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1.0 Executive Summary -  
The Prosthetic Thumb Project is a senior design project completed by Biomedical Engineering             
Undergraduate students at California Polytechnic State University. This senior design project is aimed at              
designing a prosthetic thumb for a Cal Poly Pomona student who lost their thumb in an accident last year.                   
The patient has ultimately lost between 30-40% of functionality of his left hand, and so we would like to                   
give him that mobility back. Originally, the patient was worried about having a prosthesis, and wanted                
something more stagnant that would resemble the look of the thumb he lost. However, after working with                 
him, we determined that in order to regain functionality of the left hand, he would need a body-powered                  
prosthesis that will move with his thumb residual in order to mimic the natural motion of a hand. Since                   
we are designing a product for our customer, we still wanted to make a design that does not entirely look                    
mechanical.  
 
The patient expressed a few specific needs and expectations for his new prosthesis. The patient ideally                
wanted to be able to perform everyday tasks that he used to, but now is unable to do. These included the                     
ability to fit his hand, with the prosthetic thumb attached, into his pocket and have the ability to grasp                   
items in the pocket. Other specified expectations include a low cost, lightweight-slim design, high              
durability, and an ability to still weight-lift. However, we do not believe we will be able to produce a                   
prosthetic for weight lifting because of time constraints but instead we will provide suggestions for               
alternative devices to aid in weightlifting, but the main focus of this design should be for a day to day                    
functional prosthetic.  
 
After brainstorming and weighing all of our original design ideas, we decided to move forward with a                 
prosthetic design that used hinges in order to drive the motion of the thumb. The hinge uses four points                   
and four linkages in order to do so. The distal points are anchored distal of the IP joint while the proximal                     
two points are anchored proximal to the IP joint. Depending on how much movement the patient has of                  
the residual thumb distal to the MCP joint, the proximal anchor points of the prosthetic can be shifted                  
back to sit over the MCP joint. However, upon meeting with our project sponsor, he informed us that                  
there was most likely not enough residual left to drive that motion, and so our project decided to change                   
to a mechanical wire driven prosthetic. A wire will connect to a wrist strap, and sit atop the proximal                   
piece. The wire will be inserted inside the prosthetic, and wrap around an internal cam that will thus drive                   
the forward and backwards motion of the prosthetic. As the proximal piece is moved forward by the                 
motion of the residual, the cable will get shorter pulling the lever down, and pushing the distal piece                  
down. This wire was incorporated into a design that resembled the human thumb by taking a 3D scan of                   
the patients non-injured hand, mirroring it, and then cutting away the excess pieces to create a prosthetic                 
that will match patients form. By doing so, we were able to have a body-powered prosthesis that does not                   
have a mechanical appearance and roughly resembles the patients normal thumb.  
 
The prototype of our design was generated using the 3D printers at innovation sandbox. Our parts were                 
printed using PLA in order to utilize the free resources to students and keep the cost of the prosthetic low.                    
When undergoing compression testing, the parts were tested using the instron in the Biomedical              
Engineering lab. The proximal and distal pieces were secured, and tested up to a force of 500 N. The                   
proximal pieces experienced minor cracks, but still withstood the overall force without any internal              
support. The distal pieces withstood the force of 500 N with no cracks when the force can from the side.                    
We also tested using a “hyper-extension” method, meaning we secured the prosthetic to a model of the                 
hand, and hung weights off of the distal piece. This test did fail due to a crack in the material. However,                     
the Prosthetic Thumb Group will be working on the final product that is being delivered to the patient                  
next quarter as well. We plan on changing the material of the 3D printed parts to give the prosthetic                   
thumb more strength.  
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2.0 Statement of Work -  
Attached below is the Statement of Work for the Prosthetic Thumb Project. It outlines our project                
problem, deliverables and timeline for completing the design and product of a custom fit prosthetic               
thumb. 
 

2.1 Introduction: 
The Prosthetic Thumb Project is a six month long senior design project being completed by three                
California Polytechnic State University, San Luis Obispo students, and one California           
Polytechnic State University, Pomona student. The project is aimed to design a custom fit              
mechanical prosthetic thumb for a student with an amputee just above the metacarpal (MCP)              
joint.  

 
2.2 Background: 
Andrew Emmert, our Cal Poly Pomona counterpart, met with the patient to discuss the initial               
design ideas and figure out exactly what the patient wants out of the prosthetic design. The patient                 
would like to retrieve objects out of his pocket easily, and misses the ease of texting and gaming                  
with both hands. The prosthetic should be easily removable for washing hands and showering.              
The patient also was curious about if a prosthetic could be made that would help him lift weights                  
again. However, the patient seems to struggle with the look of prosthetic and is having a difficult                 
time with the concept of having to wear a prosthetic. A body-powered prosthesis would give the                
patient the mobility he desires, however the mechanical design is harder for the patient to grasp.                
After the San Luis Obispo students met with Emmert, we decided that the challenge would be                
designing a functional prosthetic that does not look entirely mechanical. Current partial hand             
prosthesis designs were researched, and the pros and cons were determined to help us gain a                
better understanding of what we want to incorporate into our design. These notes can be found in                 
Table 1. Approved and currently pending patents were also researched, to determine what will              
constrain our design. Those notes can be found below in Table 2. 
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Table 1: Partial Hand Prosthesis Currently on the Market. 

Product Name Description Pros Cons 

Thumb Driver 
(Naked Prosthetics) 
Body-Powered 
Prosthesis 

Tracking natural CMC 
motion allows for the 
majority of motion, rigid 
structure that allows the 
hand to grasp objects 

Interchangeable suspension rings 
allow patients to have an ideal fit. 
Cage-like structure of the linkages 
provide increased protection for 
the residuum/distal end of the 
amputation (can be 
hypersensitive). 
Tracks the natural multi-axial 
motion of the thumb complex 

Must have enough residuum to 
engage the ring. 
Minimum 6 week lead time. 

 

PIP Driver (Naked 
Prosthetics) 
Body-Powered 
Prosthesis 

For partial finger amputees 
(through the middle or 
distal phalanx), rigid 
linkage that is 
self-suspended on the base 
of the finger residuum. The 
prosthetic joints line up 
with anatomic ones to 
provide natural motion/form  

Lightweight, custom designed, 
strong. 
Can be connected with other 
Naked Prosthetic devices. 
Silicone rubber tip pads resemble 
natural fingertips (and come in a 
variety of colors). 

