleep current draw

ARM Cortex M0 processor

AES encryption engine

1.8-3.6 V operating voltage

16 MHz clock (32 KHz precision clock)

Integrated Antenna and shield

-93 dBm receiver sensitivity

-55 dBm to +4 dBm TX power

The SimbleeTM SOC includes most of the functionality of an Arduino with the addition of

SimbleeCOMTM, a BLE communication protocol which utilizes the on-board antenna. The only

external component required for the chip to function reliably is a bypass capacitor on the power

6

input. These features make the SimbleeTM easy to integrate and effective for projects where wireless

communication between devices is desirable. While none of the BLDS-M family of devices have

been involved in a flight test, they have been proven to survive and function in a thermal vacuum

chamber (Jellen et al. 2019). Unfortunately, the SimbleeTM and related products recently went end-

of-life. However, the effort put forth by the BLDS project team into the BLDS-M family of devices

successfully demonstrated that a clean-sheet design for the next generation of BLDS instruments

was feasible and would provide many advantages. Mainly, the modular approach that is made

possible by the wireless communication capabilities supported on modern SOC systems.

1.1.3 BLDS-M-RAKE

The newest addition to the family of BLDS devices that utilizes the SimbleeTM SOC is the

BLDS-M-RAKE module. This device is a continuation of the BLDS-M series of devices with

updated electronics and sensors intended to be mounted to an array of probes, or rake (Hoyt 2019).

A printed circuit board (PCB) was designed to house the array of Honeywell pressure sensors,

SimbleeTM SOC, microUSB, microSD socket, DC-DC boost regulator, and two AAA battery cells.

The electronics followed the original three BLDS-M modules in that it operates on 3.3 V and is

capable of communicating wirelessly with other modules. The Honeywell pressure sensors could

be sampled and recorded to a microSD card at a frequency at 100 Hz with a peak current draw of

30 mA and a sleeping current draw of less than 3 mA (Hoyt 2019). A block diagram detailing the

device design is shown in Figure 1-4.

7

Figure 1-4: BLDS-M-RAKE Block Diagram (Hoyt 2019).

In addition to the design presented above, a flexible manifold to connect a reference

pressure to an array of differential pressure sensors was designed and validated. This new manifold

was designed to be cast from silicone, which improved on the old machined metal manifold design

by providing an easier and much cheaper means for replacing damaged sensors or removing sensors

for inspection (Hoyt 2019).

1.1.4 Purpose of Work

Previous BLDS devices were designed primarily for acquiring information about the

boundary layer on the outer surface of an aircraft. Acquiring non-flow data that details the

mechanical performance of the aircraft would be useful information as well. The motivation for the

ability to acquire non-flow data such as in-flight mechanical strain data was the desire for empirical

strain measurements that are present on the aircraft during flight. In addition, strain data acquired

at a high frequency would detail the frequency and magnitudes of dynamic loading on the aircraft

during flight. This project focuses primarily on acquiring mechanical strain measurements on the

8

outer surface of an aircraft. The design, testing, and evaluation of various methods of acquiring

strain measurements is split into two parts: acquiring quasi-static strain measurements at low

frequencies and acquiring dynamic strain measurements at high frequencies.

1.2 Requirements

The requirements for the mechanical strain data acquisition devices follow the basic design

requirements laid out in the design of all previous BLDS-M devices. Because these devices are the

first BLDS modules for acquiring strain data, they were designed as proof-of-concept devices.

Thus, the mechanical design requirements typical of BLDS devices, excluding size and weight,

were considered lower priority than the design requirements of the electronics and circuitry. In

addition, wireless communication between devices was considered lower priority, as that ability

was already demonstrated with the Cricket, Monitor, and Recorder modules. The requirements for

each device are shown in Table 1-3. Strain gauges, a passive sensor whose resistance varies linearly

with applied strain, will be used by both devices to acquire mechanical strain data.

Table 1-3: Quasi-Static and Dynamic Device Requirements.

Requirement Quasi-Static Dynamic

Operating Temperature > -40 C

Sensors/Resolution
Strain Gauges, 24-bits

Accelerometer, 13-bits

Strain Gauges, 12-bits,

16-bits

Acquisition Frequency 10 Hz > 1 kHz

Controller SimbleeTM SOC Atxmega128A4U

Battery life > 2hrs.

Power Consumption < 60 mA (3.3 V)

Weight < 1lb

Size < 6 in x 6 in x 1 in

Operation Autonomous; no pilot involvement

Each device has the same requirements for the operating temperature, size, weight, and

operation. To acquire data, the quasi-static strain device uses an external integrated circuit (IC) that

controls an analog-to-digital converter (ADC) with a resolution of 24-bits and a selectable

9

acquisition frequency of 10 Hz or 80 Hz. The device also incorporates an external IC with an

accelerometer for acquiring acceleration data. The quasi-static strain device is controlled by the

SimbleeTM SOC for communicating wirelessly. The dynamic strain device has two interfaces for

acquiring data at frequencies exceeding 1 kHz. One interface is an external IC that controls an ADC

with a resolution of 16-bits and a maximum acquisition frequency of 1.3 kHz. The other interface

is the on-board ADC interface of the Atxmega128A4U with a resolution of 12-bits and a maximum

acquisition frequency of 2 MHz. The Atxmega128A4U is a low-power, peripheral-rich, 16-bit

microcontroller that achieves throughputs approaching one million instructions per second per

megahertz (Atmel, 2014).

The following chapters present the design and testing of each device. In Chapter 2, the

design of the quasi-static data acquisition device is presented followed by a summary of the testing

done to validate the requirements discussed in Table 1-3. Chapter 3, similar to Chapter 2, presents

the design of the dynamic data acquisition device and then summarize the device testing and

validation. Chapter 4 presents the conclusions found during the project and the recommendations

for future work on BLDS instrumentation for acquiring strain measurements.

10

2. QUASI-STATIC DATA ACQUISITION SYSTEM

This chapter describes the design and development of the newest device belonging to the

BLDS-M family of devices that acquires quasi-static mechanical strain and acceleration data. The

device is intended to acquire strain and acceleration data on the outside surface of an aircraft during

flight and save the timestamped data to a microSD card. The device is small, lightweight, and

autonomous with an optional computer interface for setting device parameters and real-time data

monitoring as an additional feature.

2.1 Device Design

Five main components encompass this prototype device. The components include the

HX711 Load Cell Amplifier, the ADXL345 3-Axis Accelerometer, an RFduinoTM microSD shield,

an RFduinoTM 2x AAA battery shield, and a SimbleeTM SOC 29 GPIO breakout. The package

dimensions of the device are approximately 2 in x 5 in x 1 in with a weight of approximately 0.15 lb.

An image of the device can be seen in Figure 2-1 and the position of each component in the figure

is detailed in Table 2-1.

Figure 2-1: Top view of quasi-static device displaying each component.

11

Table 2-1: Position of each device shown in Figure 2-1.

Position Component

Top Left HX711 Load Cell Amplifier breakout

Top Center ADXL345 3-Axis Accelerometer breakout

Top Right
SimbleeTM SOC 29 GPIO breakout and

RFduinoTM microUSB shield

Bottom Left Bridge resistors for strain gauge

Bottom Center RFduinoTM AAA Battery Shield

Bottom Right RFduinoTM MicroSD Shield

The selection and details of each component, excluding the SimbleeTM SOC, are discussed

below. Key details and design considerations of the SimbleeTM SOC are provided in Section 1.1.2.

The board schematic and layout were designed in Autodesk EagleTM and are detailed in Appendix

A.

2.1.1 Component Selection and Specifications

Breakout and development boards were used to develop the prototype device. The use of

breakout/development boards allowed for proof-of-concept breadboarding and fast prototyping.

2.1.1.1 RFduinoTM Breakout Boards

RFduinoTM provides a development kit with a number of breakout boards to jumpstart any

project involving RFduinoTM products. The 29 GPIO breakout houses the SimbleeTM SOC and

provides access to 29 GPIO pins along with a 3.3 V input to power the SOC and a reset pin for

resetting the chip (RF Digital 2015). The only other component mounted to the breakout board is

a decoupling capacitor on the 3.3 V input. An illustration showing the pinout of the 29 GPIO

breakout can be seen in Figure 2-2. The pinouts are made available with 0.1 in pitch male headers

on the bottom side of the shield, as well as 0.1 in pitch female headers on the top side of the board

for the ground, 3.3 V, reset, and GPIO pins 1-6.

12

Figure 2-2: SimbleeTM 29-GPIO breakout board pinout (RF Digital 2015).

The RFduinoTM AAA Battery Shield provides a battery holder for two AAA batteries to

power the device. To step up the 3.0 V provided by the batteries, a DC-DC converter is provided

on the shield to boost the voltage to 3.3 V. The DC-DC converter maintains the 3.3 V level when

the voltage of the AAA batteries begins to decrease due to power being consumed, which improves

the battery life and reliability of the device. Pinouts for the 3.3 V rail and the device ground are

available with 0.1 in pitch male and female headers on the bottom side and top side of the board,

respectively.

To store the data acquired by the device, the RFduinoTM MicroSD shield provides a

microSD socket that provides pinouts for power, ground, and digital communication. The shield

consists of a microSD socket and a decoupling capacitor on the 3.3 V rail. The shield makes it

trivial to connect the digital communication pins to a 4-wire Serial Peripheral Interface (SPI) on a

microcontroller. SPI is a commonly used communication protocol for exchanging two bytes at a

time between two ICs. Pinouts for the 3.3 V rail, ground, and the communication pins are available

with 0.1 in pitch male and female headers on the bottom side and top side of the board, respectively.

An image displaying the pinout of the microSD shield is shown in Figure 2-3.

13

Figure 2-3: RFduinoTM MicroSD shield pinout illustration (RF Digital, 2013).

2.1.1.2 HX711 Load Cell Amplifier

The HX711 is a precision 24-bit ADC designed for weight scales and industrial

applications (AVIA Semiconductor, n.d.). While not intended for experimental flight-testing

devices, it was chosen based on its 24-bit resolution, selectable conversion frequency of 10 Hz or

80 Hz, ease of integration, and simple digital interface and control. A truncated list of HX711

features are listed below in Table 2-2. The IC has an on-board 24-bit ADC for performing

conversions for two differential input channels whose signal is amplified by an on-board

programmable-gain amplifier (PGA). The ADC is driven by an internal oscillator and controlled

by a digital serial interface that can be connected to any GPIO pins on a microcontroller. An on-

board analog supply regulator and a bandgap reference set by the voltage level on a device pin

abstracts the selection of a voltage reference. The HX711 allows for the use of any desired bridge

configuration since there are no bridge elements included on the breakout board. A block diagram

detailing each component of the device as well as a typical application is shown in Figure 2-4.

14

Table 2-2: Truncated list of HX711 features (AVIA Semiconductor, n.d.).

Features

6 x 9.9 x 1.4 mm package dimension

Two selectable differential input channels

Selectable gain of 32, 64, 128

On-chip oscillator

Simple digital control and serial interface

Selectable 10 Hz or 80 Hz conversion frequency

Operating current < 1.5 mA, power down < 1 uA

Operation supply voltage range: 2.6 ~ 5.5V

Operation temperature range: -40 ~ +85°C

Figure 2-4: HX711 block diagram and typical application (AVIA Semiconductor, n.d.).

The device is controlled using two GPIO pins on a microcontroller. The PD_SCK pin is an

input pin that is supplied a clock signal to control the timing of the communication. The DOUT pin

is an output pin that sends data one bit at a time based on the timing determined by the clock

frequency on the PD_SCK pin. Data from the HX711 is sent in twos complement form with the

most-significant-bit (MSB) sent first, whose magnitude is determined by the analog input and the

selected gain. The timing for the data output, input, and gain control is described in Figure 2-5, and

the specific timing values are displayed in Table 2-3. To power down the device, the PD_SCK pin

is raised for a period greater than 60 µs, and the pin is brought low to power the device back on.

15

The input gain is selected for the next conversion period by the number of the input PD_SCK pulses

after the 24th bit is transferred.

Figure 2-5: Data output, input, and gain control timing (AVIA Semiconductor, n.d.).

Table 2-3: Timing values for Figure 2-5 (AVIA Semiconductor, n.d.).

Symbol Note MIN TYP MAX Unit

T1 DOUT falling edge to PD_SCK rising edge 0.1 µs

T2 PD_SCK rising edge to DOUT data ready 0.1 µs

T3 PD_SCK high time 0.2 1 50 µs

T4 PD_SCK low time 0.2 1 µs

Due to the simplicity of the digital interface, the device has some limitations. Control of

the device through the digital interface is limited to initializing and placing the device in low power

mode and transferring the most recent analog conversion. The conversion frequency is selected

based on the voltage level of the RATE pin, and the PGA gain is selectable based on the input

channel and the number of clock ticks, meaning that a dummy number must be transferred before

selecting the gain. Gains of 128, 64, and 32 are selectable, and further limited by the input channel.

Calibration of the HX711 must be performed in software.

2.1.1.3 ADXL345 3-Axis Accelerometer

The ADXL345 is an ultra-low power 3-axis accelerometer with 13-bit resolution and a

selectable range up to ±16 g intended for a wide variety of applications (Analog Devices, 2015). It

16

is capable of measuring static acceleration due to gravity and dynamic acceleration resulting from

vibrations or impulses in three directions, as well as detecting specific motions like single or double

taps and free-falling. The output data rate of the device is selectable with a maximum rate of

3200 Hz and a resolution of 10 – 13 bits depending on the selected range. The internal registers

used for controlling the device may be accessed through an SPI interface or a Two-Wire Interface

(I2C). The device features a 32-level first in, first out (FIFO) buffer to store data to minimize the

host microcontroller processing activity and overall system power consumption (Analog Devices,

2015). A truncated list of ADXL345 features are listed below in Table 2-4, and the device

functional block diagram is shown in Figure 2-6.

Table 2-4: Truncated list of ADXL345 features (Analog Devices, 2015).

Features

3 x 5 x 1 mm package dimensions

Controllable via SPI or I2C

Selectable output frequency up to 3200 Hz

Selectable range: ±2 g, ±4 g, ±8 g, ±16 g,

Up to 13-bit resolution

Supply voltage range: 2.0 V to 3.6 V

Operating current < 140 µA, standby mode < 0.1 uA

Operation temperature range: -40 ~ +85 °C

Figure 2-6: ADXL345 functional block diagram (Analog Devices, 2015).

17

The ADXL345 is controlled by writing to the internal registers of the device using standard

communication protocols, either SPI or I2C. In both cases, the device operates as a slave, and data

is transferred in a 16-bit number in twos complement form. Calibration of the ADXL345 must be

performed in software.

2.1.2 System Design

Using the design requirements and the selected components discussed in previous sections,

a high-level functional block diagram of the quasi-static device was created, shown in Figure 2-7.

The SimbleeTM SOC runs software to control and communicate each component of the device. To

acquire mechanical strain data, two GPIO pins on the SimbleeTM are used to communicate with the

HX711 through its serial interface. The ADXL345 acquires acceleration data and is controlled

using the on-board SPI interface of the SimbleeTM. Data from each device is buffered, timestamped,

and saved to a microSD card using the same SPI interface. Each component is powered by the

RFduinoTM Battery Shield which provides a step-up DC-DC converter to supply the device with a

constant 3.3 V source. The RFduinoTM USB Shield is only used when programming/debugging the

device and for real-time data monitoring through a USB port on an external computer. The USB

shield supplies 3.3 V as well, but both the USB shield and the Battery shield have reverse-voltage

protection.

18

 Figure 2-7: Quasi-Static data acquisition system device hardware diagram.

The SimbleeTM SOC 29 GPIO breakout provides more than enough GPIO pins to control

the device. The SimbleeTM is programmed and data is monitored through the on-board Universal

Synchronous/Asynchronous Receiver/Transmitter (USART) port, requiring two pins for the

transmit (TX) and receive (RX) lines. The HX711 requires two GPIO pins to connect to the

PD_SCK and DOUT lines to control the device and transfer data. The ADXL345 and the

microUSB shield are both connected to the serial clock (SCK), master-in-slave-out (MISO), and

master-out-slave-in (MOSI) SPI pins on the SimbleeTM. Both of these components require an

additional chip-select (CS) pin. Finally, a status LED was added to the design driven by a GPIO

pin for debugging purposes only, bringing the grand total use of 10 out of 29 GPIO pins on the

SimbleeTM SOC.

19

To speed up the development process, breakout boards for the HX711 and ADXL345 were

purchased from SparkFun. SparkFun is an open-source hardware retailer that provides breakout

boards for many common products as well as Arduino code for jumpstarting projects (Sparkfun,

n.d.). The breakout boards greatly decreased the time required to successfully incorporate the

HX711 and ADXL345 components.

Figure 2-8: Top and bottom views of the HX711 breakout provided by SparkFun

(SparkFun, 2013).

The HX711 breakout provides pinouts for power, ground, data, and clock lines. The

breakout is designed very similarly to the application/block diagram suggested in the HX711

datasheet. The only difference is the addition of an inductor and capacitor that acts as a second

order low pass filter upstream of the excitation pinout (E+). The schematic and PCB layout for the

breakout is provided in Appendix B. A footprint for a jumper resistor is featured on the bottom side

of the breakout for changing the conversion frequency of the device. By default, the breakout is

configured for a frequency of 10 Hz. Soldering a jumper resistor to the footprint will short the

RATE pin to ground and thus change the conversion frequency to 80 Hz.

The HX711 breakout is easily utilized for ADC conversions across the output of a

Wheatstone bridge. A Wheatstone bridge is a simple circuit consisting of two voltage dividers in

parallel. This circuit is commonly used with strain gauges to acquire data. An illustration of the

Wheatstone bridge used in this design, commonly referred to as a quarter-bridge, is shown in Figure

20

2-9. The bridge consists of three 120 Ω precision resistors with a tolerance of 0.1% (Vishay, 2019)

and a 120 Ω strain gauge between terminals A+ and E-.

Figure 2-9: Wheatstone bridge quarter-bridge configuration.

When the gauge is unstrained, the bridge is balanced and the voltage across terminals A+

and A- is nominally zero. The differential voltage becomes nonzero when the gauge is strained and

the resistance changes. Equations 2-1 and 2-2 can be used to convert the differential voltage across

terminals A+ and A-, denoted as 𝑉𝑟, to strain (Omega Engineering, 1999).

 𝑉𝑟𝑛𝑒𝑡
= 𝑉𝑟𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 − 𝑉𝑟𝑢𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 (2-1)

 𝜀 =
−4 𝑉𝑟𝑛𝑒𝑡

𝐺𝐹 (1 + 2 𝑉𝑟𝑛𝑒𝑡
)
 (2-2)

The breakout also features a bipolar-junction-transistor (BJT) whose state is controlled

entirely by the HX711. When performing a conversion, the BJT provides the excitation voltage that

drives electrical current to flow through the Wheatstone bridge and cause the differential voltage

to be read by the HX711. This feature decreases the overall power consumed by the device, as the

Wheatstone bridge configured with 120 Ω resistors has a steady current draw of 27.5 mA when

excited by 𝑉𝐸+ = 3.3 V.

21

Figure 2-10: Top and bottom views of the ADXL345 breakout provided by SparkFun

(SparkFun, 2013).

The ADXL345 breakout provides pinouts for power, ground, SPI/I2C pins, and the two

configurable interrupt pins which are unused in this device. The schematic and PCB layout for the

breakout is provided in Appendix C. The only components included in this breakout, excluding the

ADXL345 itself, are three decoupling capacitors for stabilizing the VCC rail.

2.1.3 Software Design

Software was written for the SimbleeTM SOC using the Arduino IDE to control the various

components of the device. The program running on the SimbleeTM needed to accomplish the

following: configure the internal clock to keep correct time for timestamping data, store the user-

set parameters, acquire and record data to the microSD card using the selected components, convey

the operational status of the device to the user through the serial interface, and report debugging

information when prompted. To improve readability and reduce troubleshooting difficulty, the code

was split into multiple files based on functionality. The concept of classes was heavily utilized to

program the SimbleeTM. Driver files were written that contain functions to control various

components of the device. In addition, the concepts of multi-tasking and finite-state machines were

used to further simplify and improve functionality. The drivers, multi-tasking scheme, and tasks

written for the embedded software are discussed in the following sections.

22

2.1.3.1 Drivers

An advantage of using a microcontroller that accepts the Arduino IDE is that Arduino

provides many built-in libraries that are efficient and have been tested extensively. Arduino

provides libraries for SD card, serial port, and SPI drivers that were utilized in this design (Arduino,

2019). The Serial library was used to communicate over the serial port, and the SPI library was

used to write a driver for communicating with the ADXL345 over the SPI interface. The SD card

library, which also utilizes the SPI library, was used for writing data to the microSD card. Two

custom libraries were written for controlling the ADXL345 and the HX711. These libraries, or

drivers coded in the Arduino IDE, add a level of abstraction between the device software and

firmware to make the code easier to read and troubleshoot. The drivers written for the device are

provided in Appendix D.

HX711 Driver:

 The HX711 driver provides a class that, when instantiated, creates an object that contains

variables and functions for controlling an HX711 IC on specified GPIO pins. Using the timing

diagram in Figure 2-5, functions were written to acquire data from the IC. Data from the HX711 is

output in 24-bit, twos complement form, and digitally acquired through the device serial interface.

The driver constructs and returns the data as an unsigned 32-bit number. Other functions for

controlling the device, such as enable (), disable (), and getStatus (), are available for error checking

and conserving power.

ADXL345 Driver:

 The ADXL345 driver, similar to the HX711 driver, provides a class to create an object with

variables and functions for controlling an ADXL345 IC. This class uses the on-board SPI interface

to set parameters and acquire data from the IC. Functions were written to acquire data from the IC

from an individual axis; and all three axes simultaneously. The ADXL345 outputs data in the form

of a floating-point number between 0 and 1, scaled depending on the range setting of the device.

The driver returns the data as a floating-point number. Like the HX711 driver, functions like enable

23

() and disable () are provided, as well as functions for setting the range and conversion frequency

for the device.

2.1.3.2 Multi-tasking

In embedded system software, a program is typically run in an infinite loop that will never

exit so long as power is supplied to the device. Often times, a system must respond to one or

multiple external stimuli at a time. The SimbleeTM SOC ARM Cortex M0 is a single-core processor,

meaning that it may only execute one instruction at a time. To combat this difficulty, finite-state

machines may be used that execute certain lines of code given the state. Multiple finite-state

machines were used in this design to control the device, along with a simple round-robin scheduler

to determine which finite-state machine, or task, to run at any given time. While the SimbleeTM still

may only execute one instruction at a time, at a frequency approaching 16 MHz (SimbleeTM Corp.

2016), this multi-tasking scheme ensures that each task gets appropriate attention from the

processor in a timely manner.

The multi-tasking environment written for this device is cooperative, meaning that each

task runs one state and then yields control back to the scheduler, which then determines which task

is run next. This approach is contrary to preemptive, interrupt-driven environments, where the

multi-tasking scheduler determines when the switch to another task occurs. Cooperative

multitasking simplifies the programming difficulties, as the programmer does not need to consider

things that could be problematic in a preemptive environment, like resource allocation. However,

the programmer must also be wary of designing tasks that wait a comparatively long time without

yielding control back to the scheduler in a cooperative environment.

2.1.3.3 Tasks

For this device, four finite-state machine style tasks were written that have variables

associated with them to store the task state and the next task run time. The scheduler uses the next

run time of the task to determine when to run the task again. Before a task is run, the task run

24

frequency is added to the corresponding next run time variable that the scheduler continuously

compares to the program run time. Each task was built as a function with conditional statements

that run code based on the current state of the task. Shares were used for inter-task communication.

A share is a flag or variable stored in RAM that is only accessible and overwritable by certain tasks.

A task diagram detailing the priority and timing of each task, and the shares between tasks is shown

below in Figure 2-11. Dashed lines indicate that the share is a binary flag, and solid lines indicate

that the share is a number.

c

Figure 2-11: Task diagram for quasi-static data acquisition system.

Each task is given a run frequency and priority that the scheduler uses to determine which

task to run next. The scheduler runs an infinite loop that compares the next run time of the task and

the program time. A task runs when the program time is greater than or equal to the next run time.

25

Each task is also assigned a priority. In this environment, the priority of a task indicates the order

in which the scheduler checks the next run time of each task.

Figure 2-12: Strain Reader (left) and Acceleration Reader (right) task state transition

diagrams.

The Strain Reader and Acceleration Reader tasks are responsible for controlling and

acquiring data from the HX711 and ADXL345, respectively. The state machine designs for these

tasks are almost identical, and are displayed in Figure 2-12. The initialization states for each task

configure the GPIO pins and parameters for each IC and then transition to state 1. While in state 1,

the task waits for the program clock to reach the user-specified time interval at which to take data.

Once the interval is reached, the task transitions to state 2 and begins acquiring data, and stores the

data in the corresponding share. In addition, while in state 2, a flag is raised and shared with Task

3 so that the MicroSD Driver Task knows to save either strain or acceleration data. When the data

acquisition time interval is passed, the task transitions back to state 1. Both tasks are run at a

frequency of 1 Hz so that data can be averaged and acquired every second.

26

Figure 2-13: MicroSD Driver task state transition diagram.

The MicroSD Driver task, whose state machine is displayed in Figure 2-13, stores

timestamped data to a microSD card. The initialization state configures the necessary GPIO pins,

checks to see if a microSD card is inserted, and creates and saves a .txt file to the microSD where

the data will be stored. In state 1, the task waits until the device begins acquiring data. The task

may enter three different states depending on whether the device is acquiring strain data,

acceleration data, or both. In addition, the task raises a flag to signal the user interface state to begin

printing data to the serial monitor. When both tasks 1 and 2 are done acquiring data, the task

transitions back to state 1.

27

Figure 2-14: User Interface task state transition diagram.

The User Interface task is responsible for responding to commands and parameters sent

over the serial port, and for printing data to the serial port while the device is acquiring data. The

design of the state machine is shown in Figure 2-14. The task begins in the initialization state when

it prompts the user to enter parameters like the time, date, and the time intervals at which to acquire

strain and acceleration data. When the user enters all necessary parameters, the task transitions to

state 1 where it waits until the device begins acquiring data. In state 2, the task will print data

acquired by the device through the serial port. If the serial port becomes unavailable or is in an

error state, the task transitions to state 3 where no code is executed, regardless of the current state.

28

2.2 Device Testing and Validation

The quasi-static data acquisition device was tested extensively to verify that it met the

requirements discussed in Section 1.2. The current draw of the device during various operations

was measured and analyzed to verify the device performance. Data was acquired by the device at

room temperature and at lower temperatures in a thermal vacuum chamber to verify the

performance and survivability at temperatures expected during flight testing. The strain data

acquired by the device was verified for accuracy by comparing the results with stress/strain theory.

2.2.1 Current Draw

To determine the current draw of the device during various operating conditions, a USB

cable was modified to allow a digital multimeter to be placed in series between the device and a

USB port on a computer. The RFduinoTM USB Shield was used instead of the AAA Battery Shield

to power the device for this test. The current draw and power consumption of the device under

various operating conditions are provided in Table 2-5.

Table 2-5: Current draw and power consumption of device under various operating

conditions (5V source).

Device Condition
Current Draw Power Consumed

(mA) (W)

Waiting 20.0 0.10

Reading Strain 51.6 0.26

Reading Acceleration 22.5 0.11

Reading both 52.0 0.26

When the device is waiting, the only component that has a significant current draw is the

SimbleeTM microcontroller. The device required an additional 2.5 mA to obtain and record

acceleration data using the ADXL345 accelerometer and microSD shield. Approximately 32 mA

is added to the current draw when the device is reading and recording strain data using the HX711

amplifier and microSD shield. This large increase in current consumption is due to the current draw

29

of the Wheatstone Bridge. Strain gauges and bridge resistors with larger resistances could be used

to minimize the current draw of the bridge and thus reduce the power consumption of the device.

2.2.2 Data Acquisition Testing

Strain and acceleration data were acquired at room temperature to test the device. The

device stores a strain data point as a floating-point number in the form 𝑉𝑜𝑢𝑡 𝑉𝑖𝑛⁄ x 103.The data are

converted from volts to µ-strain after offloading the data from the microSD card using Equations

2-1 and 2-2. Acceleration data are stored in g as a floating-point number between 0 and 1, scaled

by the range setting of the ADXL345. A sample set of strain and acceleration data acquired at a

rate of 1 Hz is displayed in Table 2-6.

Table 2-6: Sample set of strain and acceleration data acquired at a frequency of 1 Hz.

Time
Strain

Measurement
X-Axis Y-Axis Z-Axis

(ms) 𝑽𝒐𝒖𝒕 𝑽𝒊𝒏⁄ x 103 (-) (-) (-) (-)

0 0.537 0 0.004 0.996

1000 0.5369 -0.004 0.012 1

2000 0.5368 0 0.008 0.996

3000 0.5367 0 0.008 0.996

4000 0.5366 0 0.004 0.992

A beam bending test was conducted to verify the data from the HX711 by comparing the

readings to theoretical results. A 120 Ω constantan strain gauge was mounted on a 3 mm x 19 mm

x 107 mm aluminum beam that was secured to the testing mount as shown in Figure 2-15. The

strain gauge was mounted 35 mm from the secured end of the beam. A small hole at the end of the

beam allowed for various masses to be suspended on the end of the beam while data is collected.

30

Figure 2-15: Strain gauge testing setup. Overall testing setup (left), beam and dangling

mass (middle), closeup of strain gauge location (right).

The beam used to conduct this test was treated as a cantilever beam with a rectangular

cross-section and a point mass at its end to produce the theoretical results. Assuming perfectly

elastic deformation occurs, and the aluminum beam has an elastic modulus of 68.9 GPa, Equations

2-3, 2-4, and 2-5 were used to calculate the theoretical strain (ASM, 2018). The cantilever beam

schematic used to derive Equation 2-5 is shown in Figure 2-16.

Figure 2-16: Cantilever beam schematic.

 𝜎 =
𝑀ℎ

2𝐼
 (2-3)

 𝜀 =
𝜎

𝐸
 (2-4)

 𝜀 =
6𝐹(𝐿 − 𝐿𝑆𝐺)

𝑏ℎ2𝐸
 (2-5)

The results of this test are provided in Figure 2-17. Masses of 0.1, 0.2, 0.5, 1.0, 2.0, and

5.0 kg were suspended at the end of the beam to produce the results. In addition, the beam was

inverted and tested again to verify the readings while the gauge is in both tension and compression.

31

Equations 2-1 and 2-2 were used to convert the voltage ratio readings provided by the HX711 to

mechanical strain.

Figure 2-17: Comparison of HX711 readings to theoretical strain values.

The negative mass values shown on the x-axis in Figure 2-17 indicate that the beam was

flipped over so that the strain gauge was in compression. The HX711 provided linear results that

agreed with the theoretical values of strain, only deviating slightly. A typical value of tensile yield

strength for aluminum is 276 MPa (ASM, 2018). Using the strain data from Figure 2-17, the

maximum bending stress experienced by the beam was approximately 124 MPa, indicating that the

beam was never strained beyond its elastic region during this test. A lack of precise dimensions of

the beam and a slightly lower elastic modulus than the assumed 68.9 GPa used in the theoretical

calculations are likely causes of this slight deviation.

2.2.3 Low Temperature Testing

Another test was conducted to study the survivability of the device at low temperatures and

to determine the effect of temperature on the data acquired by each sensor. The prototype device

and the beam with the mounted strain gauge used in the previous test were placed in a vacuum

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

S
tr

ai
n

 [
μ

]

Mass [kg]

HX711 Measurement

Theoretical

32

chamber with dry ice to decrease the temperature to typical flight-test temperatures. A vacuum

pump was used to lower the pressure in the chamber to avoid condensation on the device. The

device and beam were placed such that the strain gauge was under no load and the accelerometer

was reading approximately 0.0 g on its x-axis and y-axis and 1.0 g on its z-axis at room temperature.

An absolute pressure gauge and thermocouple were used to acquire the pressure and temperature

inside the chamber. Once the chamber temperature reached steady state at about -36 °C, heaters

inside the chamber were activated to sublimate the dry ice and slowly bring the chamber back to

room temperature. Pressure and temperature data were recorded every five minutes during the

chamber cooling and heating processes to relate deviation of the device readings to temperature.

Figure 2-18 shows the deviation in acceleration while Figure 2-19 shows the deviation in

mechanical strain.

Figure 2-18: Vacuum chamber test results for variation in acceleration as the chamber

temperature decreases.

The deviation in readings from the three axes of the ADXL345 accelerometer in the

vacuum chamber test were used to create the plot in Figure 2-18. The effects of temperature on the

acceleration readings were minimal compared to the strain readings of the HX711. There is no

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-40 -30 -20 -10 0 10 20 30

V
ar

ia
ti

o
n
 i

n
 A

cc
el

er
at

io
n
,

g

Temperature, °C

x-axis

y-axis

z-axis

33

trend in the data due to temperature, but there is an observable increase in noise for all three axes

as the temperature decreases. A comparison of the standard deviation in the data at room

temperature and at -36 °C is detailed in Table 2-7.

Table 2-7: Comparison of the standard deviation in the acceleration data at room

temperature and at -36°C.

Axis
Average Reading

Standard Deviation

22°C -36°C

(-) (-) (-)

X-axis 0.00233 0.00333 0.00825

Y-axis 0.01792 0.00667 0.03563

Z-axis 0.99533 0.00850 0.05641

The HX711 was outputting negative values of strain during this test, indicating that the

voltage across the Wheatstone Bridge corresponded to a gauge in compression. A data point at

room temperature was included to show that the HX711 was reading no load initially. Temperature

data were taken during the cooling process from -12 °C to -36 °C and during the heating process

from -36 °C to 0 °C.

Figure 2-19: Vacuum chamber test results for absolute variation in mechanical strain as the

chamber temperature decreases.

-2500

-2000

-1500

-1000

-500

0

-40 -30 -20 -10 0 10 20 30

V
ar

ia
ti

o
n

 i
n

 S
tr

ai
n

,
μ

-s
tr

ai
n

Temperature, °C

34

The maximum strain deviation occurred at -36 °C, with approximately 2276 μ from the

reference value at room temperature. Additionally, there was approximately 300 μ of hysteresis

between the readings taken during cooling and the readings taken during heating. There are many

effects that could be responsible for the deviation in the data. Typically, constantan gauges have

about a ±1.2 μ of error per ±1 °C of temperature variation, which could account for about 70 μ of

the deviation seen in the data. The resistance of each precision resistor in the Wheatstone Bridge

and the thermal shrinkage of the beam are both functions of temperature, which would be expected

to cause further deviation in the data. These effects are captured by Equations 2-6 and 2-7,

respectfully.

 𝑅 = 𝑅𝑟𝑒𝑓[1 + 𝛼𝑇(𝑇 − 𝑇𝑟𝑒𝑓)] (2-6)

 𝜀 = 𝛼𝑙(𝑇 − 𝑇𝑟𝑒𝑓) (2-7)

The published temperature coefficient of resistivity of the precision resistors utilized in this

prototype is 0.05 ppm/°C (Vishay, 2019). This would account for approximately 14 μ of additional

error in the measurement at -36 °C. Aluminum has a linear expansion coefficient of 24 ppm/°C,

which could theoretically add 1344 μ of compressive strain at -36 °C (ASM, 2018). The remaining

848 μ of difference could be due to the temperature of the device causing the internal circuitry of

the HX711 to behave differently than if it were at room temperature.

Additional testing was conducted to further investigate the large deviation in the strain

measurement of the unloaded gauge observed when the device is subjected to low temperatures.

The aluminum beam with the mounted strain gauge was placed in a freezer at -36 °C while the

bridge resistors were at 22 °C along with all BLDS electronics recording strain data. Additionally,

the electronics were placed in the freezer at -36 °C and recorded data while the aluminum beam

was at 22 °C. The results of these tests are shown in Figure 2-20.

35

Figure 2-20: Results of freezer testing. Left: Strain readings with aluminum beam and

strain gauge at -36 °C and electronics at 22 °C. Right: Strain readings with

electronics at -36 °C and aluminum beam and strain gauge at 22 °C.

Before the aluminum beam was placed in the freezer, a 0.5 kg mass was suspended from

the beam in the same way as previously described to verify that the HX711 provided the same result

as shown in Figure 2-20. The unloaded beam was then placed in the freezer until the temperature

reached -36 °C, when the strain reading settled at approximately -1050 μ, at which point the beam

was removed and brought back to room temperature. The deviation seen in this test was due to the

constantan gauge ±1.2 μ of error per ±1 °C of temperature variation and the thermal shrinkage of

the beam. Theoretically, this deviation should be -1414 μ, although this was about 40% greater than

what was observed.

The device was placed in the freezer and recorded strain data until the temperature settled

at -36 °C, where the strain reading settled at approximately -514 μ, at which point the device was

placed in a refrigerator to minimize condensation on the device while warming up. The unloaded

beam was at room temperature during this time. Approximately 14 μ of the deviation seen in this

test was due to the 120 Ω precision resistors changing resistance due to the reduced temperature.

The other 500 μ of deviation was likely caused by the internal circuitry of the HX711 behaving

differently while not at room temperature.

-1200

-1000

-800

-600

-400

-200

0

200

400

0 250 500 750 1000 1250 1500

V
ar

ia
ti

o
n
 i

n
 S

tr
ai

n
,

μ
-s

tr
ai

n

Time, s

-36°C
-600

-500

-400

-300

-200

-100

0

0 500 1000 1500 2000

V
ar

ia
ti

o
n
 i

n
 S

tr
ai

n
,

μ
-s

tr
ai

n

Time, s

-36°C

36

Table 2-8: Tabulated strain deviation of device from 22 °C to -36 °C.

Cause

Deviation in Strain (μ)

Estimated
Vacuum

Chamber Testing

Freezer

Testing

Constantan gauge error due to temperature -70

-2276

-1050
Thermal shrinkage of aluminum beam -1344

Change in resistance due to temperature -14
-584

HX711 error -

Total -1428 -2276 -1634

Table 2-8 shows the possible sources of error in the strain measurement along with the

estimated and observed deviation associated with each source as seen in testing. The total deviation

observed in the freezer tests was -1634 μ. Comparing this value to the -2276 μ deviation seen in

the vacuum chamber tests leaves -642 μ of compressive strain that was not observed in the freezer

tests.

A change in temperature has a clear effect on the offset in strain measurements. Whether

this offset is due to changes in resistance of the bridge resistors or strain gauges, or the compression

of the material at low temperatures, there will be an offset present while the device is acquiring

data at -40 °C to -60 °C during a flight test. A possible solution to this problem is to run a routine

in software that calibrates the device during the flight test before acquiring measurements.

Calibrating the device when the device is at flight test temperature will ensure that the strain data

will capture strain due to the mechanical stress on the aircraft surface of interest.

2.3 Summary – Quasi-Static Data Acquisition System

A prototype of the first BLDS-M device to incorporate non-flow measurement sensors has

been developed to read mechanical strain and acceleration data and write the time stamped

measurements to a microSD card for data logging. The system was designed by synthesizing

various breakout boards for the selected components with a simple PCB. Breakouts provided by

RFduinoTM and Sparkfun were utilized to accelerate the development process. The HX711 and

37

ADXL345 were selected for acquiring strain and acceleration data, respectively. Multi-tasking

software was written to control the device which runs multiple finite-state machine style processes.

Custom drivers were written and libraries provided by Arduino were utilized to control the external

ICs and peripherals.

The performance of the device has been tested through a power consumption test to

determine the current draw of the device under various operating conditions. Additionally, the

reliability and survivability of the device has been tested through a simple beam bending test and a

thermal vacuum chamber test. The results of the beam bending test were compared with theory to

verify the HX711 was providing accurate measurements. Data acquired during the low temperature

testing was analyzed to determine the cause of the offset present in the data. The device is simple

to use, small, and is entirely autonomous and battery-powered; it can be used stand-alone or, can

communicate wirelessly with other BLDS modules or a computer.

38

3. DYNAMIC DATA ACQUISITION SYSTEM

This chapter describes the design and development of a benchtop proof-of-concept device

intended for testing various methods of acquiring dynamic strain measurements which would be

practical to use on an aircraft during flight. The device is powered by a USB port on a computer

and is controlled by a serial interface through the same USB port. Data is saved to an on-board

microSD card and may also be monitored in real-time through the serial interface. The design and

components of this device are small, lightweight, and may be used in future BLDS designs for

acquiring dynamic strain measurements.

3.1 Device Design

The proof-of-concept device incorporates six channels for acquiring data using various

methods. Three of the channels sample data at a maximum rate of 1.3 kHz with 16-bit resolution.

These channels are intended for testing three different Wheatstone bridge configurations to measure

strain. The other three channels sample data at a maximum rate of 2 MHz with 12-bit resolution,

and test various methods of filtering the measurements electronically.

The components utilized in this design were selected using the requirements outlined in

Table 1-3. Two different approaches were taken for acquiring dynamic strain data, both of which

involve reading voltage across a Wheatstone bridge. The first approach was to use an external chip

with an ADC that amplified and filtered the bridge output digitally. The second approach was to

filter and amplify the bridge output electronically, and convert the signal using the on-board ADC

interface on the Atxmega128A4U.

39

Figure 3-1: Top view of assembled dynamic data acquisition system.

A custom PCB was designed to house the electronics with microUSB and microSD sockets

for supplying power and storing data, respectively. The PCB design includes screw terminals for

connecting strain gauges to the on-board Wheatstone bridges. The overall PCB dimensions are

3.75 in x 3.8 in x 0.3 in. A top view of the assembled PCB is shown in Figure 3-1.

3.1.1 Component Selection and Specifications

3.1.1.1 Atxmega128A4U

The Atxmega128A4U is a 16-bit microcontroller and a member of a family of low power,

high performance, and peripheral rich microcontrollers based on the AVR enhanced RISC

architecture (Atmel, 2014). This microcontroller has the ability to execute powerful instructions in

a single clock cycle, approaching a throughput of one million instructions per second per

megahertz. The operating frequency of the device is set by the internal oscillators or by an external

oscillator. The maximum operating frequency depends on the operating voltage: 0 – 12 MHz from

1.6 V, and 0 – 32 MHz from 2.7 – 3.6 V. The device includes 8 KB of RAM and 128 KB of

programmable flash memory with a two-pin program and debug interface (PDI) for programming

the device. The following relevant features are provided: eight-channel event system and

40

programmable multilevel interrupt controller, 34 GPIOs, 16-bit real-time counter (RTC), five 16-

bit timer/counters, five USARTs, two two-wire serial interfaces (TWI), two SPI interfaces, and

twelve 12-bit ADC interface channels (Atmel, 2014). A block diagram of the device is shown in

Figure 3-2. The interrupt controller may be used to assign low, medium, or high priority for

interrupts triggered by internal or external stimuli.

Figure 3-2: Pinout/block diagram of the Atxmega architecture (Atmel, 2014).

The Atxmega128A4U has 44 pins which are grouped into five ports. Ports A and B are for

analog functions and peripherals, while ports C, D, and E are for digital functions and peripherals.

Port R is reserved for the programming pins and external clock/crystal pins. The on-board ADC

interface has 12-bit resolution, 2 MHz conversion frequency, and four of the twelve input channels

41

that may be sampled simultaneously. Each channel has individual input selection, result registers,

and conversion start control (Atmel, 2014). Each channel may be tied to an interrupt that triggers

when a conversion is complete. The ADC may be configured for 8 or 12-bit results, with conversion

times of 2.5 µs or 3.5 µs, respectively.

3.1.1.2 AD7708

Although the Atxmega128A4U has more than enough ADC channels to satisfy the device

requirements, it was desired to test a 16-bit ADC as well. The AD7708 is a 16-bit sigma-delta ADC

with a programmable gain amplifier for low frequency measurement applications (Analog Devices,

2001). This ADC features 5 fully-differential input channels or 10 pseudo-differential input

channels with individually configurable input signal ranges from 20 mV to 2.56 V. The device

operates from a 32 kHz external crystal with an on-board Phase-locked-loop (PLL) for generating

the required 4.194 MHz operating frequency (Analog Devices, 2001). The block diagram of the

device is shown in Figure 3-3.

Figure 3-3: AD7708/AD7718 pinout/block diagram (Analog Devices, 2001).

The output data rate from the part is programmable, with a maximum conversion frequency

of 1.3 kHz. The part is optimal for operating from a 5 V supply because when operating from a 3

42

V supply, the part dissipates about 3.84 mW. The device is controlled through a 4-wire SPI interface

or a two-wire I/O port. A truncated list of device features is displayed in Table 3-1.

Table 3-1: Truncated list of AD7708 features (Analog Devices, 2001).

Features

8/10 channel sigma-delta ADCs

16-bit resolution

SPI compatible

Optimizable for analog performance or

channel throughput

1.3kHz conversion frequency

Normal Operation: 1.28mA at 3.3V

Power-Down: 30 µA

3.1.1.3 FT232R

The FT232R is a USB to serial UART interface for converting and transferring UART data

to a USB port on a computer. The chip handles the USB communication protocol on-board, thus

no USB specific firmware programming is required. It is able to handle data transfer rates from 300

baud to 3 Mbaud with a 128 byte receive buffer and a 256 byte transmit buffer utilizing buffer

smoothing technology to allow for high data throughput (FTDI, n.d.). The device includes an

internal oscillator and accepts a logic level between 1.8 V and 5 V. In addition, the device has two

LED driver pins, which indicate when the device is transmitting or receiving bytes. The device has

a driver available for communicating through a COM port on a computer that may be monitored

through a serial terminal (FTDI, n.d.).

3.1.2 System Configuration

The components discussed above were synthesized into a high-level system design for the

dynamic data acquisition system, whose block diagram is shown in Figure 3-4. The

Atxmega1284AU runs code written in C/C++ to control the device. Software is flashed onto the

Atxmega128A4U using the on-board PDI interface and an Atmel ICE Debugger. The Atmel ICE

43

debugger is a powerful development tool for programming and debugging Atmel SAMTM and

Atmel AVRTM microcontrollers (Atmel, 2016).

Figure 3-4: Dynamic data acquisition system device hardware diagram.

The on-board UART interface is used to transmit/receive data from the FT232R chip,

which transmits/receives data from a serial terminal on a computer. The serial connection and 5 V

power are supplied by a computer through a microUSB socket. The low-dropout regulator (LDO)

LD1117S33TR was selected to regulate the supply voltage to 3.3 V. This device is the same LDO

used in the RFduinoTM USB Shield, and was proven to function at low temperatures during the

quasi-static device testing. To provide a 32.768 kHz clock frequency for both the Atxmega128A4U

and the AD7708, the MC-405 crystal was selected due to its high precision and stability at low

temperatures (EPSON, n.d.). One crystal is used to drive the internal PLL of the AD7708, and

another is used to drive the internal RTC of the Atxmega128A4U. To control the AD7708, the SPI

interface on port C is used in 4-wire mode at a frequency of 4 MHz. The SPI interface on port D is

44

used in 4-wire mode at 8 MHz to write data to a microSD card. Separate SPI interfaces were used

for interfacing with the AD7708 and a microSD card so that the device may communicate with

both devices at once if necessary. The pinout for the Atxmega128A4U with pin descriptions and

utilizations is displayed in Table 3-2.

45

Table 3-2: Atxmega128A4U chip pinout for dynamic data acquisition system.