Must have enough residuum to 
engage the ring. 
Minimum 4-6 week lead time. 
Not used for thumb 
amputations. 

MCP Driver (Naked 
Prosthetics) 
Body-Powered 
Prosthesis 

Designed for amputations 
through the proximal 
phalanx (restores middle 
and distal phalanges), 
designed to restore power 
grasps and grip stability 

Abduction/adduction washers 
allow the user to adjust 
mechanical fingers, and the 
patient can gain optimal grip. 
Strength and functional force (1-9 
lb force at each fingertip). 
Lift substantial weight, and 
transfer load to suspension on 
wrist. 

Must have enough residuum to 
engage the ring. 
Minimum 6-8 week lead time. 
Not used for thumb 
amputations. 

Living Skin (Ossur) 
Passive Partial 

Designed to be unnoticed. 
Designed for patients with 
finger, hand, arm, toe, and 
foot deficiencies. 

Cosmetic. 
Hand-painted and hand-crafted to 
match patients anatomy and skin 
tone. 
Functional capabilities: pushing, 
pulling, stabilizing, supporting, 
light grasping, typing. 

No movement capabilities. 
Very limited functionality. 
Subject to Uncanny Valley 
Effect. 

Silicone Finger and 
Partial Hand 
Prosthetics 
(Ottobock) 
Passive Partial 

Natural, custom prosthetic 
system. Each product is 
tailored to the specific 
shape and skin color of the 
patient. This low profile 
option can be customized to 
include freckles, veins, and 
hair making it look as 
realistic as possible. 

Cosmetic. 
Wires in the fingers allow for 
manual positioning of the fingers. 
Very customizable. 
 

No active movement 
capabilities. 
Very Limited functionality. 
Subject to Uncanny Valley 
Effect. 

Titan Series (Partial 
Hand Solutions) 
Passive Partial  

Designed to meet the needs 
of the heavy duty user. 
Machined out of titanium, 
with a ratchet design that 
allows the user to manually 
position the joints in the 
most function position and 
provide a secure grasp. 

Very Durable. 
High functionality for a passive 
prosthesis. 
Can be used for partial digit 
amputations and in complete 
absence of a finger or thumb. 
Titan Thumb features full rotation 
of the base. 

No active motion 
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Table 2: Prosthetic Patents 

Patent Product Name Claim Issue Avoiding Problem 

US Patent 9375319 
(Granted June 28, 
2016) 

Bio-Mechanical Prosthetic 
Thumb 
 

“...a thumb strap ring having a 
direct pivoting connection with 
the proximal end of the 
proximal phalanges; … and an 
anchoring portion having an 
operable connection with the 
thumb strap ring…”  

This claim mentions how their 
prosthetic thumb uses a thumb 
strap to anchor the prosthetic to 
the hand. We would continue 
using a thumb strap in our design 
because the strap is too common 
of an anchoring method and the 
patent claims more about the 
design of the proximal and distal 
phalanges, specifically. 

US Patent 7361197 
(Granted April 22, 
2008) 

Prosthetic Hand Having a 
Conformal, Complaint 
Grip and Opposable, 
Functional Thumb 
 

“The hand of claim 1 in which 
an activation system comprises 
a highly flexible flexion cable, 
one end of which being attached 
within the distal end of said 
thumb…” 

This claim refers to the use of 
flexible flexion cables on the 
palmar side of the thumb. We 
were considering the use of cables 
to actuate our thumb. We could 
change our design to use rigid 
linkages instead. 

US Patent 10016289 
(Granted July 10, 
2018) 

Bio-Mechanical Prosthetic 
Thumb 

“... the ring comprises a select 
one of a number of 
interchangeable rings, each of 
the interchangeable rings 
having a diameter that is sized 
to receive a different sized 
residual thumb.” 

Instead of using a ring that fits 
over the residual thumb, we could 
use a wrist strap as the primary 
anchoring method. 

US Patent 
Application 
20190183661 
(Applied June 20, 
2019) 

Powered Prosthetic Thumb “… comprising a first worm 
wheel and a first worm gear in 
mechanical communication 
with the first worm wheel, 
wherein the actuator is 
configured to cause rotation of 
the digit about the first axis by 
causing rotation of the first 
worm gear.” 

We may use gears, if cables do not 
work. We could utilize different 
types of gears or use linkages to 
transmit force across the digits, 
therefore avoiding the use of 
worm gears. 
 

US Patent 
Application 
20190290454 
(Applied June 11, 
2019) 

Bio-Mechanical Prosthetic 
Finger with Y-Shaped 
Rocker 

“... A method of fitting a 
customized prosthetic finger 
having a proximal ring 
configured to anchor to a 
patient's residual finger…” 

This design uses a proximal ring 
used to anchor the prosthesis to 
the residual thumb. Since the 
patient’s residual thumb is not 
very large, we may include a wrist 
strap, or another securing method 
wrapping around the base of the 
hand. 

US Patent 
Application 
20170296360 
(Applied October 19, 
2017) 

Bio-Mechanical Prosthetic 
Thumb 

“The bidirectional prosthetic 
thumb device of claim 14, 
wherein the hand strap is 
configured for attachment about 
a hand of the user.” 

This claim discusses using a strap 
wrapped around the hand to attach 
the prosthetic to the thumb, which 
could infringe on our design ideas. 
We could work around this by 
anchoring a strap lower down, on 
the wrist instead, which could 
potentially work better for 
transferring the load. 
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The largest make up of amputees are partial hand amputees, accounting for nearly 75% (National               
Academies of Sciences). There is a difficulty in standardizing prosthetics, due to the nature of               
amputations. Each amputation can occur in a different location, severing different nerves, etc.             
which makes designing prosthetics as a mass product difficult to do. As 3D printed devices are                
becoming more popular due to lower cost and decreased production time, a few people have               
attempted to create body powered hand prosthetics. This could be used to customize each              
prosthetic to the user. A highly advanced 3D printed hand was printed using a MakerBot               
Replicator. The device is called the Raptor Reloaded 3D printed body powered prosthesis (Case              
Comparison of Electric…). While this device did not perform as well as an electric prosthetic               
hand device, it was still able to grasp objects due to movement of the wrist. If we had access to a                     
prestigious 3D printer, the option of designing and printing a prosthetic thumb would be a               
cheaper and faster option to produce for our patient.  

 
For some individuals, the robotic look of body powered prosthetics is frightening. Therefore, for              
some patients with “limb loss, cosmetic restoration is highly valued or even preferred over              
functional restoration because of its mitigating effect on the disruption to body image” (National              
Academies of Sciences). However, a majority of these prosthetics are passive, meaning they do              
not serve a real function. Passive prosthetics are designed to look as if they naturally replace the                 
missing limb. They are generally made out of silicone, and must be positioned how the user wants                 
it (Rotter). For our device, our patient is self-conscious about the looks of a prosthetic, but wants                 
the utility factor of a body powered prosthetic, and so we are tasked with finding a happy medium                  
between the two.  

 
The Food and Drug Administration (FDA) considers most upper limb prosthetics to be a Class I                
device. Class I devices have “minimal potential for harm and are specifically defined by the FDA                
as not intended to be for use in supporting or sustaining life, of importance in preventing                
impairment to human life, and may not present a potential unreasonable risk of illness or injury”                
(Resnik). The majority of marketed prosthetics in the past few decades have not had to go through                 
FDA regulation requirements of “PMA and premarket notification [510(k)]” (Resnik). PMA is a             
FDA regulated premarket approval process, and premarket notification [510(k)] is a document            
proving that the device is safe to use and similar to a previously marketed device. Prosthetics                
however must undergo clinical trials (with humans). The FDA does not provide specific             
guidelines to the prosthetic industry, but companies must do human trials and “comply with              
Federal regulations through FDA/CDRH processes before they can be marketed within the United             
States as required by 21 CFR Parts 800-1299” (Resnik). The 21 CFR Parts 800-1299 contains the                
product regulations for medical devices and radiation emitting devices. A new prosthetic design             
must comply with these regulations as stated by the FDA (Center for Devices and Radiological               
Health). 

 
2.3 Objectives: 
The patient expressed a few specific needs and expectations for his new prosthesis. These              
included the ability to fit his hand, with the prosthetic thumb attached, into his pocket and have                 
the ability to grasp items in the pocket. Additionally, the patient prefers to have a body powered                 
prosthetic rather than a passive-partial prosthetic with no active movement. Other specified            
expectations include a lightweight-slim design, high durability, and an ability to still weight-lift. 
The problem is that the patient has had an amputation of the proximal phalanges of his left thumb.                  
This has made grasping and holding items difficult and reduced the effectiveness of his left hand.                
Daily tasks such as fishing items out of pockets and getting dressed have become difficult without                
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the patient’s left thumb. This project will tackle this problem by developing a prosthetic thumb               
capable of restoring the functionality of the patient’s left hand. 
The scope of this project includes developing a body powered prosthetic thumb that is capable of                
movement similar to that of the human thumb.This prosthetic will need to be securely attached to                
the patients hand and residual digit with a minimal amount of movement where the harness meets                
the hand. This harness will most likely include a strap that wraps around the base of the hand or                   
wrist. The interface of the harness will need to be biocompatible with human skin to minimize                
irritation. Lastly, we will explore ideas of how to make this prosthetic capable of weightlifting               
applications, or design an attachment to accompany the existing harness. However, we will not              
explore any electrical options for the prosthetic due to the time frame and financial restrictions of                
the project. Also, we will not pursue making the prosthetic resemble the human anatomy              
cosmetically with the use of silicone and painting. 

 
Seen below in Figure 1 and Table 3 are the House of Quality (HOQ) and Engineering                
Specifications, respectively. The customer requirements generated in the HOQ were used to            
determine the engineering specifications required for our product to function as desired. The             
customer requirements were as follows: easy to take on and off, appearance, lightweight, durable,              
slim, body-powered, attached to wrist and ability to weightlift. The customer requirements of             
lightweight, slim and easy to take on and off helped drive the engineering specifications of weight                
and length. We want the design to be no bigger or heavier than that of a normal human thumb.                   
The customer requirement of body powered drove the engineer specification for the degree of              
flexion at the IP and MP joints. The body powered prosthesis needs to act and bend as a normal                   
human thumb, meaning that the joints will flex at least 90 degrees. After talking with the patient,                 
we have determined that weightlifting is not feasible for this design, and he will need to use a                  
seperate prosthetic or attachment for those needs. However, we do still want to give the patient a                 
strong enough grip strength for his daily needs, and so we would like to match that of his                  
non-injured hand. Because he is a weightlifter, he is strong and so while we are aiming to match                  
that grip strength, we are unsure if we will be able to in our design.  
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Figure 1: House of Quality for Prosthetic Thumb Design 
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2.4 Engineering Specifications 
 