Number Pin Name Description Use

1 PA5 Port A GPIO 5 NC

2 PA6 Port A GPIO 6 NC

3 PA7 Port A GPIO 7 NC

4 PB0 Port B GPIO 0 Status LED

5 PB1 Port B GPIO 1 Status LED

6 PB2 Port B GPIO 2 Status LED

7 PB3 Port B GPIO 3 Status LED

8 GND Ground GND

9 VCC Supply voltage VCC

10 PC0 Port C GPIO 0 NC

11 PC1 Port C GPIO 1 Wheatstone bridge toggle

12 PC2 Port C GPIO 2 AD7708 reset

13 PC3 Port C GPIO 3 AD7708 status

14 PC4 Port C GPIO 4 AD7708 CS

15 PC5 Port C GPIO 5 SPI MOSI

16 PC6 Port C GPIO 6 SPI MISO

17 PC7 Port C GPIO 7 SPI SCK

18 GND Ground GND

19 VCC Supply voltage VCC

20 PD0 Port D GPIO 0 NC

21 PD1 Port D GPIO 1 NC

22 PD2 Port D GPIO 2 NC

23 PD3 Port D GPIO 3 SD card detect

24 PD4 Port D GPIO 4 SD card CS

25 PD5 Port D GPIO 5 SPI MOSI

26 PD6 Port D GPIO 6 SPI MISO

27 PD7 Port D GPIO 7 SPI SCK

28 PE0 Port E GPIO 0 NC

29 PE1 Port E GPIO 1 NC

30 GND Ground GND

31 VCC Supply Voltage VCC

32 PE2 Port E GPIO 2 RXD

33 PE3 Port E GPIO 3 TXD

34 PDI_DATA PDI data pin Programming/Debugging

35 PDI_CLK Reset/PDI clock pin Reset/Programming/Debugging

36 PR0 External clock/crystal pin 0 External crystal

37 PR1 External clock/crystal pin 1 External crystal

38 GND Analog ground GND

39 AVCC Analog supply voltage AVCC

40 PA0 Port A GPIO 0 3.0V Reference

41 PA1 Port A GPIO 1 ADC CH1

42 PA2 Port A GPIO 2 ADC CH2

43 PA3 Port A GPIO 3 ADC CH3

44 PA4 Port A GPIO 4 Wheatstone bridge toggle

Three channels on the AD7708 are wired to read voltage across three different Wheatstone

bridges. To test different Wheatstone bridge configurations, a quarter-bridge, half-bridge, and full-

bridge are connected to each of the three ADC channels. The quarter-bridge configuration is shown

46

in Section 2.1.2, and the half-bridge and full-bridge configurations are shown below in Figure 3-5.

Equations 3-1 and 3-2 are used to calculate strain from the voltage output of the half-bridge and

full-bridge, respectively (Omega Engineering, 1999). The 120 Ω resistors utilized in the quasi-

static device were switched with 350 Ω precision resistors to reduce the power draw of the

Wheatstone bridges (Vishay, 2015).

Figure 3-5: Wheatstone half-bridge (left) and full-bridge (right) configurations.

 𝜀 =
−2𝑉𝑟𝑛𝑒𝑡

𝐺𝐹
 (3-1)

 𝜀 =
−𝑉𝑟𝑛𝑒𝑡

𝐺𝐹
 (3-2)

The excitation voltage for the Wheatstone bridges was supplied using the AD780R, an

ultrahigh precision band gap reference voltage IC that supplies 3.0 V from the 5 V device supply

(Analog Devices, 2017). The measurement from each bridge is electronically filtered by a 0.1 µF

bypass capacitor between the differential signals.

Additionally, three channels on the on-board ADC interface are used to measure voltage

across three 350 Ω half-bridge configurations. The half-bridges are excited by a 3.0 V reference

voltage supplied by an additional AD780R. Because the on-board ADC has no analog filter

capabilities, differential first-order passive, first-order active, and second-order active low-pass

filters are used to filter the measurements acquired by each of the three ADC channels. The

47

operational amplifier used in the first and second-order active filters is the LMV321ILT, a general-

purpose rail-to-rail amplifier (STMicroelectronics, 2015). Downstream of the differential filters, a

differential amplifier circuit is used to amplify and offset each signal, which is then converted using

the on-board ADC. The differential filters and differential amplifier specifications will be presented

in Section 3.1.3.2.

3.1.3 Electronics Design and Analysis

A custom PCB was designed to implement the high-level design discussed above into

practice. The floorplan of the PCB was designed to minimize board area and measurement noise

by separating the analog and digital sections of the board. The schematic and board were designed

in Autodesk EagleTM, and are provided in Appendix E.

3.1.3.1 Board Design

The custom PCB was designed as a two-layer board, with each layer containing signal

lines, power rails, and a ground plane. The top and bottom layer ground planes are stitched together

with vias so they are of the same potential and there is a low impedance path for return current. The

board outline is displayed in Figure 3-6.

Figure 3-6: Dynamic data acquisition system PCB board outline.

48

To minimize the amount of digital noise being injected into the analog devices, the PCB

ground planes were split into regions, with the analog regions solidly connected to the digital

ground plane under each ADC. The microcontroller, LDO, microSD socket, FT232R, and the

microUSB socket were segregated in the digital region so that digital noise is not present in the

acquired measurements. The two analog regions separate the components used for each

measurement method from the digital components.

Figure 3-7: Power regulation and microcontroller schematic.

Surface-mount components were utilized throughout the design to minimize the board floor

area. The schematic for the LDO and microcontroller circuitry is shown in Figure 3-7. The 5 V

input and 3.3 V output of the LDO are filtered with ceramic decoupling capacitors, with an

additional inductor-capacitor filter to stabilize the 3.3 V rail. The Atxmega128A4U has three digital

supply pins, each decoupled with a large ceramic capacitor, and an analog supply pin, filtered with

a ferrite bead and two decoupling capacitors. The reset pin is pulled high with a 10 kΩ resistor with

a tactile switch that pulls the pin low when engaged to quickly reset the device. The microcontroller

49

PDI interface is connected to a programmer/debugger with 2x3 0.1 in pitch headers. The crystal

signal lines are decoupled with small ceramic capacitors to stabilize the crystal frequency, as

recommended in the datasheet (EPSON, n.d.). Additionally, a yellow LED was placed in series

with a 1 kΩ resistor between the 3.3 V rail and ground to indicate that power is being supplied.

Figure 3-8: FT232R and microUSB schematic.

To communicate to an off-board serial monitor, the FT232R RXD and TXD lines are

connected to the TX and RX lines, respectively, to the UART interface of the Atxmega128A4U.

This schematic is displayed in Figure 3-8. Data is transferred through two lines, USBDM and

USBDP, from the FT232R to the serial monitor which are pulled down with 15 kΩ resistors. The

FT232R is powered by the 3.3 V rail and two ceramic decoupling capacitors. Two red and green

LEDs are connected in series with two 1 kΩ resistors between 3.3 V and the TX and RX LED pins

of the FT232R. The TX and RX LED lines are pulled low, lighting the LED, when data is being

transferred and received, respectively. The microUSB socket is a surface-mount, five pin USB 2.0

connector that supplies 5 V to power the device from a computer USB port (FCI, n.d.).

 The microSD socket is a push-in push-out, ultra-low-profile connector for storing data to

a microSD card (Molex, 2019). Although various communication protocols may be used to write

data to a microSD card, the device is designed to write data using SPI. The SPI communication

pins are connected to the SPI pins on port C of the Atxmega128A4U, and the unused

50

communication pins are pulled high with 10 kΩ resistors. The microSD socket features a detect

pin, connected to a GPIO on the microcontroller, which is pulled high when a microSD card is

inserted and low when no microSD card is present. The CS pin on the microSD socket is pulled

high by another 10 kΩ resistor, and pulled low while the device is storing data. The schematic for

the microSD socket is displayed in Figure 3-9.

Figure 3-9: MicroSD socket schematic.

The schematic for the AD7708 was designed using the typical application suggested in the

datasheet, and is shown in Figure 3-10 (Analog Devices, 2001). Power is supplied from the 3.3 V

rail with two ceramic decoupling capacitors on the digital supply and a tantalum capacitor

decoupling the analog supply. The crystal signal lines are decoupled with small ceramic capacitors

like the implementation in the microcontroller schematic. The reset and CS signal lines are pulled

high with 10 kΩ resistors, and the SPI communication pins are connected to the SPI interface on

port C of the Atxmega128A4U. In addition, the ready pin that is pulled low when valid data is

ready to transfer, is connected to a microcontroller GPIO.

51

Figure 3-10: AD7708 and quarter, half, and full-bridge schematic.

The outputs of the quarter, half, and full-bridges are each connected to a differential ADC

channel of the AD7708. Each differential channel has a 0.1 µF bypass capacitor between the

positive and negative inputs to filter any high-frequency noise. The excitation voltage for the

Wheatstone bridges is supplied by the 3.0 V output from the AD780R, which also supplies the

positive reference voltage for the AD7708. A 14-pin screw terminal provides pinouts for

completing each bridge with strain gauges.

Both methods of reading strain have a corresponding AD780R circuit for supplying the

excitation voltage for each Wheatstone bridge. The AD780R has the ability to supply 2.5 V or

3.0 V depending on the circuit configuration. A schematic of the implementation of the AD780R

in this design is displayed in Figure 3-11. For the device to supply 3.0 V, the O/P select pin of the

device should be shorted to ground. As the device datasheet suggests, a 0.1 µF ceramic capacitor

is placed between the TEMP pin and ground to reduce noise (Analog Devices, 2017). Decoupling

capacitors are connected to the input and output of the device, as well as a polarized tantalum

52

capacitor to further reduce the noise in the readings from the Wheatstone bridges. In addition, a

BSS123L metal-oxide semiconductor field-effect transistor (MOSFET) was placed in series

between the 3.0 V reference voltages and Wheatstone bridges to toggle the excitation voltage,

driven by a GPIO pin from the Atxmega128A4U (Fairchild, 2014).

Figure 3-11: AD780R voltage reference schematic.

To acquire measurements using the Atxmega128A4U’s ADC interface, the scheme

detailed in Figure 3-12 was used to filter and amplify the differential signal from the Wheatstone

bridge. The differential output of the bridge is filtered through a differential low-pass filter, which

is downstream from a differential amplifier which amplifies and then offsets the signal by 𝑉𝑐𝑐/2.

The signal is connected to a GPIO pin on the Atxmega128A4U which is connected to the positive

terminal of the ADC, while the negative terminal is connected to ground. The first-order passive,

first-order active, and second-order active low-pass filter designs and the differential amplifier +

offset circuit will be discussed below in detail.

Figure 3-12: High-level ADC data acquisition block diagram.

53

3.1.3.2 Filter Design

Each electronic low-pass filter is designed for a cutoff frequency that attenuates signals not

related to dynamic strain, whose bandwidth is expected to be limited to well below the acquisition

frequency of 1 kHz. The filter will attenuate the signal by -3 dB at the cutoff frequency of the filter,

so a higher cutoff frequency is desired so that the dynamics of interest are not filtered out. Each

filter was modeled using circuit theory and MATLABTM to help predict the filter performance. The

derivations of each filter transfer function and cutoff frequency as well as the MATLABTM

simulation script are provided in Appendix F. A cutoff frequency of 5 kHz was chosen based on

the predicted performance of each filter, which attenuates high-frequency electrical noise while

leaving the frequency of interest unaffected.

Figure 3-13: First-order passive low-pass filter schematic.

 𝑇(𝑠) =
1

2𝑅𝐶𝑠 + 1
 (3-3)

 𝑓𝑐 =
1

4𝜋𝑅𝐶
 (3-4)

The schematic for a differential first-order passive low-pass filter is displayed in Figure 3-

13. It is comprised of two resistors and a bypass ceramic capacitor between the differential signals.

Equation 3-3 is the transfer function that models the filter and Equation 3-4 is an expression for

finding the cutoff frequency of the filter. Two resistors of 5 kΩ and a capacitor of 3 nF were chosen

to yield a cutoff frequency of 5.3 kHz.

54

Figure 3-14: Bode Diagram for first-order low-pass filter.

The frequency response of the filter is shown in Figure 3-14. The Bode plot was created in

MATLABTM using the transfer function displayed in Equation 3-3. With the filter design presented

above, the filter will leave signals of 1 kHz and lower unaffected and begin to attenuate frequencies

above 1.59 kHz at a rate of -20 dB/decade.

Figure 3-15: First-order active low-pass filter schematic.

Figure 3-15 displays the schematic of a differential first-order active low-pass filter. The

only difference between the passive and active filters is the presence of voltage buffers on the

outputs, using the LMV321 operation amplifier as a voltage buffer. The transfer function and cutoff

frequency are the same for this filter, thus the same resistor and capacitor values may be used to

55

achieve a cutoff frequency of 5.3 kHz. Using an active filter in this application is useful because

the buffers isolate the filter so that the circuit downstream does not affect the filter’s actions.

Operational amplifiers accomplish this effect due to their high-impedance inputs and low-

impedance output.

Figure 3-16: Second-order active low-pass filter schematic.

 𝑇(𝑠) =

1
4𝑅1𝑅2𝐶1𝐶2

𝑠2 + (
1

2𝑅1𝐶1
+

1
2𝑅2𝐶2

)𝑆 +
1

4𝑅1𝑅2𝐶1𝐶2

 (3-5)

 𝑓𝑐 =
1

4𝜋√𝑅1𝑅2𝐶1𝐶2

 (3-6)

The schematic of a differential second-order active low-pass filter is shown in Figure 3-5.

Two first-order low-pass filters are cascaded to create the second-order filter and the voltage buffers

provide the active filtering properties. Equation 3-5 is the transfer function that models the filter

and Equation 3-6 is an expression for finding the cutoff frequency of the filter. Similar to the first-

order filter designs, two resistors of 5 kΩ and two capacitors of 3 nF were utilized again to yield a

cutoff frequency of 5.3 kHz for the filter. Using MATLABTM, the frequency response of the filter

was generated and is shown in Figure 3-17. The second-order filter behaves similarly to the first-

order filter, but with more a more aggressive attenuation rate of -40 dB/decade for frequencies

above the cutoff frequency.

56

Figure 3-17: Bode Diagram for second-order low-pass filter.

3.1.3.3 Signal Amplification

To amplify the differential signal, a differential amplifier circuit was constructed using

resistors and an operational amplifier. The selected design amplifies the differential voltage from

the Wheatstone bridge and then offsets the difference by a reference voltage (Electronics Hub,

2019). The differential amplifier circuit is shown in Figure 3-18. Equation 3-7 was used to design

the circuit for a gain of 128.

Figure 3-18: Differential amplifier + offset circuit schematic.

57

 𝑉𝑜𝑢𝑡 =
𝑅2

𝑅1

(𝑉2 − 𝑉1) + 𝑉𝑟𝑒𝑓 (3-7)

Using Equation 3-7 to design for a gain of 128, 𝑅1 and 𝑅2 were selected to be 1 kΩ and

128 kΩ, respectively. 𝑉𝑟𝑒𝑓 was provided using the circuit displayed in Figure 3-19, a simple voltage

divider circuit that halves the +3.0V reference voltage using two resistors and a voltage buffer. The

output of the differential amplifier yields a single-ended signal that is offset by +1.5V, mid-range

between ground and the +3.0V positive reference voltage of the ADC, and biased by the amplified

differential signal. A gain of 128 for the differential signal and offset of +1.5V increases the

precision of the measurement, as the ADC may see voltages that better span its range, rather than

extremely low, unamplified signals.

Figure 3-19: Voltage divider circuit for providing a reference voltage of 𝑽𝒄𝒄/𝟐.

If the voltage divider resistors are the same value, the output of the voltage divider will

effectively output half of its input. In this design, resistors of 10 kΩ were selected. Theoretically,

any value of resistance could achieve the desired effect, but a relatively high-value resistor was

chosen to minimize the current consumption of the circuit.

58

3.1.4 Software Design

Software was written for the Atxmega128A4U in C/C++ for acquiring and storing strain

measurements. Atmel StudioTM, an integrated development platform (IDP) for developing and

debugging AVRTM and SAMTM microcontroller applications, was used to develop the firmware and

software for the device (MicroChip, 2019). The IDP connects seamlessly to the Atmel-ICE

debugger for flashing code to the Atxmega128A4U and provides an interface for debugging the

code in real-time (Atmel, 2016). The program running on the Atxmega128A4U needed to

accomplish the following: configure the internal and external clocks to keep correct time for

timestamping data, store the user-set parameters, acquire and record data to the microSD card

through the on-board ADC and the AD7708, convey the operational status of the device to the user

through the serial interface, and acquire and report debugging information through the serial port

when prompted. Similar to the program written for the quasi-static data acquisition device, the code

was split into multiple files based on functionality and the concept of classes and class inheritance

were heavily utilized to make the code more readable. Drivers were written in C and C++ to control

the on-board ADC, SPI, and UART interfaces, the AD7708, and storing data to a microSD card.

Again, the concepts of multi-tasking and finite-state machines were used to further simplify and

improve the functionality of the device. The drivers, multi-tasking scheme, and tasks written for

the embedded software will be discussed below. A data structure known as a circular buffer is

heavily utilized in the programming of this device. A circular buffer is a first-in-first-out (FIFO)

data structure that stores data in a fixed-size array (Medium, 2019).

3.1.4.1 Drivers

The Atxmega128A4U provides various peripherals that may be assigned interrupt-service

routines (ISR) that trigger when certain operations are complete. Drivers associated with these

peripherals provide functions for normal peripheral operation as well as interrupt-driven operation

59

to improve the multi-tasking abilities of the device. The drivers written for the device are provided

in Appendix G.

Serial Port Driver:

The serial port driver consists of two classes: a serial port driver class for interfacing with

an on-board UART interface and a stream class which converts data to 8-bit characters and is

architecture independent. The stream class, comprised of the files stream.h and stream.cpp,

converts signed, unsigned integers, and floating-point number to a string of 8-bit characters that

can then be sent through a peripheral. Functionality for the << operator is also defined in the

stream class to improve code readability. The serial port class, comprised of the files

serial_port.h and serial_port.cpp, inherits functions from the stream class and provides functions

for sending and receiving data through one of the Atxmega128A4U’s UART interfaces. The class

constructor and initialize () function assigns low-priority interrupts for transmitting and receiving

multiple bytes of data at a time. When a character is received, the interrupt that triggers stores the

received character in a circular buffer that may be retrieved using the get_char () function. The

check_buf () function returns a boolean indicating if characters exist in the receive circular buffer.

Using the << operator, individual characters, data of any individual type, and strings of characters

may be sent through the UART port. When transmitting data, the first character is sent through

the UART port, while the remaining characters are pushed to a circular buffer. The remaining

characters in the buffer are transmitted in the interrupt that triggers when a character transfer is

finished.

SPI Driver:

A driver consisting of the files SPI.h and SPI.cpp was written to abstract the use of the SPI

interfaces on the Atxmega128A4U. This class provides functions for transmitting and receiving

data with and without the use of interrupts. The class constructor, the initialize () function, and the

set_mode () function configures and enables the SPI port and associated high-priority interrupts.

To transfer and receive a single byte without using interrupts, the transfer () function may be used.

60

For transferring multiple bytes using interrupts, the push_byte () and transfer_ISR () functions are

used for pushing bytes to a circular buffer and beginning SPI transmission. After calling

transfer_ISR (), each byte in the buffer is transferred in an ISR and all received bytes are stored in

another buffer. The functions data_ready () and pull_byte () check if the transfer is complete and

returns one received byte at a time.

MicroSD Driver:

To write data to a microSD card, a microSD driver was built on top of the FatFs filesystem

module intended for use on small embedded systems (ChaN, 2019). The FatFs module provides

functions for creating, reading, and writing files that is architecture independent and is comprised

of the files ff.h, ff.c, ffconf.h, and diskio.h. Because the filesystem is architecture independent, the

functions declared in diskio.h must be written based on the I/O capabilities of the microcontroller.

A file named mmc_avr.c was written that defines the functions declared in diskio.h so the filesystem

uses the SPI interface on port D and a timer on port C to interface with the microSD card. The file

mmc_avr.c heavily borrows code from an example project on GitHub that writes data to an SD card

using an Xmega device (sandcoffin, 2016). For further abstraction, a driver class comprised of the

files microSD.h and microSD.cpp was created that uses the FatFs filesystem and inherits functions

from the stream class discussed above to write data to a microSD card. The function initialize ()

configures the hardware and the function mount () mounts the filesystem to the workspace.

card_detect () returns a boolean indicating if a card has been inserted and the functions create ()

and open () creates and opens a file which can then be written. The << operator provided by the

stream class may then be used to save data strings to the currently open file. The function close ()

closes the file and saves all previously written data to the microSD card. Functions for reading data

from a microSD card were not implemented in the microSD class because the acquired data is

expected to be read using a computer.

61

ADC Driver:

The ADC interface driver provides functions for using an on-board ADC channel of the

Atxmega128A4U and consists of the files ADC.h and ADC.cpp. Two classes encompass the

driver, one for controlling an individual ADC channel and one for controlling the ADC interface

as a whole. Similar to the SPI and serial port drivers, high-priority interrupts that trigger when a

reading is complete are configured for each ADC channel. The ADC channel class contains

functions for tying GPIO pins to the positive and negative sides of the ADC and taking readings.

Functions such as read () and request () were written that initiate a conversion and wait until the

conversion is complete, and request a reading where the result is stored in a circular buffer in an

ISR. In addition, the function acquire_data () uses interrupts for acquiring data at a specified

frequency using a timer on port C to improve the multitasking capabilities of the device. Each

channel has an associated circular buffer where the data acquired in an ISR is stored. The ADC

class contains functions like initialize (), enable (), and disable () for configuring the ADC

interface. Four ADC channel objects are instantiated within the class for each channel, and the

ADC class is declared a friend of the ADC channel class so that it has access to the private

members of each ADC channel object.

AD7708 Driver:

The AD7708 driver uses the SPI driver discussed above to control and acquire data from

the AD7708. This class is comprised of the files AD7708.h and AD7708.cpp. Again, functions are

provided for acquiring data without the use of interrupts and functions that request readings which

are acquired in an ISR, triggered by the SPI interface and stored in a circular buffer. Similar to the

ADC channel class, the function acquire_data () configures another timer ISR on port C that

acquires data at a specified frequency. Functions like initialize (), enable (), and disable () are

available for configuring the device and calibrate () is used to calibrate the device internally.

62

3.1.4.2 Multi-tasking

A more sophisticated cooperative multi-tasking scheme than the scheme utilized for the

quasi-static device was implemented for this device. A cooperative scheduler class, comprised of

the files coscheduler.h and coscheduler.cpp, was created to run background code that controls

which tasks are run and collects debugging information. In addition, a task class, comprised of the

files task.h and task.cpp, was created to serve as a base class that provides derived classes with

basic task functionality. This base class stores variables such as the task state, next run time, and

the task priority, and declares functions such as initialize () and run () to be defined in a derived

class. The scheduler, when instantiated, saves pointers to the derived task classes so that it may call

the run () function when appropriate. The scheduler organizes each task pointer into a high-priority,

medium-priority, or low-priority queue based on the task priority. In addition, an idle task may be

instantiated that runs only when no other tasks require CPU time. Similar to the multi-tasking

scheme used for the quasi-static device, the scheduler determines which tasks need to run based on

the task run time variable. To keep time, files named clock_timer_rtc.h and clock_timer_rtc.cpp

were written to keep time in milliseconds using a timer on port D and the on-board RTC.

For inter-task communication, classes for shares and queues were written that provide ways

for sending data between tasks. These classes are comprised of the files share.h and queue.h. These

classes were written as templates so that shares and queues of any individual data type may be

instantiated. A queue is a FIFO data structure commonly used for sending a stream of data from

one process to another. In this multi-tasking scheme, tasks may store pointers to the relevant shares

and queues to communicate with other tasks. The files written for the scheduler, base task, shares,

and queues are provided in Appendix H.

3.1.4.3 Tasks

The cooperative scheduler runs five finite-state machine tasks that control each major

component of the device. Each task priority, timing, and the inter-task communication is detailed

63

in Figure 3-20. The solid lines indicate that the inter-task communication scheme is a queue, while

the dashed lines indicate that the inter-task communication scheme is a share.

Figure 3-20: Task diagram for dynamic data acquisition system.

Tasks 1 and 2 control the AD7708 and the ADC interface of the Atxmega128A4U and

send data to task 3 which controls and saves data to the microSD card. Task 5 uses the serial port

to update the user on the status of the device and to interpret commands entered by the user. Task

4 is a simple task that only toggles an on-board LED every 500 ms to indicate that the program is

running. The finite-state machine of tasks 1, 2, 3, and 5 will be discussed below. The derived task

files are provided in Appendix I.

64

Figure 3-21: AD7708 Driver task state transition diagrams.

Figure 3-22: ADC Interface task state transition diagrams.

65

The AD7708 Driver and ADC Interface tasks have very similar state machine designs,

displayed in Figures 3-21 and 3-22, respectively. In state 0, the corresponding interface is initialized

and the task transitions to state 1, where it waits until a flag is raised by the User Interface task. The

task either transitions to state 2 to take static data, or state 4 to take dynamic data. While in state 4,

the data is collected using the interrupts associated with each device, and the task is only pulling

the acquired data from the buffers and pushing data to the corresponding queue. When the queue

is full, the task transitions back to state 1 to wait for another flag to be raised. In state 2, the task

takes one reading before transitioning to state 3, where it waits until one second has elapsed, where

it transitions back to state 2 to take another reading. When the user interface lowers the flag, the

task transitions back to state 1 to wait for another flag to be raised.

Figure 3-23: MicroSD Driver task state transition diagram.

The MicroSD Driver task, whose state machine is displayed in Figure 3-23, is responsible

for storing any data received from the AD7708 Driver or ADC Interface tasks. The task first checks

66

if a microSD card is inserted. If a card is detected, the task configures and initializes the microSD

card and transitions to state 1 where it waits for a flag to be raised. The task will enter state 2 if

either task begins taking static data, in which the task stores each static reading to the microSD card

and will continue until the flag is lowered. The task enters state 3 when the device begins taking

dynamic data, where it waits until the queue is full. When the queue is full, the task transitions to

state 4 and pulls and saves the entire queue of data before transitioning back to state 1. State 5 exists

for handling any errors, mainly for if the device loses its connection with the microSD card.

Figure 3-24: User Interface task state transition diagram.

The user interface task, whose state machine is displayed in Figure 3-24, is responsible for

handling any commands from the user and for communicating the device status over the serial port.

State 0 does nothing but ask the user to enter “ctrl+c” to enter command mode. Once the user does

this, the task enters state 2 where the user is prompted to type a command through the serial port.

67

The task stores characters in a string and echoes each character through the serial port. Once the

user presses “enter”, the task enters state 3 where the command string is decoded and the command

the user entered is determined. The task raises the appropriate flags to execute the command and

transitions to state 4, where the task waits until the device is ready to accept another command. If

the user enters the acquisition frequency command, the task enters state 5 where the user is

prompted to enter a frequency at which to acquire dynamic data.

3.2 Device Testing and Validation

The dynamic data acquisition system was tested extensively with the procedures used to

test the quasi-static device to verify that it met the requirements presented in Section 1.2. The

current draw test was conducted to determine the power consumption of the device at various

operating conditions. Static data was collected at room temperature to compare the results with

theory and to calibrate each method of reading mechanical strain. Data was also taken in a low

temperature chamber to confirm the survivability of the device and to observe the effect of

temperature on each Wheatstone bridge configuration. To confirm the device is able to take

dynamic measurements, data was acquired at a rate of 1 kHz using the two different ADCs and

compared with theory.

Before conducting the tests discussed above, the device functionality was tested to verify

that the overall performance of the device was as expected according to the design of the device.

The only component that did not perform as expected was the MOSFET used to toggle the

excitation voltage for the Wheatstone bridges. The drain-to-source voltage drop on the MOSFET

was greater than expected, and altered the reference voltage such that using the component altered

the offset in the data. To mitigate this problem, the BSS123L MOSFETs were removed from the

board and the connection shorted so that the 3.0 V reference is directly connected to the Wheatstone

68

bridges. The downside of removing the MOSFETs is that each complete Wheatstone bridge draws

about 8mA of current at all times, rather than only when the MOSFETs are active.

To test the quarter, half, and full-bridge configurations for acquiring static and dynamic

data, three beams were designed and made out of aluminum bar stock with dimensions of 3.175 mm

x 19.05 mm x 227 mm. The length of the beam was designed such that the natural frequency of

each beam is 50 Hz in a cantilever configuration, which will be discussed below. Constantan strain

gauges were mounted to each of the three beams for quarter, half and full-bridge configurations,

shown in Figure 3-25. Additionally, small holes were drilled at the end of each beam for suspending

masses during static strain testing.

Figure 3-25: Quarter-bridge (left), half-bridge (middle), and full-bridge (right) beam

configurations.

3.2.1 Current Draw

To determine the current draw of the device under various operating conditions, the same

modified USB cable and digital multimeter setup was used in series with the device and a USB port

69

on a computer. When testing the current draw while the device is acquiring data, only the

Wheatstone bridge being used to measure strain was connected. Both branches of all unused bridges

were left incomplete during the current tests so that the device did not draw unnecessary current.

The current draw and power consumption of the device under various operating conditions are

provided in Table 3-2.

Table 3-2: Current draw and power consumption of device under various operating

conditions.

Device Condition
Current Draw Power Consumed

(mA) (W)

Waiting 35.5 0.178

Acquiring Data (16-bit AD7708) 42.9 0.215

Acquiring Data (On-board 12-bit ADC) 47.1 0.236

Saving Data 51.3 0.257

While the device is not reading or recording data, the two components with the most

significant current draw are the Atxmega128A4U and the FT232R, which draw approximately

9.5 mA and 15 mA, respectively (Atmel, 2014) (FTDI, n.d.). The current draw of the device could

be reduced further by placing these components in a low-power state. The rest of the current draw

is the natural current draw of the various components that are always active. The AD7708 pulls

approximately 1.3 mA while active, and each Wheatstone bridge has a natural current draw of

8 mA when excited because of the 350 Ω resistors. Additionally, while only about 17 mA were

observed during this test, microSD cards have non-continuous current draws of up to 100 mA

(SanDisk, 2010).

3.2.2 Static Data Acquisition Testing

Both methods of reading strain were tested at room temperature to acquire static data. In

both cases, the device stores acquired data in the form of an unsigned, 16-bit number. To process

the data faster, the device stores the data to the microSD card as is, and may be converted to volts

70

and then strain after off-loading the data. Sample sets of data acquired at 1Hz by both methods are

shown in Table 3-3.

Table 3-3: Sample sets of data acquired by both methods.

Runtime

(ms)

Raw Data

On-board

ADC (12-bit)

AD7708

(16-bit)

0 1004 31869

1000 1004 31894

2000 1004 31919

3000 1003 31869

4000 1006 31794

5000 1009 31819

6000 1007 31869

7000 1006 31869

8000 1009 31869

9000 1005 31794

The ADC data has a linear correlation between binary and volts, and may be converted by

multiplying the number by the ratio of the reference voltage (3.0 V) and 4096. After subtracting

the offset from the data, divide by 128 to account for the differential amplifier gain. The data is

then converted from volts to µ-strain using Equations 2-2, 3-1, and 3-2. The AD7708 can acquire

data at a maximum frequency of 1.3kHz with chopping disabled, but must be calibrated externally

rather than using the internal calibration capability (Analog Devices, 2001). To acquire dynamic

data with chopping disabled, each AD7708 channel must be calibrated before converting the data

to strain.

A beam bending test was conducted to verify the data from the on-board ADC and to

calibrate the AD7708 using the same methods and theory as discussed in Section 2.2.2. Each

channel of the AD7708 was calibrated using the quarter, half, and full-bridge beams by taking

readings and comparing them with theory. The quarter-bridge, half-bridge, and full-bridge

Wheatstone bridge configurations correspond to channels 1, 2, and 3 on the AD7708, respectively.

To calibrate each channel, readings were taken when the beams were unloaded to determine the

offset. Then, various known masses were suspended at the end of the beam and data was acquired.

71

Theory was used to calculate the value of strain corresponding to each mass, and a linear correlation

was made between the readings acquired by the AD7708 and the theoretical strain values. The half-

bridge beam was used to acquire data using the three channels of the on-board ADC of the

Atxmega128A4U. Channels 1, 2, and 3 on the Atxmega128A4U correspond to the data filtered by

the first-order passive, first-order active, and second-order active low-pass electronic filters,

respectively. The results of the static beam tests are displayed in Figure 3-26 and Figure 3-27 for

each channel of the AD7708 and each channel of the on-board ADC, respectively.

Figure 3-26: Calibration of the AD7708 (16-bit).

-3000

-2000

-1000

0

1000

2000

3000

-6.00 -4.00 -2.00 0.00 2.00 4.00 6.00

S
tr

ai
n
 [

µ
]

Mass [kg]

Quarter-bridge

Half-bridge

Full-bridge

Theoretical Results

72

Figure 3-27: Comparison of on-board ADC (12-bit) readings to theoretical strain values.

Similar to the static beam tests of the previous device, masses of 0.1, 0.2, 0.5, 1.0, 2.0, and

5.0 kg were suspended at the end of the beam to produce the results. The negative masses in the

plots refer to readings that were acquired when the beam was inverted (i.e., strain gauges in

compression). Both methods of reading strain provided linear results which only deviated slightly

for the larger masses. The maximum theoretical bending stress experienced by the beam was

approximately 156 MPa, which indicates that the beam was never strained beyond the published

elastic limit of 276 MPa for 6061 aluminum (ASM, 2018). Like the test conducted for the HX711,

a lack of precise beam dimensions and elastic modulus are likely causes for the slight deviations in

the measurements.

3.2.3 Dynamic Data Acquisition Testing

Dynamic testing was conducted in which the device acquired data at a frequency of 1 kHz

on the same beams used for the static tests. The beams were mounted on the same testing setup

used for the static tests, deflected, and released so they were vibrating freely. During this vibration,

the device acquired and recorded a thousand data points for one second to verify that it could

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

-6.00 -4.00 -2.00 0.00 2.00 4.00 6.00

S
tr

ai
n
 [

µ
]

Mass [kg]

1st-order passive

1st-order active

2nd-order active

Theoretical Results

73

capture the first mode of oscillation at the correct acquisition frequency. To verify the device

recorded data at the correct frequency, the frequency of the oscillations in the acquired data was

compared to the theoretical first natural frequency of the beams.

To determine the natural frequency of the beams, the Assumed Modes method was used to

derive an equation of motion (EOM) for the transverse vibration and an expression for calculating

the natural frequency of the cantilever beam (Craig et al. 2006). The schematic depicted in Figure

3-28 was used to derive the EOM and an expression for the natural frequency.

Figure 3-28: Dynamic cantilever beam model schematic.

To ensure accuracy and simplicity of the model, the Assumed Modes method was used to

derive an EOM that described the first two modes of oscillation. Each mode was assumed to be of

the shapes shown in Figure 3-29 and described by Equations 3-8 and 3-9. The mode shapes were

chosen based on the boundary conditions of a cantilever beam.

Figure 3-29: Assumed mode shapes of cantilever beam model for (top) first mode and

(bottom) second mode.

74

 𝜓1(𝑥) = (
𝑥

𝐿
)
2

 (3-8)

 𝜓2(𝑥) = (
𝑥

𝐿
)
2

− (
𝑥

𝐿
)
3

 (3-9)

Given the mode shapes and the geometry of the beam, the EOM described in Equations 3-

10 and 3-11 were derived using the Assumed Modes method. Equation 3-10 displays the coupled

EOMs of each of the modes of oscillation varying with time while Equation 3-11 depicts the

transverse displacement of the beam varying with time and the distance along the beam.

𝑀�̈� + 𝐶�̇� + 𝐾𝑄 = 0 𝑄 = [
𝑞1

𝑞2
]

𝑀 = 𝜌𝐴𝐿 [
1

5⁄
1

30⁄

1
30⁄ 1

105⁄
] , 𝐶 = 𝑐 [

1 0
0 0

] , 𝐾 =
𝐸𝐼

𝐿3 [
4 −2

−2 4
]

(3-10)

 𝜐(𝑥, 𝑡) = 𝜓1(𝑥) 𝑞1(𝑡) + 𝜓2(𝑥) 𝑞2(𝑡) (3-11)

To derive the first natural frequency, the characteristic equation of the system, shown in

Equation 3-12, was solved and yielded expressions for the first and second natural frequencies, the

first of which is shown in Equation 3-13. The roots of the characteristic equation correspond to the

eigenvalues of the system, the square roots of which yield the natural frequencies of the system.

 |𝐾 − 𝜔2𝑀| = 0 (3-12)

 𝜔𝑛1
= 3.53 √

𝐸𝐼

𝜌𝐴𝐿4
 (3-13)

Equation 3-13 was used to design the length of the beam, 227 mm, for a natural frequency

of about 50 Hz. The derivation of the EOM and Equation 3-13 can be found in Appendix J.

Each method of reading strain was subject to three dynamic data acquisition tests. Each set

of data corresponds to an ADC channel for one of the two methods. To induce oscillation at the

natural frequency, the end of the beams used to conduct each test were deflected and released.

Figure 3-30, Figure 3-31, and Figure 3-32 display the data acquired by the AD7708, and Figure 3-

75

33, Figure 3-34, and Figure 3-35 display the data acquired by the on-board ADC of the

Atxmega128A4U. Each set of data is displayed in a plot showing the total dynamic response and a

plot showing a snapshot of 50 ms of data. The magnitude of the oscillations observed in the data

was not easily controllable with the setup used in the dynamic tests, and therefore varies between

tests.

Figure 3-30: AD7708 (16-bit) dynamic beam testing results for the quarter-bridge

configuration.

Figure 3-31: AD7708 (16-bit) dynamic beam testing results for the half-bridge

configuration.

-1000

-500

0

500

1000

1500

2000

2500

0 500 1000

S
tr

ai
n

 [
µ

]

Time [ms]

-300

-200

-100

0

100

200

300

800 825 850

S
tr

ai
n
 [

µ
]

Time [ms]

-1000

-500

0

500

1000

1500

2000

2500

200 400 600 800 1000

S
tr

ai
n
 [

µ
]

Time [ms]

-400

-300

-200

-100

0

100

200

300

400

800 825 850

S
tr

ai
n
 [

µ
]

Time [ms]

76

Figure 3-32: AD7708 (16-bit) dynamic beam testing results for the full-bridge configuration.

The results for the dynamic test using the quarter-bridge configuration have more noise

than the results for the half-bridge and full-bridge configurations. This noise could be due to

parasitic noise between the various components of the Wheatstone bridge and digital switching

noise arising from the digital ICs in other areas of the PCB. One reason the half-bridge and full-

bridge configurations performed better is that the noise injected into the excitation node of the

Wheatstone bridge is subtracted between the differential output of the bridge. The noise in the data

could also be caused by higher-frequency oscillations due to the higher modes of oscillation of the

beams. As seen in the dynamic results, there are clear gaps in the data, which may be due to the

quantization error of the AD7708. In a real ADC, small but finite gaps may exist between one

digital number and a consecutive digital number depending on the smallest differential voltage that

the ADC can resolve (Measurement Computing, n.d.). The AD7708 is no exception, and appears

to have missing codes which may be due to non-linearities present in the device, based on the

observed data. However, the missing codes could also be attributed to noise, and more testing

would need to be performed to determine if the quantization errors are repeatable.

-1000

-500

0

500

1000

1500

2000

0 500 1000

S
tr

ai
n
 [

µ
]

Time [ms]

-200

-150

-100

-50

0

50

100

150

200

800 825 850

S
tr

ai
n

 [
µ

]

Time [ms]

77

Figure 3-33: On-board ADC (12-bit) dynamic testing results with passive 1st-order filtering.

Figure 3-34: On-board ADC (12-bit) dynamic testing with active 1st-order filtering.

Figure 3-35: On-board ADC (12-bit) dynamic beam testing with active 2nd-order filtering.

-1000

-500

0

500

1000

1500

2000

2500

0 250 500 750 1000

S
tr

ai
n
 [

µ
]

Time [ms]

-300

-200

-100

0

100

200

300

800 825 850

S
tr

ai
n

 [
µ

]

Time [ms]

-1000

-500

0

500

1000

1500

2000

0 250 500 750 1000

S
tr

ai
n

 [
µ

]

Time [ms]

-200

-150

-100

-50

0

50

100

150

200

800 825 850

S
tr

ai
n
 [

µ
]

Time [ms]

-1000

-500

0

500

1000

1500

2000

0 250 500 750 1000

S
tr

ai
n
 [

µ
]

Time [ms]

-200

-150

-100

-50

0

50

100

150

200

800 825 850

S
tr

ai
n

 [
µ

]

Time [ms]

78

Figures 3-33, 3-34, and 3-35 display the dynamic results acquired by the on-board ADC

using a half-bridge configuration. It is clearly observable that the active filters attenuate noise much

more effectively than the passive filter. Similar to the data acquired by the AD7708, the noise

present in the data could be due to oscillations lower than 5 kHz caused by higher modes of

oscillation of the beams that are not attenuated by the filters. Again, the on-board ADC is not ideal,

and has errors that could be caused by non-linearities in the data although not as apparent as the

results acquired by the AD7708.

Table 3-4: Natural frequencies observed in dynamic testing.

Method
Device

Channel

Oscillation

Frequency (Hz)

AD7708

1 52.6

2 52.1

3 51.0

Atxmega128A4U

ADC

1 51.3

2 51.5

3 52.7

Table 3-4 details the average oscillation frequency observed in the dynamic testing results

for both methods of reading strain. The beams were designed for a first natural frequency of 50 Hz,

very similar to the frequencies observed during testing. The observed natural frequencies of the

beams are slightly different than the theoretical natural frequency, and is most likely due to the

actual parameters of the beam being slightly different than those used to calculate the theoretical

natural frequency.

3.2.4 Low Temperature Testing

The device was also subjected to low temperature tests to study the survivability of the

device at low temperatures and to observe the effect of temperature on the data acquired by each

method of reading strain. To lower the temperature, the device was placed in a freezer along with

two testing beams under no load where the temperature reached a minimum of -36 °C. Data was

acquired with both ADCs using a half-bridge and full-bridge configuration with the on-board ADC

79

and the AD7708, respectively. Figure 3-36 and Figure 3-37 displays the low-temperature data

acquired by the on-board ADC and the AD7708, respectively.

Figure 3-36: Full-bridge low temperature test results acquired by the AD7708 (16-bit).

Figure 3-37: On-board ADC (12-bit) half-bridge low temperature test results.

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 500 1000 1500 2000

S
tr

ai
n

 [
µ

]

Time [s]

-36°C

start temperature = 22°C

-250

-200

-150

-100

-50

0

50

0 500 1000 1500

S
tr

ai
n

 [
µ

]

Time [s]

-36°C

start temperature = 22°C

80

The data acquired by the AD7708 with the full-bridge configuration, shown in Figure 3-

36, shows about 7 µ of drift. This is due to the strain gauges all having the same nominal

temperature coefficient of resistivity, described by Equation 2-7. The thermal shrinkage of the beam

and change in gauge resistance due to temperature has no theoretical effect on the strain reading.

Even though the bridge resistances change with the thermal shrinkage of the beam and temperature,

each gauge resistance changes at the same rate, so the resistance values remain equal so the bridge

voltage is balanced.

The data acquired by the on-board ADC with the half-bridge configuration has an

observable drift of about -210 µ. The components comprising each branch of the half-bridge also

have the same temperature coefficient of resistivity, and thus contributes nothing to the observed

drift. The most likely cause of this drift is due to the LMV321 operational amplifiers used in the

differential amplifiers to amplify the voltage have an input offset of about 2 µV/°C

(STMicroelectronics, 2015). The device experienced a temperature change of 57 °C between room

temperature and the minimum temperature of the freezer, making the input offset voltage drift about

0.114 mV. However, this drift would only account for about -110 µ of the drift seen in the test.

Although the beam is in compression due to the low temperature, the strain due to the thermal

shrinkage of the beam would not be observable in the measurements. Because the half-bridge

configuration was used in this test, both strain gauges are in compression and theoretically should

still have the same resistance.

3.3 Summary – Dynamic Data Acquisition System

The design and development of a benchtop proof-of-concept device intended for testing

various methods of acquiring dynamic strain measurements was presented. The device is powered

and controlled through a USB port and a serial interface on a computer. Data acquired by the device

is stored on an on-board microSD card and may be monitored in real-time using an external serial

81

monitor. The components selected for this device were tested using a custom PCB with designs

that may be used in future BLDS designs for acquiring dynamic strain measurements. Multi-tasking

software was written in C/C++ to control the device which runs multiple finite-state machine style

processes that utilize custom drivers to control the components of the device.

The device performance and power consumption were tested extensively. A current draw

test was conducted to verify that the power consumption was within the requirements detailed in

Section 1.2. The reliability of the device was tested extensively through multiple beam bending

tests in which the device acquired static and dynamic data. The static testing proved that the

AD7708 outputs linear data that was used to find a linear correlation between the output and the

theoretical strain calculations. The static beam testing of the on-board ADC was compared with

theory to validate the measurements. Both ADCs were used to acquire dynamic data on the beams

to verify that the device was capable of capturing the first mode of oscillation of the beam.

Additionally, the device was tested in a low temperature environment to determine the survivability

of the device and the effect that temperature has on the measurements using the half-bridge and

full-bridge configurations.

82

4. CONCLUSIONS AND RECOMMENDATIONS

This thesis details the design and development of two prototype devices to support the

development of the family of devices collectively called the Boundary Layer Data System. The

new devices are the first members of the BLDS family with the ability to acquire non-flow data –

in this case, timestamped mechanical strain measurements – and save the data to an on-board

microSD card. These new devices were designed with a modular approach to be the newest

members of the next-generation BLDS family of devices to be known as the Flight Test Data

System (FTDS). The conclusions found during the work outlined in this thesis for each device and

recommendations for future work on strain data acquisition applications will be discussed below.

4.1 Conclusions

4.1.1 Quasi-Static Data Acquisition System

The quasi-static device met the requirements listed in Table 1-3. The device survived and

acquired reliable data at room temperature and a temperature of -36 C and successfully acquired

data at a frequency of 10 Hz. During the low temperature tests, the device proved to have a battery

life of more than two hours, with a current draw of less than 60 mA. Additionally, the device is

small, autonomous and weighs less than a pound. The HX711 demonstrated the ability to output

linear, 24-bit data and proved to be a reliable, accurate method for acquiring static strain

measurements. To operate, the component requires few components with no external clock, making

it a low-cost and easy solution for acquiring quasi-static strain data. The low temperature testing

revealed that the strain readings drift as the temperature changes. Possible causes of the drift

observed in the strain measurements include: thermal shrinkage of the beam, resistance changes in

the bridge components, and offsets generated by the electronics due to operating at low

temperatures. The ADXL345 accelerometer was shown to have a high degree of functionality and

83

provided reliable acceleration data in three directions. Decoupling capacitors are the only external

components required, making the accelerometer easy and cheap to implement.

4.1.2 Dynamic Data Acquisition System

The dynamic data acquisition system provided a compact and robust solution for acquiring

both static and dynamic strain measurements, while meeting the requirements displayed in Table

1-3. The device proved to survive and successfully acquire data at both room temperature and

- 36 C. Under all modes of operation, the current draw of the device was less than 60 mA. A PCB

was designed with a small and practical layout with an overall volume of 3.75 in x 3.8 in x 0.3 in.

The AD7708 was proven to provide reliable, 16-bit data at a frequency of 1 kHz. External

components such as decoupling capacitors and a 32 kHz clock are required for the device to

function. Additionally, a solution using various low-pass filters, differential amplifiers, and the on-

board ADC of the microcontroller was demonstrated to acquire 12-bit data at a frequency of 1 kHz.

Both ADCs were proven to reliably acquire data at 1 kHz and capture the first mode of oscillation

of a beam designed for a first natural frequency of 50 Hz.

4.1.3 Software

Both data acquisition systems use a multi-tasking scheme to run multiple processes

simultaneously. The static data acquisition system uses a cooperative, round-robin technique that

runs finite-state machines to execute code. The dynamic data acquisition system uses a cooperative

technique similar to the static data acquisition system, but with priority so that the higher-priority

state machines are given more CPU time than the lower-priority state machines. Both programs use

object-oriented programming and modular design to simplify the programming design and

troubleshooting process. The static data acquisition system software was programmed using the

Arduino IDE which doesn’t have a debug interface. Thus, printing data to the serial port was the

only way to monitor and troubleshoot the program. The dynamic data acquisition system program

84

was programmed in C/C++ using Atmel StudioTM and the Atmel ICE Debugger to flash code and

debug the device.

4.2 Recommendations for Future Work

Below are the recommendations for future work on BLDS-FTDS devices that acquire static

and dynamic strain measurements.

4.2.1 Programming IDE

The Arduino IDE provided a simple method for programming the quasi-static device.