Table 3: Engineering Specifications 

Spec. # Parameter 
Description 

Requirement or 
Target 

Tolerance Risk Compliance 

1 Production Cost $400 +$100 H A 

2 Weight 65 g +/- 10 g L A, T, S 

3 Grip Force 125 lbs +/- 10 lbs H T 

4 Length 7cm +/ -0.2 cm L I, A 

5 Degree of flexion 
at MP Joint 

90° +/- 5° H A, T, I 

6 Degree of flexion 
at IP Joint 

90° +/- 5° H A, T, I 

 
Production Cost: Ultimately, the functionality of the prosthetic thumb is of the utmost             
importance. If the prosthetic is not functional, nothing else matters. However, minimizing cost,             
while maximizing functionality is an important balance to find. Attempting to stay close to, or               
within, our proposed budget will be the best way for analyzing our spending. Production cost is                
currently rated as “High Risk” for a few reasons. First, we are still in the early stages of the                   
design phase and do not have a solid idea of what materials will be necessary. Once we have a                   
better idea of what our final design will look like, we will know specifically what materials and                 
how much we will need. 
Weight: The weight of the prosthetic thumb will be measured using a scale. We want the thumb                 
to have a weight similar to that of the patient's actual thumb for ease of use and comfort. 
Grip Force: Grip force will be measured using a hand grip dynamometer. This parameter is               
labeled as ‘High Risk” because not only is it crucial to the degree of functionality of the                 
prosthetic, but it may also be our hardest parameter to achieve our target value. Applying               
excessive force to the prosthetic may cause it to articulate on the residual thumb, or even crack                 
and compromise the integrity of the prosthetic. 
Length: The length of the prosthetic will simply be measured using a ruler or small tape measurer.                 
The only importance of this parameter is that it is similar to the thumb of the patient's right hand                   
for consistency, aesthetics, and ease of use. 
Degree of Flexion at MP Joint: The degree of flexion at the MP Joint will be measured using a                   
protractor. The reason that the degree of flexion is labeled as “High Risk” is because it is essential                  
to functionality. Additionally, an anatomically correct degree of flexion may prove difficult to             
achieve due to movement and the prosthetic-residual thumb interface. 
Degree of Flexion at IP Joint: The degree of flexion at the MP Joint will be measured using a                   
protractor. The reason that the degree of flexion is labeled as “High Risk” is because it is essential                  
to functionality. Additionally, an anatomically correct degree of flexion may prove difficult to             
achieve due to movement and the prosthetic-residual thumb interface. 
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2.5 Project Management: 
We plan to follow the overall design process shown below in Table 4. In order to build, fit and                   
test our prosthetic thumb by March, 17 2019 we will need to stick to this strict timeline.  

 
We have gained access to a broken Naked Prosthetic (PIP Driver), and we are using that to                 
brainstorm ideas on how we want to design our thumb prosthetic. As shown above in the House                 
of Quality, Naked Prosthetics perform well in the categories that our patient requires, and so we                
will use their design as inspiration when coming up with our own design. We have gotten scans                 
of both the patient's hand (injured hand and non-injured hand), converted them to .stl files and                
have sent them to the innovation sandbox to be 3D printed. This will help us visualize and start to                   
prototype directly on the hand. Finally, we have finished the necessary documentation (pro/con             
chart, budget sheet, etc.) to move forward with our project. 

 
The next step in the process is to obtain the 3D printed hands, and begin building a prototype that                   
can fit directly on the 3D models. We will also need to meet with the patient to discuss his desire                    
for a prosthesis that he can weight lift with. After researching the topic more, we believe that our                  
main focus should be on creating a day to day functional body powered prosthesis, as most                
amputees weight lift with hooks or loops they can attach to their wrist. We can discuss with him                  
that if we have time at the end of the project, we could maybe create a new design, but that is not                      
the main priority currently.  

 
As seen in Table 4 below, there are a lot of different tasks that need to be completed in order to                     
finish this project on time. The highlighted tasks are ones that are on our critical path. Microsoft                 
Outlook generated this critical path for us, highlighting the most important things that we as a                
group need to get done. The first step is to complete all of Phase 1. The next important step is to                     
order the necessary materials and design a functional prototype. After that, the test plan and               
functional prototype video are necessary to complete for the Phase 3 Review. After that,              
completing Phase 4 is important, and delivering a functional prosthetic thumb to our patient is               
critical. If we stick to the project timeline and emphasize the importance of the objectives on our                 
critical path, the project should be able to be completed in time. 
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Table 4: Key Deliverable and Project Timeline 
Network 

Diagram Step 
Task Name Duration Start 

Date 
Finish 
Date 

1 Phase 1 13 days 10/1 10/17 

2 Skype Meeting with Andrew 1 day 10/3 10/3 

3 Generation of Potential Designs 5 days 10/4 10/10 

4 Create Budget Rough Draft 3 days 10/10 10/14 

5 Draft Pro/Con Chart 2 days 10/14 10/15 

6 Get Scans of Patients Hands in .stl Files 6 days 10/1 10/8 

7 Get Hands Printed in Innovation Sandbox 5 days 10/9 10/15 

8 Project Requirements Document + Powerpoint 3 days 10/13 10/15 

9 Phase 1 Review (Meeting with Whitt and Heylman) 3 days 10/15 10/17 

10 Apply for Hannah-Forbes Fund 1 day 10/17 10/17 

11 Phase 2 36 days 10/17 12/5 

12 Create CAD designs for prototypes 6 days 10/17 10/24 

13 Review and Update Contract and Budget 1 day 10/21 10/21 

14 Assign Kinematics to CAD Models 7 days 10/28 11/5 

15 Conceptual Design Report 5 days 10/25 10/31 

16 Prototyping Ideas 18 days 11/1 11/26 

17 Phase 2 Review (Critical Design Review Presentation) 3 days 12/3 12/5 

18 Phase 3 19 days 1/6 1/30 

19 Order Necessary Materials 6 days 1/6 1/13 

20 Finish SolidWorks Design 6 days 1/6 1/13 

21 Print Design w/ Innovation Sandbox 3 days 1/14 1/16 

22 Manufacture Glove to Prosthetic 2 days 1/17 1/20 

23 Attach Internal Cam and Wire System 3 days 1/17 1/21 

24 Design a Test Plan 6 days 1/7 1/14 

25 Perform Tensile and 3 Point Test 7 days 1/19 1/25 

26 Record Functional Prototype Video 2 days 1/22 1/23 

27 Phase 3 Review (Functional Prototype Demo/Test Plan Presentation) 4 days 1/27 1/30 

28 Phase 4 35 days 2/1 3/17 

29 Continue Testing 22 days 1/22 2/20 

30 Meet with Patient to Properly Fit Prototype 11 days 1/31 2/6 

31 Redesign Prosthetic if it Does Not Fit Customer Needs 11 days 2/7 2/21 

32 Hazard and Risk Assessment 1 day 2/4 2/4 

33 Finalize Product 6 days 2/24 3/2 

34 Senior Project Design Report 6 days 3/3 3/10 

35 Expo Poster 6 days 3/3 3/10 

36 Phase 4 Review (Final Presentation and Expo Poster) 5 days 3/11 3/17 
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2.6 Conclusion:  
This document serves as an outline for the scope of the project, and outlines the work that needs                  
to be done. By the end of this project, we will have developed a lightweight but functional, body                  
powered prosthetic thumb that is capable of movement similar to that of the human thumb. This                
prosthetic will be securely attached to the patients hand and residual digit with a minimal amount                
of movement where the harness meets the hand. The next project deliverable is to begin building                
a prototype for a body powered prosthetic thumb on the 3D printed hands that we will receive                 
from the innovation sandbox in a few days. We are aiming for the prototype to be completed by                  
January 31, 2020. As of January 37, 2020, a prototype has been completed and printed using the                 
Innovation Sandbox. We have very minor changes to make from this prototype to our final               
design, and that is slightly increasing the tolerances on holes, but otherwise the SolidWorks              
design is finalized. 

 
3.0 Network Diagram 
In Microsoft Project, we input the tasks and deadlines that all components of the project need to be                  
completed by. It outlined a network diagram that our team should follow in order to finish the prosthetic                  
thumb design on time. Seen below in red is the critical path - the most important tasks that need to be                     
completed that will result in the project being completed in minimum time. The specific steps are outlined                 
above in Table 4 of the Statement of Work section.  

 
Figure 2. Network Diagram. 

 
4.0 Indications for Use 
The Cal Poly Prosthetic Thumb Team has come up with the following indications for use for FDA                 
approval of our device: This device will be used by an individual who has recently undergone a thumb                  
amputation distal of the Metacarpal-Phalangeal (MCP) joint, in order to improve the overall functionality              
of the left hand. The degree to which functionality may be improved is largely dependent upon the length                  
of residual thumb. Our team will design a lightweight prosthetic that the user can actively move and                 
engage to mimic natural thumb movement, function, and strength.  
 
5.0 Budget 
The Cal Poly Prosthetic Thumb Team has come up with the following budget for the prosthetic thumb                 
design. The project is planned to be low cost. To keep the costs to a minimum for the patient, we plan on                      
utilizing free 3D printers and materials from the Cal Poly SLO and Pomona campuses. The budget is                 
subjected to change, in the event that a major change in design occurs. All Purchase Requisition Forms                 
and stores in which each part was purchased can be found in Figures 66-68 of the Appendix.   
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 Table 5. Proposed Budget. 

Item Description Product 
Number 

Associated 
Task 

Planned 

Unit Quantity Cost/Unit Total Cost 
Shipping prototype  32 2-lb Box 2 $20 $40.00 
3D Printed Shell (PLA)  19  1 10 $0.00 $0.00 
PowerPro Hollow Ace  19 1 Yard 15 $0.75 $0.00 
Button Head Torx Screws 18-8 Stainless 
Steel, M2 x 0.4mm Thread, 5mm Long 90910A921 19 100 1 $11.60 $11.60 
316 Stainless Steel Ring Shim 0.001" 
Thick, 1/8" ID 97022A864 19 5 2 $9.09 $18.18 
18-8 Stainless Steel Dowel Pin Stock 1/8" 
Diameter 95609A310 19 1 1 $12.31 $12.31 
TiN Coated High-Speed Steel Tap Set, M2 
x 0.4 mm Thread 26475A11 19 1 1 $57.81 $57.81 
Screwdriver T6 Torx 5756A32 19 1 1 $6.25 $6.25 
302 Stainless Steel Torsion Spring 180 
Degree Right-Hand Wound, 0.216" OD 9287K21 19  1 5 $3.83 $19.15 
Narrow Fillister Head Slotted Screw 
18-8 Stainless Steel, High-Profile, 2-56 
Thread, 1/2" Long 91794A081 19  100 1 $5.31 $5.31 
Short-Length Drill Bit 
1.6mm Size, 33mm Overall Length 2979N13 19 1 2 $3.81 $7.62 
Tap Wrench with Fixed Straight Handle, 
5" Long 2546A12 19 1 1 $46.24 $46.24 
Plastic Box 
with 12 Compartments, 10-3/4" x 6-1/2" x 
1-7/8", Clear  19 1 1 $8.84 $8.84 
Delrin® Acetal Resin Balls 
1/16" Diameter 9614K5 19 25 1 $4.97 $4.97 
18-8 Stainless Steel Screw-to-Expand 
Insert for Plastic 
2-56 Thread Size 92394A111 19 10 2 $10.14 $20.28 
High-Performance Fabric 621596 19 2 Yards 1 $13.75/ yard $27.50 
0.75" Elastic Spool B07G86CFJX 19 11 Yards 1 $7.99 $7.99 
Ball Point Hand Needles B005573G3Q 19 48 Needles 1 $6.38 $6.38 

Stretch Thread 
B074N5CMP
G 19 225 Yards 1 $5.11 $5.11 

Futuro Deluxe Thumb Stabilizer  19  1 $21.00 $21.00 
Instron Tester (Tensile Testing)  21  1 $0.00 $0.00 
Materials Tester (Flexural Testing)  21  1 $0.00 $0.00 

Total: $326.54 
Shipping/Travel       
Prosthetic Design       
Attachment Design       
Testing       
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6.0 Customer Requirements 
The patient expressed a few specific needs and expectations for his new prosthesis. These included the                
ability to fit his hand, with the prosthetic thumb attached, into his pocket and have the ability to grasp                   
items in the pocket. Additionally, the patient prefers to have a body powered prosthetic rather than a                 
passive-partial prosthetic with no active movement. Other specified expectations include a           
lightweight-slim design, high durability, and an ability to still weight-lift. Finally, we would like to create                
a low cost design, to keep the prosthetic at no cost to him. However, as of November 2nd, we do not                     
believe we will be able to produce a prosthetic for weight lifting because of time constraints. We can                  
provide suggestions for alternative devices to aid in weightlifting, but the main focus of this design should                 
be for a day to day functional prosthetic.  
 
7.0 Specification Development 
The engineering specifications can be seen above in Table 3 of the Statement of Work section.                
Minimizing cost, while maximizing functionality is an important balance to find for our design.              
Attempting to stay close to, or within, our proposed budget will be the best way for analyzing our                  
spending. Production cost is a “High Risk” specification because we are still in the early stages of the                  
design phase and do not have a solid idea of what materials will be necessary. Once we have a better idea                     
of what our final design will look like, we will know specifically what materials and how much we will                   
need. The second most important specification is the weight of the device. This will be measured using a                  
scale. We want the thumb to have a weight similar to that of the patient's actual thumb for ease of use and                      
comfort. 
 
8.0 TAM and Competitive Advantage 
TAM: Individuals of any age and gender requiring enhanced functionality from their fingers. 

Around 30,000 people a year in the United States undergo a finger amputation (“How to 
Avoid…”). Most amputations are generally due to accidents with doors and power tools. If we are 
estimating the cost of our product to be $200, it is estimated that we could make $6,000,000/year 
from our product.  