Many open-source drivers and example code written using the Arduino IDE are available, making

it a powerful tool that novice developers may use to jumpstart projects. However, the Arduino IDE

does not have a debugger, and the serial port must be used to communicate the device status while

troubleshooting. For future BLDS software that requires the use of a preemptive operating system

or generous use of interrupts, a C/C++ IDE that includes a debug interface should be used. The

Atmel ICE Debugger used with Atmel StudioTM provides an effective means of debugging

complex, interrupt-driven software.

4.2.2 Electronics and Circuitry

To further reduce the power consumption of the device, each component should be placed

in low power or sleep mode during idle operation. In a typical flight test, the device will be waiting

for a user-specified time interval at which to acquire data, during which the device could be placed

in a low-power state. Each component tested in this work has a low power mode of operation that

may be configured in software.

While the methods used to acquire dynamic strain measurements were successful, there

was a fair amount of noise present in the data. The power conditioning scheme used to regulate

voltage from batteries injects more digital switching noise into the system. Additionally, the SOC

chip used to communicate with other modules in the BLDS-FTDS family will inject more high-

85

frequency RF noise that could further contaminate the measurements. Disciplined PCB design

techniques may be used to combat this. One such technique is to further separate the digital and

analog sections of the board by implementing separate ground planes that meet near the power

supply. An easy way to accomplish this is to use the “star” ground philosophy, where the board is

designed such that the interaction between the digital and analog signal paths is minimized

(Zumbahlen, 2012). This will also provide a very low impedance path for return current to the

supply. Using the same principles, using large copper planes for the digital and analog supply lines

will provide low impedance paths for powering each component and circuitry.

It is recommended that the full Wheatstone bridge configuration with strain gauges that

have the same temperature coefficient of resistivity be used to acquire strain measurements during

flight. The dynamic strain tests and low temperature tests shows that the full-bridge configuration

reduces noise in the data and causes little to no drift. In situations where only one or two strain

gauges are desired for acquiring data, the rest of the bridge should be constructed using the same

gauge so that the data does not drift. The “dummy” gauges used to construct the rest of the

Wheatstone bridge should be mounted such that they experience no strain and they are at the same

temperature as the strain gauges of interest.

86

WORKS CITED

“Aluminum 6061-T6; 6061-T651.” ASM Material Data Sheet, 2018,

asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA6061T6

“Analog to Digital Conversion,” Measurement Computing,

www.mccdaq.com/PDFs/specs/Analog-to-Digital.pdf.

“Atmel Studio 7.” Atmel Studio 7 | Microchip Technology, 2019,

www.microchip.com/mplab/avr-support/atmel-studio-7

ChaN., “FatFs - Generic FAT Filesystem Module,” 2019, elm-chan.org/fsw/ff/00index_e.html

Craig, Roy R., and Andrew J. Kurdila. Fundamentals of Structural Dynamics. John Wiley &

Sons, 2006.

“Crystal Unit,” SEIKO EPSON CORPORATION, Product Number MC-405:

Q1xMC4052xxxx00, https://support.epson.biz/td/api/doc_check.php?dl=brief_MC-

405&lang=en

“FT232R USB UART IC Datasheet,” Future Technology Devices International Ltd.,

https://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232R.pdf

Jellen, Z. Wilson, and R. Westphal, “A Next-Generation Modular Boundary Layer Data System,”

accepted for AIAA Aviation 2019, Dallas, Tx, June 2019.

Karasawa, “Unsteady Total Pressure Measurement for Laminar-to-Turbulent Transition

Detection,” MS Thesis, California Polytechnic State University, San Luis Obispo, 2011,

http://digitalcommons.calpoly.edu/theses/613/

Kinkade, “Addition of a Stanton Gauge to the Boundary Layer Data System,” MS Thesis,

California Polytechnic State University, San Luis Obispo, 2014,

https://digitalcommons.calpoly.edu/theses/1260/

“Libraries.” Arduino, 2019, www.arduino.cc/en/reference/libraries.

“Low cost, low power, input/output rail-to-rail operational amplifiers Rev 8,”

STMicroelectronics, 2015,

https://www.st.com/content/ccc/resource/technical/document/datasheet/b9/d8/3b/8f/a1/8f/

46/01/CD00079372.pdf/files/CD00079372.pdf/jcr:content/translations/en.CD00079372.p

df

“Metal Film Resistors, Axial, Industrial, Precision,” Vishay, September 2016,

https://www.mouser.com/Passive-Components/Resistors/Film-Resistors/Metal-Film-

Resistors-Through-Hole/Datasheets/_/N-7gz41?P=1z0x6xbZ1z0vpm5

“MICRO SD CONN. NORMAL ULTRA LOW-PROFILE ASSY,” Molex, Drawing #SD-

503182-011, September 2019, https://www.molex.com/pdm_docs/sd/5031821852_sd.pdf

87

“Micro USB 2.0 Connectors,” FCI, https://cdn.amphenol-

icc.com/media/wysiwyg/files/documentation/datasheet/inputoutput/io_usb_micro.pdf

N. Hoyt, “Compact Rake Boundary Layer Data System Module,” MS Thesis, California

Polytechnic State University, San Luis Obispo, 2013. No access URL available.

“N-Channel Logic Level Enhancement Mode Field Effect Transistor,” Fairchild, 2014,

https://www.onsemi.com/pub/Collateral/BSS123L-D.pdf

“Op Amp Differential Amplifier Circuit: Voltage Subtractor.” Electronics Hub, 24 Feb. 2019,

www.electronicshub.org/differential-amplifier/

Oswold, Connor. “Data Structures: Your Quick Intro to Circular Buffers.” Medium, 7 May 2019,

medium.com/better-programming/now-buffering-7a7d384faab5

“Practical Strain Gauge Measurements,” Omega Engineering, 1999,

https://www.omega.co.uk/techref/pdf/StrainGage_Measurement.pdf

R. Westphal, D. Frame, M. Bleazard, S. Jordan, A Wanner, B. Thompson, A. Bender, and A.

Drake, “Design of a Third-Generation Boundary Layer Measurement System," AIAA

paper 2008-7332, 2008.

R. Westphal, M. Bleazard, A. Drake, A. Bender, D. Frame and S. Jordan, "A Compact, Self-

Containing System for Boundary Layer Measurement In-Flight", AIAA paper 2006-

3828, AIAA Meeting Papers on Disc [CD-ROM], Vols. No. 10-13, 2006.

R. Westphal, R. Schelley, and D. Frame. "Instrument for In-Flight Boundary Layer Rake

Measurements," AIAA paper 2017-0251, 2017.

“RFD22102 RFduino DIP,” RFduino, December 2013, https://docs-emea.rs-

online.com/webdocs/12c6/0900766b812c6383.pdf

“RFD77203 29-Pin Breakout Board,” RF Digital Corporation, 2015,

https://www.mouser.com/pdfdocs/SimbleeRFD77203Datasheet.pdf

S. Lillywhite, “Microphone-based Pressure Diagnostics for Boundary Layer Transition,” MS

Thesis, California Polytechnic State University, San Luis Obispo, 2013,

https://digitalcommons.calpoly.edu/theses/1064/

sandcoffin, fatfs, GitHub repository, 2016, https://github.com/sandcoffin/fatfs

“SanDisk microSD OEM Product Manual,” SanDisk, Document No. 80-36-03335, March 2010,

https://www.alliedelec.com/m/d/04db416b291011446889dbd6129e2644.pdf

“SimbleeTM Bluetooth Smart Module RFD77101,” RF Digital, 2016,

https://cdn.sparkfun.com/datasheets/IoT/Simblee%20RFD77101%20Datasheet%20v1.0.p

df

“SparkFun Load Cell Amplifier - HX711,” SparkFun Electronics, 2013,

https://www.sparkfun.com/products/13879

88

“The Atmel-ICE Debugger,” Atmel, Atmel-42330C-Atmel-ICE_User Guide, 2016,

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-ICE_UserGuide.pdf

Ulk, “Implementation of a Conrad Probe on a Boundary Layer Measurement System,” MS

Thesis, California Polytechnic State University, San Luis Obispo, 2010,

http://digitalcommons.calpoly.edu/theses/375/

“Ultra High-Precision Z-Foil Flip Chip Resistor,” Vishay, October 2015,

http://www.vishaypg.com/docs/63106/VFCP.pdf

“What Is SparkFun?,” SparkFun Electronics, https://www.sparkfun.com/what_is_sparkfun.

Zumbahlen, Hank. “Staying Well Grounded.,” Analog Devices, 2012,

www.analog.com/en/analog-dialogue/articles/staying-well-grounded.html

“2.5 V/3.0 V High Precision Reference,” Analog Devices, 2017,

https://www.analog.com/media/en/technical-documentation/data-sheets/AD780.pdf

“24-bit Analog-to-Digital Converter (ADC) for Weigh Scales,” AVIA Semiconductor, June 2018,

https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/hx711_english.pdf

“3-Axis, ±2 g/ ±4 g/ ±8 g/ ±16 g Digital Accelerometer,” Analog Devices, 2015,

https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf

“8-/10-Channel, Low Voltage, Low Power, Σ-Δ ADCs,” Analog Devices, 2001,

https://www.analog.com/media/en/technical-documentation/data-

sheets/AD7708_7718.pdf

“8/16-bit Atmel XMEGA Microcontroller,” Atmel, 2014,

http://ww1.microchip.com/downloads/en/devicedoc/atmel-8387-8-and16-bit-avr-

microcontroller-xmega-a4u_datasheet.pdf

89

A. QUASI-STATIC DATA ACQUISITION SYSTEM SCHEMATIC AND BOARD

LAYOUT

90

Figure A-1: Quasi-static Data Acquisition System PCB top layer layout.

Figure A-2: Quasi-static Data Acquisition System PCB bottom layer layout.

91

Figure A-3: Quasi-static Data Acquisition System PCB top render.

Figure A-4: Quasi-static Data Acquisition System PCB bottom render.

92

B. HX711 LOAD CELL AMPLIFIER BREAKOUT SCHEMATIC AND BOARD

LAYOUT

93

Figure B-1: HX711 breakout board top layer layout.

Figure B-2: HX711 breakout board bottom layer layout.

94

C. ADXL345 ACCELEROMETER BREAKOUT SCHEMATIC AND BOARD LAYOUT

95

Figure C-1: ADXL345 breakout board top layer layout.

Figure C-2: ADXL345 breakout board bottom layer layout.

96

D. HX711 AND ADXL345 ARDUINO DRIVERS

/** @file HX711.h

 * @brief HX711 Strain Gauge Amplifier Library - Class header file

 *

 * Contributors: Zach Wilson 7/25/18

 * References:

 * HX711 Datasheet

 * Libraries:

 *

 * Notes:

 * The methods provided by this class gives strain readings in voltage to minimize the calculations between

 * readings. Use the equation below to calculate mechanical strain.

 *

 * strainVoltage = output from readStrain () and readAverageStrain () methods.

 * tareVoltage = output from readStrain () and readAverageStrain () methods while the gauge is under no load

(wind-off).

 * voltageratio = (strainVoltage / 3.3) - (tareVoltage / 3.3)

 * mechanicalStrain = (-4 * voltageratio / (GAUGE_FACTOR * (1 + (2 * voltageratio))))

 *

 */

#ifndef HX711_h

#define HX711_h

// Included Libraries

#include "Arduino.h"

/** @brief HX711 Strain Gauge Reader Class.

 *

 * AVIA Semiconductor HX711 Load Cell Amplifier

 */

class HX711 {

 private:

 uint8_t _DAT; //!< Stores DAT pin

 uint8_t _CLK; //!< Stores CLK pin

 float _TARE = 0; //!< Tare for data offset

 uint8_t _GAIN = 0; //!< Value for selecting channel A or B

 float _GAUGE_FACTOR = 0; //!< Strain Gauge conversion from change in resistance to mechanical strain

 int32_t readData ();

 public:

 float strainRatio = 0; //!< Stores last reading from the HX711 in volts

 HX711 (uint8_t CLK, uint8_t DAT);

 void begin ();

 void reset ();

 void readStrain ();

 void readAverageStrain (uint8_t times);

 void chooseGain (uint8_t value);

 void setTare (uint8_t times);

 void setGaugeFactor (float value);

 void enable ();

 void disable ();

 bool getStatus ();

};

#endif

97

/** @file HX711.cpp

 * @brief HX711 Strain Gauge Amplifier Library - Main class

 *

 * Contributors: Zach Wilson 7/25/18

 * References:

 * HX711 Datasheet

 * Libraries:

 *

 * Notes:

 *

 * The methods provided by this class give strain readings in voltage to minimize the calculations between

 * readings. Use the equations below to calculate mechanical strain.

 *

 * strainVoltageRatio = output from readStrain () and readAverageStrain () methods.

 * tareVoltageRatio = output from readStrain () and readAverageStrain () methods while the gauge is under no load.

 * voltageratio = strainVoltageRatio - tareVoltageRatio

 * mechanicalStrain = (4 * voltageratio / (GAUGE_FACTOR * (1 + (2 * voltageratio))))

 *

 *

 */

// Included Libraries

#include "Arduino.h"

#include "HX711.h"

/** @brief Default Constructor. Creates an HX711 object.

 * @details This constructor only stores the CLK and DAT pins for communication with the HX711.

 * @param CLK Clock pin for communication with the HX711.

 * @param DAT Data pin to retrieve reading from HX711 in bytes.

 */

HX711 :: HX711 (uint8_t CLK, uint8_t DAT) {

 _CLK = CLK;

 _DAT = DAT;

}

/** @brief Initializes the HX711 object.

 * @details This method configures the CLK and DAT pins for output and input, respectively. It calls the powerUp ()

 * method to wake up the device, then waits until the dataReady () method returns true. It then takes a few readings

 * using the readAverageStrain () method and then powers down the device.

 */

void HX711 :: begin () {

 pinMode (_CLK, OUTPUT);

 pinMode (_DAT, INPUT);

 enable ();

 while (!getStatus ()) {}

 readAverageStrain (10);

 strainRatio = 0;

 disable ();

}

/** @brief Reads data from HX711.

 * @details This method waits until the HX711 is ready to send data and uses the CLK pin to send 24 clock pulses to

 * the HX711 to retrieve 3 bytes of data. It then converts the data into a 32-bit integer.

 * @return Returns a 32-bit integer containing the value read by the HX711.

 */

int32_t HX711 :: readData () {

 int32_t strainData = 0;

 uint8_t rawData[3] = { 0 };

 while (!getStatus ()) {} // Waits until DAT and CLK pins are low, indicating HX711 chip

is ready to send data

 rawData[2] = shiftIn (_DAT, _CLK, MSBFIRST);

 rawData[1] = shiftIn (_DAT, _CLK, MSBFIRST);

 rawData[0] = shiftIn (_DAT, _CLK, MSBFIRST);

 for (int i = 0; i < _GAIN; i++) { // Sends a number of clock pulses to set HX711 chip to channel

A or B based on _GAIN

 digitalWrite (_CLK, HIGH);

 digitalWrite (_CLK, LOW);

 }

 if (rawData[2] & 0x80) { // Populates MSB if data is negative and leaves it alone if

positive

 strainData = 0xFF;

 }

 else {

 strainData = 0x00;

 }

 strainData = (strainData << 8) | rawData[2]; // Constructs a 32-bit number

 strainData = (strainData << 8) | rawData[1];

 strainData = (strainData << 8) | rawData[0];

98

 return strainData;

}

/** @brief Reads voltage from the HX711.

 * @details Calls the readData () method and converts the 32-bit integer to a voltage reading. Stores reading

 * in public variable strainVoltage

 */

void HX711 :: readStrain () {

 strainRatio = readData () / 8388608.0;

}

/** @brief Reads average value of voltage from the HX711.

 * @details Calls the readStrain () method a number of times to get an average reading. Stores reading in public

 * variable strainVoltage

 * @param times Number of readings to average.

 */

void HX711 :: readAverageStrain (uint8_t times) {

 float summedValue = 0;

 for (uint8_t i = 0; i < times; i++) {

 readStrain ();

 summedValue += strainRatio;

 }

 strainRatio = summedValue / times;

}

/** @brief Adjusts for the tare.

 * @details This method calls the readData () method a number of times to get an anverage reading. This method

 * should be called when the strain gauge is under no load. Stores tare in the private variable _TARE.

 * @param times Number of readings to average.

 */

void HX711 :: setTare (uint8_t times) {

 int32_t summedValue;

 int32_t buf;

 for (uint8_t i = 0; i < times; i++) {

 summedValue += readData ();

 }

 buf = summedValue / times;

 _TARE = (buf / 8388607.0) * (13.2 / 1000) / 3.3;

}

/** @brief Sets the gauge factor of the strain gauge.

 * @details This method only stores the desired gauge factor in the private variable _GAUGE_FACTOR for converting

 * from change in electrical resistance to mechanical strain.

 * @param value The desired gague factor.

 */

void HX711 :: setGaugeFactor (float value) {

 _GAUGE_FACTOR = value;

}

/** @brief Sets the gain of the output data from the HX711.

 * @details This method only stores the desired gain in the private variable _GAIN. Alters the number of clock

 * pulses to send to the HX711 after a reading to set the channel and gain.

 * @param value A number to set the _GAIN parameter.

 * value = 1 : Gain = 128 on channel A

 * value = 2 : Gain = 64 on channel B

 * value = 3 : Gain = 32 on channel A

 */

void HX711 :: chooseGain (uint8_t value) {

 _GAIN = value;

}

/** @brief Powers on the HX711.

 * @details Wakes up the HX711 by setting the CLK pin low.

 */

void HX711 :: enable () {

 digitalWrite (_CLK, LOW);

}

/** @brief Powers off the HX711.

 * @details Puts the HX711 in low power mode by setting the CLK pin high for 60 microseconds.

 */

void HX711 :: disable () {

 digitalWrite (_CLK, LOW);

99

 digitalWrite (_CLK, HIGH);

 delayMicroseconds (60);

}

/** @brief Boolean indicating data is ready to be sent from the HX711.

 * @details This method checks if both the DAT and CLK pins are low, indicating that data is ready to be sent and

received.

 * @return Boolean indicating if data is ready to be sent.

 */

bool HX711 :: getStatus () {

 if ((!digitalRead (_DAT))&&(!digitalRead (_CLK))) {

 return true;

 }

 else {

 return false;

 }

}

100

/** @file ADXL345.h

 * @brief ADXL345 Accelerometer Library - Class header file

 *

 * Contributors: Zach Wilson 7/25/18

 * References:

 * ADXL345 Datasheet

 * Libraries:

 *

 * Notes:

 * The methods provided by this class output acceleration data in units of g's. No calculations are

 * necessary unless different unit of acceleration is desired.

 *

 */

#ifndef ADXL345_h

#define ADXL345_h

// Included Libraries

#include "Arduino.h"

// ADXL345 Data Registers

#define ADXL345_DATA_FORMAT 0x31 //!< Data format register

#define ADXL345_BW_RATE 0x2C //!< Data rate control

#define ADXL345_POWER_CTL 0x2D //!< Power control register

#define ADXL345_DATAX0 0x32 //!< X-Axis Data LSB

#define ADXL345_DATAX1 0x33 //!< X-Axis Data MSB

#define ADXL345_DATAY0 0x34 //!< Y-Axis Data LSB

#define ADXL345_DATAY1 0x35 //!< Y-Axis Data MSB

#define ADXL345_DATAZ0 0x36 //!< Z-Axis Data LSB

#define ADXL345_DATAZ1 0x37 //!< Z-Axis Data MSB

/** @brief ADXL345 Accelerometer Reader Class.

 *

 * Analog Devices Inc. ADXL345 Accelerometer

 */

class ADXL345 {

 private:

 uint8_t _CS; //!< Chip select pin

 union { //!< Union for assembling 6 raw data bytes into 3 signed 16-bit numbers

 uint8_t _accelData[6]; //!< Buffer for raw data

 int16_t _xyz_accelData[3]; //!< Buffer for assembled data

 };

 float _x_GAIN = 1.0; //!< Gain for x-axis data

 float _y_GAIN = 1.0; //!< Gain for y_axis data

 float _z_GAIN = 1.0; //!< Gain for z-axis data

 public:

 float x_acceleration; //!< Stores x-axis acceleration

 float y_acceleration; //!< Stores y-axis acceleration

 float z_acceleration; //!< Stores z-axis acceleration

 ADXL345 (uint8_t CS);

 void begin ();

 void reset ();

 void setGains (float x_GAIN, float y_GAIN, float z_GAIN);

 void readData ();

 void readXAccel ();

 void readYAccel ();

 void readZAccel ();

 void readXYZAccel ();

 void setRange (uint8_t value);

 void setRate (uint16_t value);

 void enable ();

 void disable ();

};

#endif

101

/** @file ADXL345.cpp

 * @brief ADXL345 Accelerometer Library - Main class

 *

 * Contributors: Zach Wilson 7/25/18

 * References:

 * ADXL345 Datasheet

 * Libraries:

 *

 * Notes:

 * The methods provided by this class output acceleration data in units of g's. No calculations are

 * necessary unless different unit of acceleration is desired.

 *

 */

// Included Libraries

#include "Arduino.h"

#include "ADXL345.h"

#include <SPI.h>

/** @brief Default constructor. Creates an ADXL345 object.

 * @details This constructor only stores the chip select pin for the ADXL345 object.

 * @param CS Chip select pin for the ADXL345 object.

 */

ADXL345 :: ADXL345 (uint8_t CS) {

 _CS = CS;

}

/** @brief Initializes the ADXL345 object.

 * @details This method initializes the ADXL345 object by setting the chip select pin low and initializes the SPI

 * library. Also places the ADXL345 object in standby mode using powerDown ().

 */

void ADXL345 :: begin () {

 pinMode (_CS, OUTPUT);

 digitalWrite (_CS, HIGH);

 SPI.begin ();

}

/** @brief Resets the ADXL345.

 * @details

 */

void ADXL345 :: reset () {

}

/** @brief Sets gains of the ADXL345 object.

 * @details This method stores the gains for the x, y, and z axis to convert the reading in bytes to g's.

 * @param x_GAIN The gain to convert the x-axis reading into g's.

 * @param y_GAIN The gain to convert the y-axis reading into g's.

 * @param z_GAIN The gain to convert the z-axis reading into g's.

 */

void ADXL345 :: setGains (float x_GAIN, float y_GAIN, float z_GAIN) {

 _x_GAIN = x_GAIN;

 _y_GAIN = y_GAIN;

 _z_GAIN = z_GAIN;

}

/** @brief Reads data from the ADXL345 object.

 * @details This method reads 6 bytes of data from the ADXL345 using the SPI library and stores the data in

 * the private variable _accelData.

 */

void ADXL345 :: readData () {

 uint8_t address = 0x80 | ADXL345_DATAX0; // Address for LSB of x-axis data register

 address = address | 0x40;

 SPI.beginTransaction (SPISettings (5000000, MSBFIRST, SPI_MODE3)); // Begin SPI transaction and set CS pin low

 digitalWrite (_CS, LOW);

 SPI.transfer (address);

 for (uint8_t i = 0; i < 6; i++) { // Transfers 6 bytes of data from ADXL345

 _accelData[i] = SPI.transfer (0x00);

 }

 SPI.endTransaction (); // End transaction and set CS pin high

 digitalWrite (_CS, HIGH);

}

/** @brief Reads the x-axis acceleration.

 * @details This method calls the readData () method and compiles the x-axis reading into a float. Stores reading

 * in the public variable x_acceleration.

 */

void ADXL345 :: readXAccel () {

 int16_t x_data;

 readData (); // Calls readData () method and

constructs x-axis data from 2 bytes

 x_data = (int16_t)((((uint8_t)_accelData[1]) << 8) | (uint8_t)_accelData[0]);

102

 x_acceleration = x_data * _x_GAIN; // Stores reading in g's

}

/** @brief Reads the y-axis acceleration.

 * @details This method calls the readData () method and compiles the y-axis reading into a float. Stores reading

 * in the public variable y_acceleration.

 */

void ADXL345 :: readYAccel () {

 int16_t y_data;

 readData (); // Calls readData () method and

constructs y-axis data from 2 bytes

 y_data = (int16_t)((((uint8_t)_accelData[3]) << 8) | (uint8_t)_accelData[2]);

 y_acceleration = y_data * _y_GAIN; // Stores reading in g's

}

/** @brief Reads the z-axis acceleration.

 * @details This method calls the readData () method and compiles the z-axis reading into a float. Stores reading

 * in the public variable z_acceleration.

 */

void ADXL345 :: readZAccel () {

 int16_t z_data;

 readData (); // Calls readData () method and

constructs z-axis data from 2 bytes

 z_data = (int16_t)((((uint8_t)_accelData[5]) << 8) | (uint8_t)_accelData[4]);

 z_acceleration = z_data * _z_GAIN; // Stores reading in g's

}

/** @brief Reads the acceleration of all three axis.

 * @details This method calls the readData () method and compiles the x, y, and z readings into floats

 * and stores them in the public variables x_acceleration, y_acceleration, and z_acceleration.

 */

void ADXL345 :: readXYZAccel () {

 int16_t x_data;

 int16_t y_data;

 int16_t z_data;

 readData (); // Calls readData () method and

constructs data for all axis

 x_data = (int16_t)((((uint8_t)_accelData[1]) << 8) | (uint8_t)_accelData[0]);

 y_data = (int16_t)((((uint8_t)_accelData[3]) << 8) | (uint8_t)_accelData[2]);

 z_data = (int16_t)((((uint8_t)_accelData[5]) << 8) | (uint8_t)_accelData[4]);

 x_acceleration = x_data * _x_GAIN; // Stores 3 readings in 3 floats

 y_acceleration = y_data * _y_GAIN;

 z_acceleration = z_data * _z_GAIN;

}

/** @brief Sets the acceleration range of the ADXL345.

 * @details Sends a byte to the ADXL345_DATA_FORMAT register that sets the desired g range.

 * @param value Selects the acceleration range according to the integer value given.

 * value = 2 : ± 2g

 * value = 4 : ± 4g

 * value = 8 : ± 8g

 * value = 16 : ± 16g

 */

void ADXL345 :: setRange (uint8_t value) {

 uint8_t setting;

 switch (value) {

 case 2:

 setting = B00101000; // Setting for ± 2g

 break;

 case 4:

 setting = B00101001; // Setting for ± 4g

 break;

 case 8:

 setting = B00101010; // Setting for ± 8g

 break;

 case 16:

 setting = B00101011; // Setting for ± 16g

 break;

 default:

 setting = B00101010; // Default is ± 8g

 break;

 }

 SPI.beginTransaction (SPISettings (5000000, MSBFIRST, SPI_MODE3)); // Begin SPI transaction and set CS pin low

 digitalWrite (_CS, LOW);

103

 SPI.transfer (ADXL345_DATA_FORMAT); // Send one byte to ADXL345 data format register

 SPI.transfer (setting);

 SPI.endTransaction ();

 digitalWrite (_CS, HIGH); // End transaction and set CS pin high

}

/** @brief Sets the rate of data output of the ADXL345.

 * @details Sends a byte to the ADXL345_BW_RATE data register that sets the desired data output rate.

 * @param value Selects a rate at which to output data.

 * value = 6 : 6.25Hz

 * value = 12 : 12.5Hz

 * value = 25 : 25Hz

 * value = 50 : 50Hz

 * value = 100 : 100Hz

 * value = 200 : 200Hz

 * value = 400 : 400Hz

 * value = 800 : 800Hz

 * value = 1600 : 1600Hz

 * value = 3200 : 3200Hz

 */

void ADXL345 :: setRate (uint16_t value) {

 uint8_t setting;

 switch (value) {

 case 6:

 setting = B00000110; // Setting for 6.25Hz

 break;

 case 12:

 setting = B00000111; // Setting for 12.5Hz

 break;

 case 25:

 setting = B00001000; // Setting for 25Hz

 break;

 case 50:

 setting = B00001001; // Setting for 50Hz

 break;

 case 100:

 setting = B00001010; // Setting for 100Hz

 break;

 case 200:

 setting = B00001011; // Setting for 200Hz

 break;

 case 400:

 setting = B00001100; // Setting for 400Hz

 break;

 case 800:

 setting = B00001101; // Setting for 800Hz

 break;

 case 1600:

 setting = B00001110; // Setting for 1600Hz

 break;

 case 3200:

 setting = B00001111; // Setting for 3200Hz

 break;

 default:

 setting = B00001010; // Default is 100Hz

 break;

 }

 SPI.beginTransaction (SPISettings (5000000, MSBFIRST, SPI_MODE3)); // Begin SPI transaction and set CS pin low

 digitalWrite (_CS, LOW);

 SPI.transfer (ADXL345_BW_RATE); // Send one byte to ADXL345 data rate register

 SPI.transfer (setting);

 SPI.endTransaction ();

 digitalWrite (_CS, HIGH); // End transaction and set CS pin high

}

/** @brief Powers on the ADXL345.

 * @details Sets the ADXL345 in measurement mode by sending a byte to the ADXL345_POWER_CTL data register.

 */

void ADXL345 :: enable () {

 uint8_t setting = B00001000; // Setting for measurement mode

 SPI.beginTransaction (SPISettings (5000000, MSBFIRST, SPI_MODE3)); // Begin SPI transaction and set CS pin low

 digitalWrite (_CS, LOW);

104

 SPI.transfer (ADXL345_POWER_CTL); // Send one byte to ADXL345 power control

register

 SPI.transfer (setting);

 SPI.endTransaction ();

 digitalWrite (_CS, HIGH); // End transaction and set CS pin high

}

/** Powers off the ADXL345.

 * @details Sets the ADXL345 in standby mode with minimum power consumption by sending a byte to the

 * ADXL345_POWER_CTL data register.

 */

void ADXL345 :: disable () {

 uint8_t setting = B00000000; // Setting for standby mode

 SPI.beginTransaction (SPISettings (5000000, MSBFIRST, SPI_MODE3)); // Begin SPI transaction and set CS pin low

 digitalWrite (_CS, LOW);

 SPI.transfer (ADXL345_POWER_CTL); // Send one byte to ADXL345 power control

register

 SPI.transfer (setting);

 SPI.endTransaction ();

 digitalWrite (_CS, HIGH); // End transaction and set CS pin high

}

105

E. DYNAMIC DATA ACQUISITION SYSTEM SCHEMATIC AND BOARD LAYOUT

106

107

108

Figure E-1: Dynamic Data Acquisition System PCB top layer layout.

Figure E-2: Dynamic Data Acquisition System PCB bottom layer layout.

109

Figure E-3: Dynamic Data Acquisition System PCB top render.

Figure E-4: Dynamic Data Acquisition System PCB bottom render.

110

F. DERIVATIONS OF FILTER TRANSFER FUNCTIONS, CUTOFF FREQUENCIES,

AND MATLAB SIMULATION

Simulations of the first and second-order low-pass filters used to filter the strain data in the

Dynamic Data Acquisition System were built to design and verify the performance of each filter.

Using linear graph modeling, the state space model and output equation of each filter was derived

in the form

 �̇� = 𝐴𝑥 + 𝐵𝑢 (F-1)

 𝑦 = 𝐶𝑥 + 𝐷𝑢 (F-2)

where 𝐴, 𝐵, 𝐶, and 𝐷 are matrices which describe the system and 𝑥 and 𝑦 are vectors containing

the states and outputs of the system, respectively. From the state space model and output equation,

the transfer function of each filter was calculated using the following equation

 𝑇(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1 + 𝐷 (F-3)

where 𝐼 is the identity matrix and 𝑇(𝑠) is the resulting transfer function. Using MATLABTM, a

Bode plot was generated and a simulation was run for each filter.

Figure F-1: First-order active low-pass filter schematic.

The schematic of the first-order low-pass filter is displayed in Figure F-1. Because of the

voltage buffers on the differential output of the filter, the circuitry downstream of the filter does

not affect the performance of the filter. Thus, the linear graph model does not need to include a

111

load across the filter output. A linear graph model and normal tree were generated from the first-

order filter schematic, and are shown in Figure F-2.

Figure F-2: First-order low-pass filter linear graph (left) and normal tree (right).

The first-order filter model contains two resistors, a capacitor, and a voltage input. The two

resistors are modeled as D-type elements, which means the resistors are energy-dissipative

elements rather than energy-storage elements. The capacitor is modeled as an A-type energy

storage element, which means the capacitor stores energy by virtue of its across variable, voltage.

The elemental equations describing the dynamics of each component are listed below.

𝑑𝑉𝐶

𝑑𝑡
=

1

𝐶
𝑖𝐶 (F-4)

 𝑖𝑅1
=

1

𝑅1
𝑉𝑅1

 (F-5)

 𝑉𝑅2
= 𝑅2𝑖𝑅2

 (F-6)

The voltage across the capacitor 𝑉𝐶 is the only state variable required to describe the dynamics of

the system. The interconnections of the linear graph that relate each element are described by the

continuity and constraint equations listed below.

 𝑖𝑐 = 𝑖𝑅1
 (F-7)

 𝑖𝑅2
= 𝑖𝑅1

 (F-8)

 𝑉𝑅1
= 𝑉𝑖𝑛 − 𝑉𝑅2

− 𝑉𝐶 (F-9)

112

Because resistors of the same nominal value were used in the real system, the following statement

further simplifies the model:

 𝑅1 = 𝑅2 = 𝑅 (F-10)

The state space model and output equation were calculated by combining the equations listed

above.

𝑑

𝑑𝑡
[𝑉𝐶] = [−

1

2𝑅𝐶
]𝑉𝐶 + [

1

2𝑅𝐶
]𝑉𝑖𝑛 (F-11)

 𝑉𝐶 = [1]𝑉𝐶 + [0]𝑉𝐶 (F-12)

Plugging the 𝐴, 𝐵, 𝐶, and 𝐷 matrices into Equation F-3 results in the transfer function describing

the filter. From the transfer function, it is simple to determine an expression of the filter cutoff

frequency.

 𝑇(𝑠) =
1

2𝑅𝐶𝑠 + 1
 (F-13)

 𝑓𝑐 =
1

4𝜋𝑅𝐶
 (F-14)

The filter was designed using Equation F-14 and simulated using the filter transfer function

described in Equation F-14. The simulation and Bode plot used to evaluate the performance of the

filter will be presented later.

 The transfer function of the second-order filter was derived in a similar fashion, whose

schematic, linear graph, and normal tree are displayed in Figures F-3 and F-4. Again, the model

does not include a load across the output of the filter because of the voltage buffers on the

differential output of the filter.

113

Figure F-3: Second-order active low-pass filter schematic.

Figure F-4: Second-order low-pass filter linear graph (left) and normal tree (right).

The second-order filter model contains four resistors modeled as D-type elements, two

capacitors modeled as A-type energy storage elements, and a voltage input. The elemental

equations describing the dynamics of each component are listed below.

𝑑𝑉𝐶1

𝑑𝑡
=

1

𝐶1
𝑖𝐶1

 (F-15)

𝑑𝑉𝐶2

𝑑𝑡
=

1

𝐶2
𝑖𝐶2

 (F-16)

 𝑖𝑅1
=

1

𝑅1
𝑉𝑅1

 (F-17)

 𝑖𝑅2
=

1

𝑅2
𝑉𝑅2

 (F-18)

 𝑉𝑅3
= 𝑅3𝑖𝑅3

 (F-19)

114

 𝑉𝑅4
= 𝑅4𝑖𝑅4

 (F-20)

The voltages across the capacitors 𝑉𝐶1
 and 𝑉𝐶2

 are the state variables required to describe the

dynamics of the system. The continuity and constraint equations of the system are listed below.

 𝑖𝑐1
= 𝑖𝑅1

− 𝑖𝑅2
 (F-21)

 𝑖𝑐2
= 𝑖𝑅2

 (F-22)

 𝑖𝑅4
= 𝑖𝑅2

 (F-23)

 𝑖𝑅3
= 𝑖𝑅1

 (F-24)

 𝑉𝑅1
= 𝑉𝑖𝑛 − 𝑉𝐶1

− 𝑉𝑅3
 (F-25)

 𝑉𝑅2
= 𝑉𝐶1

− 𝑉𝐶2
− 𝑉𝑅4

 (F-26)

The following statements further simplify the model:

 𝑅1 = 𝑅2 (F-27)

 𝑅3 = 𝑅4 (F-28)

The state space model and output equation were calculated by combining the equations listed

above.

𝑑

𝑑𝑡
[
𝑉𝐶1

𝑉𝐶2

] =

[

𝑅4

𝐶1𝑅2(𝑅2 + 𝑅4)
−

1

𝐶1𝑅1 + 𝐶1𝑅3

−
1

𝐶1𝑅2

1

𝐶1𝑅2

−
𝑅4

𝐶1𝑅2(𝑅2 + 𝑅4)
1

𝐶2𝑅2 + 𝐶2𝑅4

−
1

𝐶2𝑅2 + 𝐶2𝑅4]

[
𝑉𝐶1

𝑉𝐶2

]

+ [

1

𝐶1𝑅1 + 𝐶1𝑅3

0

] 𝑉𝑖𝑛

(F-29)

 𝑉𝐶2
= [0 1] [

𝑉𝐶1

𝑉𝐶2

] + [0]𝑉𝑖𝑛 (F-30)

Plugging the 𝐴, 𝐵, 𝐶, and 𝐷 matrices into Equation F-3 results in the transfer function describing

the filter. An expression for the filter cutoff frequency was determined by observation of the transfer

function.

115

 𝑇(𝑠) =

1
4𝑅1𝑅2𝐶1𝐶2

𝑠2 + (
1

2𝑅1𝐶1
+

1
2𝑅2𝐶2

) 𝑠 +
1

4𝑅1𝑅2𝐶1𝐶2

 (F-31)

 𝑓𝑐 =
1

4𝜋√𝑅1𝑅2𝐶1𝐶2

 (F-32)

A simulation was conducted in MATLABTM with a cutoff frequency of 𝑓𝑐 = 5.3 kHz to evaluate

the performance of both filters. The following SimulinkTM block diagrams and MATLABTM script

were used to run the simulation. Bode plots as well as plots that detail the attenuating capabilities

of both filters were generated and are displayed below.

Figure F-5: SimulinkTM block diagram of first-order filter simulation.

Figure F-6: SimulinkTM block diagram of second-order filter simulation.

116

% ///

%% Filter Simulations

% Zach Wilson, 4/6/19

%

% ///

%%

clear all; clc; close all;

% ///

%% First Order Low-pass Filter

% ///

% Constants

R = 5000; % Resistance

C = 0.003e-6; % Capacitance

noise_amp = 0.02; % Noise amplitude

noise_freq = 1/100000; % Noise frequency

w_n_1 = (1/(2*R*C))/(2*pi);

display(w_n_1);

% Run the simulink file.

sim('first_order_RC_filter');

% Plot the output.

figure;

hold on;

plot(tout,output_1(:,2));

plot(tout,output_1(:,1));

title('RC Filter output');

ylim([-0.05, 0.05]);

xlabel('Time [s]');

ylabel('Output [V]');

legend('Noisy Data','Filtered Data');

hold off;

% Bode plot of transfer function

sys_1 = tf(1,[R*C 1]);

figure;

hold on;

bode(sys_1);

title(' ');

hold off;

% ///

%% Second Order RC Filter

% ///

% Constants

R1 = 5000; % Resistance first stage

R2 = 5000; % Resistance second stage

C1 = 0.003e-6; % Capacitance first stage

C2 = 0.003e-6; % Capacitance second stage

noise_amp = 0.02; % Noise amplitude

noise_freq = 1/100000; % Noise frequency

w_n_1 = (1/sqrt(4*R1*R2*C1*C2))/(2*pi);

display(w_n_1);

% Run the simulink file

sim ('second_order_RC_filter.slx');

% Plot the output.

figure;

hold on;

plot(ans.tout,ans.output_2(:,2));

plot(ans.tout,ans.output_2(:,1));

title('RC Filter output');

ylim([-0.05, 0.05]);

xlabel('Time [s]');

ylabel('Output [V]');

117

legend('Noisy Data','Filtered Data');

hold off;

% Bode plot of transfer function

sys_2 = tf(1/(4*R1*R2*C1*C2),[1 (1/(2*C2*R2))+(1/(2*C1*R1)) (1/(4*R1*R2*C1*C2))]);

figure;

hold on;

bode(sys_2);

title(' ');

hold off;

Figure F-7: Bode Diagram for first-order low-pass filter.

Figure F-8: First-order low-pass filter response with noisy input.

118

Figure F-9: Bode Diagram for second-order low-pass filter.

Figure F-10: Second-order low-pass filter response with noisy input.

119

G. DYNAMIC DATA ACQUISITION SYSTEM C++ DRIVERS

/***/
/** @file serial_port.cpp
 * @brief Serial class header file.
 *
 * @details This header file defines the serial_port class. It includes
 * methods and operators for writing and reading characters to/from
 * a chosen USART port.
 *
 * Contributors:
 * - Zach Wilson 12/7/2018 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 12/7/2018 - initial release.
 * - 2/2/2019 - implemented circular buffer class for transfer and
 * receive buffers.
 *
 * Created: 12/7/2018 10:54:46 PM
 */
/***/

#ifndef SERIAL_PORT_H_
#define SERIAL_PORT_H_

/* Included files. */
#include <avr/io.h>
#include <stdio.h>
#include <avr/interrupt.h>
#include "defines.h"
#include "stream_base.h"
#include "semaphore.h"
#include "circular_buffer.h"

//
// Check to see if the macro F_CPU is defined.
#ifndef F_CPU
 #warning "CPU speed not defined."

 /** This serial interface requires the F_CPU macro is defined
 * somewhere.
 */
 #define F_CPU 32000000
#endif

//
/** Size of transfer buffer.
 */
#define SERIAL_PORT_TRANSFER_SIZE 400

//
/** Size of receive buffer.
 */
#define SERIAL_PORT_RECEIVE_SIZE 50

//
/** Declare the external store string function defined in string.h.
 */
extern void storeString (const char *, char *);

//
/** Declare the external integer to string conversion function defined in
 * string.h.
 */
extern char * intToString (uint32_t, char *);

//
/** Declare the external float to string conversion function defined in
 * string.h.
 */
extern void floatToString (float, char *, uint8_t);

//
/** @brief Serial Interface class.
 * @details This class provides a USART serial interface through a user-
 * specified port and baud rate. This class uses the receive complete and
 * data register empty interrupts on USARTE0.
 */
class serial_port : public stream_base, public binary_semaphore
{
 private:
 /** 32-bit storage for desired baud rate.
 */
 uint32_t baud;

 /** 16-bit storage for the number to be put into the period

120

 * register to set the timer period.
 */
 uint16_t BAUDRATE;

 /** Pointer to a USART port struct.
 */
 USART_t *p_USART;

 /** C-style string for serial port name.
 */
 char name [11];

 /** @brief Transmit data.
 * @details This method places a string of data into the transfer
 * buffer. To begin transmitting characters, this method places the
 * first character of the string into the USART data transfer register.
 * The rest of the string will be transmitted in interrupts.
 * @param p_string Pointer to a string of characters to be transmitted.
 */
 void transmit_data (const char *);

 /** @brief Put character.
 * @details This method puts a single character into the
 * transfer buffer. The character that the head pointer of
 * the buffer is pointing at is placed in the USART data
 * register during the transmit complete interrupt. This
 * method should only be called by the overloaded << operator
 * because it doesn't raise the data register empty flag. If the
 * transfer queue is full, then this function waits until the
 * queue has room before inserting the character.
 * @param character Character to be printed.
 */
 inline void put_char (char);

 public:
 /** Pointer to the serial port name string.
 */
 const char *p_name;

 /** Circular buffer for transferring characters through the serial port.
 * This object is a static member of the class so it can be utilized in an
 * interrupt service routine outside the class.
 */
 static circular_buffer <volatile char, SERIAL_PORT_TRANSFER_SIZE> transfer;

 /** Circular buffer for receiving characters through the serial port. This
 * object is a static member of the class so it can be utilized in an
 * interrupt service routine outside the class.
 */
 static circular_buffer <volatile char, SERIAL_PORT_RECEIVE_SIZE> receive;

 /** @brief Default constructor.
 * @details This constructor instantiates an instance of the
 * class and saves a pointer to a USART struct and calculates
 * the baud rate setting to be put in the CTRLA register.
 * @param baud Baud rate for serial communication.
 * @param USART Pointer to a USART port struct.
 * @param serial_name Pointer to the serial port name string.
 */
 serial_port (uint32_t, USART_t *, const char *);

 /** @brief Configure serial port.
 * @details This function configures the USART port on the
 * ATXMEGA128A4U microcontroller.
 */
 void configure (void);

 /** @brief Initialize serial port.
 * @details This function enables the interrupts that drive the
 * USART port and sends an indication through the port to confirm
 * the object was created successfully.
 */
 void initialize (void);

 /** @brief Check buffer.
 * @details This method checks to see if a character has
 * been received and is ready to be read from the receive
 * buffer.
 * @return Boolean indicating if the receive buffer contains an
 * unread character (true = yes).
 */
 inline bool check_buf (void);

 /** @brief Get character.
 * @details This method reads a single character from the
 * receive buffer. Call check_buf () before calling this
 * function, otherwise a NULL character will be returned
 * if the receive buffer doesn't currently hold data.
 * @return Character read from the receive buffer.
 */
 inline char get_char (void);
};

121

//
/** @brief Put character.
 * @details This method puts a single character into the transfer buffer.
 * The character that the head pointer of the buffer is pointing at is
 * placed in the USART data register during the transmit complete
 * interrupt. This method should only be called by the overloaded <<
 * operator because it doesn't raise the data register empty flag. If the
 * transfer queue is full, then this function waits until the queue has
 * room before inserting the character.
 * @param character Character to be printed.
 */
inline void serial_port :: put_char (char character)
{
 // If the transfer buffer is full, wait until the buffer
 // has room before pushing another character. This could
 // cause an infinite loop if the data register empty
 // interrupts are disabled or have not been triggered
 // for some reason.
 while (transfer.full ()) {}

 // Push the desired character onto the transfer buffer.
 transfer.push_data (character);

 // Non-interrupt method of printing characters.
 /*
 // Wait while TX status flag is low indicating that
 // USART is not ready to send data.
 while ((p_USART->STATUS & USART_DREIF_bm) == 0) {}

 // Clear the TXC bit by writing it high to indicate that
 // the USART is currently transferring data and put the
 // desired character in the data register to print it.
 p_USART->STATUS |= USART_TXCIF_bm;
 p_USART->DATA = *p_char;
 */
}

//
/** @brief Check buffer.
 * @details This method checks to see if a character has been received
 * and is ready to be read from the receive buffer.
 * @return Boolean indicating if the receive buffer contains an unread
 * character (true = yes).
 */
inline bool serial_port :: check_buf (void)
{
 return !receive.empty ();
}

//
/** @brief Get character.
 * @details This method reads a single character from the receive buffer.
 * Call check_buf () before calling this function, otherwise a NULL
 * character will be returned if the receive buffer doesn't currently
 * hold data.
 * @return Character read from the receive buffer.
 */
inline char serial_port :: get_char (void)
{
 // Only read from the buffer if the receive buffer contains a
 // character. Return NULL character if the receive buffer is
 // empty.
 return !receive.empty () ? receive.pull_data () : NULL;
}

#endif /* SERIAL_PORT_H_ */

122

/***/
/** @file serial_port.cpp
 * @brief Serial main class file.
 *
 * Contributors:
 * - Zach Wilson 12/7/2018 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 12/7/2018 - initial release.
 *
 * Created: 12/7/2018 11:20:28 PM
 */
/***/

/* Included files. */
#include "serial_port.h"

//
/** Circular buffer for transferring characters through the serial port.
 * This object is a static public member of the class so it can be
 * utilized in an interrupt service routine.
 */
circular_buffer <volatile char, SERIAL_PORT_TRANSFER_SIZE> serial_port :: transfer;

//
/** Circular buffer for receiving characters through the serial port. This
 * object is a static public member of the class so it can be utilized in
 * an interrupt service routine.
 */
circular_buffer <volatile char, SERIAL_PORT_RECEIVE_SIZE> serial_port :: receive;

//
/** @brief Default constructor.
 * @details This constructor instantiates an instance of the class and
 * saves a pointer to a USART struct and calculates the baud rate setting
 * to be put in the CTRLA register.
 * @param baud Baud rate for serial communication.
 * @param USART Pointer to a USART port struct.
 * @param serial_name Pointer to the serial port name string.
 */
serial_port :: serial_port (uint32_t _baud, USART_t *USART, const char *serial_name)
 : stream_base (), binary_semaphore ()
{
 baud = _baud;
 p_USART = USART;
 p_name = &name [0];
 BAUDRATE = ((F_CPU / (baud * 16)) - 1);
 storeString (serial_name, &name [0]);
}

//
/** @brief Configure serial port.
 * @details This function configures the USART port on the ATXMEGA128A4U
 * microcontroller.
 */
void serial_port :: configure (void)
{
 // Make sure the data register is empty before setup.
 p_USART->DATA = 0x00;

 // Set TX pin as output and high.
 PORTE.OUT |= (1 << PIN3_bp);
 PORTE.DIR |= (1 << PIN3_bp);

 // Set RX pin as input.
 PORTE.DIR &= ~(1 << PIN2_bp);

 // Lower XCK pin and set as output (asynchronous mode).
 PORTE.OUT &= ~(1 << PIN1_bp);
 PORTE.DIR |= (1 << PIN1_bp);

 // Select desired baud rate.
 if (baud == 0)
 {
 // Baudrate of 115200.
 p_USART->BAUDCTRLB = (-1 << USART_BSCALE0_bp);
 p_USART->BAUDCTRLA = (33 << USART_BSEL0_bp);
 }
 else
 {
 // Baudrate selected by user.
 p_USART->BAUDCTRLB = BAUDRATE;
 p_USART->BAUDCTRLA = (BAUDRATE >> 8);
 }

 // Enable TX pin and RX for transmission.
 p_USART->CTRLB = USART_TXEN_bm | USART_RXEN_bm;

 // Select 8-bit data size and set asynchronous mode.