 
SAM: Individuals who have some sort of amputation of any of their fingers in the California area. 

Around 12% of U.S. citizens live in California, so 12% of the 30,000 finger amputations a year 
should occur in California. This results in 3,6000 people a year in California have an amputation 
of their fingers. Therefore it is estimated that we could make $720,000/year from our product.  
 

SOM: Individuals who have a thumb amputation distal to the MCP Joint and Proximal to the 
Interphalangeal joints. 

Around 20% of finger amputations are of the thumb, and so 20% of 3,600 people is 720 people a 
year. This is the market that we are aiming to serve. We estimate that we would make 
$144,000/year on our prosthetic thumb product.  

 
For the current stage of this project, we are designing for the custom fit of one patient. This can later be                     
expanded for more patients on a wider scale.  
 
Table 6 below shows the comparison between the Thumb Driver and Living Skin prosthetics, and our                
design. Our design is much more cost effective than our competition due to the fact that we are using 3D                    
printed materials, however the material then is not as strong as our competitors. However, It will still                 
perform well and therefore is a competitive option when comparing to other prosthetic companies. 
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Table 6. Competitive Advantage. 
Specification  Naked Prosthetic  

(Thumb Driver) 
Ossur 

(Living Skin) 
CP Prosthetic  
Thumb Design 

Cost Bad Ok Good 

Weight Good Ok Good 

Appearance Ok Ok Ok 

Prosthetic Type Good Bad Good 

Material Good Ok Ok 

Mounting Ok Ok Good 

Grip Force Good Bad Good 

 
9.0 Intellectual Property Assessment 
Current products and pending patents were assessed to verify where intellectual property currently exists,              
and what design choices we may have to make when designing the prosthetic, so that we can be sure to                    
avoid infringement. These assessments can be seen above, in the Statement of Work section, in Table 2                 
(patents and patent applications). 
 
10.0 Conjoint Analysis 
We completed a conjoint analysis to determine which attributes of the prosthetic thumb were most               
desirable. Seen below in Table 7, are the factors we weighed with the different levels. The level 0 factors                   
are more desirable than the level 1 factors. We then made eight different design options, using each of the                   
factors from the level 0 design and the level 1 design. Those options were turned into eight different                  
conjoint cards, which can be seen below in Table 8. 
 
Table 7: Factors and Levels of Prosthetic Thumb Design 

Factor Level 0 Level 1 

 Cost  $200-$500  $500-$1000 

 Weight  40-90 g  >90 g 

 Appearance  Mechanical  Natural 

 Type  Body  Passive 

 Material  Carbon Fiber  Stainless Steel 

 Mounting  Glove  Thumb Strap 

 Grip Force   Full  Half 
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Table 8: Listing of Conjoint Cards 
Card # Cost Weight Appearance Type Material Mounting Grip Force 

 1  0  0  0  1  1  1  1 

 2  0  0  0  1  1  1  1 

 3  0  1  1  0  0  1  1 

 4  0  1  1  1  1  0  0 

 5  1  0  1  0  1  0  1 

 6  1  0  1  1  0  1  0 

 7  1  1  0  0  1  1  0 

 8  1  1  0  1  0  0  1 

 
Thirty-nine of our classmates were surveyed and they ranked the conjoint card options from one to eight                 
(one being the best option and eight being the worst option). That data was input into excel, and a                    
multivariate regression was run in excel. The excel statistical output can be seen below in Figure 3. Based                  
on the information from the multivariate regression, cost, appearance, type of prosthetic, material,             
mounting and grip force are all important to the success of the product because their p-values are less than                   
0.05%. The coefficients add up to a total of 200 points, and to determine the most important factors we                   
look only at the statistically significant factors. Type of prosthetic and mounting have the highest               
importance, at 17%. Since the coefficients are positive, this means that our peers believe that the level                 
zero factor is most important, so in this case, carbon fiber material and a glove mounting type should be                   
used in order to create a successful product. The only non-significant factor is the weight of the prosthetic,                  
however this is important to us as designers and to the patient. We will not throw out that factor, and will                     
still design the product with the intention of keeping the weight of the device as low as possible.  
 

 
Figure 3: Multivariate Regression Output from Excel   
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11.0 Morphology 
Functional decomposition was used to generate a morphology for a prosthetic thumb design. The main               
functions of our thumb consist of how the prosthetic moves, how the prosthetic attaches to the thumb, and                  
how the entire product will attach to the wrist. We are also worried about the cosmetic appearance of our                   
device, because the patient has said that he is self conscious about the look of the industrial/robotic                 
looking prosthetics. For active movement, the device needs to be able to move at the joints through the                  
body powered movement when the patient moves the thumb residual. Three ways that we believe we can                 
do this is through hinges, cables or a single joint. Another function that is essential to the product is how                    
the prosthetic will attach to the thumb residue. Ideas we came up with include attaching it to a glove that                    
the patient can wear, attaching it to a ring that sits on the residue, a plastic brace that can attach over the                      
thumb and down the side of the hand, or with a single pin that locks and can be quick released. For                     
attachment to the wrist, we want the patient to be able to do so with ease (he should be able to do it                       
quickly with one hand). Velcro or d-ring loops seem to be the best options for that. Finally, for a cosmetic                    
look, we are considering having no cover (the device would have exposed metal), a silicone sleeve or                 
cover that has the appearance of a realistic thumb, or using paint to mask the metal. These concept ideas                   
can be seen below in Table 9. After creating the morphology table, each team member was tasked with                  
generating a design using the concept ideas from the table. The three designs we came up with can be                   
seen below in Figures 4-6. 
 
Table 9: Morphology Assessment 

Morphology 

Product:  Prosthetic Thumb Organization Name:    California Polytechnic State 
University   

Function Concept 1 Concept 2 Concept 3 Concept 4 

Active Movement 
(Body Powered) 

Hinge Design Cable Design Single Joint 
Design 

Linkage Design 

Attachment to 
Thumb 

Sewing/Gluing 
into Glove 

Oval Ring  Plastic Brace Locking Pin with 
quick release 

Attachment/ 
Detachment to 

Wrist 

Velcro Velcro + Loops Loops (D Ring)  

Cosmetic  
No covers Silicone 

sleeve/cover 
Skin Colored Paint  

Team member: Sahil Sharma Team member: Allison Sigdestad   
Prepared by: Sahil Sharma, 
Allison Sigdestad, Cale 
Foreman     

  
Team member: Cale Foreman  
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11.1 Concept Design I 
 

 
Figure 4. Concept Design I. 