123

 p_USART->CTRLC = USART_CHSIZE0_bm | USART_CHSIZE1_bm;

 // Enable low-level interrupts for receive and data register
 // empty so the program isn't stuck printing characters for
 // too long.
 p_USART->CTRLA = USART_DREINTLVL0_bm | USART_RXCINTLVL0_bm;
}

//
/** @brief Initialize serial port.
 * @details This function enables the interrupts that drive the USART
 * port and sends an indication through the port to confirm the object
 * was created successfully. This method is not necessary for the serial
 * port to function properly.
 */
void serial_port :: initialize (void)
{
 // Send indication through serial port.
 *this << clearscreen << "Serial port on " << p_name << " initialized." << endl << endl;
}

//
/** @brief Transmit data.
 * @details This method places a string of data into the transfer buffer.
 * To begin transmitting characters, this method places the first
 * character of the string into the USART data transfer register. The
 * rest of the string will be transmitted in interrupts.
 * @param p_string Pointer to a string of characters to be transmitted.
 */
void serial_port :: transmit_data (const char *p_string)
{
 // If the transfer queue is empty and a character is not currently
 // transmitting, place the first character in the DATA register.
 if (transfer.empty () && (p_USART->STATUS & USART_DREIF_bm))
 {
 p_USART->DATA = *p_string++;

 // If there are no more characters, exit.
 if (*p_string == NULL) return;
 }

 // Put the character in the transfer buffer and increment the pointer.
 // Repeat until it points to a NULL character, indicating the end of
 //the string.
 do
 {
 put_char (*p_string++);
 }
 while (*p_string != NULL);
}

//
/** @Brief Transmit register empty interrupt.
 * @details This interrupt is triggered when the transmit register is
 * empty after a character transmit has been completed and the USART is
 * ready to transmit another character. Another character is transmitted
 * in this interrupt if one is available in the transfer queue.
 */
ISR (USARTE0_DRE_vect)
{
 // If queue is empty no value is pulled and the data empty interrupt
 // flag is cleared to stop sending characters.
 if (serial_port :: transfer.empty ())
 {
 USARTE0.STATUS |= USART_DREIF_bm;
 return;
 }

 // Pull the next character from the transfer buffer into the transmit
 // register.
 USARTE0.DATA = serial_port :: transfer.pull_data ();
}

//
/** @brief Receive complete interrupt.
 * @details This interrupt is triggered when a character is received over
 * the USART. The character is placed in the receive buffer if there is
 * room, and discarded if there isn't.
 */
ISR (USARTE0_RXC_vect)
{
 // If the receive queue is full no value is pushed to the receive
 // buffer.
 if (serial_port :: receive.full ()) return;

 // Push the character in the receive data register into the receive
 // buffer.
 serial_port :: receive.push_data (static_cast <char> (USARTE0.DATA));
}

124

/***/
/** @file SPI.h
 * @brief Serial peripheral interface class header file.
 *
 * @details This header file defines the serial peripheral interface
 * class. It includes methods for acquiring data from external devices
 * via the SPI interface on the ATXMEGA128A4U microcontroller. This class
 * is interrupt driven and inherits methods/members from the buffer class.
 * Currently, this class only supports configurations where the
 * ATXMEGA128A4U is the master and the external device is the slave.
 *
 * Contributors:
 * - Zach Wilson 2/4/2019 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 2/4/2019 - initial release.
 *
 * Created: 2/4/2019 12:26:38 AM
 */
/***/

#ifndef SPI_H_
#define SPI_H_

/* Included files. */
#include <avr/io.h>
#include <avr/interrupt.h>
#include "semaphore.h"
#include "circular_buffer.h"
#include "serial_port.h"

//
// Check to see if the macro F_CPU is defined.
#ifndef F_CPU
 #warning "CPU frequency not defined."

 /** This class requires the F_CPU macro is defined somewhere.
 */
 #define F_CPU 32000000
#endif

//
/** Defines the buffer size for the SPI class.
 */
#define SPI_BUFFER_SIZE 50

//
/** Declare the external store string method defined in string.h for
 * storing the interface name.
 */
extern void storeString (const char *, char *);

//
/** Enum defining the read and write macros indicating the direction of
 * transmission.
 */
typedef enum SPI_INTERFACE_COMMAND_ENUM
{
 /** Read macro for receiving a byte over SPI.
 */
 SPI_READ = 0,

 /** Write macro for sending a byte over SPI.
 */
 SPI_WRITE,
} SPI_INTERFACE_COMMAND_t;

//
/** Enum defining the possible states of the SPI interface. These are used
 * to determine if the interface is currently transmitting or receiving a
 * byte of data.
 */
typedef enum SPI_INTERFACE_STATES_ENUM
{
 /** State when the interface is disabled and not transmitting or
 * receiving data.
 */
 SPI_DONE = 0,

 /** State where the interface is transceiving data.
 */
 SPI_TRANSCEIVING,

 /** State where the interface is writing data and not expecting a
 * response.
 */
 SPI_WRITING,
} SPI_INTERFACE_STATES_t;

125

//
/** Enum defining the master and slave operating modes of the SPI
 * interface.
 */
typedef enum SPI_MASTER_SELECT_ENUM
{
 /** SPI master mode.
 */
 SPI_MASTER,

 /** SPI slave mode.
 */
 SPI_SLAVE,
} SPI_MASTER_SELECT_t;

//
/** Enum defining the different clock prescale values for SPI operation.
 */
typedef enum SPI_PRESCALER_ENUM
{
 /** Clock ticks / 2.
 */
 SPI_DIV2 = 0,

 /** Clock ticks / 4.
 */
 SPI_DIV4,

 /** Clock ticks / 8.
 */
 SPI_DIV8,

 /** Clock ticks / 16.
 */
 SPI_DIV16,

 /** Clock ticks / 32.
 */
 SPI_DIV32,

 /** Clock ticks / 64.
 */
 SPI_DIV64,

 /** Clock ticks / 128.
 */
 SPI_DIV128,
} SPI_PRESCALER_ENUM_t;

//
/** Enum defining the different SPI transfer modes of operation.
 */
typedef enum SPI_TRANSFER_MODES_ENUM
{
 /** SPI mode 0. Leading Edge: rising, sample. Trailing Edge: falling,
 * setup.
 */
 SPI_MODE0 = 0,

 /** SPI mode 1. Leading Edge: rising, setup. Trailing Edge: falling,
 * sample.
 */
 SPI_MODE1,

 /** SPI mode 2. Leading Edge: falling, sample. Trailing Edge: rising,
 * setup.
 */
 SPI_MODE2,

 /** SPI mode 3. Leading Edge: falling, setup. Trailing Edge: rising,
 * sample.
 */
 SPI_MODE3,
} SPI_TRANSFER_MODES_t;

//
/** Enum defining the different SPI data order modes of operation.
 */
typedef enum SPI_DATA_ORDER
{
 /** Least significant byte first mode.
 */
 SPI_LSBFIRST = 0,

 /** Most significant byte first mode.
 */
 SPI_MSBFIRST,
} SPI_DATA_ORDER_t;

126

//
/** SPI data struct. Defines the data type used for the transfer queue in
 * the SPI control struct.
 */
typedef struct
{
 /** Byte for storing data.
 */
 volatile uint8_t data;

 /** Boolean indicating the SPI operation associated with the byte.
 */
 volatile SPI_INTERFACE_COMMAND_t operation;
} SPI_DATA_STRUCT_t;

//
/** SPI control struct. Struct used for controlling and interfacing with
 * an SPI interface through an interrupt service routine.
 */
typedef struct
{
 /** Pointer to the port of the chip select pin.
 */
 volatile PORT_t *p_cs_port;

 /** Chip select pin bitmask.
 */
 volatile uint8_t cs_bitmask;

 /** Circular buffer used for queuing data to be transmitted through
 * the interface.
 */
 circular_buffer <SPI_DATA_STRUCT_t, SPI_BUFFER_SIZE> transfer_buffer;

 /** Circular buffer used as storage for incoming data from the
 * interface.
 */
 circular_buffer <volatile uint8_t, SPI_BUFFER_SIZE> receive_buffer;

 /** Number indicating the state of the SPI interface.
 */
 volatile SPI_INTERFACE_STATES_t state;

 /** Temporary storage for reading/writing data.
 */
 SPI_DATA_STRUCT_t temp;
} SPI_CONTROL_STRUCT_t;

//
/** @brief Serial peripheral interface class.
 * @details This class provides methods for interfacing with the SPI on
 * ports C and D on the ATXMEGA128A4U microcontroller. It includes
 * methods for acquiring data from external devices 8-bits at a time.
 * This SPI class is interrupt driven. Acquired data is placed in a
 * buffer and remains there until fetched by another thread.
 */
class SPI : public binary_semaphore
{
 private:
 /** Pointer to a serial port object.
 */
 stream_base *p_serial;

 /** Pointer to an SPI interface.
 */
 SPI_t *p_SPI;

 /** Pointer to the port of the SPI interface.
 */
 PORT_t *p_PORT;

 /** Pointer to an SPI control struct.
 */
 SPI_CONTROL_STRUCT_t *p_control;

 /** C-style string for interface name.
 */
 char name [11];

 public:
 /** Pointer to the interface name.
 */
 const char *p_name;

 #ifdef SPI_PORTC_FLAG
 /** SPI control struct for the interface on port C.
 */
 static SPI_CONTROL_STRUCT_t SPI_C_control;
 #endif

127

 #ifdef SPI_PORTD_FLAG
 /** SPI control struct for the interface on port D.
 */
 static SPI_CONTROL_STRUCT_t SPI_D_control;
 #endif

 /** @brief Default constructor.
 * @details This constructor instantiates an instance of the
 * SPI class and saves a pointer to a SPI interface object and
 * the port name.
 * @param _p_SPI Pointer to a SPI interface object.
 * @param port_name Pointer to the SPI port name.
 */
 SPI (SPI_t *, const char *);

 /** @brief Initialize SPI interface
 * @details This method initializes the interface by saving a
 * pointer to the SPI interface so the class has access to the
 * registers. It also configures the interrupts that drive the
 * interface and sets the desired SPI transmission frequency.
 * @param _p_SPI Pointer to a serial port object.
 * @param prescale Desired prescaler for SPI transmission
 * frequency according to the xmega au manual.
 */
 void initialize (stream_base *, SPI_MASTER_SELECT_t);

 /** @brief Set SPI mode.
 * @details This method sets the transmission frequency and the
 * mode of transmission, as well as enable the SPI interface. It
 * should be called right before calling the transmission () and
 * request_bytes functions.
 * @param prescale Desired prescaler for SPI transmission.
 * @param mode Mode of SPI transmission.
 * @param bit_order Order in which data is received.
 */
 void set_mode (SPI_PRESCALER_ENUM_t, SPI_TRANSFER_MODES_t, SPI_DATA_ORDER_t);

 /** @brief Transfer bytes in ISR.
 * @details This method begins the transmission of all bytes in the
 * SPI buffer. The data_ready () method will return true if all bytes
 * have been transferred/received. This method should be used when
 * SPI interrupts are desired for handling the data transfer.
 * @param _p_cs_port Pointer to the port of the chip select pin.
 * @param _cs_bitmask Chip select pin bitmask.
 */
 void transfer_ISR (PORT_t *, uint8_t);

 /** @brief Transfer data.
 * @details This method sends and retrieves one byte over the SPI
 * interface. It doesn't use interrupts, and the chip select pin
 * must manually be lowered/raised before and after the transmission.
 * @param byte Data to be transferred.
 * @return Byte received from the slave device.
 */
 inline uint8_t transfer (uint8_t);

 /** @brief Push byte to transfer queue.
 * @details This method pushes a single byte to the SPI transfer queue
 * to be transferred to a slave device. The SPI communication will be
 * initiated with a call to the transfer_ISR () method.
 * @param byte Byte to be written.
 * @param operation Boolean indicating if the operation associated with
 * the byte is a read or write.
 */
 inline void push_byte (uint8_t, SPI_INTERFACE_COMMAND_t);

 /** @brief Data ready status.
 * @details This method checks to see if all of the bytes have been
 * transferred and all bytes have been received over interrupts.
 * @return Boolean indicating if the transfer is complete.
 */
 inline bool data_ready (void);

 /** @brief Data available status.
 * @details This method checks to see if any data is available in
 * the SPI receive buffer.
 * @return Number indicating how many bytes are available.
 */
 inline uint16_t data_available (void);

 /** @brief Pull byte from the receive queue.
 * @details This method pulls a single byte off the receive queue.
 * @return Byte pulled from the queue.
 */
 inline uint8_t pull_byte (void);

 /** @brief Flush receive buffer.
 * @details This method flushes the receive buffer of the SPI
 * interface.
 */
 inline void flush (void);

128

};

//
/** @brief Transfer data.
 * @details This method sends and retrieves one byte over the SPI
 * interface. It doesn't use interrupts, and the chip select pin must
 * manually be lowered/raised before and after calling the function.
 * @param data Data to be transferred.
 */
inline uint8_t SPI :: transfer (uint8_t data)
{
 // Temporarily disable interrupts so the transmission complete bit
 // isn't disabled in an ISR.
 p_SPI->INTCTRL = 0x00;

 // Send the data and wait until the transmission is complete.
 p_SPI->DATA = data;
 while (!(p_SPI->STATUS & SPI_IF_bm)) {}

 // Read the data register and re-enable interrupts. Return the
 // received byte.
 data = p_SPI->DATA;
 p_SPI->INTCTRL = SPI_INTLVL0_bm | SPI_INTLVL1_bm;
 return data;
}

//
/** @brief Push byte to transfer queue.
 * @details This method pushes a single byte to the SPI transfer queue
 * to be transferred to a slave device. The SPI communication will be
 * initiated with a call to the transfer_ISR () method.
 * @param byte Byte to be written.
 * @param operation Boolean indicating if the operation associated with
 * the byte is a read or write.
 */
inline void SPI :: push_byte (uint8_t data, SPI_INTERFACE_COMMAND_t operation)
{
 p_control->temp.data = data;
 p_control->temp.operation = operation;
 p_control->transfer_buffer.push_data (p_control->temp);
}

//
/** @brief Data ready status.
 * @details This method checks to see if all of the bytes have been
 * transferred and all bytes have been received.
 * @return Boolean indicating if the transfer is complete.
 */
inline bool SPI :: data_ready (void)
{
 return p_control->state == SPI_DONE;
}

//
/** @brief Data available status.
 * @details This method checks to see if any data is available in the SPI
 * receive buffer.
 * @return Number indicating how many bytes are available.
 */
inline uint16_t SPI :: data_available (void)
{
 return p_control->receive_buffer.buf_capacity ();
}

//
/** @brief Pull byte from the receive queue.
 * @details This method pulls a single byte off the receive queue.
 * @return Byte pulled from the queue.
 */
inline uint8_t SPI :: pull_byte (void)
{
 return p_control->receive_buffer.pull_data ();
}

//
/** @brief Flush receive buffer.
 * @details This method flushes the receive buffer of the SPI interface.
 */
inline void SPI :: flush (void)
{
 p_control->receive_buffer.flush_buffer ();
}

//
#ifdef SPI_PORTC_FLAG

129

 /** Instantiate an instance of the SPI class in static memory on port
 * C. All files that include this header file will have access to
 * this object.
 */
 static SPI SPI_C (&SPIC, "Port C");
#endif

//
#ifdef SPI_PORTD_FLAG
 /** Instantiate an instance of the SPI class in static memory on port
 * D. All files that include this header file will have access to
 * this object.
 */
 //static SPI SPI_D (&SPID, "Port D");
#endif

#endif /* SPI_H_ */

130

/***/
/** @file SPI.cpp
 * @brief Main class file.
 *
 * Contributors:
 * - Zach Wilson 2/4/2019 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 2/4/2019 - initial release.
 *
 * Created: 2/4/2019 12:45:48 AM
 */
/***/

/* Included files. */
#include "SPI.h"

//
#ifdef SPI_PORTC_FLAG
 /** SPI control struct for the interface on port C.
 */
 SPI_CONTROL_STRUCT_t SPI :: SPI_C_control;
#endif

//
#ifdef SPI_PORTD_FLAG
 /** SPI control struct for the interface on port D.
 */
 SPI_CONTROL_STRUCT_t SPI :: SPI_D_control;
#endif

//
/** @brief Default constructor.
 * @details This constructor instantiates an instance of the SPI class
 * and saves a pointer to a SPI interface object and the port name.
 * @param _p_SPI Pointer to a SPI interface object.
 * @param port_name Pointer to the SPI port name.
 */
SPI :: SPI (SPI_t *_p_SPI, const char *port_name) : binary_semaphore ()
{
 p_SPI = _p_SPI;
 p_name = &name [0];
 storeString (port_name, &name [0]);

 // Save a pointer to the port and control struct of the SPI interface.
 // There are only two choices, so if port C isn't chosen then the only
 // other option is port D.
 if (p_SPI == &SPIC)
 {
 p_PORT = &PORTC;
 #ifdef SPI_PORTC_FLAG
 p_control = &SPI_C_control;
 #endif
 }
 else
 {
 p_PORT = &PORTD;
 #ifdef SPI_PORTD_FLAG
 p_control = &SPI_D_control;
 #endif
 }
}

//
/** @brief Initialize SPI interface
 * @details This method initializes the interface by saving a pointer to
 * the SPI interface so the class has access to the registers. It
 * configures the pins accordingly depending on the desired SPI mode and
 * also configures the interrupts that drive the interface.
 * @param serial Pointer to a serial port object.
 * @param prescale Desired prescaler for SPI transmission frequency
 * according to the xmega au manual.
 */
void SPI :: initialize (stream_base *serial, SPI_MASTER_SELECT_t spi_mode)
{
 p_serial = serial;

 // Initialize SPI control state.
 p_control->state = SPI_DONE;
 p_control->temp.data = 0;
 p_control->temp.operation = SPI_READ;

 // Set relevant SPI pins based on which mode we are in.
 if (spi_mode == SPI_MASTER)
 {
 // Pull default SS pin high so the SPI interface works correctly.
 p_PORT->OUT |= PIN4_bm;

 // Configure the MOSI, SCK, and SS pins as outputs and the MISO pin as input.

131

 p_PORT->DIR |= PIN7_bm | PIN5_bm | PIN4_bm;
 p_PORT->DIR &= ~PIN6_bm;

 // Configure master SPI mode and enable the interface.
 p_SPI->CTRL = SPI_MASTER_bm | SPI_ENABLE_bm;
 }
 else
 {
 // Configure the MISO pin as output and the MOSI, SCK, and SS pins as inputs.
 p_PORT->DIR &= ~(PIN7_bm | PIN5_bm | PIN4_bm);
 p_PORT->DIR |= PIN6_bm;

 // Configure slave SPI mode and enable the interface.
 p_SPI->CTRL = SPI_ENABLE_bm;
 p_SPI->DATA = 0;
 }

 // Enable high-priority interrupts unless we are in slave mode.
 spi_mode == SPI_MASTER ? p_SPI->INTCTRL = SPI_INTLVL0_bm | SPI_INTLVL1_bm
 : p_SPI->INTCTRL = 0x00;

// Indicate through the serial port that the SPI interface initialized
 // successfully.
 #ifdef SPI_DEBUG
 *p_serial << "SPI interface initialized on " << p_name << "." << endl;
 #endif
}

//
/** @brief Set SPI mode.
 * @details This method sets the transmission frequency and the mode of
 * transmission, as well as enable the SPI interface. It should be called
 * right before calling the transmission () and request_bytes functions.
 * @param prescale Desired prescaler for SPI transmission.
 * @param mode Mode of SPI transmission.
 * @param bit_order Order in which data is received.
 */
void SPI :: set_mode (SPI_PRESCALER_ENUM_t prescale, SPI_TRANSFER_MODES_t mode, SPI_DATA_ORDER_t bit_order)
{
 // Set the desired clock frequency. The SPI transmission frequency will be
 // (F_CPU / prescale).
 switch (prescale)
 {
 case SPI_DIV2: p_SPI->CTRL |= SPI_CLK2X_bm;
 p_SPI->CTRL &= ~(SPI_PRESCALER0_bm | SPI_PRESCALER1_bm); break;
 case SPI_DIV4: p_SPI->CTRL &= ~(SPI_CLK2X_bm | SPI_PRESCALER0_bm | SPI_PRESCALER1_bm); break;
 case SPI_DIV8: p_SPI->CTRL |= SPI_CLK2X_bm | SPI_PRESCALER0_bm;
 p_SPI->CTRL &= ~SPI_PRESCALER1_bm; break;
 case SPI_DIV16: p_SPI->CTRL |= SPI_PRESCALER0_bm;
 p_SPI->CTRL &= ~(SPI_CLK2X_bm | SPI_PRESCALER1_bm); break;
 case SPI_DIV32: p_SPI->CTRL |= SPI_CLK2X_bm | SPI_PRESCALER1_bm;
 p_SPI->CTRL &= ~SPI_PRESCALER0_bm; break;
 case SPI_DIV64: p_SPI->CTRL |= SPI_CLK2X_bm | SPI_PRESCALER0_bm | SPI_PRESCALER1_bm; break;
 case SPI_DIV128: p_SPI->CTRL |= SPI_PRESCALER0_bm | SPI_PRESCALER1_bm;
 p_SPI->CTRL &= ~SPI_CLK2X_bm; break;
 default: p_SPI->CTRL &= ~(SPI_CLK2X_bm | SPI_PRESCALER0_bm | SPI_PRESCALER1_bm); break;
 };

 // Set the bit order.
 switch (bit_order)
 {
 case SPI_MSBFIRST: p_SPI->CTRL &= ~SPI_DORD_bm; break;
 case SPI_LSBFIRST: p_SPI->CTRL |= SPI_DORD_bm; break;
 default: p_SPI->CTRL &= ~SPI_DORD_bm; break;
 };

 // Set the SPI mode.
 switch (mode)
 {
 case SPI_MODE0: p_SPI->CTRL &= ~(SPI_MODE0_bm | SPI_MODE1_bm); break;
 case SPI_MODE1: p_SPI->CTRL |= SPI_MODE0_bm;
 p_SPI->CTRL &= ~SPI_MODE1_bm; break;
 case SPI_MODE2: p_SPI->CTRL &= ~SPI_MODE0_bm;
 p_SPI->CTRL |= SPI_MODE1_bm; break;
 case SPI_MODE3: p_SPI->CTRL |= SPI_MODE0_bm | SPI_MODE1_bm; break;
 default: p_SPI->CTRL &= ~(SPI_MODE0_bm | SPI_MODE1_bm); break;
 };
}

//
/** @brief Transfer bytes in ISR.
 * @details This method begins the transmission of all bytes in the
 * SPI buffer. The data_ready () method will return true if all bytes
 * have been transferred/received. This method should be used when
 * SPI interrupts are desired for handling the data transfer.
 */
void SPI :: transfer_ISR (PORT_t * _p_cs_port, uint8_t _cs_bitmask)
{
 // Save the port and bitmask of the chip select pin.
 p_control->p_cs_port = _p_cs_port;

132

 p_control->cs_bitmask = _cs_bitmask;

 // Pull the first byte to be transferred and check if we are reading
 // or writing data. Set the interface state accordingly and initiate
 // SPI communication by lowering the chip select pin and writing the
 // pulled byte to the SPI data register.
 p_control->temp = p_control->transfer_buffer.pull_data ();
 p_control->temp.operation == SPI_READ ? p_control->state = SPI_TRANSCEIVING
 : p_control->state = SPI_WRITING;
 p_control->p_cs_port->OUT &= ~p_control->cs_bitmask;
 p_SPI->DATA = p_control->temp.data;
}

//
#ifdef SPI_PORTC_FLAG
 /** @brief SPI port C interrupt.
 * @details This interrupt service routine grabs the received data
 * in the data register and places it in the SPI receive queue. It
 * then places a single byte into the data register to start another
 * SPI transmission if another address is in the queue.
 */
 ISR (SPIC_INT_vect)
 {
 // Determine the state of the interface.
 switch (SPI :: SPI_C_control.state)
 {
 // Transceiving data. Push the received byte to the receive buffer and
 // check to see if another byte is in the transfer buffer. If another
 // byte is available to transfer, check to see if the next operation is
 // a read or write.
 case SPI_TRANSCEIVING:
 SPI :: SPI_C_control.receive_buffer.push_data (SPIC.DATA);
 if (!SPI :: SPI_C_control.transfer_buffer.empty ())
 {
 // Pull data from the transfer buffer to determine if the next
 // operation is a read or write. Set the next state of the interface
 // and send the data.
 SPI :: SPI_C_control.temp = SPI :: SPI_C_control.transfer_buffer.pull_data ();
 if (SPI :: SPI_C_control.temp.operation == SPI_WRITE) SPI :: SPI_C_control.state = SPI_WRITING;
 SPIC.DATA = SPI :: SPI_C_control.temp.data;
 }
 else
 {
 // If we reach this code then there are no more bytes to transceive,
 // so we are done. Set the state and lower the chip select pin.
 SPI :: SPI_C_control.state = SPI_DONE;
 SPI :: SPI_C_control.p_cs_port->OUT |= SPI :: SPI_C_control.cs_bitmask;
 }
 break;
 // We are not expecting valid data to be in the data register, only check
 // if a byte is available to transfer.
 case SPI_WRITING:
 if (!SPI :: SPI_C_control.transfer_buffer.empty ())
 {
 // Pull data from the transfer buffer to determine if the next
 // operation is a read or write. Set the next state of the interface
 // and send the data.
 SPI :: SPI_C_control.temp = SPI :: SPI_C_control.transfer_buffer.pull_data ();
 if (SPI :: SPI_C_control.temp.operation == SPI_READ) SPI :: SPI_C_control.state = SPI_TRANSCEIVING;
 SPIC.DATA = SPI :: SPI_C_control.temp.data;
 }
 else
 {
 // If we reach this code then there are no more bytes to transceive,
 // so we are done. Set the state and lower the chip select pin.
 SPI :: SPI_C_control.state = SPI_DONE;
 SPI :: SPI_C_control.p_cs_port->OUT |= SPI :: SPI_C_control.cs_bitmask;
 }
 break;
 // We are done transceiving. This state exists for determining if the transmission
 // is complete or if one more ISR is triggered for some reason.
 case SPI_DONE:
 break;
 default:
 break;
 };
 }
#endif

//
#ifdef SPI_PORTD_FLAG
 /** @brief SPI port D interrupt.
 * @details This interrupt service routine grabs the received data
 * in the data register and places it in the SPI receive queue. It
 * then places a single byte into the data register to start another
 * SPI transmission if another address is in the SPI queue.
 */
 ISR (SPID_INT_vect)
 {
 // Determine the state of the interface.

133

 switch (SPI :: SPI_D_control.state)
 {
 // Transceiving data. Push the received byte to the receive buffer and
 // check to see if another byte is in the transfer buffer. If another
 // byte is available to transfer, check to see if the next operation is
 // a read or write.
 case SPI_TRANSCEIVING:
 SPI :: SPI_D_control.receive_buffer.push_data (SPID.DATA);
 if (!SPI :: SPI_D_control.transfer_buffer.empty ())
 {
 // Pull data from the transfer buffer to determine if the next
 // operation is a read or write. Set the next state of the interface
 // and send the data.
 SPI :: SPI_D_control.temp = SPI :: SPI_D_control.transfer_buffer.pull_data ();
 if (SPI :: SPI_D_control.temp.operation == SPI_WRITE) SPI :: SPI_D_control.state = SPI_WRITING;
 SPID.DATA = SPI :: SPI_D_control.temp.data;
 }
 else
 {
 // If we reach this code then there are no more bytes to transceive,
 // so we are done. Set the state and lower the chip select pin.
 SPI :: SPI_D_control.state = SPI_DONE;
 SPI :: SPI_D_control.p_cs_port->OUT |= SPI :: SPI_D_control.cs_bitmask;
 }
 break;
 // We are not expecting valid data to be in the data register, only check
 // if a byte is available to transfer.
 case SPI_WRITING:
 if (!SPI :: SPI_D_control.transfer_buffer.empty ())
 {
 // Pull data from the transfer buffer to determine if the next
 // operation is a read or write. Set the next state of the interface
 // and send the data.
 SPI :: SPI_D_control.temp = SPI :: SPI_D_control.transfer_buffer.pull_data ();
 if (SPI :: SPI_D_control.temp.operation == SPI_READ) SPI :: SPI_D_control.state = SPI_TRANSCEIVING;
 SPID.DATA = SPI :: SPI_D_control.temp.data;
 }
 else
 {
 // If we reach this code then there are no more bytes to transceive,
 // so we are done. Set the state and lower the chip select pin.
 SPI :: SPI_D_control.state = SPI_DONE;
 SPI :: SPI_D_control.p_cs_port->OUT |= SPI :: SPI_D_control.cs_bitmask;
 }
 break;
 // We are done transceiving. This state exists in case one more ISR is triggered
 // for some reason.
 case SPI_DONE:
 break;
 default:
 break;
 };
 }
#endif

134

/***/
/** @file microSD.h
 * @brief MicroSD class header file.
 *
 * @details This class provides an abstraction layer for interfacing
 * with the ff.h microSD FATFS library for writing data to a microSD
 * card. Reading from files on a microSD card is beyond the scope of
 * the project, but could be easily implemented by adding methods to
 * this class using the FATFS functions.
 *
 * Link to FATFS webpage: http://elm-chan.org/fsw/ff/00index_e.html
 * Link to custom sdcard interface for xmega devices:
 * https://www.dolman-wim.nl/xmega/libraries/online/sdcard/html/index.html
 *
 * Contributors:
 * - Zach Wilson 2/21/2019 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 2/21/2019 - initial release.
 *
 * Created: 2/21/2019 4:23:39 PM
 */
/***/

#ifndef MICROSD_H_
#define MICROSD_H_

/* Included files. */
#include <avr/io.h>
#include "defines.h"
#include "ff.h"
#include "ffconf.h"
#include "diskio.h"
#include "stream_base.h"

//
/** File control struct used for interfacing with an open file. It
 * consists of the FIL data struct from the FATFS filesystem and booleans
 * for determining the state of the FIL struct.
 */
typedef struct
{
 /** File struct used for interfacing with an open file. There should
 * be one FIL object per open file.
 */
 FIL file;

 /** Boolean indicating if there is an open file in use.
 */
 bool file_open;
} FILE_CONTROL_t;

//
/** @brief MicroSD card class.
 * @details This class provides an abstraction layer for interfacing with
 * the FATFS library for writing data to a microSD card.
 */
class microSD : public stream_base
{
 private:
 /** Pointer to a serial port object.
 */
 stream_base *p_serial;

 /** File struct for interfacing with an open file.
 */
 FILE_CONTROL_t data_file;

 /** Storage for the most recent disk error code.
 */
 DSTATUS disk_error;

 /** Storage for the most recent file error code.
 */
 FRESULT file_error;

 /** @brief Write data to file.
 * @details This method writes a string of characters to the file
 * using the f_write () function. For f_write () to work, the number
 * of characters in the string must be input.
 * @param p_string Pointer to the string of data to write.
 */
 void transmit_data (const char *);

 public:
 /** @brief Default constructor.
 * @details This constructor instantiates an instance of the
 * microSD class.
 * @param serial Pointer to a serial port object for debugging.
 */

135

 microSD (stream_base *);

 /** @brief Initialize card.
 * @details This method initializes the microSD card object by calling
 * the disk_initialize () method and storing the result of the function
 * call. All the work to configure the SPI interface on port D and timer
 * TCC1 is done under the hood.
 * @return Boolean indicating if the sd card was initialized
 * successfully.
 */
 bool initialize (void);

 /** @brief Mount filesystem.
 * @details This method attempts to mount the FATFS filesystem existing
 * in static memory by calling the f_mount function. The result of this
 * function is stored and a message is sent to the serial port based on
 * the result.
 * @return Boolean indicating if the filesystem was mounted successfully.
 */
 bool mount (void);

 /** @brief Detect microSD card.
 * @details This method polls a pin to determine if a microSD card is
 * inserted.
 * @return Boolean indicating if an SD card is detected.
 */
 inline bool card_detect (void);

 /** @brief Create file.
 * @details This method creates and opens a new file that can be written.
 * The close () method should be called after writing a batch of data to
 * this file.
 * @param p_name Pointer to a string of the filename.
 * @return Boolean indicating if the file was created successfully.
 */
 bool create (const char *);

 /** @brief Open file.
 * @details This method opens an existing file on the microSD card so that
 * data may be written to it.
 * @param p_name Pointer to a string of the filename.
 * @return Boolean indicating if the file was opened successfully.
 */
 bool open (const char *);

 /** @brief Get character.
 * This method returns one character from the open file.
 * @return Character retrieved from the open file.
 */
 char get_char (void);

 /** @brief Close file.
 * @details This method closes and saves the file that is currently open.
 * @return Boolean indicating if the file was closed and saved
 * successfully.
 */
 bool close (void);
};

//
/** @brief Detect microSD card.
 * @details This method polls a pin to determine if a microSD card is
 * inserted.
 * @return Boolean indicating if an SD card is detected.
 */
inline bool microSD :: card_detect (void)
{
 if (PORTD.IN & PIN3_bm) return true;
 else return false;
}

#endif /* MICROSD_H_ */

136

/***/
/** @file microSD.h
 * @brief Main class file.
 *
 * @details This class provides an abstraction layer for interfacing
 * with the ff.h microSD FAT library for writing data to a microSD card.
 *
 * Contributors:
 * - Zach Wilson 5/18/2019 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 5/18/2019 - initial release.
 *
 * Created: 5/18/2019 10:29:50 PM
 */
/***/

/* Included files. */
#include "microSD.h"

//
/** Static file system struct for interfacing with an SD card.
 */
static FATFS fsys;

//
/** @brief Default constructor.
 * @details This constructor instantiates an instance of the microSD
 * class.
 * @param serial Pointer to a serial port object for debugging.
 */
microSD :: microSD (stream_base *serial) : stream_base ()
{
 p_serial = serial;
 data_file.file_open = false;
}

//
/** @brief Initialize card.
 * @details This method initializes the microSD card object by calling
 * the disk_initialize () method and storing the result of the function
 * call. All the work to configure the SPI interface on port D and timer
 * TCC1 is done under the hood.
 * @return Boolean indicating if the sd card was initialized
 * successfully.
 */
bool microSD :: initialize (void)
{
 disk_error = disk_initialize (0);
 switch (disk_error)
 {
 case RES_OK:
 #ifdef MICROSD_DEBUG
 *p_serial << "MicroSD card initialized successfully." << endl;
 #endif
 return true;
 break;
 default:
 #ifdef MICROSD_DEBUG
 *p_serial << "Error. Could not initialize MicroSD card." << endl;
 #endif
 return false;
 break;
 };
}

//
/** @brief Mount filesystem
 * @details This method attempts to mount the FATFS filesystem existing
 * in static memory by calling the f_mount function. The result of this
 * function is stored and a message is sent to the serial port based on
 * the result.
 * @return Boolean indicating if the filesystem was mounted successfully.
 */
bool microSD :: mount (void)
{
 file_error = f_mount (&fsys, "", 0);
 switch (file_error)
 {
 case FR_OK:
 #ifdef MICROSD_DEBUG
 *p_serial << "Filesystem mounted successfully." << endl;
 #endif
 return true;
 break;
 default:
 #ifdef MICROSD_DEBUG
 *p_serial << "Error. Could not mount filesystem." << endl;

137

 #endif
 return false;
 break;
 };
}

//
/** @brief Create file.
 * @details This method creates and opens a new file that can be written.
 * The close () method should be called after writing a batch of data to
 * this file.
 * @param p_name Pointer to a string of the filename.
 * @return Boolean indicating if the file was created successfully.
 */
bool microSD :: create (const char *p_name)
{
 file_error = f_open (&data_file.file, p_name, FA_CREATE_ALWAYS | FA_WRITE | FA_READ);
 switch (file_error)
 {
 case FR_OK:
 #ifdef MICROSD_DEBUG
 *p_serial << "File created successfully." << endl;
 #endif
 return true;
 break;
 default:
 #ifdef MICROSD_DEBUG
 *p_serial << "Error. Could not create new file." << endl;
 #endif
 return false;
 break;
 };
}

//
/** @brief Open file.
 * @details This method opens an existing file on the microSD card so
 * that data may be written to it.
 * @param p_name Pointer to a string of the filename.
 * @return Boolean indicating if the file was opened successfully.
 */
bool microSD :: open (const char *p_name)
{
 file_error = f_open (&data_file.file, p_name, FA_OPEN_APPEND | FA_WRITE | FA_READ);
 switch (file_error)
 {
 case FR_OK:
 #ifdef MICROSD_DEBUG
 *p_serial << "File opened successfully." << endl;
 #endif
 data_file.file_open = true;
 return true;
 break;
 default:
 #ifdef MICROSD_DEBUG
 *p_serial << "Error. Could not open file." << endl;
 #endif
 return false;
 break;
 };
}

//
/** @brief Write data to file.
 * @details This method writes a string of characters to the file using
 * the f_write () function. For f_write () to work, the number of
 * characters in the string must be an input.
 * @param p_string Pointer to the string of data to write.
 */
void microSD :: transmit_data (const char *p_string)
{
 UINT count = 0;
 const char *p_temp = p_string;
 while (*p_temp++ != NULL) count++;
 f_write (&data_file.file, p_string, count, &count);
}

//
/** @brief Get character.
 * This method returns one character from the open file.
 * @return Character retrieved from the open file.
 */
char microSD :: get_char (void)
{
 UINT count = 1;
 char *p_char = 0x00;
 f_read (&data_file.file, p_char, count, &count);
 return *p_char;

138

}

//
/** @brief Close file.
 * @details This method closes and saves the file that is currently open.
 * @return Boolean indicating if the file was closed and saved
 * successfully.
 */
bool microSD :: close (void)
{
 file_error = f_close (&data_file.file);
 switch (file_error)
 {
 case FR_OK:
 #ifdef MICROSD_DEBUG
 *p_serial << "File closed successfully." << endl;
 #endif
 data_file.file_open = false;
 return true;
 break;
 default:
 #ifdef MICROSD_DEBUG
 *p_serial << "Error. Could not close file." << endl;
 #endif
 return false;
 break;
 };
}

139

/***/
/** @file mmc_avr.c
 * @brief Customized version of mmc_avr.c
 *
 * @details This file was modified for the ATXMEGA128A4U
 * microcontroller for saving data to an SD card.
 *
 * Contributors:
 * - Zach Wilson 5/28/19 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 5/28/19 - Modified to use the SPI interface on PORTD and timer
 * TCC1 on the ATXMEGA128A4U microcontroller.
 */
/***/
/*!
 * \file mmc_avr.c
 * \brief This is customized version of mmc_avr.c
 * The original version is from sample \e avr release R0.11a
 * \date 30 march 2016
 *
 * \details It is modified by Wim Dolman (w.e.dolman@hva.nl)
 * for the HvA-Xmegaboard version 2
 * The most important global changes are:
 * - It is suitable for the ATxmega256a3u.
 * - It uses the Xmega style (DIRSET, OUTSET, ...).
 * - It uses SPID with a remap of (SCK and MOSI) in stead of bit banging.
 * .
 *
 * The most important detailed changes are:
 * 1. A static function sdspi_init() is added that initialize the SPI
 * 2. A static function sdspi_write_multi_byte() is added to write multiple bytes to the SPI
 * 3. A static function sdspi_read_multi_byte() is added to read multiple bytes from the SPI
 * 4. The static function power_on() is changed. It initislizes the SPI of port C in the Xmega-style.
 * The power dectection is removed.
 * 5. The static function power_off() is changed. It disables the SPI of port C in the Xmega-style.
 * The power detcetion is removed.
 * 6. The static function xchg_spi() is now an alias for sdspi_transfer_byte()
 * 7. The static function xmit_spi_multi() is now an alias for sdspi_write_multi_byte()
 * 8. The static function rcvr_spi_multi() is now an alias for sdspi_read_multi_byte()
 *
 */

/*---*/
/* MMCv3/SDv1/SDv2 (in SPI mode) control module */
/*---*/
/*
/ Copyright (C) 2014, ChaN, all right reserved.
/
/ * This software is a free software and there is NO WARRANTY.
/ * No restriction on use. You can use, modify and redistribute it for
/ personal, non-profit or commercial products UNDER YOUR RESPONSIBILITY.
/ * Redistributions of source code must retain the above copyright notice.
/
/ Changed 30 march 2016
/ Wim Dolman (w.e.dolman@hva.nl)
/ Made it suitable for the HvA-Xmegaboard. The most important chenges are:
/ - Xmega256au3
/ - Xmega-style (DIRSET, OUTSET, ...)
/ - Using SPID with remap of (SCK and MOSI) in stead of SPDR
/ - Socket power control removed. HvA-Xmegaboard has no power control.
/
/ This implentation uses a SPI and a timeout. For the timeout a
/ 100Hz decrement timer is necessary. For example timer D0:
/ void init_timer(void)
/ {
/ TCD0.CTRLB = TC_WGMODE_NORMAL_gc;
/ TCD0.CTRLA = TC_CLKSEL_DIV8_gc;
/ TCD0.INTCTRLA = TC_OVFINTLVL_LO_gc;
/ TCD0.PER = 39999; // f=fcpu/(N*(PER+1))=32M/8*40000=100 Hz
/ }
/
/ ISR(TCD0_OVF_vect)
/ {
/ disk_timerproc(); // Drive timer procedure of low level disk I/O
/ }
/---*/

#include <avr/io.h>
#include "diskio.h"

/*--
 Module Private Functions
---*/
//@cond
// MMC/SD command (SPI mode)
#define CMD0 (0) /* GO_IDLE_STATE */
#define CMD1 (1) /* SEND_OP_COND */
#define ACMD41 (0x80+41) /* SEND_OP_COND (SDC) */
#define CMD8 (8) /* SEND_IF_COND */
#define CMD9 (9) /* SEND_CSD */
#define CMD10 (10) /* SEND_CID */

140

#define CMD12 (12) /* STOP_TRANSMISSION */
#define CMD13 (13) /* SEND_STATUS */
#define ACMD13 (0x80+13) /* SD_STATUS (SDC) */
#define CMD16 (16) /* SET_BLOCKLEN */
#define CMD17 (17) /* READ_SINGLE_BLOCK */
#define CMD18 (18) /* READ_MULTIPLE_BLOCK */
#define CMD23 (23) /* SET_BLOCK_COUNT */
#define ACMD23 (0x80+23) /* SET_WR_BLK_ERASE_COUNT (SDC) */
#define CMD24 (24) /* WRITE_BLOCK */
#define CMD25 (25) /* WRITE_MULTIPLE_BLOCK */
#define CMD32 (32) /* ERASE_ER_BLK_START */
#define CMD33 (33) /* ERASE_ER_BLK_END */
#define CMD38 (38) /* ERASE */
#define CMD55 (55) /* APP_CMD */
#define CMD58 (58) /* READ_OCR */

static DSTATUS Stat = STA_NOINIT; // Disk status
static BYTE CardType; // b0:MMC, b1:SDv1, b2:SDv2,
 // b3:Block addressing
static volatile BYTE Timer1, Timer2; // 100Hz decrement timer
//@endcond

/*---*/
/* SPI Chip Select for SD-card HvA-Xmegaboard version 2 */
/*---*/
#define sdspi_CSlow() PORTD.OUTCLR = PIN4_bm //!< added: define for Chip Select low
#define sdspi_CShigh() PORTD.OUTSET = PIN4_bm //!< added: define for Chip Select high
#define FCLK_SLOW() SPID.CTRL = (SPI_CLK2X_bm|SPI_ENABLE_bm|SPI_MASTER_bm|SPI_MODE_0_gc|SPI_PRESCALER_DIV64_gc) //!< added:
set slow clock
#define FCLK_FAST() SPID.CTRL = (SPI_CLK2X_bm|SPI_ENABLE_bm|SPI_MASTER_bm|SPI_MODE_0_gc|SPI_PRESCALER_DIV4_gc) //!< added:
set fast clock
#define CS_LOW() PORTD.OUTCLR = PIN4_bm //!< added: define for Chip Select low
#define CS_HIGH() PORTD.OUTSET = PIN4_bm //!< added: define for Chip Select high
#define MMC_CD (bit_is_clear(PORTD, 3)) //!< Card detected. yes:non zero, no:zero
#define MMC_WP 0 //!< Write protected not implemented with HvA-Xmegaboard

/*---*/
/* Transmit/Receive data from/to MMC via SPI (Platform dependent) */
/*---*/

/* Exchange a byte */
static unsigned char sdspi_transfer_byte(unsigned char databyte)
{
 /* Added: Changed SPIC and PORTC to SPID and PORTD. */
 SPID.DATA = databyte;
 while (!(SPID.STATUS & (SPI_IF_bm))) ;
 return SPID.DATA;
}

/* Send a data block fast */
static void sdspi_write_multi_byte(const unsigned char *p, unsigned int cnt)
{
 /* Added: Changed SPIC and PORTC to SPID and PORTD. */
 do {
 SPID.DATA = *p++;
 while (!(SPID.STATUS & (SPI_IF_bm))) ;
 SPID.DATA = *p++;
 while (!(SPID.STATUS & (SPI_IF_bm))) ;
 } while (cnt -= 2);
}

/* Receive a data block fast */
static void sdspi_read_multi_byte(unsigned char *p, unsigned int cnt)
{
 /* Added: Changed SPIC and PORTC to SPID and PORTD. */
 do {
 SPID.DATA = 0xFF;
 while (!(SPID.STATUS & (SPI_IF_bm))) ;
 *p++ = SPID.DATA;
 SPID.DATA = 0xFF;
 while (!(SPID.STATUS & (SPI_IF_bm))) ;
 *p++ = SPID.DATA;
 } while (cnt -= 2);
}

/*---*/
/* Replacements for spi-functions */
/*---*/
#define xchg_spi sdspi_transfer_byte //!< alias for sdspi_transfer_byte()
#define xmit_spi_multi sdspi_write_multi_byte //!< alias for sdspi_write_multi_byte()
#define rcvr_spi_multi sdspi_read_multi_byte //!< alias for sdspi_read_multi_byte()

/*---*/
/* Power Control (Platform dependent) */
/*---*/
/* When the target system does not support socket power control, there */
/* is nothing to do in these functions and chk_power always returns 1. */

static void power_on (void)
{
 // { /* Remove this block if no socket power control */
 //PORTE &= ~_BV(7); /* Socket power on (PE7=low) */

141

 //DDRE |= _BV(7);
 //for (Timer1 = 2; Timer1;); /* Wait for 20ms */
 // }
 /* Added: Changed SPIC and PORTC to SPID and PORTD. */
 PORTD.DIRCLR = PIN6_bm; // MISO input
 PORTD.DIRSET = PIN5_bm; // MOSI output
 PORTD.DIRSET = PIN7_bm; // SCK output
 PORTD.DIRSET = PIN4_bm; // chip select output
 PORTD.PIN6CTRL = PORT_OPC_PULLUP_gc; // MISO pullup

 PORTD.DIRCLR = PIN3_bm; // card detect input

// was getest SPID.CTRL = (SPI_CLK2X_bm|SPI_ENABLE_bm|SPI_MASTER_bm|SPI_MODE_0_gc|SPI_PRESCALER_DIV64_gc);
// 8 MHz misschien kan 16 ook
 SPID.CTRL = SPI_ENABLE_bm|SPI_MASTER_bm|SPI_MODE_0_gc|SPI_PRESCALER_DIV4_gc;
}

static void power_off (void)
{
 /* Added: Changed SPIC and PORTC to SPID and PORTD. */
 SPID.CTRL = 0; // Disable SPI function

 PORTD.DIRCLR = PIN6_bm; // MISO input
 PORTD.DIRSET = PIN5_bm; // MOSI output
 PORTD.DIRSET = PIN7_bm; // SCK output
 PORTD.DIRSET = PIN4_bm; // chip select output
 PORTD.PIN6CTRL = PORT_OPC_PULLUP_gc; // MISO pullup

 PORTD.DIRCLR = PIN3_bm; // card detect input

 { /* Remove this block if no socket power control */
 // PORTE |= _BV(7); /* Socket power off (PE7=high) */
 // for (Timer1 = 20; Timer1;); /* Wait for 20ms */
 }
}

//@cond
/*
 * FROM HERE NOTHING CHANGED!
 * From it is completely equal to avr-mmc.c of example avr/mmc-avr.c
 */

/*---*/
/* Wait for card ready */
/*---*/

static
int wait_ready (/* 1:Ready, 0:Timeout */
 UINT wt /* Timeout [ms] */
)
{
 BYTE d;

 Timer2 = wt / 10;
 do
 d = xchg_spi(0xFF);
 while (d != 0xFF && Timer2);

 return (d == 0xFF) ? 1 : 0;
}

/*---*/
/* Deselect the card and release SPI bus */
/*---*/

static
void deselect (void)
{
 CS_HIGH(); /* Set CS# high */
 xchg_spi(0xFF); /* Dummy clock (force DO hi-z for multiple slave SPI) */
}

/*---*/
/* Select the card and wait for ready */
/*---*/

static
int select (void) /* 1:Successful, 0:Timeout */
{
 CS_LOW(); /* Set CS# low */
 xchg_spi(0xFF); /* Dummy clock (force DO enabled) */
 if (wait_ready(500)) return 1; /* Wait for card ready */

 deselect();
 return 0; /* Timeout */
}

142

/*---*/
/* Receive a data packet from MMC */
/*---*/

static
int rcvr_datablock (
 BYTE *buff, /* Data buffer to store received data */
 UINT btr /* Byte count (must be multiple of 4) */
)
{
 BYTE token;

 Timer1 = 20;
 do { /* Wait for data packet in timeout of 200ms */
 token = xchg_spi(0xFF);
 } while ((token == 0xFF) && Timer1);
 if (token != 0xFE) return 0; /* If not valid data token, retutn with error */

 rcvr_spi_multi(buff, btr); /* Receive the data block into buffer */
 xchg_spi(0xFF); /* Discard CRC */
 xchg_spi(0xFF);

 return 1; /* Return with success */
}

/*---*/
/* Send a data packet to MMC */
/*---*/

#if _USE_WRITE
static
int xmit_datablock (
 const BYTE *buff, /* 512 byte data block to be transmitted */
 BYTE token /* Data/Stop token */
)
{
 BYTE resp;

 if (!wait_ready(500)) return 0;

 xchg_spi(token); /* Xmit data token */
 if (token != 0xFD) { /* Is data token */
 xmit_spi_multi(buff, 512); /* Xmit the data block to the MMC */
 xchg_spi(0xFF); /* CRC (Dummy) */
 xchg_spi(0xFF);
 resp = xchg_spi(0xFF); /* Reveive data response */
 if ((resp & 0x1F) != 0x05) /* If not accepted, return with error */
 return 0;
 }

 return 1;
}
#endif

/*---*/
/* Send a command packet to MMC */
/*---*/

static
BYTE send_cmd (/* Returns R1 resp (bit7==1:Send failed) */
 BYTE cmd, /* Command index */
 DWORD arg /* Argument */
)
{
 BYTE n, res;

 if (cmd & 0x80) { /* ACMD<n> is the command sequense of CMD55-CMD<n> */
 cmd &= 0x7F;
 res = send_cmd(CMD55, 0);
 if (res > 1) return res;
 }

 /* Select the card and wait for ready except to stop multiple block read */
 if (cmd != CMD12) {
 deselect();
 if (!select()) return 0xFF;
 }

 /* Send command packet */
 xchg_spi(0x40 | cmd); /* Start + Command index */
 xchg_spi((BYTE)(arg >> 24)); /* Argument[31..24] */
 xchg_spi((BYTE)(arg >> 16)); /* Argument[23..16] */
 xchg_spi((BYTE)(arg >> 8)); /* Argument[15..8] */

143

 xchg_spi((BYTE)arg); /* Argument[7..0] */
 n = 0x01; /* Dummy CRC + Stop */
 if (cmd == CMD0) n = 0x95; /* Valid CRC for CMD0(0) + Stop */
 if (cmd == CMD8) n = 0x87; /* Valid CRC for CMD8(0x1AA) Stop */
 xchg_spi(n);

 /* Receive command response */
 if (cmd == CMD12) xchg_spi(0xFF); /* Skip a stuff byte when stop reading */
 n = 10; /* Wait for a valid response in timeout of 10 attempts */
 do
 res = xchg_spi(0xFF);
 while ((res & 0x80) && --n);

 return res; /* Return with the response value */
}

/*--

 Public Functions

---*/

/*---*/
/* Initialize Disk Drive */
/*---*/

DSTATUS disk_initialize (
 BYTE pdrv /* Physical drive nmuber (0) */
)
{
 BYTE n, cmd, ty, ocr[4];

 /* Added: Initialization for timer interrupts on TCC1. */
 TCC1.CTRLA = TC_CLKSEL_DIV8_gc;
 TCC1.INTCTRLA = TC_OVFINTLVL_LO_gc;
 TCC1.PER = 39999; // f=fcpu/(N*(PER+1))=32M/8*40000=100 Hz

 if (pdrv) return STA_NOINIT; /* Supports only single drive */
 power_off(); /* Turn off the socket power to reset the card */
 if (Stat & STA_NODISK) return Stat; /* No card in the socket */
 power_on(); /* Turn on the socket power */
 FCLK_SLOW();

 for (n = 10; n; n--) xchg_spi(0xFF); /* 80 dummy clocks */

 ty = 0;
 if (send_cmd(CMD0, 0) == 1) { /* Enter Idle state */
 Timer1 = 100; /* Initialization timeout of 1000 msec */
 if (send_cmd(CMD8, 0x1AA) == 1) { /* SDv2? */
 for (n = 0; n < 4; n++) ocr[n] = xchg_spi(0xFF); /* Get trailing return value of R7 resp */
 if (ocr[2] == 0x01 && ocr[3] == 0xAA) { /* The card can work at vdd range of 2.7-3.6V */
 while (Timer1 && send_cmd(ACMD41, 1UL << 30)); /* Wait for leaving idle state (ACMD41 with HCS bit) */
 if (Timer1 && send_cmd(CMD58, 0) == 0) { /* Check CCS bit in the OCR */
 for (n = 0; n < 4; n++) ocr[n] = xchg_spi(0xFF);
 ty = (ocr[0] & 0x40) ? CT_SD2 | CT_BLOCK : CT_SD2; /* SDv2 */
 }
 }
 } else { /* SDv1 or MMCv3 */
 if (send_cmd(ACMD41, 0) <= 1) {
 ty = CT_SD1; cmd = ACMD41; /* SDv1 */
 } else {
 ty = CT_MMC; cmd = CMD1; /* MMCv3 */
 }
 while (Timer1 && send_cmd(cmd, 0)); /* Wait for leaving idle state */
 if (!Timer1 || send_cmd(CMD16, 512) != 0) /* Set R/W block length to 512 */
 ty = 0;
 }
 }
 CardType = ty;
 deselect();

 if (ty) { /* Initialization succeded */
 Stat &= ~STA_NOINIT; /* Clear STA_NOINIT */
 FCLK_FAST();
 } else { /* Initialization failed */
 power_off();
 }

 return Stat;
}

/*---*/
/* Get Disk Status */
/*---*/

DSTATUS disk_status (
 BYTE pdrv /* Physical drive nmuber (0) */

144

)
{
 if (pdrv) return STA_NOINIT; /* Supports only single drive */
 return Stat;
}

/*---*/
/* Read Sector(s) */
/*---*/

DRESULT disk_read (
 BYTE pdrv, /* Physical drive nmuber (0) */
 BYTE *buff, /* Pointer to the data buffer to store read data */
 DWORD sector, /* Start sector number (LBA) */
 UINT count /* Sector count (1..128) */
)
{
 BYTE cmd;

 if (pdrv || !count) return RES_PARERR;
 if (Stat & STA_NOINIT) return RES_NOTRDY;

 if (!(CardType & CT_BLOCK)) sector *= 512; /* Convert to byte address if needed */

 cmd = count > 1 ? CMD18 : CMD17; /* READ_MULTIPLE_BLOCK : READ_SINGLE_BLOCK */
 if (send_cmd(cmd, sector) == 0) {
 do {
 if (!rcvr_datablock(buff, 512)) break;
 buff += 512;
 } while (--count);
 if (cmd == CMD18) send_cmd(CMD12, 0); /* STOP_TRANSMISSION */
 }
 deselect();

 return count ? RES_ERROR : RES_OK;
}

/*---*/
/* Write Sector(s) */
/*---*/

#if _USE_WRITE
DRESULT disk_write (
 BYTE pdrv, /* Physical drive nmuber (0) */
 const BYTE *buff, /* Pointer to the data to be written */
 DWORD sector, /* Start sector number (LBA) */
 UINT count /* Sector count (1..128) */
)
{
 if (pdrv || !count) return RES_PARERR;
 if (Stat & STA_NOINIT) return RES_NOTRDY;
 if (Stat & STA_PROTECT) return RES_WRPRT;

 if (!(CardType & CT_BLOCK)) sector *= 512; /* Convert to byte address if needed */

 if (count == 1) { /* Single block write */
 if ((send_cmd(CMD24, sector) == 0) /* WRITE_BLOCK */
 && xmit_datablock(buff, 0xFE))
 count = 0;
 }
 else { /* Multiple block write */
 if (CardType & CT_SDC) send_cmd(ACMD23, count);
 if (send_cmd(CMD25, sector) == 0) { /* WRITE_MULTIPLE_BLOCK */
 do {
 if (!xmit_datablock(buff, 0xFC)) break;
 buff += 512;
 } while (--count);
 if (!xmit_datablock(0, 0xFD)) /* STOP_TRAN token */
 count = 1;
 }
 }
 deselect();

 return count ? RES_ERROR : RES_OK;
}
#endif

/*---*/
/* Miscellaneous Functions */
/*---*/

#if _USE_IOCTL
DRESULT disk_ioctl (
 BYTE pdrv, /* Physical drive nmuber (0) */
 BYTE cmd, /* Control code */
 void *buff /* Buffer to send/receive control data */

145

)
{
 DRESULT res;
 BYTE n, csd[16], *ptr = buff;
 DWORD csize;

 if (pdrv) return RES_PARERR;

 res = RES_ERROR;

 if (Stat & STA_NOINIT) return RES_NOTRDY;

 switch (cmd) {
 case CTRL_SYNC : /* Make sure that no pending write process. Do not remove this or written sector might not left updated. */
 if (select()) res = RES_OK;
 break;

 case GET_SECTOR_COUNT : /* Get number of sectors on the disk (DWORD) */
 if ((send_cmd(CMD9, 0) == 0) && rcvr_datablock(csd, 16)) {
 if ((csd[0] >> 6) == 1) { /* SDC ver 2.00 */
 csize = csd[9] + ((WORD)csd[8] << 8) + ((DWORD)(csd[7] & 63) << 16) + 1;
 (DWORD)buff = csize << 10;
 } else { /* SDC ver 1.XX or MMC*/
 n = (csd[5] & 15) + ((csd[10] & 128) >> 7) + ((csd[9] & 3) << 1) + 2;
 csize = (csd[8] >> 6) + ((WORD)csd[7] << 2) + ((WORD)(csd[6] & 3) << 10) + 1;
 (DWORD)buff = csize << (n - 9);
 }
 res = RES_OK;
 }
 break;

 case GET_BLOCK_SIZE : /* Get erase block size in unit of sector (DWORD) */
 if (CardType & CT_SD2) { /* SDv2? */
 if (send_cmd(ACMD13, 0) == 0) { /* Read SD status */
 xchg_spi(0xFF);
 if (rcvr_datablock(csd, 16)) { /* Read partial block */
 for (n = 64 - 16; n; n--) xchg_spi(0xFF); /* Purge trailing data */
 (DWORD)buff = 16UL << (csd[10] >> 4);
 res = RES_OK;
 }
 }
 } else { /* SDv1 or MMCv3 */
 if ((send_cmd(CMD9, 0) == 0) && rcvr_datablock(csd, 16)) { /* Read CSD */
 if (CardType & CT_SD1) { /* SDv1 */
 (DWORD)buff = (((csd[10] & 63) << 1) + ((WORD)(csd[11] & 128) >> 7) + 1) << ((csd[13] >> 6) - 1);
 } else { /* MMCv3 */
 (DWORD)buff = ((WORD)((csd[10] & 124) >> 2) + 1) * (((csd[11] & 3) << 3) + ((csd[11] & 224) >> 5) + 1);
 }
 res = RES_OK;
 }
 }
 break;

 /* Following commands are never used by FatFs module */

 case MMC_GET_TYPE : /* Get card type flags (1 byte) */
 *ptr = CardType;
 res = RES_OK;
 break;

 case MMC_GET_CSD : /* Receive CSD as a data block (16 bytes) */
 if (send_cmd(CMD9, 0) == 0 /* READ_CSD */
 && rcvr_datablock(ptr, 16))
 res = RES_OK;
 break;

 case MMC_GET_CID : /* Receive CID as a data block (16 bytes) */
 if (send_cmd(CMD10, 0) == 0 /* READ_CID */
 && rcvr_datablock(ptr, 16))
 res = RES_OK;
 break;

 case MMC_GET_OCR : /* Receive OCR as an R3 resp (4 bytes) */
 if (send_cmd(CMD58, 0) == 0) { /* READ_OCR */
 for (n = 4; n; n--) *ptr++ = xchg_spi(0xFF);
 res = RES_OK;
 }
 break;

 case MMC_GET_SDSTAT : /* Receive SD statsu as a data block (64 bytes) */
 if (send_cmd(ACMD13, 0) == 0) { /* SD_STATUS */
 xchg_spi(0xFF);
 if (rcvr_datablock(ptr, 64))
 res = RES_OK;
 }
 break;

 case CTRL_POWER_OFF : /* Power off */
 power_off();
 Stat |= STA_NOINIT;
 res = RES_OK;

146

 break;

 default:
 res = RES_PARERR;
 }

 deselect();

 return res;
}
#endif

/*---*/
/* Device Timer Interrupt Procedure */
/*---*/
/* This function must be called in period of 10ms */

void disk_timerproc (void)
{
 BYTE n, s;

 n = Timer1; /* 100Hz decrement timer */
 if (n) Timer1 = --n;
 n = Timer2;
 if (n) Timer2 = --n;
 s = Stat;

 if (MMC_WP) /* Write protected */
 s |= STA_PROTECT;
 else /* Write enabled */
 s &= ~STA_PROTECT;

 if (MMC_CD) /* Card inserted */
 s &= ~STA_NODISK;
 else /* Socket empty */
 s |= (STA_NODISK | STA_NOINIT);

 Stat = s; /* Update MMC status */
}
//@endcond

/* Added: Timer overflow interrupt for handling the timeout of the FATFS
 functions. */
//
/** Timer overflow interrupt.
 */
ISR (TCC1_OVF_vect)
{
 disk_timerproc (); // Drive timer procedure of low level disk I/O
}

147

/***/
/** @file ADC.h
 * @brief ADC converter class header file.
 *
 * @details This class provides an analog-to-digital converter interface
 * to be used on port A. It provides methods for requesting A/D
 * conversions on user-specified port pins. Converted data is stored in
 * a queue to wait to be retrieved by the available retrieve methods.
 * This class also acts as a container class for objects of the ADC
 * channel class, which includes methods for interfacing with a specific
 * channel of the ADC interface.
 *
 * Contributors:
 * - Zach Wilson 2/17/2019 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 2/17/2019 - initial release.
 *
 * Created: 2/17/2019 1:44:02 PM
 */
/***/

#ifndef ADC_H_
#define ADC_H_

/* Included files. */
#include <avr/io.h>
#include "defines.h"
#include "circular_buffer.h"
#include "serial_port.h"

//
/** Defines the buffer size for the ADC converter class.
 */
#define ADC_BUFFER_SIZE 40

//
/** Define for selecting the chip internal ground as an input to the
 * analog comparator.
 */
#define ADC_INTERNAL_GND 0x07

//
/** Define for selecting the port internal ground as an input to the
* analog comparator.
*/
#define ADC_PAD_GND 0x0F

//
/** Declare the external store string method defined in string.h for
 * storing the interface name.
 */
extern void storeString (const char *, char *);

//
/** Channel enum. Defines the macros used for selecting which ADC channel
 * to interact with.
 */
typedef enum ADC_CHANNEL_ENUM
{
 /** Channel 0.
 */
 ADC_CHANNEL_0 = ADC_CH0START_bm,

 /** Channel 1.
 */
 ADC_CHANNEL_1 = ADC_CH1START_bm,

 /** Channel 2.
 */
 ADC_CHANNEL_2 = ADC_CH2START_bm,

 /** Channel 0.
 */
 ADC_CHANNEL_3 = ADC_CH3START_bm,
} ADC_CHANNEL_t;

//
/** ADC control struct. Contains the data buffers for each ADC channel
 * where the conversion results are stored in an ISR.
 */
typedef struct
{
 /** Circular buffer for queuing read data from ADC channel 0.
 */
 circular_buffer <volatile uint16_t, ADC_BUFFER_SIZE> ch0_buffer;

 /** Circular buffer for queuing read data from ADC channel 1.
 */

148

 circular_buffer <volatile uint16_t, ADC_BUFFER_SIZE> ch1_buffer;

 /** Circular buffer for queuing read data from ADC channel 2.
 */
 circular_buffer <volatile uint16_t, ADC_BUFFER_SIZE> ch2_buffer;

 /** Circular buffer for queuing read data from ADC channel 3.
 */
 circular_buffer <volatile uint16_t, ADC_BUFFER_SIZE> ch3_buffer;

 /** Frequency at which to take dynamic data.
 */
 volatile uint16_t timer_freq;

 /** Active channel bitmask to determine which channels are taking
 * data.
 */
 volatile uint8_t active_channels;
} ADC_CONTROL_STRUCT_t;

//
/** @brief ADC channel class.
 * @details This class provides methods for interfacing with a channel
 * of the ADC interface. Objects of this class are instantiated within
 * the ADC class for each of the 4 channels of the ADC interface.
 */
class ADC_channel
{
 /** Declare the ADC class a friend so it may alter some private
 * members of this class.
 */
 friend class ADC;

 private:
 /** Pointer to the port of the ADC interface.
 */
 static PORT_t *p_PORT;

 /** Pointer to an ADC channel interface.
 */
 ADC_CH_t *p_channel;

 /** Pointer to the channel circular buffer.
 */
 circular_buffer <volatile uint16_t, ADC_BUFFER_SIZE> *p_buffer;

 /** Pin to connect to the positive side of the analog comparator.
 */
 uint8_t pos_pin;

 /** Pin to connect to the negative side of the analog comparator.
 */
 uint8_t neg_pin;

 public:
 /** @brief Default constructor.
 * @details This constructor instantiates an instance of the ADC
 * channel class.
 */
 ADC_channel (void);

 /** @brief Select pin.
 * @details This method ties a port pin to the positive end of the ADC
 * comparator. It also configures the ADC channel and for single-ended
 * conversion and should be called before performing a conversion on the
 * channel.
 * @param pos_pin Bitmask of the pin tied to the positive side of the
 * ADC comparator.
 */
 void tie_pin (uint8_t);

 /** @brief Set ADC gain.
 * @details This method sets the gain of the ADC channel being used.
 * @param gain Number corresponding to the gain setting.
 */
 void set_gain (uint8_t);

 /** @brief Read data.
 * @details This method reads an A/D conversion from the specified
 * port pin. It calls the request method and then waits until the
 * the conversion is complete before returning the data, so there is
 * some overhead consequences for calling this function.
 * @return Converted A/D data from the specified pin.
 */
 uint16_t read (void);

 /** @brief Check buffer.
 * @details This method checks to see if data is available in the buffer.
 * @param channel Number corresponding to an ADC channel.
 */
 inline bool check_buf (void);

149

 /** @brief Request conversion.
 * @details This method requests one A/D conversion on the specified pin.
 * The converted data will be stored in the buffer until the retrieve method
 * is called. This method does not have as much overhead as the read method
 * because it does not wait for the conversion to be complete before returning.
 */
 inline void request (void);

 /** @brief Retrieve converted data.
 * @details This method retrieves one 16-bit block of data from the converted
 * data buffer.
 * @return Converted A/D data from the buffer.
 */
 inline uint16_t retrieve (void);
};

//
/** @brief Check buffer.
 * @details This method checks to see if data is available in the buffer.
 * @return Boolean indicating if data is in the buffer
 * (true == available).
 */
inline bool ADC_channel :: check_buf (void)
{
 return !p_buffer->empty ();
}

//
/** @brief Request conversion.
 * @details This method requests one A/D conversion on the specified pin.
 * The converted data will be stored in the buffer until the retrieve
 * method is called. This method does not have as much overhead as the
 * read method because it does not wait for the conversion to be complete
 * before returning.
 */
inline void ADC_channel :: request (void)
{
 p_channel->CTRL |= ADC_CH_START_bm;
}

//
/** @brief Retrieve converted data.
 * @details This method retrieves one 16-bit block of data from the
 * converted data buffer. If the buffer is empty, a NULL value will be
 * returned.
 * @return Converted A/D data from the buffer.
 */
inline uint16_t ADC_channel :: retrieve (void)
{
 return p_buffer->pull_data ();
}

//
/** @brief Analog-to-digital converter class.
 * @details This class provides methods for initializing and controlling
 * an ADC interface on port A for single-ended analog-to-digital
 * conversion.
 */
class ADC
{
 private:
 /** Pointer to a serial port object.
 */
 stream_base *p_serial;

 /** Pointer to an ADC interface.
 */
 ADC_t *p_ADC;

 /** Pointer to the port of the ADC interface.
 */
 PORT_t *p_PORT;

 /** C-style string for interface name.
 */
 char name [11];

 public:
 /** Pointer to the interface name.
 */
 const char *p_name;

 /** ADC control struct for use in an ISR.
 */
 static ADC_CONTROL_STRUCT_t ADC_control;

 /** ADC channel object for channel 0.

150

 */
 ADC_channel channel0;

 /** ADC channel object for channel 1.
 */
 ADC_channel channel1;

 /** ADC channel object for channel 2.
 */
 ADC_channel channel2;

 /** ADC channel object for channel 3.
 */
 ADC_channel channel3;

 /** @brief Default constructor.
 * @details This constructor instantiates an instance of the ADC
 * converter interface on a specified port.
 * @param ADC_name Pointer to a string for the interface name.
 * @param ADC Pointer to the ADC interface.
 * @param PORT Pointer to the port containing the ADC interface.
 */
 ADC (const char *, ADC_t *, PORT_t *);

 /** @brief Initialize ADC interface.
 * @details This method initializes the ADC interface. To actually
 * read data, the desired pin must be set as input before attempting
 * to read the data.
 * @param serial Pointer to a serial port object for debugging.
 */
 void initialize (stream_base *);

 /** @brief Enable ADC interface.
 * @details This method enables the ADC interface. It should be called
 * before attempting to read data from any ADC channel.
 */
 inline void enable (void);

 /** @brief Disable ADC interface.
 * @details This method disables the ADC interface. It should be called
 * when the device is no longer reading data.
 */
 inline void disable (void);

 /** @brief Acquire dynamic data.
 * @details This method acquires data from a selected channel at a user-
 * specified frequency using output compare interrupts on a timer. The
 * data is acquired in an ISR and stored in the ADC data queue until
 * the retrieve () method is called.
 * @param channels Bitmask of active channels.
 * @param frequency Frequency at which to take data (in clock ticks).
 */
 inline void acquire_data (uint8_t, uint16_t);

 /** @brief Stop taking dynamic data.
 * @details This method disables the timer and resets the count so that
 * output compare interrupts are no longer triggered.
 */
 inline void stop_data (void);
};

//
/** @brief Enable ADC interface.
 * @details This method enables the ADC interface. It should be called
 * before attempting to read data from any ADC channel.
 */
inline void ADC :: enable (void)
{
 p_ADC->CTRLA |= ADC_ENABLE_bm;
}

//
/** @brief Disable ADC interface.
 * @details This method disables the ADC interface. It should be called
 * when the device is no longer reading data.
 */
inline void ADC :: disable (void)
{
 p_ADC->CTRLA &= ~ADC_ENABLE_bm;
}

//
/** @brief Acquire dynamic data.
 * @details This method acquires data from a selected channel at a user-
 * specified frequency using output compare interrupts on a timer. The
 * data is acquired in an ISR and stored in the ADC data queue until the
 * retrieve () method is called.
 * @param channels Bitmask of active channels.
 * @param frequency Frequency at which to take data (in clock ticks).

151

 */
inline void ADC :: acquire_data (uint8_t channels, uint16_t frequency)
{
 // Update the active channel bitmask and timer frequency. Initialize
 // the timer and output compare interrupts that drive the data
 // acquisition.
 ADC_control.active_channels = channels;
 ADC_control.timer_freq = frequency * 125; // FREQ = frequency * (32,000,000 / (256 * 1000))
 TCD0.CNT = 0x0000;
 TCD0.CCB = ADC_control.timer_freq;
 TCD0.INTCTRLB |= TC0_CCBINTLVL0_bm | TC0_CCBINTLVL1_bm;
 TCD0.CTRLA = TC0_CLKSEL1_bm | TC0_CLKSEL2_bm;
}

//
/** @brief Stop taking dynamic data.
 * @details This method disables the timer and resets the count so that
 * output compare interrupts are no longer triggered.
 */
inline void ADC :: stop_data (void)
{
 // Disable the timer and the output compare interrupts.
 TCD0.INTCTRLB &= ~(TC0_CCBINTLVL0_bm | TC0_CCBINTLVL1_bm);
 TCD0.CTRLA = 0x00;
 TCD0.CNT = 0x0000;
}

//
/** Instantiate an instance of the ADC converter class in static memory.
 * All files that include this header file will have access to this
 * object.
 */
static ADC ADC ("ADC", &ADCA, &PORTA);

#endif /* ADC_H_ */

152

/***/
/** @file ADC.cpp
 * @brief ADC converter main class file.
 *
 *
 * Contributors:
 * - Zach Wilson 2/17/2019 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 2/17/2019 - initial release.
 *
 * Created: 2/17/2019 1:44:02 PM
 */
/***/

/* Included files. */
#include "ADC.h"

//
/** Pointer to the port of the ADC interface.
 */
PORT_t * ADC_channel :: p_PORT;

//
/** @brief Default constructor.
 * @details This constructor instantiates an instance of the ADC
 * channel class.
 */
ADC_channel :: ADC_channel (void) {}

//
/** @brief Select pin.
 * @details This method ties a port pin to the positive end of the ADC
 * comparator. It also configures the ADC channel and for single-ended
 * conversion and should be called before performing a conversion on the
 * channel.
 * @param _pos_pin Bitmask of the pin tied to the positive side of the
 * ADC comparator.
 */
void ADC_channel :: tie_pin (uint8_t _pos_pin)
{
 // Configure pin as input and set low.
 p_PORT->DIR &= ~_pos_pin;
 pos_pin = _pos_pin;

 // Select a gain of 1 and single-ended input mode.
 p_channel->CTRL = ADC_CH_INPUTMODE0_bm;

 // Connect the selected pins to the analog comparator.
 switch (pos_pin)
 {
 case PIN1_bm: p_channel->MUXCTRL = ADC_CH_MUXPOS0_bm; break;
 case PIN2_bm: p_channel->MUXCTRL = ADC_CH_MUXPOS1_bm; break;
 case PIN3_bm: p_channel->MUXCTRL = ADC_CH_MUXPOS0_bm | ADC_CH_MUXPOS1_bm; break;
 case PIN4_bm: p_channel->MUXCTRL = ADC_CH_MUXPOS2_bm; break;
 case PIN5_bm: p_channel->MUXCTRL = ADC_CH_MUXPOS2_bm | ADC_CH_MUXPOS0_bm; break;
 case PIN6_bm: p_channel->MUXCTRL = ADC_CH_MUXPOS2_bm | ADC_CH_MUXPOS1_bm; break;
 case PIN7_bm: p_channel->MUXCTRL = ADC_CH_MUXPOS2_bm | ADC_CH_MUXPOS1_bm | ADC_CH_MUXPOS1_bm; break;
 default: p_channel->MUXCTRL = ADC_CH_MUXPOS0_bm; break;
 };

 // Enable high-priority interrupts on the ADC channel.
 p_channel->INTCTRL = ADC_CH_INTLVL0_bm | ADC_CH_INTLVL1_bm;
}

//
/** @brief Set ADC gain.
 * @details This method sets the gain of the ADC channel being used.
 * @param gain Number corresponding to the gain setting.
 */
void ADC_channel :: set_gain (uint8_t gain)
{
 // Set the gain of the channel according to the xmega au manual.
 switch (gain)
 {
 case 1: p_channel->CTRL &= ~(ADC_CH_GAIN0_bm | ADC_CH_GAIN1_bm | ADC_CH_GAIN2_bm); break;
 case 2: p_channel->CTRL |= ADC_CH_GAIN0_bm;
 p_channel->CTRL &= ~(ADC_CH_GAIN1_bm | ADC_CH_GAIN2_bm); break;
 case 4: p_channel->CTRL |= ADC_CH_GAIN1_bm;
 p_channel->CTRL &= ~(ADC_CH_GAIN0_bm | ADC_CH_GAIN2_bm); break;
 case 8: p_channel->CTRL |= ADC_CH_GAIN0_bm | ADC_CH_GAIN1_bm;
 p_channel->CTRL &= ~ADC_CH_GAIN2_bm; break;
 case 16: p_channel->CTRL |= ADC_CH_GAIN2_bm;
 p_channel->CTRL &= ~(ADC_CH_GAIN0_bm | ADC_CH_GAIN1_bm); break;
 case 32: p_channel->CTRL |= ADC_CH_GAIN0_bm | ADC_CH_GAIN2_bm;
 p_channel->CTRL &= ~ADC_CH_GAIN1_bm; break;
 case 64: p_channel->CTRL |= ADC_CH_GAIN1_bm | ADC_CH_GAIN2_bm;
 p_channel->CTRL &= ~ADC_CH_GAIN0_bm; break;

153

 default: p_channel->CTRL &= ~(ADC_CH_GAIN0_bm | ADC_CH_GAIN1_bm | ADC_CH_GAIN2_bm); break;
 };
}

//
/** @brief Read data.
 * @details This method reads an A/D conversion from the specified port
 * pin. It calls the request method and then waits until the the
 * conversion is complete before returning the data, so there is some
 * overhead consequences for calling this function.
 * @return Converted A/D data from the specified pin.
 */
uint16_t ADC_channel :: read (void)
{
 // Wait until the channel is inactive, then initialize a ADC
 // conversion. Wait until the data is converted and stored in the
 // queue and then pull and return the data.
 while (p_channel->CTRL & ADC_CH_START_bm) {}
 p_channel->CTRL |= ADC_CH_START_bm;
 while (p_buffer->empty ()) {}
 return p_buffer->pull_data ();
}

//
/** ADC control struct for use in an ISR.
 */
ADC_CONTROL_STRUCT_t ADC :: ADC_control;

//
/** @brief Default constructor.
 * @details This constructor instantiates an instance of the ADC
 * converter interface on a specified port.
 * @param ADC_name Pointer to a string for the interface name.
 * @param ADC Pointer to the ADC interface.
 * @param PORT Pointer to the port containing the ADC interface.
 */
ADC :: ADC (const char *ADC_name, ADC_t *ADC, PORT_t *PORT)
{
 p_ADC = ADC;
 p_PORT = PORT;
 ADC_channel :: p_PORT = PORT;
 p_name = &name [0];
 storeString (ADC_name, &name [0]);

 // Save pointers to the correct channels and buffers.
 channel0.p_channel = &p_ADC->CH0;
 channel1.p_channel = &p_ADC->CH1;
 channel2.p_channel = &p_ADC->CH2;
 channel3.p_channel = &p_ADC->CH3;
 channel0.p_buffer = &ADC_control.ch0_buffer;
 channel1.p_buffer = &ADC_control.ch1_buffer;
 channel2.p_buffer = &ADC_control.ch2_buffer;
 channel3.p_buffer = &ADC_control.ch3_buffer;
}

//
/** @brief Initialize ADC interface.
 * @details This method initializes the ADC interface. To actually read
 * data, the desired pin must be set as input before attempting to read
 * the data.
 * @param serial Pointer to a serial port object for debugging.
 */
void ADC :: initialize (stream_base *serial)
{
 p_serial = serial;

 // Configure ADC interface for signed, 12-bit mode with a voltage
 // reference on pin 0 on port A.
 p_PORT->DIR &= ~PIN0_bm;
 p_ADC->CTRLA = ADC_FLUSH_bm;
 p_ADC->CTRLB = ADC_CONMODE_bm;
 p_ADC->REFCTRL = ADC_REFSEL1_bm;
 p_ADC->PRESCALER = ADC_PRESCALER1_bm;

 // Configure TCD0 for high-priority CCB compare interrupts. The timer
 // starts when the clock prescaler is selected.
 TCD0.CTRLA = 0x00;
 TCD0.CTRLB |= TC0_CCBEN_bm;
 TCD0.CTRLC |= TC0_CMPB_bm;
 TCD0.CNT = 0x00;
 TCD0.PER = 0xFFFF;

 // Send an indication that the ADC interface was initialized successfully.
 *p_serial << p_name << " interface initialized." << endl;
}

//

154

/** @brief Channel 0 ADC complete interrupt.
 * @details This interrupt service routine places the result of the
 * A/D conversion in the channel 0 buffer.
 */
ISR (ADCA_CH0_vect)
{
 ADC :: ADC_control.ch0_buffer.push_data (static_cast <uint16_t> (ADCA.CH0.RES));
}

//
/** @brief Channel 1 ADC complete interrupt.
 * @details This interrupt service routine places the result of the
 * A/D conversion in the channel 1 buffer.
 */
ISR (ADCA_CH1_vect)
{
 ADC :: ADC_control.ch1_buffer.push_data (static_cast <uint16_t> (ADCA.CH1.RES));
}

//
/** @brief Channel 2 ADC complete interrupt.
 * @details This interrupt service routine places the result of the
 * A/D conversion in the channel 2 buffer.
 */
ISR (ADCA_CH2_vect)
{
 ADC :: ADC_control.ch2_buffer.push_data (static_cast <uint16_t> (ADCA.CH2.RES));
}

//
/** @brief Channel 3 ADC complete interrupt.
 * @details This interrupt service routine places the result of the
 * A/D conversion in the channel 3 buffer.
 */
ISR (ADCA_CH3_vect)
{
 ADC :: ADC_control.ch3_buffer.push_data (static_cast <uint16_t> (ADCA.CH3.RES));
}

//
/** @brief TCD0 Channel B output compare ISR.
 * @details This ISR is triggered on every output compare of channel B on
 * TCD0. The data acquisition frequency is added to the compare register
 * of channel A so that an interrupt occurs at a precise frequency. A
 * conversion is requested on each active channel each time this ISR is
 * triggered.
 */
ISR (TCD0_CCB_vect)
{
 TCD0.CCB += ADC :: ADC_control.timer_freq;
 ADCA.CTRLA |= ADC :: ADC_control.active_channels;
}

155

/***/
/** @file AD7708.h
 * @brief AD7708 class header file.
 *
 * @details This class provides methods for controlling the AD7708
 * analog-to-digital converter device. The device is controlled and
 * data is retrieved through an SPI interface.
 *
 * Contributors:
 * - Zach Wilson 3/16/2019 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 3/16/2019 - initial release.
 *
 * Created: 3/16/2019 11:05:45 AM
 */
/***/

#ifndef AD7708_H_
#define AD7708_H_

/* Included files. */
#include <avr/io.h>
#include "defines.h"
#include "SPI.h"
#include "serial_port.h"

//
/** Declare the external store string method defined in string.h for
 * storing the device name.
 */
extern void storeString (const char *, char *);

//
/** Enum defining the addresses of the registers of the AD7708.
 */
typedef enum AD7708_REGISTERS
{
 /** Communications register. All operations to other registers are
 * initiated through the Communications Register. This controls
 * whether subsequent operations are read or write operations and
 * also selects the register for that subsequent operation.
 */
 COMM_REG = 0x00,

 /** Status register. Provides status information on conversions,
 * calibrations and error conditions. This register is accessed by
 * requesting a read from the communications register.
 */
 STATUS_REG = 0x00,

 /** Mode register. Controls functions such as mode of operation,
 * channel configuration, oscillator operation in power-down.
 */
 MODE_REG = 0x01,

 /** Control register. This register is used to select the active
 * channel input, configure the operating input range, and select
 * unipolar or bipolar operation.
 */
 ADC_CONTROL_REG = 0x02,

 /** Filter register. This register determines the amount of averaging
 * performed by the sinc filter and consequently determines the data
 * update rate of the AD7708. The filter register determines the
 * update rate for operation with CHOP enabled and CHOP disabled.
 */
 FILTER_REG = 0x03,

 /** Data result register. Provides the most up-to-date conversion
 * result for the selected channel on the AD7708.
 */
 DATA_RESULT_REG = 0x04,

 /** Callibration register. Contains a 16-bit word which is the offset
 * calibration coefficient for the part. The contents of this register
 * are used to provide offset correction on the output from the digital
 * filter. There are five offset Registers on the part and these are
 * associated with input channels as outlined in the ADCCON register.
 */
 CALLIBRATION_REG = 0x05,

 /** Gain register. Contains a 16-bit word which is the gain
 * calibration coefficient for the part. The contents of this
 * register are used to provide gain correction on the output
 * from the digital filter. There are five Gain Registers on the part
 * and these are associated with input channels as outlined in the
 * ADCCON register.
 */
 GAIN_REG = 0x06,

156

 /** Input/output control register. This register is used to control
 * and configure the I/O port.
 */
 IO_CONTROL_REG = 0x07,

 /** Device ID register. Contains an 8-bit byte which is the identifier
 * for the part.
 */
 DEV_ID_REG = 0x0F,
} AD7708_REGISTERS_t;

//
/** Enum defining the different modes of operation for the AD7708.
 */
typedef enum AD7708_MODE_REGISTER_ENUM
{
 /** Power down mode.
 */
 POWER_DOWN_MODE = 0x00,

 /** Idle mode. In Idle Mode the ADC filter and modulator are held in a
 * reset state although the modulator clocks are still provided.
 */
 IDLE_MODE = 0x01,

 /** Single conversion mode. In Single Conversion Mode, a single
 * conversion is performed on the enabled channels. On completion of
 * the conversion the ADC data registers are updated, the relevant
 * flags in the STATUS register are written, and idle mode is
 * reentered with the MD2–MD0 being written accordingly to 001.
 */
 SINGLE_CONVERSION_MODE = 0x02,

 /** Continuous conversion mode. In continuous conversion mode, the ADC
 * data registers are regularly updated at the selected update rate.
 */
 CONTINUOUS_CONVERSION_MODE = 0x03,

 /** Internal zero scale calibration mode. Internal short automatically
 * connected to the enabled channel(s).
 */
 INTERNAL_ZERO_SCALE_CALIBRATION_MODE = 0x04,

 /** Internal full scale calibration mode. External VREF is connected
 * automatically to the ADC input for this calibration.
 */
 INTERNAL_FULL_SCALE_CALIBRATION_MODE = 0x05,

 /** System zero scale calibration.
 */
 SYSTEM_ZERO_SCALE_CALIBRATION = 0x06,

 /** System full scale calibration.
 */
 SYSTEM_FULL_SCALE_CALIBRATION = 0x07,
} AD7708_MODE_REGISTER_t;

//
/** AD7708 control struct.
 */
typedef struct
{
 /** Boolean indicating if a reading has been requested.
 */
 volatile bool request_reading;

 /** Timer interrupt frequency.
 */
 volatile uint16_t timer_freq;

 /** Pointer to an SPI object for controlling an SPI interface.
 */
 SPI *p_SPI;

 /** Pointer to an I/O port.
 */
 PORT_t *p_PORT;

 /** Chip select pin bitmask.
 */
 uint8_t cs_pin;

 /** Device ready pin bitmask.
 */
 uint8_t ready_pin;
} AD7708_CONTROL_STRUCT_t;

//

157

/** @brief AD7708 class.
 * @details This class provides methods for controlling the AD7708
 * analog-to-digital converter device. The device is controlled and
 * data is retrieved through an SPI interface.
 */
class AD7708
{
 private:
 /** Pointer to a serial port object.
 */
 stream_base *p_serial;

 /** Pointer to an SPI object.
 */
 SPI *p_SPI;

 /** Pointer to an I/O port.
 */
 PORT_t *p_PORT;

 /** Chip select pin bitmask.
 */
 uint8_t cs_pin;

 /** Device ready pin bitmask.
 */
 uint8_t ready_pin;

 /** Device ready pin number.
 */
 uint8_t ready_number;

 /** Device reset pin bitmask.
 */
 uint8_t reset_pin;

 /** Pin bitmask for controlling the excitation voltage of the
 * wheatstone bridges.
 */
 uint8_t excite_pin;

 /** C-style string for device name.
 */
 char name [11];

 public:
 /** Pointer to the device name.
 */
 const char *p_name;

 /** Control struct for use in an ISR.
 */
 static AD7708_CONTROL_STRUCT_t ADC_control;

 /** 16-bit gain of the previously calibrated channel of the device.
 */
 uint16_t gain;

 /** @brief Default constructor.
 * @details This constructor instantiates an instance of the object
 * and saves a pointer to a serial port object, a pointer to an SPI
 * interface, and an I/O port and pins for controlling the device.
 * @param SPI Pointer to an SPI interface.
 * @param PORT Pointer to a I/O port.
 * @param _cs_pin Chip select pin bitmask.
 * @param _ready_pin Device ready pin.
 * @param _reset_pin Reset pin bitmask.
 * @param _excite_pin Pin bitmask for controlling the wheatstone
 * bridge excitation voltage.
 * @param dev_name Pointer to a string of the device name.
 */
 AD7708 (SPI *, PORT_t *, uint8_t, uint8_t, uint8_t, uint8_t, const char *);

 /** @brief Initialize device.
 * @details This method configures and initializes the SPI interface and
 * GPIO pins for communicating to the device and configures the settings
 * of the device. The device is reset which starts it in a low power
 * mode.
 * @param serial Pointer to a serial port.
 */
 void initialize (stream_base *);

 /** @brief Enable device.
 * @details This method powers on and enables the device. It should be
 * called before attempting to read data from the device.
 * @return Status of external oscillator (true == oscillator locked).
 */
 bool enable (void);

 /** @brief Disable Device.
 * @details This method disables and places the device in a low power
 * state. It should be called when we are done reading data from the

158

 * device.
 */
 void disable (void);

 /** @brief Select channel.
 * @details This method configures the device so that data from the
 * specified channel will be sent to the data result register to be
 * retrieved with calls to the request (), data_ready (), and
 * retrieve () methods.
 * @param channel Selected channel to read data from. Channel codes
 * provided in datasheet.
 */
 void select_channel (uint8_t);

 /** @brief Calibrate device.
 * @details This method performs a zero-mode calibration and a full-scale
 * calibration of the selected channel of the device. It is not essential
 * that the system is in a zero-differential voltage state during the
 * calibration because the channel is shorted to ground internally during
 * the zero-scale calibration and the reference voltage during the full-
 * scale calibration.
 */
 void calibrate (void);

 /** @brief Retrieve channel gain.
 * @details This method retrieves the 16-bit word in the gain register
 * for the selected channel of the device. This value is used to calculate
 * the analog signal level read by the ADC channel.
 * @return 16-bit number that is the calibrated gain for the selected c
 * channel.
 */
 uint16_t retrieve_gain (void);

 /** @brief Device status.
 * @details This method returns a boolean indicating if the device has
 * valid data available in the current data register. This is checked by
 * checking if the device ready pin is low.
 * @return Boolean indicating if the device is ready to send valid data.
 */
 inline bool device_ready (void);

 /** @brief Read data from channel.
 * @details This method reads one sample of data from the currently
 * selected channel of the device.
 * @return Assembled 16-bit data sample.
 */
 uint16_t read (void);

 /** @brief Request reading from channel.
 * @details This method requests one sample of data from the selected
 * channel. The data is acquired in the SPI interrupt service routine.
 * Call the retrieve () function after the data has been transmitted to
 * acquire the data.
 */
 void request (void);

 /** @brief Acquire dynamic data.
 * @details This method acquires data from the selected channel at a user-
 * specified frequency using output compare interrupts on a timer. The
 * data is acquired in an ISR and stored in the SPI receive queue until
 * the retrieve () method is called.
 * @param frequency Frequency at which to take data (in clock ticks).
 */
 void acquire_data (uint16_t);

 /** @brief Stop taking dynamic data.
 * @details This method disables the timer and resets the count so that
 * output compare interrupts are no longer triggered.
 */
 void stop_data (void);

 /** @brief Check if data has been transmitted.
 * @details This method returns a boolean indicating if data is ready to
 * be retrieved from the SPI interface.
 * @return Boolean indicating if data is available to retrieve.
 */
 inline bool data_available (void);

 /** @brief Retrieve data.
 * @details This method returns one sample of data stored in the SPI
 * interface. The transfer_complete () method should be called before
 * calling this method to ensure that valid data is retrieved.
 * @return Assembled 16-bit data sample.
 */
 uint16_t retrieve (void);
};

//
/** @brief Device status.
 * @details This method returns a boolean indicating if the device has
 * valid data available in the current data register. This is checked by

159

 * checking if the device ready pin is low.
 * @return Boolean indicating if the device is ready to send valid data.
 */
inline bool AD7708 :: device_ready (void)
{
 return !(p_PORT->IN & ready_pin);
}

//
/** @brief Check if data has been transmitted.
 * @details This method returns a boolean indicating if data is ready to
 * be retrieved from the SPI interface. If there is at least two bytes
 * in the SPI receive buffer, then there is at least one reading
 * available.
 * @return Boolean indicating if data is available to retrieve.
 */
inline bool AD7708 :: data_available (void)
{
 return p_SPI->data_available () > 1;
}

//
/** AD7708 amplifier object. All files that include this header will have
 * access to this object.
 */
static AD7708 adc_amp (&SPI_C, &PORTC, PIN4_bm, PIN3_bm, PIN2_bm, PIN1_bm, "AD7708");

#endif /* AD7708_H_ */

160

/***/
/** @file AD7708.cpp
 * @brief AD7708 main class file.
 *
 *
 * Contributors:
 * - Zach Wilson 3/16/2019 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 3/16/2019 - initial release.
 *
 * Created: 3/16/2019 11:52:25 AM
 */
/***/

/* Included files. */
#include "AD7708.h"

//
/** Control struct for use in an ISR.
 */
AD7708_CONTROL_STRUCT_t AD7708 :: ADC_control;

//
/** @brief Default constructor.
 * @details This constructor instantiates an instance of the object and
 * saves a pointer to a serial port object, a pointer to an SPI
 * interface, and an I/O port and pins for controlling the device.
 * @param SPI Pointer to an SPI interface.
 * @param PORT Pointer to a I/O port.
 * @param _cs_pin Chip select pin bitmask.
 * @param _ready_pin Device ready pin.
 * @param _reset_pin Reset pin bitmask.
 * @param _excite_pin Pin bitmask for controlling the wheatstone bridge
 * excitation voltage.
 * @param dev_name Pointer to a string of the device name.
 */
AD7708 :: AD7708 (SPI *_SPI, PORT_t *PORT, uint8_t _cs_pin, uint8_t _ready_pin, uint8_t _reset_pin, uint8_t _excite_pin, const
char *dev_name)
{
 p_SPI = _SPI;
 ADC_control.p_SPI = _SPI;
 ADC_control.p_PORT = PORT;
 ADC_control.cs_pin = _cs_pin;
 ADC_control.ready_pin = _ready_pin;
 ADC_control.request_reading = false;
 p_PORT = PORT;
 cs_pin = _cs_pin;
 ready_pin = _ready_pin;
 switch (_ready_pin)
 {
 case PIN0_bm: ready_number = 0;
 case PIN1_bm: ready_number = 1;
 case PIN2_bm: ready_number = 2;
 case PIN3_bm: ready_number = 3;
 case PIN4_bm: ready_number = 4;
 case PIN5_bm: ready_number = 5;
 case PIN6_bm: ready_number = 6;
 case PIN7_bm: ready_number = 7;
 };
 reset_pin = _reset_pin;
 excite_pin = _excite_pin;
 p_name = &name [0];
 storeString (dev_name, &name [0]);
}

//
/** @brief Initialize device.
 * @details This method configures and initializes the SPI interface and
 * GPIO pins for communicating to the device and configures the settings
 * of the device. The device is reset which starts it in a low power
 * mode.
 * @param serial Pointer to a serial port.
 */
void AD7708 :: initialize (stream_base *serial)
{
 p_serial = serial;

 // Configure the chip select, reset, and excitation control pins as
 // outputs and the ready pin as an input. Initialize the chip select
 // and reset pins high and the excitation control pin low.
 p_PORT->DIR |= cs_pin | reset_pin | excite_pin;
 p_PORT->DIR &= ~ready_pin;
 p_PORT->OUT |= cs_pin | reset_pin;
 p_PORT->OUT &= ~excite_pin;

 // Configure the high-priority interrupts for the ready pin on port C
 // for falling-edge sensing.
 p_PORT->INT0MASK = ready_pin;

161

 *(&p_PORT->PIN0CTRL + ready_number) = PORT_ISC1_bm;
 p_PORT->INTCTRL = PORT_INT0LVL0_bm | PORT_INT0LVL1_bm;

 // Configure TCD0 for high-priority CCA compare interrupts. The timer
 // starts when the clock prescaler is selected.
 TCD0.CTRLA = 0x00;
 TCD0.CTRLB |= TC0_CCAEN_bm;
 TCD0.CTRLC |= TC0_CMPA_bm;
 TCD0.CNT = 0x00;
 TCD0.PER = 0xFFFF;

 // Configure the SPI interface settings.
 p_SPI->initialize (p_serial, SPI_MASTER);
 p_SPI->set_mode (SPI_DIV8, SPI_MODE0, SPI_MSBFIRST);

 // Perform a hard reset by toggling the reset pin. This will start the
 // device in a low power state.
 p_PORT->OUT &= ~reset_pin;
 p_PORT->OUT |= reset_pin;

 // Confirm initialization through serial port.
 #ifdef AD7708_DEBUG
 *p_serial << "AD7708 initialized." << endl;
 #endif
}

//
/** @brief Enable device.
 * @details This method powers on and enables the device. The device is
 * configured for continuous conversion mode, where each channel is
 * updated at 1.3kHz, and an input range of +/- 40mV.
 * @return Status of external oscillator (true == oscillator locked).
 */
bool AD7708 :: enable (void)
{
 // Push a boolean to the stack to store the status of the oscillator.
 bool status;

 // Initialize the ADC following steps laid out in datasheet.
 p_PORT->OUT &= ~cs_pin;
 p_SPI->transfer (FILTER_REG);
 p_SPI->transfer (0x03); // Set ADC update frequency to 1.3kHz.
 p_SPI->transfer (ADC_CONTROL_REG);
 p_SPI->transfer (0b00000000); // Set max range of 20mV.
 p_SPI->transfer (MODE_REG);
 p_SPI->transfer (0b10010000 | CONTINUOUS_CONVERSION_MODE); // Start ADC in continuous conversion mode, chopping disabled.