 
Concept one utilizes a wire mechanism to drive the body powered prosthetic. It has two main                
components - the larger part represents the proximal phalanx while the smaller part represents the               
distal phalanx. The proximal piece will be larger in radius and jet out over the distal piece. The tip                   
of the thumb will be connected to the locking mechanism by wire, and have some sort of                 
mechanism that will either wrap up the wire or move the wire to a different location when the                  
thumb is bending. The attachment to the thumb is a silicone “ring” which will sit over the residue.                  
It will be much wider on the outside of the hand to help secure it into place. This concept was                    
thought of to be a more realistic thumb, but still body powered. The silicone and plastic can be                  
chosen to be any color, even flesh colored if the patient desires that.  
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11.2 Concept Design II 

Figure 5. Concept Design II. 
 

Concept two uses a hinge design to provide active movement of the prosthetic thumb. The hinge                
uses four points and four linkages configured in the A, B, C, D system seen in the drawing. The                   
distal points are anchored distal of the IP joint while the proximal two points are anchored                
proximal to the IP joint. Depending on how much movement the patient has of the residual thumb                 
distal to the MCP joint, the proximal anchor points of the prosthetic can be shifted back to sit over                   
the MCP joint. The prosthetic would be glued/epoxied to a sleeve that sits over and cushions the                 
residual thumb. The sleeve can be made of a flexible fabric/gel. It has a cutout on one side to fit                    
snugly around the residual thumb without interfering with the webbing between the thumb and              
index finger. The sleeve is permanently sewn onto the thumb strap/glove. The strap/glove is              
secured to the hand using a velcro strap around the wrist. 
 
11.3 Concept Design III 

 

 
Figure 6. Concept Design III. 
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Concept three is very similar to Concept one in how it functions, but with a more mechanical look. The                   
main components include the prosthetic/thumb interface (silicone ring) where the device is actually in              
contact with the residual thumb, 4 stainless steel rods, thumb pad, and wire. The stainless steel rods will                  
be connected via hinges, while the wire runs through the middle of the rods and connects to the thumb                   
pad. As tension in the wire increases, the thumb pad will bend inward. At the moment, we are unsure of                    
how exactly the user will increase wire tension to cause the bend at the joint. 
 
12.0 Concept Evaluation 
To evaluate the three concept designs generated, we used a pugh matrix. The pugh matrix compares each                 
of the concepts against each other to determine a frontrunner. We used criteria from our QFD (House of                  
Quality) to evaluate each of the concepts. An example of the empty pugh matrix can be seen below in                   
Figure 7, however each of the team members filled out the pugh matrix and the results can be seen in the                     
Appendix in Figure 65. Each team member filled out the matrixes individually, using one matrix as the                 
baseline and comparing the other two concepts to that one. A score of -1 means that the evaluated concept                   
performs worse than the baseline concept, a score of 0 means the two concepts perform the same, and a                   
score of 1 means the evaluated concept performs better than the baseline concept. 100 points distributed                
to the five factors. Grip strength and load applied were weighted the highest, and each given 25 points                  
because those are detrimental to the function of the prosthetic. Grip strength is the primary function of                 
this prosthetic thumb. It also needs to be structurally sufficient to maintain the desired grip strength. If the                  
prosthetic cannot withstand a load or apply strong grip strength the device is useless to the patient. Cost to                   
manufacture was given 20 points, because we are looking to keep the device at a low cost. Finally weight                   
and reliability were weighted the lowest, with 15 points each. While we want a low weight device that                  
will last a long time, they are the least concern at the moment for creating a functional device for the                    
patient.  
 

 
Figure 7. Pugh Matrix. 

 
After each team member filled out the pugh matrixes, each concept's weighted total was added together.                
Concept 1 scored significantly lower than the other two, at -140. In order to make a more realistic looking                   
prosthetic, reliability, grip strength and load applied are lost. Concept 3 scored a score of 215. This                 
concept scored very well, however the cost to manufacture did not compare to the other concepts and may                  
be less reliable than Concept 2. Concept 2 scored the highest with a score of 250. Concept 2 scored                   
consistently higher than the baseline in the grip strength and load applied, which were the two most                 
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important criteria for the prosthetic design. Because of this, we have decided that Concept 2 is our front                  
runner, and we will continue forward with a design for this concept.  
 
13.0 Conceptual Model 
To better understand the movement that the prosthetic needs to match, a solidworks ball and model                
representation of the distal and proximal phalanges was generated by our Cal Poly Pomona counterpart.               
The model has been overlaid onto a 2D photo of the injured hand and angle constraints were inserted to                   
mimic the motion of the patient's hand. Degrees of motion were taken from the patients physical therapist                 
to ensure that the exact motion of the right thumb can be given to the left thumb prosthetic. 

 
Figure 8. Ball and Stick 2D Model 

 
The 2D model shows the patient's injured hand, and non-injured hand but flipped so that it also appears                  
as the left hand. The joints and bones are modeled as a ball and stick model. As seen in the full hand,                      
there are two bones and three joints. The degrees of motion of those balls were constrained using the                  
values received from the patients physical therapist: Right thumb 1st joint can move from 0 degrees to 50                  
degrees (0 is upright position), and 2nd joint can move from 0 degrees to 70 degrees. The injured left                   
hand 1st joint can move between 0 degrees and 35 degrees. We compared how this basic thumb model                  
moves compared to our thumbs, and the movement was very accurate. We now have a SolidWorks model                 
that accurately depicts the motion we would like the prosthetic to be able to do. Using this information,                  
we can further our design by building a 3D model of the prosthetic design that we want to create directly                    
on top of this current model. That way we can verify that the movement of the prosthetic design will                   
match the movement needed by the thumb.  
 
In short, this model is an interactive representation of the kinematic system governing our prosthetic               
design. We can use this skeleton to position and align the joints, pins, and force applications of the full                   
prosthetic. 
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Figure 9. Ball and Stick 3D Model. 