 // Wait until the PLL has locked on to external oscillator.
 for (uint16_t index = 0;; index++)
 {
 p_SPI->transfer (0x40 | STATUS_REG);
 if (p_SPI->transfer (0x00) & 0x01)
 {
 #ifdef AD7708_DEBUG
 *p_serial << "AD7708 PLL locked onto external oscillator." << endl << "AD7708 enabled." << endl;
 #endif
 status = true;
 break;
 }
 else if (index > 20000)
 {
 #ifdef AD7708_DEBUG
 *p_serial << "AD7708 PLL failed to lock onto external oscillator." << endl;
 #endif
 disable ();
 status = false;
 break;
 }
 }

 // Assert the chip select pin and return the status of the oscillator.
 // Also assert the excitation control pin to turn on the wheatstone
 // bridges.
 p_PORT->OUT |= cs_pin | excite_pin;
 return status;
}

//
/** @brief Disable Device.
 * @details This method disables the wheatstone bridges and places the
 * device in a low power state while not altering any other settings.
 * Call the enable () method to power on the device again.
 */
void AD7708 :: disable (void)
{
 p_PORT->OUT &= ~cs_pin;
 p_SPI->transfer (MODE_REG);
 p_SPI->transfer (0b10010000 | POWER_DOWN_MODE);
 p_PORT->OUT |= cs_pin;
 p_PORT->OUT &= ~excite_pin;

162

 // Confirm the device was disabled.
 #ifdef AD7708_DEBUG
 *p_serial << "AD7708 disabled." << endl;
 #endif
}

//
/** @brief Select channel.
 * @details This method configures the device so that data from the
 * specified channel will be sent to the data result register to be
 * retrieved with calls to the request (), data_ready (), and retrieve ()
 * methods.
 * @param channel Selected channel to read data from. Channel codes
 * provided in datasheet.
 */
void AD7708 :: select_channel (uint8_t channel)
{
 // Transfer necessary bytes to the device so that the proper channel
 // is selected.
 p_PORT->OUT &= ~cs_pin;
 p_SPI->transfer (ADC_CONTROL_REG);
 p_SPI->transfer (channel | 0b00000000);
 p_PORT->OUT |= cs_pin;
}

//
/** @brief Calibrate device.
 * @details This method performs a zero-mode calibration and a full-scale
 * calibration of the selected channel of the device. It is not essential
 * that the system is in a zero-differential voltage state during the
 * calibration because the channel is shorted to ground internally during
 * the zero-scale calibration and the reference voltage during the full-
 * scale calibration.
 */
void AD7708 :: calibrate (void)
{
 // Push a byte to the stack to store the status bits of the device.
 uint8_t status;

 // Write to the mode register and select zero-scale calibration.
 p_PORT->OUT &= ~cs_pin;
 p_SPI->transfer (MODE_REG);
 p_SPI->transfer (0b10010000 | INTERNAL_ZERO_SCALE_CALIBRATION_MODE);

 // Wait until the device is in idle mode which indicates the calibration
 // is complete.
 for (;;)
 {
 p_SPI->transfer (0x40 | MODE_REG);
 status = p_SPI->transfer (0x00) & 0x07;
 if (status == 0x01) break;
 }
 #ifdef AD7708_DEBUG
 *p_serial << "Zero-scale calibration complete." << endl;
 #endif

 // Write to the mode register and select full-scale calibration.
 p_SPI->transfer (MODE_REG);
 p_SPI->transfer (0b10010000 | INTERNAL_FULL_SCALE_CALIBRATION_MODE);

 // Wait until the device is in idle mode which indicates the calibration
 // is complete.
 for (;;)
 {
 p_SPI->transfer (0x40 | MODE_REG);
 status = p_SPI->transfer (0x00) & 0x07;
 if (status == 0x01) break;
 }
 #ifdef AD7708_DEBUG
 *p_serial << "Full-scale calibration complete." << endl;
 #endif

 // Reconfigure the device to continuous conversion mode.
 p_SPI->transfer (MODE_REG);
 p_SPI->transfer (0b10010000 | CONTINUOUS_CONVERSION_MODE);

 // Store the gain of the selected channel.
 gain = retrieve_gain ();
 p_PORT->OUT |= cs_pin;
}

//
/** @brief Retrieve channel gain.
 * @details This method retrieves the 16-bit word in the gain register
 * for the selected channel of the device. This value is used to calculate
 * the analog signal level read by the ADC channel.
 * @return 16-bit number that is the calibrated gain for the selected
 * channel.
 */

163

uint16_t AD7708 :: retrieve_gain (void)
{
 // Push 16 bits onto the stack for assembling the number.
 uint8_t msb, lsb;

 // Request a read from the device from the gain register and store
 // the result.
 p_PORT->OUT &= ~cs_pin;
 p_SPI->transfer (0x40 | GAIN_REG);
 msb = p_SPI->transfer (0xFF);
 lsb = p_SPI->transfer (0xFF);
 p_PORT->OUT |= cs_pin;

 // Assemble and return the value.
 return static_cast <uint16_t> (msb << 8 | lsb);
}

//
/** @brief Read data from channel.
 * @details This method reads one sample of data from the currently
 * selected channel of the device.
 * @return Assembled 16-bit data sample.
 */
uint16_t AD7708 :: read (void)
{
 // Push 16 bits onto the stack for assembling the data.
 uint8_t msb, lsb;

 // Wait until valid data exists in the register then retrieve the data.
 while (p_PORT->IN & ready_pin) {}
 p_PORT->OUT &= ~cs_pin;
 p_SPI->transfer (0x40 | DATA_RESULT_REG);
 msb = p_SPI->transfer (0xFF);
 lsb = p_SPI->transfer (0xFF);
 p_PORT->OUT |= cs_pin;

 // Return the assembled data.
 return static_cast <uint16_t> (msb << 8 | lsb);
}

//
/** @brief Request reading from channel.
 * @details This method requests one sample of data from the selected
 * channel. The data is acquired in the SPI interrupt service routine.
 * Call the retrieve () function after the data has been transmitted to
 * acquire the data.
 * @param channel Channel of the device to read the data from.
 */
void AD7708 :: request (void)
{
 // Check to see if valid data exists in the data register. If valid
 // data is in the register (ready pin low), then initiate an SPI
 // transfer. Otherwise, raise the request_reading boolean in the ADC
 // control struct so that a transfer will be initiated in an ISR.
 p_SPI->flush ();
 if (p_PORT->IN & ready_pin)
 {
 // Push the bytes necessary to request a channel read.
 p_SPI->push_byte (0x40 | DATA_RESULT_REG, SPI_WRITE);
 p_SPI->push_byte (0x00, SPI_READ);
 p_SPI->push_byte (0x00, SPI_READ);
 p_SPI->transfer_ISR (p_PORT, cs_pin);
 }
 else ADC_control.request_reading = true;
}

//
/** @brief Acquire dynamic data.
 * @details This method acquires data from the selected channel at a user-
 * specified frequency using output compare interrupts on a timer. The
 * data is acquired in an ISR and stored in the SPI receive queue until
 * the retrieve () method is called.
 * @param frequency Frequency at which to take data (in clock ticks).
 */
void AD7708 :: acquire_data (uint16_t frequency)
{
 // Save the user specified frequency and set the first output compare
 // value. Select the timer clock prescaler to start the timer.
 ADC_control.timer_freq = frequency * 125; // FREQ = frequency * (32,000,000 / (256 * 1000))
 TCD0.CNT = 0x0000;
 TCD0.CCA = ADC_control.timer_freq;
 TCD0.INTCTRLB |= TC0_CCAINTLVL0_bm | TC0_CCAINTLVL1_bm;
 TCD0.CTRLA = TC0_CLKSEL1_bm | TC0_CLKSEL2_bm;
}

//
/** @brief Stop taking dynamic data.
 * @details This method disables the timer and resets the count so that

164

 * output compare interrupts are no longer triggered.
 */
void AD7708 :: stop_data (void)
{
 TCD0.INTCTRLB &= ~(TC0_CCAINTLVL0_bm | TC0_CCAINTLVL1_bm);
 TCD0.CTRLA = 0x00;
 TCD0.CNT = 0x0000;
}

//
/** @brief Retrieve data.
 * @details This method returns one sample of data stored in the SPI
 * interface. The transfer_complete () method should be called before
 * calling this method to ensure that valid data is retrieved.
 * @return Assembled 16-bit data sample.
 */
uint16_t AD7708 :: retrieve (void)
{
 // Push 16 bits onto the stack for assembling the data.
 uint8_t msb, lsb;
 msb = p_SPI->pull_byte ();
 lsb = p_SPI->pull_byte ();
 return static_cast <uint16_t> (msb << 8 | lsb);
}

//
/** @brief Ready pin ISR.
 * @details This ISR is triggered when the device ready pin is lowered,
 * which indicates that the device has valid data ready to transfer. An
 * SPI transmission is initiated if the request_reading boolean has been
 * raised in either the timer output compare ISR or by a call to the
 * request () method.
 */
ISR (PORTC_INT0_vect)
{
 if (AD7708 :: ADC_control.request_reading)
 {
 AD7708 :: ADC_control.p_SPI->push_byte (0x40 | DATA_RESULT_REG, SPI_WRITE);
 AD7708 :: ADC_control.p_SPI->push_byte (0x00, SPI_READ);
 AD7708 :: ADC_control.p_SPI->push_byte (0x00, SPI_READ);
 AD7708 :: ADC_control.p_SPI->transfer_ISR (AD7708 :: ADC_control.p_PORT, AD7708 :: ADC_control.cs_pin);
 AD7708 :: ADC_control.request_reading = false;
 }
}

//
/** @brief TCD0 Channel A output compare ISR.
 * @details This ISR is triggered on every output compare of channel A on
 * TCD0. The data acquisition frequency is added to the compare register
 * of channel A so that an interrupt occurs at a precise frequency. The
 * ready pin is polled to determine if the AD7708 has valid data in the
 * data result register. If there is (ready pin low), an SPI transmission
 * is initiated to retrieve the data. Otherwise, the request_reading
 * boolean is raised and the transmission will be initiated in the ISR
 * triggered by the falling edge of the ready pin.
 */
ISR (TCD0_CCA_vect)
{
 TCD0.CCA += AD7708 :: ADC_control.timer_freq;
 if (!(AD7708 :: ADC_control.p_PORT->IN & AD7708 :: ADC_control.ready_pin))
 {
 AD7708 :: ADC_control.p_SPI->push_byte (0x40 | DATA_RESULT_REG, SPI_WRITE);
 AD7708 :: ADC_control.p_SPI->push_byte (0x00, SPI_READ);
 AD7708 :: ADC_control.p_SPI->push_byte (0x00, SPI_READ);
 AD7708 :: ADC_control.p_SPI->transfer_ISR (AD7708 :: ADC_control.p_PORT, AD7708 :: ADC_control.cs_pin);
 AD7708 :: ADC_control.request_reading = false;
 }
 else AD7708 :: ADC_control.request_reading = true;
}

165

H. DYNAMIC DATA ACQUISITION SYSTEM SCHEDULER, BASE TASK, SHARE,

AND QUEUE C++ FILES

/***/
/** @file coscheduler.cpp
 * @brief Cooperative scheduler class header file.
 *
 * @details This class provides a cooperative multitasking scheduler with
 * methods for initializing the cooperative multitasking environment and
 * running the scheduler. All members of this class are static because
 * there should only be one of these objects ever existing at a time. The
 * base task, share, and queue classes are friends of this class and
 * automatically add derived objects to the appropriate scheduler list
 * in their respective constructors.
 *
 *
 * Contributors:
 * - Zach Wilson 12/9/2018 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 12/9/2018 - initial release.
 *
 * Created: 12/9/2018 12:33:47 AM
 */
/***/

#ifndef COSCHEDULER_H_
#define COSCHEDULER_H_

/* Included files. */
#include <avr/io.h>
#include "defines.h"
#include "clock_timer_rtc.h"
#include "list.h"
#include "serial_port.h"
#include "queue.h"
#include "share.h"

//
/** Maximum tasks allowed in queue. Increase this number if more tasks are
 * required.
 */
#define COSCHEDULER_TASK_QUEUE 10

//
/** Define the task stack queue for use in context switching.
 */
#define TASK_CONTROL_BLOCK_STACK_SIZE 50

//
/** This defines the IDLE keyword so that an idle task can be added at the
 * end of the scheduler run list.
 */
#define IDLE 0

//
/** Forward declaration of the task base class so the scheduler class can
 * use its datatype.
 */
class task_base;

//
/** Enum defining the flags of the task queues, the idle task, and debug
 * reports. The scheduler uses these flags to decide which task or debug
 * report to attempt to run.
 */
typedef enum TASK_QUEUE_PRIORITY_ENUM
{
 /** Debug report flag.
 */
 COSCHEDULER_DEBUG_REPORT_FLAG = 0,

 /** Idle task flag.
 */
 COSCHEDULER_IDLE_TASK_FLAG,

 /** Low priority task queue flag.
 */
 COSCHEDULER_LOW_PRIORITY_QUEUE_FLAG,

 /** Medium priority task queue flag.
 */
 COSCHEDULER_MED_PRIORITY_QUEUE_FLAG,

166

 /** High priority task queue flag.
 */
 COSCHEDULER_HIGH_PRIORITY_QUEUE_FLAG,
} TASK_QUEUE_PRIORITY_t;

//
/** Enum defining the status of a task.
 */
typedef enum TASK_STATUS_ENUM
{
 /** Flag indicating that the task is free and not queued.
 */
 FREE = 0,

 /** Flag indicating that the task is ready to run.
 */
 READY,

 /** Flag indicating that the task is inserted into the queue and
 * awaiting a chance to run.
 */
 QUEUED,

 /** Flag indicating that the task yielded to the kernel cooperatively.
 */
 YIELD,
} TASK_STATUS_t;

//
/** Definition of simple list struct to be used as the kernel for choosing
 * which queue to scan while scheduling tasks.
 */
typedef struct
{
 /** Buffer to serve as storage for the list.
 */
 TASK_QUEUE_PRIORITY_t buffer [20];

 /** Pointer to the first value in the list.
 */
 TASK_QUEUE_PRIORITY_t *p_first;

 /** Pointer to the last value in the list.
 */
 TASK_QUEUE_PRIORITY_t *p_last;
} KERNEL_LIST_t;

//
/** Task control block struct. The kernel uses this struct to control and
 * schedule each task accordingly.
 */
struct TASK_CONTROL_BLOCK_t
{
 /** Pointer to the current task.
 */
 task_base *p_task;

 /** Pointer to the next task control block.
 */
 TASK_CONTROL_BLOCK_t *p_next_block;

 /** Basic stack to be used for context switching. The actual task will
 * not have access to this stack, it is to be used only by the kernel
 * during a context switch.
 */
 volatile uint8_t task_stack [TASK_CONTROL_BLOCK_STACK_SIZE];

 /** Pointer to the task stack.
 */
 volatile uint8_t *volatile p_stack;

 /** Status of the task (FREE/READY/QUEUED).
 */
 TASK_STATUS_t status;

 /** Dynamic priority of the task. Not implemented yet.
 */
 uint8_t d_priority;
};

//
/** @brief Cooperative scheduler class.
 * @details This class provides a cooperative task scheduler to be
 * implemented in a cooperative multitasking environment with multiple
 * finite-state-machine style programs running pseudo-simultaneously. The
 * scheduler object should be instantiated before share, queue, and task
 * objects so the scheduler can save pointers to each object.
 */

167

class coscheduler
{
 /** Declare the base task class a friend so the base task constructor can
 * add task pointers to the scheduler task lists.
 */
 friend class task_base;

 /** Declare the base share class a friend so the base share constructor
 * can add share pointers to the share list.
 */
 friend class share_base;

 /** Declare the base queue class a friend so the base queue constructor
 * can add queue pointers to the share list.
 */
 friend class queue_base;

 private:
 /** Pointer to a serial port object.
 */
 static stream_base *p_serial;

 /** Scheduler list to be used as the kernel for controlling which
 * tasks are run. This list holds flags in the order in which the
 * scheduler pulls tasks from each queue.
 */
 static KERNEL_LIST_t kernel_list;

 /** High priority task queue. Tasks with high priority (1-3) are
 * added to this queue when the task is instantiated. The scheduler
 * will attempt to run these tasks before any lower priority tasks
 * or the idle task.
 */
 static circular_buffer <TASK_CONTROL_BLOCK_t *, COSCHEDULER_TASK_QUEUE> high_priority_queue;

 /** Medium priority task queue. Tasks with medium priority (4-7) are
 * added to this queue when the task is instantiated. The scheduler
 * will attempt to run these tasks if none of the high priority tasks
 * are ready to run.
 */
 static circular_buffer <TASK_CONTROL_BLOCK_t *, COSCHEDULER_TASK_QUEUE> med_priority_queue;

 /** Low priority task queue. Tasks with low priority (8-10) are added
 * to this queue when the task is instantiated. The scheduler will
 * attempt to run these tasks if none of the high or medium priority
 * tasks are ready to run.
 */
 static circular_buffer <TASK_CONTROL_BLOCK_t *, COSCHEDULER_TASK_QUEUE> low_priority_queue;

 /** Linked list of task control blocks. Task base pointers are added to
 * this linked list when a task is instantiated. The scheduler uses this
 * list to determine which task should run next. Tasks are added to this
 * list in the order in which they are instantiated.
 */
 static TASK_CONTROL_BLOCK_t task_control [COSCHEDULER_FREE_TASK_LIST];

 /** Idle task storage. A task pointer is saved here when a task is
 * instantiated and assigned IDLE priority. This is a pointer to an
 * idle task to run only when no other tasks need to run.
 */
 static TASK_CONTROL_BLOCK_t idle_task_control;

 /** Task debug list. A task pointer is saved here when a task is
 * instantiated. The scheduler uses this list to print debug
 * information from each task during debug reports. Tasks are added to
 * this list in order in which they are added to the scheduler.
 */
 static list <task_base *, COSCHEDULER_FREE_TASK_LIST> task_debug_list;

 /** Share list. Share base pointers are added to this list when a share
 * object is instantiated. The scheduler uses this list to print debug
 * information from each share during debug reports. Shares are added to
 * this list in the order in which they are instantiated.
 */
 static list <share_base *, COSCHEDULER_SHARE_LIST> share_debug_list;

 /** Queue list. Queue base pointers are added to this list when a share
 * object is instantiated. The scheduler uses this list to print debug
 * information from each share during debug reports. Shares are added to
 * this list in the order in which they are instantiated.
 */
 static list <queue_base *, COSCHEDULER_QUEUE_LIST> queue_debug_list;

 /** Number of scheduler iterations.
 */
 static uint32_t iteration_number;

 /** Scheduler debug struct for running task reports.
 */
 static debug_t scheduler_debug;

 public:

168

 /** Number of tasks in scheduler.
 */
 static uint8_t task_number;

 /** @brief Default constructor of Scheduler class.
 * @details This constructor creates an instance of the scheduler class.
 * @param serial Pointer to a serial port object.
 */
 coscheduler (stream_base *);

 /** @brief Initialize scheduler.
 * @details This method initializes all components of the scheduler. It
 * initializes the serial port, each task, share, and queue object
 * added to each respective list and enables the clock.
 */
 static void initialize (void);

 /** @brief Run scheduler.
 * @details This method runs the scheduler and should never exit so long as
 * power is supplied to the device.
 */
 static void run (void);

 /** @brief Context switch.
 * @details This method performs a context switch from one task to another in
 * the preemptive multitasking environment. Not implemented yet.
 * @param prev_task Task to switch from.
 * @param next_task Task to switch to.
 */
 static void context_switch (task_base *, task_base *);

 /** Define COSCHEDULER_DEBUG in RTOS_defines.h to compile the methods below.
 */
 #ifdef TASK_DEBUG

 /** @brief Task debug report.
 * @details This method prints a debug report of all the tasks through the
 * serial port. Information like number of transitions, number of task runs,
 * average timing, and average frequency are reported.
 */
 static void taskDebugReport (void);

 /** @brief Task state report.
 * @details This method prints the current state of each task queued in the
 * scheduler for debugging.
 */
 static void taskStateReport (void);

 /** @brief Share debug report.
 * @details This method prints a debug report of all the shares through the
 * serial port.
 */
 static void shareDebugReport (void);

 /** @brief Queue debug report.
 * @details This method prints a debug report of all the queues through the
 * serial port.
 */
 static void queueDebugReport (void);

 #endif /* COSCHEDULER_DEBUG */
};

#endif /* COSCHEDULER_H_ */

169

/***/
/** @file coscheduler.cpp
 * @brief Cooperative scheduler main class file.
 *
 * Contributors:
 * - Zach Wilson 12/9/2018 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 12/9/2018 - initial release.
 *
 * Created: 12/9/2018 12:33:47 AM
 */
/***/

/* Included files. */
#include "coscheduler.h"

//
/** Pointer to a serial port object.
 */
stream_base *coscheduler :: p_serial;

//
/** Scheduler list to be used as the kernel for controlling which tasks
 * are run. This list holds flags in the order in which the scheduler
 * pulls tasks from each queue.
 */
KERNEL_LIST_t coscheduler :: kernel_list;

//
/** High priority task queue. Tasks with high priority (1-3) are added to
 * this queue when the task is instantiated. The scheduler will attempt
 * to run these tasks before any lower priority tasks or the idle task.
 */
circular_buffer <TASK_CONTROL_BLOCK_t *, COSCHEDULER_TASK_QUEUE> coscheduler :: high_priority_queue;

//
/** Medium priority task queue. Tasks with medium priority (4-7) are added
 * to this queue when the task is instantiated. The scheduler will attempt
 * to run these tasks if none of the high priority tasks are ready to run.
 */
circular_buffer <TASK_CONTROL_BLOCK_t *, COSCHEDULER_TASK_QUEUE> coscheduler :: med_priority_queue;

//
/** Low priority task queue. Tasks with low priority (8-10) are added to
 * this queue when the task is instantiated. The scheduler will attempt to
 * run these tasks if none of the high or medium priority tasks are ready
 * to run.
 */
circular_buffer <TASK_CONTROL_BLOCK_t *, COSCHEDULER_TASK_QUEUE> coscheduler :: low_priority_queue;

//
/** Linked list of task control blocks. Task base pointers are added to
 * this linked list when a task is instantiated. The scheduler uses this
 * list to determine which task should run next. Tasks are added to this
 * list in order of the user specified priority.
 */
TASK_CONTROL_BLOCK_t coscheduler :: task_control [COSCHEDULER_FREE_TASK_LIST];

//
/** Idle task storage. This is a pointer to an idle task to run only when
 * no other tasks need to run.
 */
TASK_CONTROL_BLOCK_t coscheduler :: idle_task_control;

//
/** Task debug list. A task pointer is saved here when a task is
 * instantiated. The scheduler uses this list to print debug information
 * from each task during debug reports. Tasks are added to this list in
 * order in which they are added to the scheduler.
 */
list <task_base *, COSCHEDULER_FREE_TASK_LIST> coscheduler :: task_debug_list;

//
/** Share list. Share base pointers are added to this list when a share
 * object is instantiated. The scheduler uses this list to print debug
 * information from each share during debug reports. Shares are added to
 * this list in the order in which they are instantiated.
 */
list <share_base *, COSCHEDULER_SHARE_LIST> coscheduler :: share_debug_list;

//
/** Queue list. Queue base pointers are added to this list when a share
 * object is instantiated. The scheduler uses this list to print debug
 * information from each share during debug reports. Shares are added to
 * this list in the order in which they are instantiated.
 */
list <queue_base *, COSCHEDULER_QUEUE_LIST> coscheduler :: queue_debug_list;

//
/** Number of tasks in scheduler.

170

 */
uint8_t coscheduler :: task_number;

//
/** Number of scheduler iterations.
 */
uint32_t coscheduler :: iteration_number;

//
/** Scheduler debug struct for running task reports.
 */
debug_t coscheduler :: scheduler_debug;

//
/** @brief Default constructor of Scheduler class.
 * @details This constructor creates an instance of the scheduler class.
 * @param serial Pointer to a serial port object.
 */
coscheduler :: coscheduler (stream_base *serial)
{
 p_serial = serial;
 task_number = 0;
 iteration_number = 0;

 // Flush all lists, queues and the idle task for initialization. This is done
 // in the list constructor but is done here just to be safe.
 kernel_list.p_first = &kernel_list.buffer [0];
 kernel_list.p_last = &kernel_list.buffer [0];
 high_priority_queue.flush_buffer ();
 med_priority_queue.flush_buffer ();
 low_priority_queue.flush_buffer ();
 task_debug_list.flush ();
 share_debug_list.flush ();
 queue_debug_list.flush ();
 idle_task_control.p_task = NULL;

 // Initialize the task control block linked list by linking the next block
 // in the list to the previous. The last link in the list will point to a
 // NULL value, indicating the end of the list.
 uint8_t task_index = 0;
 while (task_index < (COSCHEDULER_FREE_TASK_LIST - 1))
 {
 task_control [task_index].p_task = NULL;
 task_control [task_index].p_stack = &task_control [task_index].task_stack [TASK_CONTROL_BLOCK_STACK_SIZE - 1];
 task_control [task_index].p_next_block = &task_control [task_index + 1];
 task_index++;
 }
 task_index++;
 task_control [task_index].p_next_block = NULL;
}

//
/** @brief Initialize scheduler.
 * @details This method initializes all components of the scheduler. It
 * initializes the serial port, each task, share, and queue object added
 * to each respective list and enables the clock.
 */
void coscheduler :: initialize (void)
{
 // Initialize the scheduler list.
 *kernel_list.p_last++ = COSCHEDULER_HIGH_PRIORITY_QUEUE_FLAG;
 *kernel_list.p_last++ = COSCHEDULER_MED_PRIORITY_QUEUE_FLAG;
 *kernel_list.p_last++ = COSCHEDULER_HIGH_PRIORITY_QUEUE_FLAG;
 *kernel_list.p_last++ = COSCHEDULER_LOW_PRIORITY_QUEUE_FLAG;
 *kernel_list.p_last++ = COSCHEDULER_HIGH_PRIORITY_QUEUE_FLAG;
 *kernel_list.p_last++ = COSCHEDULER_MED_PRIORITY_QUEUE_FLAG;
 *kernel_list.p_last++ = COSCHEDULER_HIGH_PRIORITY_QUEUE_FLAG;
 *kernel_list.p_last++ = COSCHEDULER_IDLE_TASK_FLAG;
 *kernel_list.p_last++ = COSCHEDULER_HIGH_PRIORITY_QUEUE_FLAG;
 *kernel_list.p_last++ = COSCHEDULER_MED_PRIORITY_QUEUE_FLAG;
 *kernel_list.p_last++ = COSCHEDULER_HIGH_PRIORITY_QUEUE_FLAG;
 *kernel_list.p_last++ = COSCHEDULER_LOW_PRIORITY_QUEUE_FLAG;
 *kernel_list.p_last++ = COSCHEDULER_DEBUG_REPORT_FLAG;
 *kernel_list.p_last = COSCHEDULER_MED_PRIORITY_QUEUE_FLAG;

 // Save a task control block pointer that points to the first value
 // in the linked list and an index for bookkeeping.
 TASK_CONTROL_BLOCK_t * p_task_control = &task_control [0];
 uint8_t index = 0;

 // Cycle through the run list until all tasks have been initialized.
 while (p_task_control)
 {
 // Run a task and increment the task count if a task exists at the
 // current position in the list.
 if (p_task_control->p_task)
 {
 p_task_control->p_task->initialize ();
 }

171

 // Set the pointer to point to the next task control block.
 p_task_control = p_task_control->p_next_block;
 }

 // Initialize the idle task if one is in the scheduler.
 if (idle_task_control.p_task)
 {
 idle_task_control.p_task->initialize ();
 }
 *p_serial << endl;

 // Cycle through the share list until all shares have been initialized.
 for (index = 0; index < COSCHEDULER_SHARE_LIST; index++)
 {
 // Run a task and increment the task count if a task exists at the
 // current position in the list.
 if (share_debug_list.read (index))
 {
 share_debug_list.read (index)->initialize ();
 }
 }
 *p_serial << endl;

 // Cycle through the queue list until all queues have been initialized.
 for (uint8_t index = 0; index < COSCHEDULER_QUEUE_LIST; index++)
 {
 // Run a task and increment the task count if a task exists at the
 // current position in the list.
 if (queue_debug_list.read (index))
 {
 queue_debug_list.read (index)->initialize ();
 }
 }
 *p_serial << endl;

 // Indicate that the scheduler was initialized successfully.
 *p_serial << "Cooperative multitasking environment initialized." << endl << endl;
}

//
/** @brief Run scheduler.
 * @details This method runs the scheduler and never exits. It determines
 * which tasks to run based on priority and timing parameters. Debug
 * reports requested from the tasks are run here as well.
 */
void coscheduler :: run (void)
{
 // Start the task control pointer at the start of the linked list.
 TASK_CONTROL_BLOCK_t *p_task_control = &task_control [0];
 uint8_t index = 0;

 // Add all of the tasks in the scheduler to the appropriate task queue.
 for (; index < task_number; index++)
 {
 // Determine which queue to add the task to.
 if (p_task_control->p_task->priority < 4)
 {
 // Add task to high priority queue if the priority is (1-3)
 high_priority_queue.push_data (p_task_control);
 p_task_control->status = QUEUED;
 #ifdef TASK_DEBUG
 *p_serial << p_task_control->p_task->p_name << " task pushed to high priority queue." << endl;
 #endif
 }
 else if (p_task_control->p_task->priority < 8)
 {
 // Add task to medium priority queue if the priority is (4-7)
 med_priority_queue.push_data (p_task_control);
 p_task_control->status = QUEUED;
 #ifdef TASK_DEBUG
 *p_serial << p_task_control->p_task->p_name << " task pushed to medium priority queue." << endl;
 #endif
 }
 else
 {
 // Add task to low priority queue if the priority is (8-10)
 low_priority_queue.push_data (p_task_control);
 p_task_control->status = QUEUED;
 #ifdef TASK_DEBUG
 *p_serial << p_task_control->p_task->p_name << " task pushed to low priority queue." << endl;
 #endif
 }

 // Move to the next location in the linked list.
 p_task_control = p_task_control->p_next_block;
 }

 // Save each queue capacity on the stack to avoid excessive calls of
 // buf_capacity ().
 uint8_t high_queue_capacity = high_priority_queue.buf_capacity ();
 uint8_t med_queue_capacity = med_priority_queue.buf_capacity ();

172

 uint8_t low_queue_capacity = low_priority_queue.buf_capacity ();

 // Configure and enable the clock on timer TCD1 that counts milliseconds.
 // This will enable the clock that the scheduler uses for task scheduling.
 clock.enable ();

 // Indicate that we have started cooperative multitasking.
 *p_serial << endl << "Starting cooperative multitasking." << endl << endl;

 // Infinite loop that runs the scheduler.
 for (;;)
 {
 // RTOS kernel. Runs a group of tasks according to what flag the
 // scheduler list pointer is pointing to.
 switch (*kernel_list.p_first)
 {
 case COSCHEDULER_HIGH_PRIORITY_QUEUE_FLAG:
 // Reset the index variable.
 index = 0;

 // Attempt to run the high priority tasks.
 for (;index < high_queue_capacity;)
 {
 // Pull a task from the high priority queue and see if it is ready
 // to run. Run the task and store debug information.
 p_task_control = high_priority_queue.pull_data ();
 p_task_control->status = FREE;
 if (p_task_control->p_task->ready ())
 {
 #ifdef TASK_DEBUG
 p_task_control->p_task->begin ();
 #endif
 p_task_control->p_task->run ();
 #ifdef COSCHEDULER_DEBUG
 *p_serial << p_task_control->p_task->p_name << " task ran." << endl;
 #endif
 #ifdef TASK_DEBUG
 p_task_control->p_task->end ();
 #endif
 }

 // Reinsert the task into the queue and increment the index.
 high_priority_queue.push_data (p_task_control);
 p_task_control->status = QUEUED;
 index++;
 }
 break;
 case COSCHEDULER_MED_PRIORITY_QUEUE_FLAG:
 // Reset the index variable.
 index = 0;

 // Attempt to run the medium priority tasks.
 for (;index < med_queue_capacity;)
 {
 // Pull a task from the medium priority queue and see if it is ready
 // to run. Run the task and store debug information.
 p_task_control = med_priority_queue.pull_data ();
 p_task_control->status = FREE;
 if (p_task_control->p_task->ready ())
 {
 #ifdef TASK_DEBUG
 p_task_control->p_task->begin ();
 #endif
 p_task_control->p_task->run ();
 #ifdef COSCHEDULER_DEBUG
 *p_serial << p_task_control->p_task->p_name << " task ran." << endl;
 #endif
 #ifdef TASK_DEBUG
 p_task_control->p_task->end ();
 #endif
 }

 // Reinsert the task into the queue and increment the index.
 med_priority_queue.push_data (p_task_control);
 p_task_control->status = QUEUED;
 index++;
 }
 break;
 case COSCHEDULER_LOW_PRIORITY_QUEUE_FLAG:
 // Reset the index variable.
 index = 0;

 // Attempt to run the low priority tasks.
 for (;index < low_queue_capacity;)
 {
 // Pull a task from the medium priority queue and see if it is ready
 // to run. Run the task and store debug information.
 p_task_control = low_priority_queue.pull_data ();
 p_task_control->status = FREE;
 if (p_task_control->p_task->ready ())
 {
 #ifdef TASK_DEBUG

173

 p_task_control->p_task->begin ();
 #endif
 p_task_control->p_task->run ();
 #ifdef COSCHEDULER_DEBUG
 *p_serial << p_task_control->p_task->p_name << " task ran." << endl;
 #endif
 #ifdef TASK_DEBUG
 p_task_control->p_task->end ();
 #endif
 }

 // Reinsert the task into the queue and increment the index.
 low_priority_queue.push_data (p_task_control);
 p_task_control->status = QUEUED;
 index++;
 }
 break;
 case COSCHEDULER_IDLE_TASK_FLAG:
 // Run the idle task if it has reached the next interval.
 if (idle_task_control.p_task && idle_task_control.p_task->ready ())
 {
 // Call the begin function to store debug information if debug mode is
 // enabled.
 #ifdef TASK_DEBUG
 idle_task_control.p_task->begin ();
 #endif
 idle_task_control.p_task->run ();
 #ifdef COSCHEDULER_DEBUG
 *p_serial << "Idle task ran." << endl;
 #endif
 #ifdef TASK_DEBUG
 idle_task_control.p_task->end ();
 #endif

 // Set the status of the task to FREE and indicate that a task run.
 idle_task_control.status = FREE;
 }
 break;
 case COSCHEDULER_DEBUG_REPORT_FLAG:
 // Check to see if any the debug flags have been raised to run a debug report.
 #ifdef TASK_DEBUG
 if (scheduler_debug.task_debug) taskDebugReport ();
 else if (scheduler_debug.task_state) taskStateReport ();
 else if (scheduler_debug.share_debug) shareDebugReport ();
 else if (scheduler_debug.queue_debug) queueDebugReport ();
 #endif
 break;
 default:
 break;
 };

 // Increment the scheduler list pointer and roll over to the beginning
 // of the list if the pointer went out of bounds.
 kernel_list.p_first != kernel_list.p_last ? kernel_list.p_first++
 : kernel_list.p_first = &kernel_list.buffer [0];

 // Save the iteration number of the scheduler.
 #ifdef TASK_DEBUG
 iteration_number++;
 #endif
 }
}

//
/** @brief Context switch.
 * @details This method performs a context switch from one task to another
 * in the preemptive multitasking environment. Not implemented yet.
 * @param prev_task Task to switch from.
 * @param next_task Task to switch to.
 */
void coscheduler :: context_switch (task_base * prev_task, task_base * next_task)
{
 __asm__ __volatile__
 (
 "push r31 \n\t"
 "push r30 \n\t"
 "ldi r30, prev_task \n\t"
 "st -Z, r0 \n\t"
 "st -Z, r1 \n\t"
 "st -Z, r2 \n\t"
 "st -Z, r3 \n\t"
 "st -Z, r4 \n\t"
 "st -Z, r5 \n\t"
 "st -Z, r6 \n\t"
 "st -Z, r7 \n\t"
 "st -Z, r8 \n\t"
 "st -Z, r9 \n\t"
 "st -Z, r10 \n\t"
 "st -Z, r11 \n\t"
 "st -Z, r12 \n\t"
 "st -Z, r13 \n\t"

174

 "st -Z, r14 \n\t"
 "st -Z, r15 \n\t"
 "st -Z, r16 \n\t"
 "st -Z, r17 \n\t"
 "st -Z, r18 \n\t"
 "st -Z, r19 \n\t"
 "st -Z, r20 \n\t"
 "st -Z, r21 \n\t"
 "st -Z, r22 \n\t"
 "st -Z, r23 \n\t"
 "st -Z, r24 \n\t"
 "st -Z, r25 \n\t"
 "st -Z, r26 \n\t"
 "st -Z, r27 \n\t"
 "st -Z, r28 \n\t"
 "st -Z, r29 \n\t"
 "pop r28 \n\t"
 "pop r29 \n\t"
 "st -Z, r28 \n\t"
 "st -Z, r29 \n\t"
 "pop r28 \n\t"
 "pop r29 \n\t"
 "st -Z, r28 \n\t"
 "st -Z, r29 \n\t"
 :
 :
 :
);
}

/* Define COSCHEDULER_DEBUG in RTOS_defines.h to compile the methods below.
 */
#ifdef TASK_DEBUG
 //
 /** @brief Task debug report.
 * @details This method prints a debug report of all the tasks through
 * the serial port. Information like number of transitions, number of task
 * runs, average timing, and average frequency are reported.
 */
 void coscheduler :: taskDebugReport (void)
 {
 // Declare a task pointer to avoid multiple calls of debug_list.read ().
 task_base *task_pointer;

 // First create a header for the debug report. Print scheduler debug information.
 *p_serial << endl << " TASK DEBUG REPORT" << endl << endl
 << "Program time: " << clock.millis_32 () << " ms" << endl
 << "Iteration number: " << iteration_number << endl << endl
 << " TASK | NAME | RUNS | AVG T | AVG F" << endl << endl;

 // Loop through the task list and display their debug information.
 for (uint8_t index = 0; index < COSCHEDULER_FREE_TASK_LIST; index++)
 {
 // Save a pointer to the current task.
 task_pointer = task_debug_list.read (index);

 // Print the task debugging information if a task exists at the buffer
 // location and increment the task count.
 if (task_pointer)
 {
 *p_serial << " " << (index + 1) << " "
 << task_pointer->p_name << " "
 << task_pointer->run_number << " "
 << task_pointer->avg_time << " "
 << task_pointer->avg_freq << endl;
 }
 }

 // Check if an idle task exists.
 if (idle_task_control.p_task)
 {
 *p_serial << " Idle "
 << idle_task_control.p_task->p_name << " "
 << idle_task_control.p_task->run_number << " "
 << idle_task_control.p_task->avg_time << " "
 << idle_task_control.p_task->avg_freq << endl;
 }

 // Reset the debug flag and send one more endline character.
 scheduler_debug.task_debug = false;
 *p_serial << endl;
 }

 //
 /** @brief Task state report.
 * @details This method prints the current state of each task queued in
 * the scheduler for debugging.
 */
 void coscheduler :: taskStateReport (void)
 {

175

 // Declare a task pointer to avoid multiple calls of debug_list.read ().
 task_base *task_pointer;

 // First create a header for the state report.
 *p_serial << endl << " TASK STATE REPORT" << endl << endl;
 *p_serial << " TASK | NAME | STATE | TRANSITIONS" << endl << endl;

 // Loop through the task list and display their state information.
 for (uint8_t index = 0; index < COSCHEDULER_FREE_TASK_LIST; index++)
 {
 // Save a pointer to the current task.
 task_pointer = task_debug_list.read (index);

 // Print the task debugging information if a task exists at the buffer
 // location and increment the task count.
 if (task_pointer)
 {
 *p_serial << " " << (index + 1) << " "
 << task_pointer->p_name << " "
 << task_pointer->state << " "
 << task_pointer->transition_number << endl;
 }
 }

 // Check if an idle task exists at the end of the queue.
 if (idle_task_control.p_task)
 {
 *p_serial << " Idle "
 << idle_task_control.p_task->p_name << " "
 << idle_task_control.p_task->state << " "
 << idle_task_control.p_task->transition_number << endl;
 }

 // Reset the state flag and send one more endline character.
 scheduler_debug.task_state = false;
 *p_serial << endl;
 }

 //
 /** @brief Share debug report.
 * @details This method prints a debug report of all the shares through
 * the serial port.
 */
 void coscheduler :: shareDebugReport (void)
 {
 // Declare a queue pointer to avoid multiple calls of queue_list.read ().
 share_base *share_pointer;

 // First create a header for the state report.
 *p_serial << endl << " SHARE DEBUG REPORT" << endl << endl;
 *p_serial << " SHARE | NAME | SENDS | RETRIEVES" << endl << endl;

 // Loop through the queue list and display their debug information.
 for (uint8_t index = 0; index < COSCHEDULER_SHARE_LIST; index++)
 {
 // Save a pointer to the current task.
 share_pointer = share_debug_list.read (index);

 // Print the task debugging information if a task exists at the buffer
 // location and increment the task count.
 if (share_pointer)
 {
 *p_serial << " " << (index + 1) << " "
 << share_pointer->p_name << " "
 << share_pointer->send_number << " "
 << share_pointer->retrieve_number << endl;
 }
 }

 // Reset the state flag and send one more endline character.
 scheduler_debug.share_debug = false;
 *p_serial << endl;
 }

 //
 /** @brief Queue debug report.
 * @details This method prints a debug report of all the queues through
 * the serial port.
 */
 void coscheduler :: queueDebugReport (void)
 {
 // Declare a queue pointer to avoid multiple calls of queue_list.read ().
 queue_base *queue_pointer;

 // First create a header for the state report.
 *p_serial << endl << " QUEUE DEBUG REPORT" << endl << endl;
 *p_serial << " QUEUE | NAME | CAP | PUSHES | PULLS" << endl << endl;

 // Loop through the queue list and display their debug information.
 for (uint8_t index = 0; index < COSCHEDULER_QUEUE_LIST; index++)

176

 {
 // Save a pointer to the current task.
 queue_pointer = queue_debug_list.read (index);

 // Print the task debugging information if a task exists at the buffer
 // location and increment the task count.
 if (queue_pointer)
 {
 *p_serial << " " << (index + 1) << " "
 << queue_pointer->p_name << " "
 << queue_pointer->capacity () << " "
 << queue_pointer->push_number << " "
 << queue_pointer->pull_number << endl;
 }
 }

 // Reset the state flag and send one more endline character.
 scheduler_debug.queue_debug = false;
 *p_serial << endl;
 }
#endif /* TASK_DEBUG */

177

/***/
/** @file task_base.h
 * @brief Base task class header file.
 *
 * @details This class is used as a base class to higher-level user-
 * defined task classes so that each task can use the variables and
 * methods defined here. It is also used so that a cooperative or
 * preemptive scheduler can save pointers to each task, have access to
 * the timing and debugging members defined here, and call the virtual
 * methods initialize () and run () that will be defined in the derived
 * task classes.
 *
 * Contributors:
 * - Zach Wilson 12/9/2018 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 12/9/2018 - initial release.
 *
 * Created: 12/9/2018 12:33:47 AM
 */
/**/

#ifndef TASK_BASE_H_
#define TASK_BASE_H_

/* Included files. */
#include <avr/io.h>
#include "defines.h"
#include "serial_port.h"
#include "stack.h"

//
/** Forward declaration of coscheduler class so the task base class can
 * declare the coscheduler a friend.
 */
class coscheduler;

//
/** Forward declaration of share base class so the task base class can
 * declare the share base class a friend.
 */
class share_base;

//
/** Forward declaration of queue base class so the task base class can
 * declare the task base class a friend.
 */
class queue_base;

//
/** Declare the external store string method defined in string.h for
 * storing the desired task name.
 */
extern void storeString (const char *, char *);

//
/** Definition of the global flag struct. This struct may be used in lieu
 * of declaring a share for a simple global boolean.
 */
typedef struct
{
 /** Read HX711 flag. Setting this flag will cause the HX711 task to
 * begin reading data from the HX711.
 */
 bool read_HX711;

 /** Read static data flag. Setting this flag will cause the AD7708 task
 * to begin reading static data at a specified frequency.
 */
 bool read_static_AD7708;

 /** Read dynamic data flag. Setting this flag will cause the AD7708 task to
 * begin reading data from the AD7708 at a specified frequency.
 */
 bool read_dynamic_AD7708;

 /** Read static data flag. Setting this flag will cause the ADC task to begin
 * taking static data.
 */
 bool read_static_ADC;

 /** Read dynamic data flag. Setting this flag will cause the ADC task to begin
 * taking readings from the ADC interface.
 */
 bool read_dynamic_ADC;

 /** Saving data flag. This flag is set when the microSD task is saving dynamic
 * data so the user interface task doesn't prematurely ask the user to enter
 * another command.
 */

178

 bool saving_dynamic_data;

 /** Data acquisition mode. This flag indicates if the device is in static or
 * dynamic data acquisition mode (static == false, dynamic == true).
 */
 bool daq_mode;

 /** Data acquisition method. This flag indicates if the device is collecting
 * data from the AD7708 or the on-board ADC interface (AD7708 == false,
 * ADC == true).
 */
 bool daq_method;
} GLOBAL_FLAG_STRUCT_t;

//
/** @brief Base task class.
 * @details This class defines a base class for a task to be implemented
 * in a finite-state-machine style program in a cooperative multitasking
 * environment.
 */
class task_base
{
 /** Declare the scheduler as a friend so the scheduler can access
 * the task state.
 */
 friend class coscheduler;

 /** Declare the share base class as a friend so the share base
 * constructor can add shares to the share list.
 */
 friend class share_base;

 /** Declare the queue base class as a friend so the queue base
 * constructor can add queues to the queue list.
 */
 friend class queue_base;

 private:
 /** 32-bit storage for program time at which to run next iteration.
 */
 uint32_t next_time;

 /** 8-bit storage for program time at which to run next iteration.
 * This is used for debugging only.
 */
 uint8_t next_time_8bit;

 /** 8-bit storage for storing the most recent task start/end time.
 * This is used for debugging only.
 */
 uint8_t task_time;

 protected:
 /** Pointer to a serial port object.
 */
 stream_base *p_serial;

 /** C-style string for task name.
 */
 char name [11];

 /** Task state variable that defines the current state of the
 * finite-state-machine.
 */
 uint8_t state;

 /** Share list. Share base pointers are added to this list when
 * a share object is instantiated. Tasks can use this list to
 * save pointers to the shares they need access to. Shares are
 * added to this list in the order in which they are
 * instantiated.
 */
 static list <share_base *, COSCHEDULER_SHARE_LIST> share_list;

 /** Queue list. Queue base pointers are added to this list when
 * a queue object is instantiated. Tasks can use this list to save
 * pointers to the queues they need access to. Queues are added to
 * this list in the order in which they are instantiated.
 */
 static list <queue_base *, COSCHEDULER_QUEUE_LIST> queue_list;

 /** This struct contains global flags that can be read/altered in
 * any task if there is a need for one task to cause another to
 * transition based on events such as user commands.
 */
 static GLOBAL_FLAG_STRUCT_t global_flags;

 /** @brief Default constructor of Task class.
 * @details This constructor creates an instance of the task
 * class. It should only be called by the constructor of a
 * derived class and nothing else. Priority and timing for each

179

 * task is assigned here. The IDLE keyword should be used to
 * assign the idle task.
 * @param serial Pointer to a serial port object.
 * @param task_name Pointer to the task name string.
 * @param _priority Priority at which to schedule the task.
 * @param _timing Timing at which to run the task.
 */
 task_base (serial_port *, const char *, uint8_t, uint8_t);

 /** @brief State transition method.
 * @details This method causes the task to transition to a
 * specified state on the next iteration and increments the
 * number of transitions of the task.
 * @param new_state Specified state to transition to at next
 * iteration.
 */
 inline void transition_to (uint8_t);

 /** @brief Delay task.
 * @details This method causes the task to sleep until its next
 * run time. This should only be used in a preemptive environment.
 */
 void delay_task (void);

 /** @brief Raise task debug flag.
 * @details This function raises the task debug report flag to
 * run a task debug report from the scheduler. It should be
 * called from a user- interface style-task in which commands are
 * received through a serial port.
 */
 void runDebugReport (void);

 /** @brief Raise task state flag.
 * @details This function raises the task state report flag to
 * run a task state report from the scheduler. It should be
 * called from a user-interface style-task in which commands are
 * received through a serial port.
 */
 void runStateReport (void);

 /** @brief Raise share debug flag.
 * @details This function raises the share debug report flag to
 * run a share debug report from the scheduler. It should be
 * called from a user-interface style-task in which commands are
 * received through a serial port.
 */
 void runShareReport (void);

 /** @brief Raise queue debug flag.
 * @details This function raises the queue debug report flag to
 * run a queue debug report from the scheduler. It should be
 * called from a user-interface style-task in which commands are
 * received through a serial port.
 */
 void runQueueReport (void);

 public:
 /** Pointer to a string for the task name.
 */
 const char *p_name;

 /** 8-bit storage for task frequency.
 */
 uint8_t timing;

 /** 8-bit storage for task priority.
 */
 uint8_t priority;

 /** 8-bit storage for average task time.
 */
 uint8_t avg_time;

 /** 8-bit storage for average task frequency.
 */
 uint8_t avg_freq;

 /** 32-bit storage for number of task runs.
 */
 uint32_t run_number;

 /** 32-bit storage for number of transitions between states.
 */
 uint16_t transition_number;

 /** 8-bit storage for the total number of existing tasks in
 * memory.
 */
 static uint8_t task_count;

 /** @brief Ready status.
 * @details This method returns a boolean indicating if the

180

 * task is ready to run based on the current program time.
 */
 inline bool ready (void);

 /** @brief Begin task.
 * @details This method stores the task start time. It also
 * stores the run time of the task, average task timing, and
 * average task run frequency. This method should only be used
 * if debugging information is desired.
 */
 inline void begin (void);

 /** @brief Set next task time.
 * @details This method should be the first thing called in the
 * task to set the next time at which to run the task.
 */
 inline void set_next_time (void);

 /** @brief End task.
 * @details This method stores the task end time and sets
 * the next run time for the task. It also stores the run time
 * of the task, average task timing, and average task run
 * frequency. Also increments the task run number by one. This
 * method should only be implemented if debugging information
 * is desired.
 */
 inline void end (void);

 /** Virtual method to be implemented in a derived class.
 */
 virtual void initialize (void);

 /** Virtual method to be implemented in a derived class.
 */
 virtual void run (void);
};

/* Co-scheduler, share and queue files included here so the compiler
 knows what members exist in these classes. */
#include "coscheduler.h"
#include "share_base.h"
#include "queue_base.h"

//
/** @brief Ready status.
 * @details This method returns a boolean indicating if the task is ready
 * to run based on the current program time.
 */
inline bool task_base :: ready (void)
{
 return clock.millis_32 () >= next_time;
}

//
/** @brief Begin task.
 * @details This method stores the task start time. It also stores the
 * run time of the task, average task timing, and average task run
 * frequency. This method should only be used if debugging information is
 * desired.
 */
inline void task_base :: begin (void)
{
 // Store task time and average run frequency for debugging.
 task_time = clock.millis_8 ();

 // Increment task run number by one.
 run_number++;

 // Calculate average task run frequency.
 task_time >= next_time_8bit ? avg_freq += task_time - next_time_8bit + timing
 : avg_freq = next_time_8bit - (255 - task_time) + timing;
 avg_freq /= 2;
}

//
/** @brief Set next task time.
 * @details This method should be the first thing called in the task to
 * set the next time at which to run the task.
 */
inline void task_base :: set_next_time (void)
{
 // Add desired time interval to next time.
 next_time += timing;
 next_time_8bit += timing;
}

//

181

/** @brief End task.
 * @details This method stores the task end time and stores the run time
 * of the task, average task timing, and average task run frequency.
 * Also increments the task run number by one. This method should only be
 * implemented if debugging information is desired.
 */
inline void task_base :: end (void)
{
 // Store task end time for debugging.
 clock.millis_8 () >= task_time ? task_time = clock.millis_8 () - task_time
 : task_time = task_time - (255 - clock.millis_8 ());

 // Calculate average task time.
 avg_time += task_time;
 avg_time /= 2;
}

//
/** @brief State transition method.
 * @details This method causes the task to transition to a specified
 * state on the next iteration and increments the number of transitions
 * of the task.
 * @param new_state Specified state to transition to at next iteration.
 */
inline void task_base :: transition_to (uint8_t new_state)
{
 state = new_state;
 transition_number++;
}

#endif /* TASK_BASE_H_ */

182

/***/
/** @file task.cpp
 * @brief Main class file.
 *
 * Contributors:
 * - Zach Wilson 12/9/2018 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 12/9/2018 - initial release.
 *
 * Created: 12/9/2018 12:33:47 AM
 */
/**/

/* Included files. */
#include "task_base.h"

//
/** 8-bit storage for the total number of existing tasks in memory.
 */
uint8_t task_base :: task_count;

//
/** Share list. Share base pointers are added to this list when a share
 * object is instantiated. Tasks can use this list to save pointers to
 * the shares they need access to. Shares are added to this list in the
 * order in which they are instantiated.
 */
list <share_base *, COSCHEDULER_SHARE_LIST> task_base :: share_list;

//
/** Queue list. Queue base pointers are added to this list when a queue
 * object is instantiated. Tasks can use this list to save pointers to
 * the queues they need access to. Queues are added to this list in the
 * order in which they are instantiated.
 */
list <queue_base *, COSCHEDULER_QUEUE_LIST> task_base :: queue_list;

//
/** This struct contains global flags that can be read/altered in any task
 * if there is a need for one task to cause another to transition based
 * on events such as user commands.
 */
GLOBAL_FLAG_STRUCT_t task_base :: global_flags;

//
/** @brief Default constructor of Task class.
 * @details This constructor creates an instance of the task class. It
 * should only be called by the constructor of a derived class and
 * nothing else. Priority and timing for each task is assigned here. The
 * IDLE keyword should be used to assign the idle task.
 * @param serial Pointer to a serial port object.
 * @param task_name Pointer to the task name string.
 * @param _priority Priority at which to schedule the task.
 * @param _timing Timing at which to run the task.
 */
task_base :: task_base (serial_port *serial, const char *task_name, uint8_t _priority, uint8_t _timing)
{
 p_serial = serial;
 p_name = &name [0];
 priority = _priority;
 timing = _timing;
 avg_freq = _timing;
 next_time = 0;
 next_time_8bit = 0;
 storeString (task_name, &name [0]);

 // Add the task to the scheduler.
 if (priority == IDLE)
 {
 // Store as the idle task.
 coscheduler :: idle_task_control.p_task = this;
 coscheduler :: idle_task_control.p_next_block = NULL;
 coscheduler :: idle_task_control.status = FREE;
 }
 else
 {
 // Store as a regular task.
 coscheduler :: task_control [coscheduler :: task_number].p_task = this;
 coscheduler :: task_control [coscheduler :: task_number].status = FREE;
 coscheduler :: task_debug_list.add (this);
 coscheduler :: task_number++;
 }

 // Keep count of how many tasks have been instantiated.
 task_count++;
}

//

183

/** Virtual method to be implemented in a derived class.
 */
void task_base :: initialize (void) {}

//
/** Virtual method to be implemented in a derived class.
 */
void task_base :: run (void) {}

//
/** @brief Delay task.
 * @details This method causes the task to sleep until its next run time.
 * This should only be used in a preemptive environment.
 */
void task_base :: delay_task (void)
{
 for (;;)
 {
 if (clock.millis_32 () >= next_time) return;
 }
}

//
/** @brief Raise task debug flag.
 * @details This function raises the task debug report flag to run a
 * task debug report from the scheduler. It should be called from a user-
 * interface style-task in which commands are received through a serial
 * port.
 */
void task_base :: runDebugReport (void)
{
 coscheduler :: scheduler_debug.task_debug = true;
}

//
/** @brief Raise task state flag.
 * @details This function raises the task state report flag to run a
 * task state report from the scheduler. It should be called from a user-
 * interface style-task in which commands are received through a serial
 * port.
 */
void task_base :: runStateReport (void)
{
 coscheduler :: scheduler_debug.task_state = true;
}

//
/** @brief Raise share debug flag.
 * @details This function raises the share debug report flag to run a
 * share debug report from the scheduler. It should be called from a user-
 * interface style-task in which commands are received through a serial
 * port.
 */
void task_base :: runShareReport (void)
{
 coscheduler :: scheduler_debug.share_debug = true;
}

//
/** @brief Raise queue debug flag.
 * @details This function raises the queue debug report flag to run a
 * queue debug report from the scheduler. It should be called from a user-
 * interface style-task in which commands are received through a serial
 * port.
 */
void task_base :: runQueueReport (void)
{
 coscheduler :: scheduler_debug.queue_debug = true;
}

184

/***/
/** @file share.h
 * @brief Share class header file.
 *
 * @details This class provides an abstract share data structure
 * template for data transfer between tasks. It adds an abstraction
 * layer by inheriting members from the share base class.
 *
 *
 * Contributors:
 * - Zach Wilson 1/28/2019 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 1/28/2019 - initial release.
 *
 * Created: 1/28/2019 5:18:07 PM
 */
/***/

#ifndef SHARE_H_
#define SHARE_H_

/* Included files. */
#include <avr/io.h>
#include "defines.h"
#include "semaphore.h"
#include "share_base.h"

//
/** @brief Abstract share class.
 * @details This class provides an abstract share data structure template
 * for data transfer between tasks. It adds an abstraction layer by
 * inheriting members from the share base class. Shares should be
 * instantiated before tasks so the tasks can save pointers to each
 * share.
 */
template <class Type>
class share : public share_base
{
 private:
 /** Storage for the share.
 */
 Type storage;

 public:
 /** @brief Default constructor.
 * @details This constructor does nothing but pass a pointer
 * to a serial port and a pointer to the share name to the
 * base constructor.
 * @param serial Pointer to a serial port.
 * @param name Pointer to the share name.
 */
 share (stream_base *, const char *);

 /** @brief Initialize the share.
 * @details This method indicates over the serial port that the
 * object was instantiated successfully. It should only be called
 * by the scheduler to confirm that the share pointer is saved in
 * the scheduler.
 */
 void initialize (void);

 /** @brief Send to share.
 * @details This method stores a value in the share and increments
 * the send number variable. If the share class is in debug mode,
 * an indication is sent to the serial port.
 * @param value Value to be stored in the share.
 */
 inline void send (Type);

 /** @brief Retrieve share.
 * @details This method retrieves the stored value in the share and
 * increments the retrieve number variable. If the share class is in
 * debug mode, an indication is sent to the serial port.
 * @return Value that is stored in the share.
 */
 inline Type retrieve (void);
};

//
/** @brief Default constructor.
 * @details This constructor does nothing but pass a pointer to a serial
 * port and a pointer to the share name to the base constructor.
 * @param serial Pointer to a serial port.
 * @param name Pointer to the share name.
 */
template <class Type>
share <Type> :: share (stream_base *serial, const char *name)
 : share_base (serial, name) {}

185

//
/** @brief Initialize the share.
 * @details This method indicates over the serial port that the object
 * was instantiated successfully. It should only be called by the
 * scheduler to confirm that the share pointer is saved in the scheduler.
 */
template <class Type>
void share <Type> :: initialize (void)
{
 *p_serial << p_name << " share initialized." << endl;
}

//
/** @brief Send to share.
 * @details This method stores a value in the share and increments the
 * send number variable. If the share class is in debug mode, an
 * indication is sent to the serial port.
 * @param value Value to be stored in the share.
 */
template <class Type>
inline void share <Type> :: send (Type value)
{
 storage = value;
 send_number++;

 // Print an indication to the serial port.
 #ifdef SHARE_DEBUG
 *p_serial << "Sent " << value << " to the " << p_name << " share." << endl;
 #endif
}

//
/** @brief Retrieve share.
 * @details This method retrieves the stored value in the share and
 * increments the retrieve number variable. If the share class is in
 * debug mode, an indication is sent to the serial port.
 * @return Value that is stored in the share.
 */
template <class Type>
inline Type share <Type> :: retrieve (void)
{
 // Print an indication to the serial port.
 #ifdef SHARE_DEBUG
 *p_serial << "Retrieved " << storage << " from the " << p_name << " share." << endl;
 #endif

 retrieve_number++;
 return storage;
}

#endif /* SHARE_H_ */

186

/***/
/** @file share_base.h
 * @brief Base share class header file.
 *
 * @details This class provides a base class for a generic share class.
 * This class will make it possible for the scheduler class to save
 * pointers to the share even though each share could store data of a
 * different type.
 *
 *
 * Contributors:
 * - Zach Wilson 1/28/2019 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 1/28/2019 - initial release.
 *
 * Created: 1/28/2019 5:01:44 PM
 */
/***/

#ifndef SHARE_BASE_H_
#define SHARE_BASE_H_

/* Included files. */
#include <avr/io.h>
#include "serial_port.h"

//
/** Forward declaration of coscheduler class so the share base constructor
 * can add shares to the scheduler list.
 */
class coscheduler;

//
/** Declare the external store string method defined in string.h for
 * storing the desired task name.
 */
extern void storeString (const char *, char *);

//
/** @brief Base share class.
 * @details This class provides a base class for a generic share class.
 * This class will make it possible for the scheduler class to save
 * pointers to the share even though each share could store data of a
 * different type.
 */
class share_base
{
 protected:
 /** Pointer to a serial port object.
 */
 stream_base *p_serial;

 /** C-style string for the share name.
 */
 char name [11];

 public:
 /** Pointer to a string for storing the share name.
 */
 const char *p_name;

 /** Count storing how many share objects have been instantiated.
 */
 static uint8_t share_count;

 /** Number of sends to the share.
 */
 uint32_t send_number;

 /** Number of retrieves from the share.
 */
 uint32_t retrieve_number;

 /** @brief Default constructor.
 * @details This constructor stores the share name and a pointer
 * to a serial port for debugging.
 * @param Pointer to a serial port object.
 * @param Pointer to the share name.
 */
 share_base (stream_base *, const char *);

 /** Virtual method to be implemented in a derived class.
 */
 virtual void initialize (void);
};

/* Co-scheduler file included here so the compiler
 knows what members exist in the coscheduler class. */

187

#include "coscheduler.h"

#endif /* SHARE_BASE_H_ */

188

/***/
/** @file share_base.h
 * @brief Main class file.
 *
 *
 * Contributors:
 * - Zach Wilson 1/28/2019 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 1/28/2019 - initial release.
 *
 * Created: 1/28/2019 5:01:44 PM
 */
/***/

/* Included files. */
#include "share_base.h"

//
/** Count storing how many share objects have been instantiated.
 */
uint8_t share_base :: share_count;

//
/** @brief Default constructor.
 * @details This constructor stores the share name and a pointer to a
 * serial port for debugging. It also places the share pointer in the
 * share list belonging to the scheduler.
 * @param Pointer to a serial port object.
 * @param Pointer to the share name.
 */
share_base :: share_base (stream_base *serial, const char *share_name)
{
 p_serial = serial;
 p_name = &name [0];
 share_count++;
 storeString (share_name, &name [0]);

 // Add the object's pointer to all task and scheduler lists.
 coscheduler :: share_debug_list.add (this);
 task_base :: share_list.add (this);
}

//
/** Virtual method to be implemented in a derived class.
 */
void share_base :: initialize (void) {}

189

/***/
/** @file queue.h
 * @brief Queue class header file.
 *
 * @details This class provides an abstract queue data structure
 * template for data transfer between tasks. It adds an abstraction
 * layer by inheriting members from the circular buffer class and the
 * queue base class.
 *
 *
 * Contributors:
 * - Zach Wilson 1/27/2019 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 1/27/2019 - initial release.
 *
 * Created: 1/27/2019 9:32:22 PM
 */
/***/

#ifndef QUEUE_H_
#define QUEUE_H_

/* Included files. */
#include <avr/io.h>
#include "defines.h"
#include "semaphore.h"
#include "circular_buffer.h"
#include "queue_base.h"

//
/** @brief Abstract queue class.
 * @details This class provides an abstract queue data structure template
 * for data transfer between tasks. It adds an abstraction layer by
 * inheriting members from the circular buffer class and the queue base
 * class. Queues must be instantiated before tasks so the tasks can save
 * pointers to the queues.
 */
template <class Type, uint16_t q_size>
class queue : public queue_base, public circular_buffer <Type, q_size>
{
 public:
 /** @brief Default Constructor.
 * @details This constructor does nothing but pass a pointer to
 * a serial port, a pointer to the queue name, and the desired
 * queue size to the base constructors.
 * @param serial Pointer to a serial port.
 * @param name Pointer to the queue name.
 */
 queue (stream_base *, const char *);

 /** @brief Initialize the queue.
 * @details This method indicates over the serial port that the
 * object was instantiated successfully. It should only be called
 * by the scheduler to confirm that the queue pointer is saved in
 * the scheduler.
 */
 void initialize (void);

 /** @brief Queue capacity.
 * @details This method reports the current number of values stored
 * in the queue.
 * @return Number of values stored in the queue.
 */
 inline uint16_t capacity (void);

 /** @brief Push to queue.
 * @details This method pushes a value onto the queue and increments
 * the push number variable. If the queue class is in debug mode, an
 * indication is sent to the serial port.
 * @param value Value to be pushed to the queue.
 * @return Boolean indicating if the push was successful (true == success).
 */
 bool push (Type);

 /** @brief Pull from queue.
 * @details This method pulls a value from the queue and increments
 * the pull number variable. If the queue class is in debug mode, an
 * indication is sent to the serial port.
 * @param pointer Pointer to the memory location to place the pulled value.
 * @return Boolean indicating if the pull was successful (true == success).
 */
 bool pull (Type *);

 /** @brief Pull from queue.
 * @details This method pulls a value from the queue and increments
 * the pull number variable. If the queue class is in debug mode, an
 * indication is sent to the serial port.
 * @param value Reference to the variable to place the pulled value.
 * @return Boolean indicating if the pull was successful (true == success).

190

 */
 bool pull (Type &);

 /** @brief Pull from queue.
 * @details This method pulls a value from the queue and increments
 * the pull number variable. If the queue class is in debug mode, an
 * indication is sent to the serial port.
 * @return Value pulled from the queue.
 */
 Type pull (void);
};

//
/** @brief Default Constructor.
 * @details This constructor does nothing but instantiate the object and
 * pass a pointer to a serial port, a pointer to the queue name, and the
 * desired queue size to the base constructors.
 * @param serial Pointer to a serial port.
 * @param name Pointer to the queue name.
 */
template <class Type, uint16_t q_size>
queue <Type, q_size> :: queue (stream_base *serial, const char *name)
 : queue_base (serial, name), circular_buffer <Type, q_size> () {}

//
/** @brief Initialize the queue.
 * @details This method indicates over the serial port that the object
 * was instantiated successfully. It should only be called by the
 * scheduler to confirm that the queue pointer is saved in the scheduler.
 */
template <class Type, uint16_t q_size>
void queue <Type, q_size> :: initialize (void)
{
 *p_serial << p_name << " queue initialized." << endl;
}

//
/** @brief Queue capacity.
 * @details This method reports the current number of values stored in
 * the queue.
 * @return Number of values stored in the queue.
 */
template <class Type, uint16_t q_size>
inline uint16_t queue <Type, q_size> :: capacity (void)
{
 return this->buf_capacity ();
}

//
/** @brief Push to queue.
 * @details This method pushes a value onto the queue and increments the
 * push number variable. If the queue is in debug mode, an indication is
 * sent to the serial port.
 * @param value Value to be pushed to the queue.
 */
template <class Type, uint16_t q_size>
bool queue <Type, q_size> :: push (Type value)
{
 // Do not push the value if the queue is full.
 if (this->full ())
 {
 #ifdef QUEUE_DEBUG
 *p_serial << p_name << " queue overloaded." << endl;
 #endif
 return false;
 }

 // Push the value onto the circular buffer and increment the push number
 // variable.
 this->push_data (value);
 push_number++;

 // Print the pushed value to the serial port.
 #ifdef QUEUE_DEBUG
 *p_serial << "Pushed " << value << " to " << p_name << " queue." << endl;
 #endif

 // If we reach this code then the push was successful.
 return true;
}

//
/** @brief Pull from queue.
 * @details This method pulls a value from the queue and increments the
 * pull number variable. If the queue is in debug mode, an indication is
 * sent to the serial port.
 * @param pointer Pointer to the memory location to place the pulled value.

191

 */
template <class Type, uint16_t q_size>
bool queue <Type, q_size> :: pull (Type *pointer)
{
 // Do not pull a value if the queue is empty.
 if (this->empty ())
 {
 #ifdef QUEUE_DEBUG
 *p_serial << p_name << " queue empty." << endl;
 #endif
 return false;
 }

 // Pull a value from the circular buffer to the pointer location and
 // increment the pull number variable.
 *pointer = this->pull_data ();
 pull_number++;

 // Print the pulled value to the serial port.
 #ifdef QUEUE_DEBUG
 *p_serial << "Pulled " << *pointer << " from " << p_name << " queue." << endl;
 #endif

 // If we reach this code then the pull was successful.
 return true;
}

//
/** @brief Pull from queue.
 * @details This method pulls a value from the queue and increments the
 * pull number variable. If the queue is in debug mode, an indication is
 * sent to the serial port.
 * @param value Reference to the variable to place the pulled value.
 */
template <class Type, uint16_t q_size>
bool queue <Type, q_size> :: pull (Type &value)
{
 // Do not pull a value if the queue is empty.
 if (this->empty ())
 {
 #ifdef QUEUE_DEBUG
 *p_serial << p_name << " queue empty." << endl;
 #endif
 return false;
 }

 // Pull a value from the circular buffer and increment the pull number
 // variable.
 value = this->pull_data ();
 pull_number++;

 // Print the pulled value to the serial port.
 #ifdef QUEUE_DEBUG
 *p_serial << "Pulled " << value << " from " << p_name << " queue." << endl;
 #endif

 // If we reach this code then the pull was successful.
 return true;
}

/** @brief Pull from queue.
 * @details This method pulls a value from the queue and increments
 * the pull number variable. If the queue class is in debug mode, an
 * indication is sent to the serial port.
 * @return Value pulled from the queue.
 */
template <class Type, uint16_t q_size>
Type queue <Type, q_size> :: pull (void)
{
 // Do not pull a value if the queue is empty.
 if (this->empty ())
 {
 #ifdef QUEUE_DEBUG
 *p_serial << p_name << " queue empty." << endl;
 #endif
 return NULL;
 }

 // Pull a value from the circular buffer and increment the pull number
 // variable.
 Type value = this->pull_data ();
 pull_number++;

 // Print the pulled value to the serial port.
 #ifdef QUEUE_DEBUG
 *p_serial << "Pulled " << value << " from " << p_name << " queue." << endl;
 #endif

 // Return the pulled value.
 return value;

192

}

#endif /* QUEUE_H_ */

193

/***/
/** @file queue_base.h
 * @brief Base queue class header file.
 *
 * @details This class provides a base class for a generic queue class.
 * This class will make it possible for the scheduler class to save
 * pointers to the queues even though each queue could store data of a
 * different type.
 *
 *
 * Contributors:
 * - Zach Wilson 1/27/2019 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 1/27/2019 - initial release.
 *
 * Created: 1/27/2019 4:29:42 PM
 */
/***/

#ifndef QUEUE_BASE_H_
#define QUEUE_BASE_H_

/* Included files. */
#include <avr/io.h>
#include "serial_port.h"

//
/** Forward declaration of coscheduler class so the queue base constructor
 * can add queues to the scheduler lists.
 */
class coscheduler;

//
/** Declare the external store string method defined in string.h for
 * storing the desired task name.
 */
extern void storeString (const char *, char *);

//
/** @brief Base queue class.
 * @details This base class allows the scheduler to store pointers to
 * multiple types of queues and to call methods for printing debugging
 * information during debug reports.
 */
class queue_base
{
 protected:
 /** Pointer to a serial port object.
 */
 stream_base *p_serial;

 /** C-style string for queue name.
 */
 char name [11];

 public:
 /** Pointer to a string for storing the queue name.
 */
 const char *p_name;

 /** Count storing how many queue objects have been instantiated.
 */
 static uint8_t queue_count;

 /** Number of pushes to the queue.
 */
 uint32_t push_number;

 /** Number of pulls from the queue.
 */
 uint32_t pull_number;

 /** @brief Default constructor.
 * @details This constructor stores the queue name and a pointer
 * to a serial port for debugging.
 * @param serial Pointer to a serial port object.
 * @param queue_name Pointer to the queue name.
 */
 queue_base (stream_base *, const char *);

 /** Virtual method to be implemented in a derived class.
 */
 virtual void initialize (void);

 /** Virtual method to be implemented in a derived class.
 */
 virtual uint16_t capacity (void);
};

194

/* Co-scheduler file included here so the compiler
 knows what members exist in the coscheduler class. */
#include "coscheduler.h"

#endif /* QUEUE_BASE_H_ */

195

/***/
/** @file queue_base.cpp
 * @brief Main class file.
 *
 *
 * Contributors:
 * - Zach Wilson 1/27/2019 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 1/27/2019 - initial release.
 *
 * Created: 1/27/2019 4:49:10 PM
 */
/***/

/* Included files. */
#include "queue_base.h"

//
/** Count storing how many queue objects have been instantiated.
 */
uint8_t queue_base :: queue_count;

//
/** @brief Default constructor.
 * @details This constructor stores the queue name and a pointer to a
 * serial port for debugging and initializes all variables.
 * @param serial Pointer to a serial port object.
 * @param queue_name Pointer to the queue name.
 */
queue_base :: queue_base (stream_base *serial, const char *queue_name)
{
 p_serial = serial;
 p_name = &name [0];
 push_number = 0;
 pull_number = 0;
 queue_count++;
 storeString (queue_name, &name [0]);

 // Add the object's pointer to all task and scheduler lists.
 coscheduler :: queue_debug_list.add (this);
 task_base :: queue_list.add (this);
}

//
/** Virtual method to be implemented in a derived class.
 */
void queue_base :: initialize (void) {}

//
/** Virtual method to be implemented in a derived class.
 */
uint16_t queue_base :: capacity (void)
{
 return 0;
}

196

I. DYNAMIC DATA ACQUISITION SYSTEM DERIVED TASK C++ FILES

/***/
/** @file task_AD7708.h
 * @brief Class header file.
 *
 * @details This class defines a task that requests and retrieves data
 * from the AD7708 analog-to-digital converter and stores the data in a
 * queue.
 *
 * Contributors:
 * - Zach Wilson 3/16/2019 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 3/16/2019 - initial release.
 *
 * Created: 3/16/2019 10:33:53 AM
 */
/**/

#ifndef TASK_AD7708_H_
#define TASK_AD7708_H_

/* Included files. */
#include "serial_port.h"
#include "task_base.h"
#include "share.h"
#include "queue.h"
#include "AD7708.h"

//
/** Active channel on the AD7708 device based on the values layed out in
 * the datasheet.
 */
#define ACTIVE_CHANNEL 0b10110000

//
/** @brief AD7708 control task.
 * @details This class defines a task that requests and retrieves data
 * from the AD7708 analog-to-digital converter and stores the data in a
 * queue.
 */
class task_AD7708 : public task_base
{
 private:
 /** Enumeration defining the task states.
 */
 typedef enum TASK_AD7708_STATES
 {
 /** State 0. Make sure the AD7708 is initialized and
 * disabled and transition to state 1.
 */
 INIT = 0,

 /** State 1. Wait until either the static or dynamic flag is
 * raised and transition to state 2 or state 3.
 */
 HUB,

 /** State 2. Request a reading from the device and then transition
 * to state 3. If the static flag is lowered from the user interface
 * task, transition back to state 1.
 */
 READ_STATIC,

 /** State 3. Increment the count variable until it is time to
 * transition back to state 2 to request another reading.
 */
 WAIT,

 /** State 4. Retrieve the data acquired in the ISRs and send it to
 * the dynamic queue. Stop and transition to state 1 when the queue
 * is full.
 */
 READING_DYNAMIC,

 /** Dead state if something goes wrong during task execution.
 */
 DEAD,
 } TASK_AD7708_STATES_t;

 /** Count for controlling when the task reads static data.
 */
 uint16_t count;

 /** Pointer to a share for the data acquisition frequency.

197

 */
 share <uint16_t> *acq_freq_share;

 /** Pointer to the static strain queue for sending data from the
 * ADC and AD7708 tasks to the microSD task.
 */
 queue <uint16_t, 10> *p_queue_static;

 /** Pointer to the dynamic strain queue for sending data from the
 * ADC and AD7708 tasks to the microSD task.
 */
 queue <uint16_t, 1000> *p_queue_dynamic;

 public:
 /** @brief Default constructor.
 * @details This constructor does nothing but pass the pointer to
 * the serial port to the base task constructor and saves share and
 * queue pointers by reading them from the share and queue lists and
 * statically casting them into the desired type.
 * @param serial Pointer to a serial port.
 * @param name Pointer to a string of the task name.
 * @param priority Priority at which to schedule the task.
 * @param timing Timing at which to run the task.
 */
 task_AD7708 (serial_port *, const char *, uint8_t, uint16_t);

 /** @brief Initialize task.
 * @details This method initializes the task by initializing all
 * task variables and starting the task in state 0.
 */
 void initialize (void);

 /** @brief Run task.
 * @details This method runs one iteration of the finite-state-machine
 * of the task.
 * - state 0: INIT - Make sure the AD7708 is initialized and
 * disabled and transition to state 1.
 * - state 1: HUB - Wait until either the static or dynamic flag is
 * raised and transition to state 2 or state 3.
 * - state 2: READ_STATIC - Request a reading from the device and then
 * transition to state 3. If the static flag is lowered from the user
 * interface task, transition back to state 1.
 * - state 3: WAIT - Increment the count variable until it is time to
 * transition back to state 2 to request another reading.
 * - state 4: READING_DYNAMIC -Retrieve the data acquired in the ISRs and
 * send it to the dynamic queue. Stop and transition to state 1 when
 * the queue is full.
 */
 void run (void);
};

#endif /* TASK_AD7708_H_ */

198

/***/
/** @file task_AD7708.cpp
 * @brief Main class file.
 *
 *
 * Contributors:
 * - Zach Wilson 3/16/2019 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 3/16/2019 - initial release.
 *
 * Created: 3/16/2019 10:33:53 AM
 */
/**/

/* Included files. */
#include "task_AD7708.h"

//
/** @brief Default constructor.
 * @details This constructor does nothing but pass the pointer to the
 * serial port to the base task constructor and saves share and queue
 * pointers by reading them from the share and queue lists and statically
 * casting them into the desired type.
 * @param serial Pointer to a serial port.
 * @param name Pointer to a string of the task name.
 * @param priority Priority at which to schedule the task.
 * @param timing Timing at which to run the task.
 */
task_AD7708 :: task_AD7708 (serial_port *serial, const char *name, uint8_t priority, uint16_t timing)
 : task_base (serial, name, priority, timing)
{
 // Save and statically cast share and queue pointers from the
 // scheduler lists.
 acq_freq_share = static_cast <share <uint16_t> *> (share_list.read (1));
 p_queue_static = static_cast <queue <uint16_t, 10> *> (queue_list.read (0));
 p_queue_dynamic = static_cast <queue <uint16_t, 1000> *> (queue_list.read (1));
}

//
/** @brief Initialize task.
 * @details This method initializes the task by initializing all task
 * variables and starting the task in state 0.
 */
void task_AD7708 :: initialize (void)
{
 // Initialize the task variables.
 count = 0;

 // Indicate through serial port that the task initialized
 // successfully.
 #ifdef TASK_DEBUG
 *p_serial << p_name << " task initialized." << endl;
 #endif

 // Set the state variable to state 0.
 transition_to (INIT);
}

//
/** @brief Run task.
 * @details This method runs one iteration of the finite-state-machine
 * of the task.
 * - state 0: INIT - Make sure the AD7708 is initialized and
 * disabled and transition to state 1.
 * - state 1: HUB - Wait until either the static or dynamic flag is
 * raised and transition to state 2 or state 3.
 * - state 2: READ_STATIC - Request a reading from the device and
 * then transition to state 3. If the static flag is lowered from
 * the user interface task, transition back to state 1.
 * - state 3: WAIT - Increment the count variable until it is time to
 * transition back to state 2 to request another reading.
 * - state 4: READING_DYNAMIC -Retrieve the data acquired in the ISRs
 * and send it to the dynamic queue. Stop and transition to state
 * 1 when the queue is full.
 */
void task_AD7708 :: run (void)
{
 // Set the next time so the task will run again.
 set_next_time ();

 // Finite-state-machine. This switch statement determines which state
 // to run based on the current value of the state variable.
 switch (state)
 {
 /* State 0. */
 case INIT:
 // Initialize the device and call the enable method so the device

199

 // locks on to the 32kHz crystal. Then disable the device.
 adc_amp.initialize (p_serial);
 adc_amp.enable () ? *p_serial << "AD7708 locked on to external oscillator and enabled." << endl
 : *p_serial << "AD7708 could not lock on to external oscillator." << endl;
 adc_amp.disable ();

 // Transition to state 1.
 transition_to (HUB);
 break;
 /* State 1. */
 case HUB:
 // Check if the user interface task has raised the read static
 // flag.
 if (global_flags.read_static_AD7708)
 {
 // Enable and calibrate the proper channel of the device and
 // begin data acquisition and transition to state 2. Also make
 // sure the queue is empty and turn on the LED.
 p_queue_static->flush_buffer ();
 adc_amp.enable ();
 adc_amp.select_channel (ACTIVE_CHANNEL);
 adc_amp.calibrate ();

 // Delay for a few hundred milliseconds to give the device time
 // to warm up.
 clock.delay_ms (300);
 *p_serial << "Acquiring data." << endl << endl;
 PORTB.OUT |= AD7708_LED;
 transition_to (READ_STATIC);
 break;
 }
 // Check if the user interface task has raised the read dynamic
 // flag.
 else if (global_flags.read_dynamic_AD7708)
 {
 // Enable and calibrate the proper channel of the device and
 // begin data acquisition and transition to state 4. Also make
 // sure the queue is empty and turn on the LED.
 p_queue_dynamic->flush_buffer ();
 adc_amp.enable ();
 adc_amp.select_channel (ACTIVE_CHANNEL);
 adc_amp.calibrate ();

 // Delay for a few hundred milliseconds to give the device time
 // to warm up.
 clock.delay_ms (300);
 adc_amp.acquire_data (1);
 *p_serial << "Acquiring data." << endl;
 PORTB.OUT |= AD7708_LED;
 transition_to (READING_DYNAMIC);
 break;
 }
 break;
 /* State 2. */
 case READ_STATIC:
 // Check to see if the static flag is lowered. If it is, transition
 // back to state 1.
 if (!global_flags.read_static_AD7708)
 {
 adc_amp.disable ();
 PORTB.OUT &= ~AD7708_LED;
 transition_to (HUB);
 break;
 }

 // Request a reading from the device and transition to state 3.
 adc_amp.request ();
 transition_to (WAIT);
 break;
 /* State 3. */
 case WAIT:
 // If data is available from the device, push it to the static queue.
 while (adc_amp.data_available ()) p_queue_static->push (adc_amp.retrieve ());

 // Poll the static flag to see if we are still reading data. If the
 // flag is low, disable the device and transition to state 1.
 if (!global_flags.read_static_AD7708)
 {
 adc_amp.disable ();
 PORTB.OUT &= ~AD7708_LED;
 transition_to (HUB);
 break;
 }

 // Increment the count variable until it is time to transition back to
 // state 2 to request another reading.
 count++;
 if (count >= (acq_freq_share->retrieve () / timing))
 {
 count = 0;
 transition_to (READ_STATIC);
 break;

200

 }
 break;
 /* State 4. */
 case READING_DYNAMIC:
 // Check to see if the read flag has been lowered or if the queue
 // is full.
 if (p_queue_dynamic->full ())
 {
 // Disable the device and transition to state 1.
 adc_amp.stop_data ();
 adc_amp.disable ();
 global_flags.read_dynamic_AD7708 = false;
 *p_serial << "Data acquired." << endl;
 PORTB.OUT &= ~AD7708_LED;
 transition_to (HUB);
 break;
 }
 // Push all readings from the device to the queue.
 while (adc_amp.data_available ()) p_queue_dynamic->push (adc_amp.retrieve ());
 break;
 /* Dead state. */
 case DEAD:
 break;
 /* Undefined State. */
 default:
 // Default state just in case the task enters an undefined state.
 #ifdef TASK_DEBUG
 *p_serial << p_name << " task entered undefined state!" << endl;
 #endif

 // Send task to a dead state where no code is executed.
 transition_to (DEAD);
 break;
 };
}

201

/***/
/** @file task_ADC.h
 * @brief Class header file.
 *
 * @details This class defines a task that requests and retrieves data
 * from the ADC interface and pushes it to a data queue.
 *
 * Contributors:
 * - Zach Wilson 3/15/2019 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 3/15/2019 - initial release.
 *
 * Created: 3/15/2019 9:55:40 PM
 */
/**/

#ifndef TASK_ADC_H_
#define TASK_ADC_H_

/* Included files. */
#include "serial_port.h"
#include "task_base.h"
#include "share.h"
#include "queue.h"
#include "ADC.h"

//
/** @brief ADC Interface task.
 * @details This class defines a task that requests and retrieves data
 * from the ADC interface and pushes it to a data queue. The data is
 * acquired via an ISR at a precise frequency using a timer.
 */
class task_ADC : public task_base
{
 private:
 /** Enumeration defining the task states.
 */
 typedef enum TASK_ADC_STATES
 {
 /** State 0. Make sure the ADC interface is initialized and
 * disabled and transition to state 1.
 */
 INIT = 0,

 /** State 1. Wait until either the static or dynamic flag is
 * raised and transition to state 2 or state 3.
 */
 HUB,

 /** State 2. Request a reading from the interface and then
 * transition to state 3. If the static flag is lowered from
 * the user interface task, transition back to state 1.
 */
 READ_STATIC,

 /** State 3. Increment the count variable until it is time to
 * transition back to state 2 to request another reading.
 */
 WAIT,

 /** State 4. Retrieve the data acquired in the ISRs and push it
 * to the dynamic queue. Stop and transition to state 1 when the
 * queue is full.
 */
 READING_DYNAMIC,

 /** Dead state if something goes wrong during task execution.
 */
 DEAD,
 } TASK_ADC_STATES_t;

 /** Count for controlling when the task reads static data.
 */
 uint16_t count;

 /** Pointer to a share for the data acquisition frequency.
 */
 share <uint16_t> *acq_freq_share;

 /** Pointer to the static strain queue for sending data from the
 * ADC and AD7708 tasks to the microSD task.
 */
 queue <uint16_t, 10> *p_queue_static;

 /** Pointer to the dynamic strain queue for sending data from the
 * ADC and AD7708 tasks to the microSD task.
 */
 queue <uint16_t, 1000> *p_queue_dynamic;

202

 public:
 /** @brief Default constructor.
 * @details This constructor does nothing but pass the pointer to
 * the serial port to the base task constructor and saves share and
 * queue pointers by reading them from the share and queue lists and
 * statically casting them into the desired type.
 * @param serial Pointer to a serial port.
 * @param name Pointer to a string of the task name.
 * @param priority Priority at which to schedule the task.
 * @param timing Timing at which to run the task.
 */
 task_ADC (serial_port *, const char *, uint8_t, uint16_t);

 /** @brief Initialize task.
 * @details This method initializes the task by initializing all
 * task variables and starting the task in state 0.
 */
 void initialize (void);

 /** @brief Run task.
 * @details This method runs one iteration of the finite-state-machine
 * of the task.
 * - state 0: INIT - Make sure the ADC interface is initialized and
 * disabled and transition to state 1.
 * - state 1: HUB - Wait until either the static or dynamic flag is
 * raised and transition to state 2 or state 3.
 * - state 2: READ_STATIC - Request a reading from the interface and
 * then transition to state 3. If the static flag is lowered from
 * the user interface task, transition back to state 1.
 * - state 3: WAIT - Increment the count variable until it is time to
 * transition back to state 2 to request another reading.
 * - state 4: READING_DYNAMIC - Retrieve the data acquired in the ISRs
 * and push it to the dynamic queue. Stop and transition to state
 * 1 when the queue is full.
 */
 void run (void);
};

#endif /* TASK_ADC_H_ */

203

/***/
/** @file task_ADC.cpp
 * @brief Main class file.
 *
 *
 * Contributors:
 * - Zach Wilson 3/15/2019 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 3/15/2019 - initial release.
 *
 * Created: 3/15/2019 10:06:13 PM
 */
/**/

/* Included files. */
#include "task_ADC.h"

//
/** @brief Default constructor.
 * @details This constructor does nothing but pass the pointer to the
 * serial port to the base task constructor and saves share and queue
 * pointers by reading them from the share and queue lists and statically
 * casting them into the desired type.
 * @param serial Pointer to a serial port.
 * @param name Pointer to a string of the task name.
 * @param priority Priority at which to schedule the task.
 * @param timing Timing at which to run the task.
 */
task_ADC :: task_ADC (serial_port *serial, const char *name, uint8_t priority, uint16_t timing)
 : task_base (serial, name, priority, timing)
{
 // Save and statically cast share and queue pointers from the
 // scheduler lists.
 acq_freq_share = static_cast <share <uint16_t> *> (share_list.read (1));
 p_queue_static = static_cast <queue <uint16_t, 10> *> (queue_list.read (0));
 p_queue_dynamic = static_cast <queue <uint16_t, 1000> *> (queue_list.read (1));
}

//
/** @brief Initialize task.
 * @details This method initializes the task by initializing all task
 * variables and starting the task in state 0.
 */
void task_ADC :: initialize (void)
{
 // Initialize the task variables.
 count = 0;

 // Indicate through serial port that the task initialized
 // successfully.
 #ifdef TASK_DEBUG
 *p_serial << p_name << " task initialized." << endl;
 #endif

 // Set the state variable to state 0.
 transition_to (INIT);
}

//
/** @brief Run task.
 * @details This method runs one iteration of the finite-state-machine
 * of the task.
 * - state 0: INIT - Make sure the ADC interface is initialized and
 * disabled and transition to state 1.
 * - state 1: HUB - Wait until either the static or dynamic flag is
 * raised and transition to state 2 or state 3.
 * - state 2: READ_STATIC - Request a reading from the interface and
 * then transition to state 3. If the static flag is lowered from
 * the user interface task, transition back to state 1.
 * - state 3: WAIT - Increment the count variable until it is time to
 * transition back to state 2 to request another reading.
 * - state 4: READING_DYNAMIC - Retrieve the data acquired in the ISRs
 * and push it to the dynamic queue. Stop and transition to state
 * 1 when the queue is full.
 */
void task_ADC :: run (void)
{
 // Set the next time so the task will run again.
 set_next_time ();

 // Finite-state-machine. This switch statement determines which state
 // to run based on the current value of the state variable.
 switch (state)
 {
 /* State 0. */
 case INIT:
 // Initialize and tie all ADC channels to the proper pins on

204

 // PORTA and make sure it is disabled.
 ADC.initialize (p_serial);
 ADC.channel0.tie_pin (PIN3_bm);
 ADC.channel1.tie_pin (PIN5_bm);
 ADC.channel2.tie_pin (PIN6_bm);
 ADC.channel3.tie_pin (PIN7_bm);
 ADC.disable ();

 // Initialize the pin that controls the wheatstone bridges low
 // so they don't consume any power while the ADC is disabled.
 PORTA.OUT &= ~EXCITE_PIN;
 PORTA.DIR |= EXCITE_PIN;

 // Transition to state 1.
 transition_to (HUB);
 break;
 /* State 1. */
 case HUB:
 // Check if the user interface task has raised the read static
 // flag.
 if (global_flags.read_static_ADC)
 {
 // Enable and calibrate the proper channel of the device and
 // begin data acquisition and transition to state 2. Also make
 // sure the queue is empty and turn on the LED.
 p_queue_static->flush_buffer ();
 ADC.enable ();
 *p_serial << "Acquiring data." << endl << endl;
 PORTB.OUT |= ADC_LED;
 transition_to (READ_STATIC);
 break;
 }
 // Check if the user interface task has raised the read dynamic data
 // flag.
 else if (global_flags.read_dynamic_ADC)
 {
 // Enable the ADC interface, assert the pin that controls the
 // wheatstone bridges, and begin data acquisition at 1kHz.
 // Transition to state 2.
 *p_serial << "Acquiring data." << endl;
 PORTA.OUT |= EXCITE_PIN;
 p_queue_dynamic->flush_buffer ();
 ADC.enable ();
 ADC.acquire_data (ADC_CHANNEL_0, 1);
 PORTB.OUT |= ADC_LED;
 transition_to (READING_DYNAMIC);
 break;
 }
 break;
 /* State 2. */
 case READ_STATIC:
 // Check to see if the static flag is lowered. If it is, transition
 // back to state 1.
 if (!global_flags.read_static_ADC)
 {
 ADC.disable ();
 PORTB.OUT &= ~ADC_LED;
 transition_to (HUB);
 break;
 }

 // Request a reading from the interface and transition to state 3.
 ADC.channel0.request ();
 transition_to (WAIT);
 break;
 /* State 3. */
 case WAIT:
 // If data is available from the interface, push it to the static queue.
 while (ADC.channel0.check_buf ()) p_queue_static->push (ADC.channel0.retrieve ());

 // Poll the static flag to see if we are still reading data. If the
 // flag is low, disable the device and transition to state 1.
 if (!global_flags.read_static_ADC)
 {
 ADC.disable ();
 PORTB.OUT &= ~ADC_LED;
 transition_to (HUB);
 break;
 }

 // Increment the count variable until it is time to transition back to
 // state 2 to request another reading.
 count++;
 if (count >= (acq_freq_share->retrieve () / timing))
 {
 count = 0;
 transition_to (READ_STATIC);
 break;
 }
 break;
 /* State 4. */
 case READING_DYNAMIC:

205

 // Check to see if the read flag has been lowered or if the queue
 // is full.
 if (p_queue_dynamic->full ())
 {
 // Disable the interface and wheatstone bridges and transition
 // to state 1.
 ADC.stop_data ();
 PORTA.OUT &= ~EXCITE_PIN;
 ADC.disable ();
 *p_serial << "Data acquired." << endl;
 global_flags.read_dynamic_ADC = false;
 PORTB.OUT &= ~ADC_LED;
 transition_to (HUB);
 break;
 }
 // Push all readings from the ADC to the queue.
 while (ADC.channel0.check_buf ()) p_queue_dynamic->push (ADC.channel0.retrieve ());
 break;
 /* Dead state. */
 case DEAD:
 break;
 /* Undefined State. */
 default:
 // Default state just in case the task enters an undefined state.
 #ifdef TASK_DEBUG
 *p_serial << p_name << " task entered undefined state!" << endl;
 #endif

 // Send task to a dead state where no code is executed.
 transition_to (DEAD);
 break;
 };
}

206

/***/
/** @file task_microSD.h
 * @brief Class header file.
 *
 * @details This class defines a task that stores strain data read from
 * the AD7708 analog-to-digital converter or the ADC interface on the
 * Atxmega128a4u microcontroller.
 *
 * Contributors:
 * - Zach Wilson 2/24/2019 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 2/24/2019 - initial release.
 *
 * Created: 2/24/2019 1:51:03 PM
 */
/**/

#ifndef TASK_MICROSD_H_
#define TASK_MICROSD_H_

/* Included files. */
#include "serial_port.h"
#include "task_base.h"
#include "share.h"
#include "queue.h"
#include "microSD.h"

//
/** Define for the filename the data will be saved in on the microSD card.
 */
#define FILE_NAME "test.txt"

//
/** @brief MicroSD task.
 * @details This class defines a task that stores strain data read from
 * the HX711 amplifier or ADC conversion pins on the Atxmega128a4u
 * microcontroller.
 */
class task_microSD : public task_base
{
 private:
 /** Enumeration defining the task states.
 */
 typedef enum TASK_MICROSD_STATES
 {
 /** State 0. Initialize the driver and create a file. Close
 * the file and transition to state 1. If no SD card is
 * inserted, transition to state 5.
 */
 INIT = 0,

 /** State 1. Wait until the user inputs the operation they wish
 * to perform. Transition to state 2 or 3 depending on which
 * flag is raised.
 */
 HUB,

 /** State 2. Save the static data acquired by the AD7708. Once the
 * static flag is lowered, transition back to state 1.
 */
 SAVE_STATIC,

 /** State 3. Wait until the dynamic queue is full and then
 * transition to state 4 to begin saving the data in the queue.
 */
 WAIT,

 /** State 4. Save ten blocks of data for each task run until the
 * queue is empty. Then transition back to state 1.
 */
 SAVE_DYNAMIC,

 /** State 5. Wait until an SD card is detected and then transition
 * back to state 0 to initialize the card.
 */
 NO_SD,

 /** Dead state if something goes wrong during task execution.
 */
 DEAD,
 } TASK_MICROSD_STATES_t;

 /** Pointer to a microSD object for saving data.
 */
 microSD *p_microSD;

 /** Count for timestamping data.
 */
 uint16_t count;

207

 /** Pointer to a share for the data acquisition frequency.
 */
 share <uint16_t> *acq_freq_share;

 /** Pointer to the static strain queue for sending data from the
 * ADC and AD7708 tasks to the microSD task.
 */
 queue <uint16_t, 10> *p_queue_static;

 /** Pointer to the dynamic strain queue for sending data from the
 * ADC and AD7708 tasks to the microSD task.
 */
 queue <uint16_t, 1000> *p_queue_dynamic;

 public:
 /** @brief Default constructor.
 * @details This constructor does nothing but pass the pointer to
 * the serial port to the base task constructor and saves share and
 * queue pointers by reading them from the share and queue lists and
 * statically casting them into the desired type.
 * @param serial Pointer to a serial port.
 * @param name Pointer to a string of the task name.
 * @param priority Priority at which to schedule the task.
 * @param timing Timing at which to run the task.
 * @param _microSD Pointer to a microSD object for saving data.
 */
 task_microSD (serial_port *, const char *, uint8_t, uint8_t, microSD *);

 /** @brief Initialize task.
 * @details This method initializes the task by initializing all
 * task variables and starting the task in state 0.
 */
 void initialize (void);

 /** @brief Run task.
 * @details This method runs one iteration of the finite-state-
 * machine of the task.
 * - state 0: INIT - Initialize the driver and create a file. Close
 * the file and transition to state 1. If no SD card is
 * inserted, transition to state 5.
 * - state 1: HUB - Wait until the user inputs the operation they wish
 * to perform. Transition to state 2 or 3 depending on which
 * flag is raised.
 * - state 2: SAVE_STATIC - Open and save the static data acquired by
 * the AD7708. Once the flag is lowered, transition back to state 1.
 * - state 3: WAIT - Wait until the dynamic queue is full and then
 * transition to state 4 to begin saving the data in the queue.
 * - state 4: SAVE_DYNAMIC - Save ten blocks of data for each task run
 * until the queue is empty. Then transition back to state 1.
 * - state 5: NO_SD - Wait until an SD card is detected and then transition
 * back to state 0 to initialize the card.
 */
 void run (void);
};

#endif /* TASK_MICROSD_H_ */

208

/***/
/** @file task_microSD.cpp
 * @brief Main class file.
 *
 *
 * Contributors:
 * - Zach Wilson 2/24/2019 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 2/24/2019 - initial release.
 *
 * Created: 2/24/2019 2:34:35 PM
 */
/**/

/* Included files. */
#include "task_microSD.h"

//
/** @brief Default constructor.
 * @details This constructor does nothing but pass the pointer to the
 * serial port to the base task constructor and saves share and queue
 * pointers by reading them from the share and queue lists and statically
 * casting them into the desired type.
 * @param serial Pointer to a serial port.
 * @param name Pointer to a string of the task name.
 * @param priority Priority at which to schedule the task.
 * @param timing Timing at which to run the task.
 * @param _microSD Pointer to a microSD object for saving data.
 */
task_microSD :: task_microSD (serial_port *serial, const char *name, uint8_t priority, uint8_t timing, microSD *_microSD)
 : task_base (serial, name, priority, timing)
{
 p_microSD = _microSD;

 // Save and statically cast share and queue pointers from the
 // scheduler lists.
 acq_freq_share = static_cast <share <uint16_t> *> (share_list.read (1));
 p_queue_static = static_cast <queue <uint16_t, 10> *> (queue_list.read (0));
 p_queue_dynamic = static_cast <queue <uint16_t, 1000> *> (queue_list.read (1));
}

//
/** @brief Initialize task.
 * @details This method initializes the task by initializing all task
 * variables and starting the task in state 0.
 */
void task_microSD :: initialize (void)
{
 // Initialize the task variables.

 // Indicate through serial port that the task initialized
 // successfully.
 #ifdef TASK_DEBUG
 *p_serial << p_name << " task initialized." << endl;
 #endif

 // Set the state variable to state 0.
 transition_to (INIT);
}

//
/** @brief Run task.
 * @details This method runs one iteration of the finite-state-
 * machine of the task.
 * - state 0: INIT - Initialize the driver and create a file. Close
 * the file and transition to state 1. If no SD card is
 * inserted, transition to state 5.
 * - state 1: HUB - Wait until the user inputs the operation they
 * wish to perform. Transition to state 2 or 3 depending on which
 * flag is raised.
 * - state 2: SAVE_STATIC - Open and save the static data acquired by
 * the AD7708. Once the flag is lowered, transition back to state
 * 1.
 * - state 3: WAIT - Wait until the dynamic queue is full and then
 * transition to state 4 to begin saving the data in the queue.
 * - state 4: SAVE_DYNAMIC - Save ten blocks of data for each task run
 * until the queue is empty. Then transition back to state 1.
 * - state 5: NO_SD - Wait until an SD card is detected and then
 * transition back to state 0 to initialize the card.
 */
void task_microSD :: run (void)
{
 // Set the next time so the task will run again.
 set_next_time ();

 // Finite-state-machine. This switch statement determines which state

209

 // to run based on the current value of the state variable.
 switch (state)
 {
 /* State 0. */
 case INIT:
 // If a card is not inserted, transition to state 5.
 if (!p_microSD->card_detect ())
 {
 *p_serial << "No SD card inserted." << endl;
 transition_to (NO_SD);
 break;
 }
 *p_serial << "SD card detected." << endl;

 // Initialize the SD card and filesystem and transition
 // to state 1.
 p_microSD->initialize ();
 p_microSD->mount ();
 if (p_microSD->create (FILE_NAME)) *p_serial << "Data file created." << endl;
 p_microSD->close ();
 transition_to (HUB);
 break;
 /* State 1. */
 case HUB:
 // Check to see if any flags are raised by the user interface
 // task and transition to the appropriate state and turn on
 // the LED.
 if (global_flags.read_static_AD7708 || global_flags.read_static_ADC)
 {
 count = 0;
 PORTB.OUT |= MICROSD_LED;
 p_microSD->open (FILE_NAME);
 *p_microSD << "Strain Reader/Logger V2." << endl << "Device: ";

 // Edit the header in the file to include the selected device.
 global_flags.daq_method ? *p_microSD << "ADC Interface" << endl
 : *p_microSD << "AD7708" << endl;

 *p_microSD << "Timestep (" << acq_freq_share->retrieve () << "ms),Voltage (bits)" << endl;
 p_microSD->close ();
 transition_to (SAVE_STATIC);
 break;
 }
 else if (global_flags.read_dynamic_AD7708 || global_flags.read_dynamic_ADC)
 {
 count = 0;
 transition_to (WAIT);
 break;
 }
 break;
 /* State 2. */
 case SAVE_STATIC:
 // If data exists in the static data queue, pull the data and save it to the file.
 if (!p_queue_static->empty ())
 {
 // Open the file and save every block of data in the queue.
 p_microSD->open (FILE_NAME);
 while (!p_queue_static->empty ())
 {
 *p_microSD << count++ << "," << p_queue_static->pull () << endl;
 }
 p_microSD->close ();
 break;
 }
 // Stop saving data and transition to state 1 if both flags are lowered.
 if (!global_flags.read_static_AD7708 && !global_flags.read_static_ADC)
 {
 PORTB.OUT &= ~MICROSD_LED;
 transition_to (HUB);
 break;
 }
 break;
 /* State 3. */
 case WAIT:
 // If the dynamic queue is full, transition to state 4 and open
 // the file to start saving the data.
 if (p_queue_dynamic->full () &&
 !global_flags.read_dynamic_AD7708 &&
 !global_flags.read_dynamic_ADC)
 {
 *p_serial << "Saving data." << endl;
 p_microSD->open (FILE_NAME);
 *p_microSD << "Strain Reader/Logger V2." << endl << "Device: ";

 // Edit the header in the file to include the selected device.
 global_flags.daq_method ? *p_microSD << "ADC Interface" << endl
 : *p_microSD << "AD7708" << endl;

 *p_microSD << "Timestep (" << acq_freq_share->retrieve () << "ms),Voltage (bits)" << endl;
 count = 0;
 global_flags.saving_dynamic_data = true;
 PORTB.OUT |= MICROSD_LED;

210

 transition_to (SAVE_DYNAMIC);
 break;
 }
 break;
 /* State 4. */
 case SAVE_DYNAMIC:
 // Check if data is available to save.
 if (!p_queue_dynamic->empty ())
 {
 // Try to save 10 blocks of data from the queue. If all values are pulled,
 // break the loop and transition to state 1.
 for (uint8_t index = 0; index < 10; index++)
 {
 *p_microSD << count++ << "," << p_queue_dynamic->pull () << endl;
 if (p_queue_dynamic->empty ())
 {
 p_microSD->close ();
 *p_serial << "Data saved." << endl << endl;
 global_flags.saving_dynamic_data = false;
 PORTB.OUT &= ~MICROSD_LED;
 transition_to (HUB);
 break;
 }
 }
 break;
 }
 else
 {
 // If we reach this code, then there are no more values to pull.
 // Close the file and transition to state 1.
 p_microSD->close ();
 *p_serial << "Data saved." << endl;
 global_flags.saving_dynamic_data = false;
 PORTB.OUT &= ~MICROSD_LED;
 transition_to (HUB);
 break;
 }
 break;
 /* State 5. */
 case NO_SD:
 // Check to see if an SD card has been inserted. If one has, transition
 // to state 0 to initialize the SD card.
 if (p_microSD->card_detect ()) transition_to (INIT);
 break;
 /* Dead state. */
 case DEAD:
 break;
 /* Undefined State. */
 default:
 // Default state just in case the task enters an undefined state.
 #ifdef TASK_DEBUG
 *p_serial << p_name << " task entered undefined state!" << endl;
 #endif

 // Send task to a dead state where no code is executed.
 transition_to (DEAD);
 break;
 };
}

211

/***/
/** @file task_led.h
 * @brief Class header file.
 *
 * @details This is a simple task class that just blinks an LED every
 * second.
 *
 * Contributors:
 * - Zach Wilson 2/5/2019 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 2/5/2019 - initial release.
 *
 * Created: 2/5/2019 5:28:04 PM
 */
/**/

#ifndef TASK_LED_H_
#define TASK_LED_H_

/* Included files. */
#include "serial_port.h"
#include "task_base.h"
#include "share.h"
#include "queue.h"

//
/** @brief LED task.
 * @details This task blinks an LED every second.
 */
class task_led : public task_base
{
 private:
 /** Enumeration defining the task states.
 */
 typedef enum TASK_LED_STATES
 {
 /** State 0. This state configures the LED pin to an output
 * and lowers the pin for initialization.
 */
 INIT = 0,

 /** State 1. This state increments a count variable until one
 * frequency goes by and then raises the LED pin.
 */
 LED_OFF,

 /** State 2. This state increments a count variable until one
 * frequency go by and then lowers the LED pin.
 */
 LED_ON,

 /** Dead state if something goes wrong during task execution.
 */
 DEAD,
 } TASK_LED_STATES_t;

 /** Pointer to a share for the LED blinking frequency.
 */
 share <uint16_t> *freq_share;

 /** Count variable to keep track of when to transition between the LED_ON and
 * LED_OFF states.
 */
 uint16_t count;

 public:
 /** @brief Default constructor.
 * @details This constructor does nothing but pass the pointer to
 * the serial port to the base task constructor and saves share and
 * queue pointers by reading them from the share and queue lists and
 * statically casting them into the desired type.
 * @param serial Pointer to a serial port.
 * @param name Pointer to a string of the task name.
 * @param priority Priority at which to schedule the task.
 * @param timing Timing at which to run the task.
 */
 task_led (serial_port *, const char *, uint8_t, uint8_t);

 /** @brief Initialize task.
 * @details This method initializes the task by initializing all
 * task variables and starting the task in state 0.
 */
 void initialize (void);

 /** @brief Run task.
 * @details This method runs one iteration of the finite-state-
 * machine of the task.
 * - state 0: INIT - This state configures the LED pin to an
 * output and lowers the pin for initialization.

212

 * - state 1: LED_OFF - This state increments a count variable
 * until one frequency goes by and then raises the LED pin.
 * - state 2: LED_ON - This state increments a count variable
 * until one frequency go by and then lowers the LED pin.
 */
 void run (void);
};

#endif /* TASK_LED_H_ */

213

/***/
/** @file task_led.cpp
 * @brief Main class file.
 *
 *
 * Contributors:
 * - Zach Wilson 1/8/2019 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 1/8/2019 - initial release.
 *
 * Created: 1/8/2019 5:32:08 PM
 */
/**/

/* Included files. */
#include "task_led.h"

//
/** @brief Default constructor.
 * @details This constructor does nothing but pass the pointer to the
 * serial port to the base task constructor and saves share and queue
 * pointers by reading them from the share and queue lists and statically
 * casting them into the desired type.
 * @param serial Pointer to a serial port.
 * @param name Pointer to a string of the task name.
 * @param priority Priority at which to schedule the task.
 * @param timing Timing at which to run the task.
 */
task_led :: task_led (serial_port *serial, const char *name, uint8_t priority, uint8_t timing)
 : task_base (serial, name, priority, timing)
{
 // Save and statically cast share and queue pointers from the
 // scheduler lists.
 freq_share = static_cast <share <uint16_t> *> (share_list.read (0));
}

//
/** @brief Initialize task.
 * @details This method initializes the task by initializing all task
 * variables and starting the task in state 0.
 */
void task_led :: initialize (void)
{
 // Initialize the task variables.
 count = 0;

 // Indicate through serial port that the task initialized
 // successfully.
 #ifdef TASK_DEBUG
 *p_serial << p_name << " task initialized." << endl;
 #endif

 // Set the state variable to state 0.
 transition_to (INIT);
}

//
/** @brief Run task.
 * @details This method runs one iteration of the finite-state-
 * machine of the task.
 * - state 0: INIT - This state configures the LED pin to an output
 * and lowers the pin for initialization.
 * - state 1: LED_OFF - This state increments a count variable until
 * 0.9 seconds goes by and then raises the LED pin.
 * - state 2: LED_ON - This state increments a count variable until
 * 0.1 seconds go by and then lowers the LED pin.
 */
void task_led :: run (void)
{
 // Set the next time so the task will run again.
 set_next_time ();

 // Finite-state-machine. This switch statement determines which state
 // to run based on the current value of the state variable.
 switch (state)
 {
 /* State 0. */
 case INIT:
 // Configure LED pins and initialize low.
 PORTB.DIR |= MICROSD_LED | AD7708_LED | ADC_LED | OTHER_LED;
 PORTB.OUT &= ~(MICROSD_LED | AD7708_LED | ADC_LED | OTHER_LED);

 // Transition to state 1.
 transition_to (LED_OFF);
 break;
 /* State 1. */
 case LED_OFF:

214

 count++;
 if (count >= (freq_share->retrieve () / timing))
 {
 PORTB.OUT |= OTHER_LED;
 count = 0;
 transition_to (LED_ON);
 break;
 }
 break;
 /* State 2. */
 case LED_ON:
 count++;
 if (count >= freq_share->retrieve () / timing)
 {
 PORTB.OUT &= ~OTHER_LED;
 count = 0;
 transition_to (LED_OFF);
 break;
 }
 break;
 /* Dead state. */
 case DEAD:
 break;
 /* Undefined State. */
 default:
 // Default state just in case the task enters an undefined state.
 #ifdef TASK_DEBUG
 *p_serial << p_name << " task entered undefined state!" << endl;
 #endif

 // Send task to a dead state where no code is executed.
 transition_to (DEAD);
 break;
 };
}

215

/***/
/** @file task_user.h
 * @brief User interface task header file.
 *
 * @details This is a task that serves as a user interface that stores
 * and decodes commands input by the user over a serial port.
 *
 * Contributors:
 * - Zach Wilson 12/16/2018 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 12/16/2018 - initial release.
 *
 * Created: 12/16/2018 9:51:37 PM
 */
/**/

#ifndef TASK_USER_H_
#define TASK_USER_H_

/* Included files. */
#include "serial_port.h"
#include "task_base.h"
#include "coscheduler.h"
#include "share.h"
#include "queue.h"

//
/** Defines the maximum command string length.
 */
#define USER_COMMAND_LENGTH 15

//
/** Declare the external string to integer conversion function defined
 * in string.h for use in converting inputs from the user.
 */
extern uint16_t stringToInt (char *);

//
/** @brief User interface task.
 * @details This is a task that provides an interface to the user through
 * the serial port for controlling the device.
 */
class task_user : public task_base
{
 private:
 /** Enumeration defining the task states.
 */
 typedef enum TASK_USER_STATES
 {
 /** State 0. Print to the serial port and transition to state
 * 1.
 */
 INIT = 0,

 /** State 1. Check if a character was received over the serial
 * port. Transition to state 2 if the character was ctrl+c.
 */
 HUB,

 /** State 2. Store characters received over the serial port
 * into a string for a command. Transition to state 3 when
 * the user hits 'enter' or to state 1 when the user hits
 * ctrl+c.
 */
 COMMAND_MODE,

 /** State 3. Decode the command string and carry out the
 * necessary action. Always transition to state 4.
 */
 DECODE,

 /** State 4. Waits until the scheduler is done printing debug
 * reports. Always transitions back to state 1.
 */
 WAIT,

 /** State 5. Prompt the user to enter a frequency. Convert the
 * entered number to a decimal and send it to the frequency
 * share. Transition back to state 1.
 */
 SELECT_FREQ,

 /** Dead state if something goes wrong during task execution.
 */
 DEAD
 } TASK_USER_STATES_t;

 /** Enumeration defining the possible the user can send through the

216

 * chosen serial port. These integers are the results of the
 * decode () command that decodes the string entered by the user.
 */
 typedef enum TASK_USER_COMMANDS
 {
 /** 'debug' command. This command causes a task debug report to
 * print to the serial port.
 */
 DEBUG_COMMAND = 1163,

 /** 'state' command. This command causes a task state report to
 * print to the serial port.
 */
 STATE_COMMAND = 1181,

 /** 'share' command. This command causes a share debug report to
 * print to the serial port.
 */
 SHARE_COMMAND = 1161,

 /** 'share' command. This command causes a queue debug report to
 * print to the serial port.
 */
 QUEUE_COMMAND = 1189,

 /** 'frequency' command. This command will send a prompt to the user
 * that asks for a new data acquisition frequency. The next
 * 16-bit number entered by the user will be the new frequency
 * of data acquisition in milliseconds.
 */
 FREQ_COMMAND = 4060,

 /** 'static' command. This command will cause the device to
 * switch to static data acquisition mode.
 */
 STATIC_COMMAND = 1696,

 /** 'dynamic' command. This command will cause the device to
 * switch to dynamic data acquisition mode.
 */
 DYNAMIC_COMMAND = 2292,

 /** 'start' command. This command will cause the device to start
 * taking data based on the current settings of the device.
 */
 START_COMMAND = 1232,

 /** 'stop' command. This command will cause the device to stop
 * taking static data.
 */
 STOP_COMMAND = 791,

 /** 'ADC' command. This command causes the device to select the
 * on-board ADC interface for reading strain.
 */
 ADC_COMMAND = 268,

 /** 'AD7708' command. This command causes the device to select the
 * AD7708 device for reading strain.
 */
 AD7708_COMMAND = 883,

 /** 'help' command. This command will print the available commands and
 * their descriptions to the serial port.
 */
 HELP_COMMAND = 884,
 } TASK_USER_COMMANDS_t;

 /** Pointer to a share for the LED blinking frequency.
 */
 share <uint16_t> *freq_share;

 /** Pointer to a share for the data acquisition frequency.
 */
 share <uint16_t> *acq_freq_share;

 /** Storage for the command string.
 */
 char command [USER_COMMAND_LENGTH];

 /** Number for storing the result of the decode function.
 */
 //uint16_t command_result;

 /** Pointer to the command string.
 */
 char *p_command;

 /** Pointer to the command string for decoding the command.
 */
 char *p_decode;

217

 /** Count for the number of iterations of the WAIT state.
 */
 uint8_t count;

 /** @brief Decode command.
 * @details This method decodes the command in the command string by
 * adding up the decimal values of each character and returning the
 * resulting number.
 * @return A unique 16-bit number corresponding to the command that
 * was entered by the user.
 */
 uint16_t decode (void);

 public:
 /** @brief Default constructor.
 * @details This constructor does nothing but pass the pointer to
 * the serial port to the base task constructor and saves share and
 * queue pointers by reading them from the share and queue lists and
 * statically casting them into the desired type.
 * @param serial Pointer to a serial port.
 * @param name Pointer to a string of the task name.
 * @param priority Priority at which to schedule the task.
 * @param timing Timing at which to run the task.
 */
 task_user (serial_port *, const char *, uint8_t, uint8_t);

 /** @brief Initialize task.
 * @details This method initializes the task by initializing all
 * task variables and starting the task in state 0.
 */
 void initialize (void);

 /** @brief Run task.
 * @details This method runs one iteration of the finite-state-
 * machine of the task.
 * - state 0: INIT - Print to the serial port and transition.
 * - state 1: HUB - Check if a character was received over the
 * serial port. Transition to state 2 if the character was
 * ctrl+c.
 * - state 2: COMMAND_MODE - Store characters received over the
 * serial port into a string for a command. Transition to
 * state 3 when the user hits 'enter' or to state 1 when the
 * user hits ctrl+c.
 * - state 3: DECODE - Decode the command string and carry out
 * the necessary action. Always transition to state 4.
 * - state 4: WAIT - Waits until the scheduler is done printing
 * debug reports. Always transitions back to state 1.
 * - state 5: SELECT_FREQ - Prompt the user to enter a frequency.
 * Convert the entered number to a decimal and send it to the
 * frequency share. Transition back to state 1.
 */
 void run (void);
};

#endif /* TASK_USER_H_ */

218

/***/
/** @file task_user.cpp
 * @brief User interface task main class file.
 *
 * Contributors:
 * - Zach Wilson 12/16/2018 <zawilson@calpoly.edu>
 *
 * ChangeLog:
 * - 12/16/2018 - initial release.
 *
 * Created: 12/16/2018 10:38:10 PM
 */
/**/

/* Included files. */
#include "task_user.h"

//
/** @brief Default constructor.
 * @details This constructor does nothing but pass the pointer to
 * the serial port to the base task constructor and saves share and
 * queue pointers by reading them from the share and queue lists and
 * statically casting them into the desired type.
 * @param serial Pointer to a serial port.
 * @param name Pointer to a string of the task name.
 * @param priority Priority at which to schedule the task.
 * @param timing Timing at which to run the task.
 */
task_user :: task_user (serial_port *serial, const char *name, uint8_t priority, uint8_t timing)
 : task_base (serial, name, priority, timing)
{
 // Save and statically cast share and queue pointers from the
 // scheduler lists.
 freq_share = static_cast <share <uint16_t> *> (share_list.read (0));
 acq_freq_share = static_cast <share <uint16_t> *> (share_list.read (1));
}

//
/** @brief Initialize task.
 * @details This method initializes the task by initializing all
 * task variables and starting the task in state 0.
 */
void task_user :: initialize (void)
{
 // Initialize the global flag struct.
 global_flags.read_HX711 = false;
 global_flags.read_static_AD7708 = false;
 global_flags.read_dynamic_AD7708 = false;
 global_flags.read_static_ADC = false;
 global_flags.read_dynamic_ADC = false;
 global_flags.saving_dynamic_data = false;
 global_flags.daq_mode = false;
 global_flags.daq_method = false;

 // Initialize the task variables.
 p_command = &command [0];
 p_decode = &command [0];
 //command_result = 0;

 // Indicate through serial port that the task initialized
 // successfully.
 #ifdef TASK_DEBUG
 *p_serial << p_name << " task initialized." << endl;
 #endif

 // Set the state variable to state 0.
 transition_to (INIT);
}

//
/** @brief Run task.
 * @details This method runs one iteration of the finite-state-
 * machine of the task.
 * - state 0: INIT - Print to the serial port and transition.
 * - state 1: HUB - Check if a character was received over the
 * serial port. Transition to state 2 if the character was
 * ctrl+c.
 * - state 2: COMMAND_MODE - Store characters received over the
 * serial port into a string for a command. Transition to
 * state 3 when the user hits 'enter' or to state 1 when the
 * user hits ctrl+c.
 * - state 3: DECODE - Decode the command string and carry out
 * the necessary action. Always transition to state 4.
 * - state 4: WAIT - Waits 5 runs to make sure the scheduler is
 * done printing debug reports. Always transitions back to
 * state 1.
 * - state 5: SELECT_FREQ - Prompt the user to enter a frequency.
 * Convert the entered number to a decimal and send it to the

219

 * frequency share. Transition back to state 1.
 */
void task_user :: run (void)
{
 // Set the next time so the task will run again.
 set_next_time ();

 // Finite-state-machine. This switch statement determines which state
 // to run based on the current value of the state variable.
 switch (state)
 {
 /* State 0. */
 case INIT:
 // Send intro for user interface and send a frequency of 500ms and 1000ms
 // to the frequency shares.
 *p_serial << endl << "Press ctrl+c to enter command mode." << endl << endl;
 freq_share->send (500);
 acq_freq_share->send (1000);

 // Transition to state 1.
 transition_to (HUB);
 break;
 /* State 1. */
 case HUB:
 // Check if a character has been received over the serial port.
 if (p_serial->check_buf ())
 {
 // If ctrl+c is received, transition to state 2 and indicate
 // that the program is in command mode.
 if (p_serial->get_char () == 0x03)
 {
 *p_serial << "Enter a command: ";
 transition_to (COMMAND_MODE);
 break;
 }
 }
 break;
 /* State 2. */
 case COMMAND_MODE:
 // Check if a character has been received over the serial port.
 if (p_serial->check_buf ())
 {
 // Pull the character that was received from the receive buffer and
 // store it on the stack.
 char character = p_serial->get_char ();

 // If ctrl+c was pressed, return to hub state and reset all command
 // variables.
 if (character == 0x03)
 {
 *p_serial << endl << endl << "Returned to hub state." << endl << endl
 << "Press ctrl+c to enter command mode." << endl << endl;
 p_command = &command [0];
 p_decode = &command [0];
 transition_to (HUB);
 break;
 }
 // Transition to state 3 if the user hits 'enter', indicating that the
 // command string is finished.
 else if (character == 0x0D)
 {
 *p_serial << endl;
 transition_to (DECODE);
 break;
 }
 // Ignore unwanted characters. Pick up another character at the next
 // task run.
 else if (character <= 0x1F) break;

 // Decrement the command pointer if the character was a delete.
 else if (character == 0x7F)
 {
 // Only decrement and print the character if there are characters
 // to delete from the command string.
 if (p_command <= &command [0]) break;
 p_command--;

 // Echo the character.
 *p_serial << character;
 break;
 }
 // Store the character in the command string.
 else if (p_command <= &command [USER_COMMAND_LENGTH - 1])
 {
 *p_command = character;
 p_command++;

 // Echo the character.
 *p_serial << character;
 break;
 }
 }

220

 break;
 /* State 3. */
 case DECODE:
 // This bracket resolves the scope of the command_result stack variable.
 {
 // Decode the command and store the result on the stack.
 uint16_t command_result = decode ();
 //*p_serial << command_result; // Print the result of the decode for debugging.

 // Determine which command was entered and take the appropriate action.
 switch (command_result)
 {
 case START_COMMAND: // 'start' command.
 // Raise the appropriate flag to start acquiring data based on
 // the current settings.
 if (global_flags.daq_method)
 {
 global_flags.daq_mode ? global_flags.read_dynamic_ADC = true
 : global_flags.read_static_ADC = true;
 }
 else
 {
 global_flags.daq_mode ? global_flags.read_dynamic_AD7708 = true
 : global_flags.read_static_AD7708 = true;
 }

 // Transition to state 4.
 transition_to (WAIT);
 break;
 case STATIC_COMMAND: // 'static' command.
 // Raise the global read static strain flag to signal to the
 // AD7708 task to begin gathering data.
 global_flags.daq_mode = false;
 *p_serial << "Set data acquisition mode to static." << endl << endl;

 // Transition to state 1.
 transition_to (HUB);
 break;
 case DYNAMIC_COMMAND: // 'dynamic' command.
 // Raise the global read dynamic strain flag to signal to the
 // ADC task to begin gathering data.
 global_flags.daq_mode = true;
 *p_serial << "Set data acquisition mode to dynamic." << endl << endl;

 // Transition to state 1.
 transition_to (HUB);
 break;
 case STOP_COMMAND: // 'stop' command.
 // Lower both read static flags to signal to the tasks to
 // stop acquiring data.
 global_flags.read_static_AD7708 = false;
 global_flags.read_static_ADC = false;
 *p_serial << "Stopped acquiring data." << endl << endl;
 transition_to (WAIT);
 break;
 case FREQ_COMMAND: // 'frequency' command.
 // Prompt the user to enter the desired data acquisition frequency.
 *p_serial << endl << "Enter a frequency between 0 - 65,535 (ms): ";

 // Reset the character pointers and transition to state 5.
 p_command = &command [0];
 p_decode = &command [0];
 transition_to (SELECT_FREQ);
 break;
 case ADC_COMMAND: // 'ADC' command.
 // Raise the global device selection flag to select the ADC interface
 // for reading data.
 global_flags.daq_method = true;
 *p_serial << "Selected ADC interface for acquiring data." << endl << endl;

 // Transition to state 1.
 transition_to (HUB);
 break;
 case AD7708_COMMAND: // 'AD7708' command.
 // Lower the global device selection flag to select the AD7708 device
 // for reading data.
 global_flags.daq_method = false;
 *p_serial << "Selected AD7708 for acquiring data." << endl << endl;

 // Transition to state 1.
 transition_to (HUB);
 break;
 case DEBUG_COMMAND: // 'debug' command.
 // Raise the task debug report flag to run a task debug
 // report from the scheduler.
 runDebugReport ();
 transition_to (WAIT);
 break;
 case STATE_COMMAND: // 'state' command.
 // Raise the task state report flag to run a task state
 // report from the scheduler.
 runStateReport ();

221

 transition_to (WAIT);
 break;
 case SHARE_COMMAND: // 'share' command.
 // Raise the share debug report flag to run a share debug
 // report from the scheduler.
 runShareReport ();
 transition_to (WAIT);
 break;
 case QUEUE_COMMAND: // 'queue' command.
 // Raise the queue debug report flag to run a queue debug
 // report from the scheduler.
 runQueueReport ();
 transition_to (WAIT);
 break;
 case HELP_COMMAND: // 'help' command.
 // Print the names and descriptions of all available commands.
 /*
 *p_serial << "Command List:" << endl
 << " 'start': Start data acquisition based on current device settings." << endl
 << " 'static': Selects static mode of data acquisition. (1Hz)." << endl
 << " 'dynamic': Selects Dynamic mode of data acquisition. (100Hz - 1000Hz)." << endl
 << " 'stop': Stops static data acquisition." << endl
 << " 'frequency': Prompts user to enter a frequency between 0 and 65,535 ms." << endl
 << " 'ADC': Selects the on-board ADC as the mode of data acquisition." << endl
 << " 'AD7708': Selects the external AD7708 device for data acquisition." << endl
 << " 'debug': Runs a task debug report." << endl
 << " 'state': Runs a task state report." << endl
 << " 'share': Runs a share debug report." << endl
 << " 'queue': Runs a queue debug report." << endl
 << " 'help': Prints all available commands to the serial port." << endl << endl;
 */
 transition_to (WAIT);
 break;
 default:
 // Send an indication if no match was found. Reset the
 // character pointers.
 *p_serial << "Invalid command." << endl << endl << "Enter a command: ";

 // Transition to state 2.
 transition_to (COMMAND_MODE);
 break;
 };
 // Reset character pointers.
 p_command = &command [0];
 p_decode = &command [0];
 break;
 }
 break;
 /* State 4. */
 case WAIT:
 count++;

 // Transition to state 1 after 5 iterations.
 if (count >= 5)
 {
 // Transition back to state 1 once all flags are lowered.
 if (!global_flags.read_dynamic_AD7708 &&
 !global_flags.read_dynamic_ADC &&
 !global_flags.saving_dynamic_data)
 {
 p_command = &command [0];
 p_decode = &command [0];
 count = 0;
 transition_to (HUB);
 break;
 }
 break;
 }
 break;
 /* State 5. */
 case SELECT_FREQ:
 // Check if a character has been received over the serial port.
 if (p_serial->check_buf ())
 {
 // Pull the character that was received from the receive buffer and
 // store it on the stack.
 char character = p_serial->get_char ();

 // If ctrl+c was pressed, return to hub state and reset all command
 // pointers.
 if (character == 0x03)
 {
 *p_serial << endl << endl << "Returned to hub state." << endl << endl
 << "Press ctrl+c to enter command mode." << endl << endl;
 p_command = &command [0];
 p_decode = &command [0];
 transition_to (HUB);
 break;
 }
 // If enter was pressed, append the string with a NULL character and reset
 // the pointer. Convert the string to an integer and send it to the frequency
 // share and transition to state 1.

222

 else if (character == 0x0D)
 {
 *p_command = NULL;
 p_command = &command [0];
 p_decode = &command [0];
 acq_freq_share->send (stringToInt (p_command));
 *p_serial << endl << "Data acquisition frequency set at "
 << acq_freq_share->retrieve () << "ms." << endl << endl;
 transition_to (HUB);
 break;
 }
 // Decrement the command pointer if the character was a delete.
 else if (character == 0x7F)
 {
 // Only decrement and print the character if there are characters
 // to delete from the command string.
 if (p_command <= &command [0]) break;
 p_command--;

 // Echo the character.
 *p_serial << character;
 break;
 }
 // Ignore unwanted characters. Pick up another character at the next
 // task run.
 else if (character <= 0x2F || character >= 0x3A) break;

 // Store the character in the command string.
 else if (p_command <= &command [USER_COMMAND_LENGTH - 6])
 {
 *p_command = character;
 p_command++;

 // Echo the character.
 *p_serial << character;
 break;
 }
 }
 break;
 /* Dead state. */
 case DEAD:
 break;
 /* Undefined State. */
 default:
 // Default state just in case the task enters an undefined state.
 #ifdef TASK_DEBUG
 *p_serial << p_name << " task entered undefined state!" << endl;
 #endif

 // Send task to a dead state where no code is executed.
 transition_to (DEAD);
 break;
 };
}

//
/** @brief Decode command.
 * @details This method decodes the command in the command string by
 * adding up the decimal values of each character and returning the
 * resulting number.
 * @return A unique 16-bit number corresponding to the command that
 * was entered by the user.
 */
uint16_t task_user :: decode (void)
{
 uint16_t command_result = 0;
 for (uint8_t index = 0; p_decode < p_command; index++)
 {
 command_result += (*p_decode % index + *p_decode * index);
 p_decode++;
 }
 return command_result;
}

223

J. DERIVATION OF CANTILEVER BEAM EQUATION OF MOTION AND FIRST

NATURAL FREQUENCY

The equation of motion of the transverse deflection of a cantilever beam was derived to

design the beams used in the dynamic testing of the Dynamic Data Acquisition System. From the

equation of motion, an expression for the first natural frequency was derived which was used to

design the length of the beams. The Assumed Modes method was used to derive the coupled

equations of motion for the first two modes of oscillation. The schematic of the system is shown in

Figure J-1.

Figure J-1: Dynamic cantilever beam model schematic.

The schematic assumes that the beam is non-rigid, and the mass is evenly distributed

throughout the beam. A point-damper was included at the end of the beam as well to add damping

to the response. The Assumed Modes method results in an equation of motion of the form seen in

Equation J-1, where 𝑀, 𝐶, and 𝐾 are matrices and 𝑄 is a vector containing the time-varying

transverse deflections of the first two modes of oscillation.

 𝑀�̈� + 𝐶�̇� + 𝐾𝑄 = 0 𝑄 = [
𝑞1

𝑞2
] (J-1)

 𝑀 = [
𝑚11 𝑚12

𝑚21 𝑚22
] (J-2)

 𝐶 = [
𝑐11 𝑐12

𝑐21 𝑐22
] (J-3)

 𝐾 = [
𝑘11 𝑘12

𝑘21 𝑘22
] (J-4)

224

When utilizing the Assumed Modes method, it is necessary to assume the mode shapes of

the system. The chosen mode shapes are displayed in Figure J-2 and detailed in Equation J-5 and

Equation J-6.

Figure J-2: Assumed mode shapes of cantilever beam model for (top) first mode and

(bottom) second mode.

 𝜓1(𝑥) = (
𝑥

𝐿
)
2

 (J-5)

 𝜓2(𝑥) = (
𝑥

𝐿
)
2

− (
𝑥

𝐿
)
3

 (J-6)

Then, to find the total dynamic response of the system, Equation J-7 is used.

 𝜐(𝑥, 𝑡) = 𝜓1(𝑥) 𝑞1(𝑡) + 𝜓2(𝑥) 𝑞2(𝑡) (J-7)

Before employing the Assumed Modes method, it is necessary to calculate the first and

second derivatives of both mode shape functions.

 𝜓1
′(𝑥) =

2

𝐿2
𝑥 (J-8)

 𝜓1
′′(𝑥) =

2

𝐿2
 (J-9)

 𝜓2
′(𝑥) =

2

𝐿2
𝑥 −

3

𝐿3
𝑥2 (J-10)

 𝜓2
′′(𝑥) =

2

𝐿2
−

6

𝐿3
𝑥 (J-11)

225

Then, using the continuous Principle of Virtual Displacements, the stiffness matrix was

populated.

 𝑘11 = ∫ 𝐸𝐼 𝜓1
′′(𝑥)

𝐿

0

 𝜓1
′′(𝑥) 𝑑𝑥 (J-12)

 𝑘11 = ∫ 𝐸𝐼 (
2

𝐿2
) (

2

𝐿2
)

𝐿

0

𝑑𝑥 (J-13)

 𝑘11 =
4𝐸𝐼

𝐿3
 (J-14)

𝑘12 = 𝑘21 = ∫ 𝐸𝐼 𝜓1

′′(𝑥)
𝐿

0

 𝜓2
′′(𝑥) 𝑑𝑥

(J-15)

𝑘12 = 𝑘21 = ∫ 𝐸𝐼 (

2

𝐿2
) (

2

𝐿2
−

6

𝐿3
𝑥)

𝐿

0

𝑑𝑥
(J-16)

𝑘12 = 𝑘21 = −

2𝐸𝐼

𝐿3

(J-17)

𝑘22 = ∫ 𝐸𝐼 𝜓2

′′(𝑥)
𝐿

0

 𝜓2
′′(𝑥) 𝑑𝑥

(J-15)

𝑘22 = ∫ 𝐸𝐼 (

2

𝐿2
−

6

𝐿3
𝑥) (

2

𝐿2
−

6

𝐿3
𝑥)

𝐿

0

𝑑𝑥
(J-16)

𝑘22 =

4𝐸𝐼

𝐿3

(J-17)

Similarly, the mass matrix was also populated using the continuous Principle of Virtual

Displacements.

 𝑚11 = ∫ 𝜌𝐴 𝜓1(𝑥)
𝐿

0

 𝜓1(𝑥) 𝑑𝑥 (J-18)

 𝑚11 = ∫ 𝜌𝐴 ((
𝑥

𝐿
)
2

) ((
𝑥

𝐿
)
2

)
𝐿

0

𝑑𝑥 (J-19)

 𝑚11 =
𝜌𝐴𝐿

5
 (J-20)

𝑚12 = 𝑚21 = ∫ 𝜌𝐴 𝜓1(𝑥)

𝐿

0

 𝜓2(𝑥) 𝑑𝑥
(J-18)

𝑚12 = 𝑚21 = ∫ 𝜌𝐴 ((

𝑥

𝐿
)
2

) ((
𝑥

𝐿
)
2

− (
𝑥

𝐿
)
3

)
𝐿

0

𝑑𝑥
(J-19)

𝑚12 = 𝑚21 =

𝜌𝐴𝐿

30

(J-20)

𝑚22 = ∫ 𝜌𝐴 𝜓2(𝑥)

𝐿

0

 𝜓2(𝑥) 𝑑𝑥
(J-21)

226

𝑚22 = ∫ 𝜌𝐴 ((

𝑥

𝐿
)
2

− (
𝑥

𝐿
)
3

) ((
𝑥

𝐿
)
2

− (
𝑥

𝐿
)
3

)
𝐿

0

𝑑𝑥
(J-22)

𝑚22 =

𝜌𝐴𝐿

105

(J-23)

The only damping that exists in the model is a point-damper, thus the discrete Principle

of Virtual displacements was utilized to populate the damping matrix.

 𝑐11 = 𝑐 𝜓1(𝐿) 𝜓1(𝐿) (J-24)

 𝑐11 = 𝑐 (J-25)

 𝑐12 = 𝑐21 = 𝑐 𝜓1(𝐿) 𝜓2(𝐿) (J-26)

 𝑐12 = 𝑐21 = 0 (J-27)

 𝑐22 = 𝑐 𝜓2(𝐿) 𝜓2(𝐿) (J-28)

 𝑐22 = 0 (J-29)

In summary, the above calculations result in the following mass, damping, and stiffness

matrices for the system.

 𝑀 = 𝜌𝐴𝐿 [
1

5⁄
1

30⁄

1
30⁄ 1

105⁄
] , 𝐶 = 𝑐 [

1 0
0 0

] , 𝐾 =
𝐸𝐼

𝐿3 [
4 −2

−2 4
] (J-30)

To determine the natural frequencies of the system, the characteristic equation of the

system was used, displayed in Equation J-31.

 |𝐾 − 𝜔2𝑀| = 0 (J-31)

 |

4𝐸𝐼

𝐿3
−

𝜌𝐴𝐿

5
𝜔2

−2𝐸𝐼

𝐿3
−

𝜌𝐴𝐿

30
𝜔2

−2𝐸𝐼

𝐿3
−

𝜌𝐴𝐿

30
𝜔2

4𝐸𝐼

𝐿3
−

𝜌𝐴𝐿

105
𝜔2

| = 0 (J-32)

 𝜔4 − 1224
𝐸𝐼

𝜌𝐴𝐿4
𝜔2 + 15120(

𝐸𝐼

𝜌𝐴𝐿4
)
2

= 0 (J-33)

 Using the quadratic equation, the above equation was solved. The two solutions obtained

from solving the characteristic equation are expressions for the first and second natural frequencies

227

of the system. The expression for the first natural frequency was used to design the length of the

cantilever beams.

 𝜔𝑛1
= 3.53 √

𝐸𝐼

𝜌𝐴𝐿4
 (J-34)

 𝜔𝑛2
= 34.8 √

𝐸𝐼

𝜌𝐴𝐿4
 (J-35)