 
This model has the same idea as the previous model - it shows the movement of the bones and joints in                     
the patient's full finger. In this case, the full model was inserted into the scan of the patient's injured hand.                    
The patient still has the MCP joint, and so the bottom joint (ball) was inserted directly on top of it. This                     
model shows how the prosthetic joints should line up with the amputated thumb, and also give us                 
measurements on how long the distal and proximal sections should be given the residual length of thumb.                 
As with the other model shown above, this will aid us when we build our prosthetic model on top of this                     
current model, and verify that the segments are the correct length and the joints move as they should. 
 

 
Figure 10. Prosthetic Thumb Model. 
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For this model, the mirrored 3D body of the right thumb was superimposed on the left hand. The thumb                   
was converted into a proximal and distal phalanx, connected with a singular joint. The purpose of this                 
solidworks model is to show how much of the proximal phalanx clips/collides with the residual thumb.                
We can also determine the contours of the socket that will seat the prosthetic against the hand. This is the                    
model that we will change and build upon to create the realistic looking prosthetic device that can be 3D                   
printed. 
 
14.0 Detailed Design 

14.1 Detailed Design I 
 
After meeting with our sponsor and Cal Poly Pomona counterpart, it was established that our               
concept design we wanted to move forward with would not be feasible for the active movement                
our patient desires. We believe that there is not enough residual of the thumb there to create a big                   
enough moment to drive the motion of the prosthetic thumb using the hinge design, as we had                 
previously believed. After receiving videos showing the patients range of motion, and discussing             
with Dr. Haghi, we decided to change the design of our prosthetic to using a wire based                 
mechanism to drive the motion of the thumb. A cable system will allow the patient to generate                 
and amplify larger motions of the prosthetic from the little residual that is left. Seen in Figure 11                  
is the outer shell of the prosthetic thumb. This will encase the wire and the internal cam                 
mechanism that will drive the motion of the thumb.  

Figure 11. Detailed Design I of Prosthetic Thumb Shell. 
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Figure 12. Outer Shell Dimensions. 
 

 
Figure 13. Detailed Design I of Prosthetic Thumb. 

 
The prosthetic thumb will sit atop the residual and attach to a glove. We have a store bought                  
thumb stabilizing brace that we can cut down and use, and we also have purchased materials to                 
design and sew together our own glove. The cable needs to have a fixed anchor point, and that                  
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will be to the wrist strap because the wrist strap will not be moving depending on the residual.                  
The wire will connect to the wrist strap, sit atop the proximal piece, go inside and wrap around an                   
internal cam that will thus drive the forward and backwards motion of the prosthetic. As the                
proximal piece is moved forward by the motion of the residual, the cable will get shorter pulling                 
the lever down, and pushing the distal piece down. A torsion spring will be between the proximal                 
and distal pieces. The spring will save space to mount the cable inside the tip of the thumb. The                   
proximal and distal pieces will overlap with one another, and be held together with a washer,                
dowel pin and screw. The model will be split in half so that the wire and cam can be placed                    
inside, and so that the patient can easily access the components if anything breaks or needs to be                  
repaired.  

 
Dimensions shown in Figure 12 above are not driving the design of the thumb. The dimensions                
were taken from the exact hand scan of the patient and converted into a .stl file. The right thumb                   
was translated into a design for the left thumb so that the measurements exactly matched the                
patients biology. Pieces of the thumb were then cut away at the joint where the proximal and                 
distal components meet so that the two parts do not interfere. The overall length of the thumb is                  
3.57 inches while the width is 0.96 inches, which fall within the normal range of thumb                
measurements. 

 
For materials, we have decided to use PLA from the Innovation Sandbox for the outer housing of                 
the prosthetic thumb. The lifetime for the product is only 1-2 years, and so we do not feel that it is                     
necessary to proceed with carbon fiber and instead save costs. It held up to preliminary tests and                 
seems strong enough and so we would like to use PLA. We may look into a primer to add a more                     
sophisticated surface finish on the pieces, and also we have considered adding a rubber overmold               
or piece on the end of the thumb for gripping purposes. We will be using blind rivets to hold the                    
proximal and distal pieces together. We intend on adding these pieces later on after the design has                 
been proven to work. We have decided to use PowerPro Hollow Ace fishing line for the wire that                  
will drive the motion of the thumb. This fishing line is much less expensive than the nylon wire                  
we were considering and is already weighted to very high strengths. It is a braided line, and so it                   
has little to no stretch which is ideal for our design. This particular fishing line is also meant to be                    
run between your fingers, and therefore it is safe to handle and will not cause any damage or                  
injury to our patient. For the internal cam, we will also be 3D printing using the PLA from                  
innovation sandbox. Andrew will be continuing the project until May (after the SLO students are               
done with the project) and he has discussed maybe using CNC to manufacture an internal cam out                 
of stainless steel. His reasoning is because it is a small enough piece where steel would not add                  
too much weight to the device. Stainless steel would add an extra corrosion resistance, which is                
ideal to protect against any damp conditions such as water, rain or sweat. For our time purposes                 
however, our BMED 456 final design will have a PLA internal cam. 

 
14.2 Detailed Design II 
 
As of January 25th, 2020, the detailed design was updated to include hardware such as screws                
and shims. The added features include screws and shims on the axle, press-in nuts and screws to                 
fasten the two halves of the distal housing together, a resized linkage, a torsion spring on the axle,                  
cable routing integrated into the housing itself, a longer shroud around the proximal housing with               
holes to fit a sewing needle, and ribs along the proximal housing for added strength. The proximal                 
housing was designed to be 50 thousandths of an inch thick with the ribbing being 80                
thousandths. The geometry of the proximal housing is molded around the left thenar. 
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Design II also changes from using the PowerPro Ace Hollow fishing line to a medical grade wire                 
provided by Loos and Company. They gave us around 3 feet of free samples. 
 

 
Figure 14. Detailed Design II of Prosthetic Thumb. 

 

 
Figure 15. Detailed Design II of Prosthetic Thumb with Cutaway. 
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15.0 Prototype Manufacturing Plans 
Seen below in Tables 9-10 is our Detailed Manufacturing Process Instructions (MPI). Table 10 includes               
documentation for manufacturing the proximal and distal phalanges, the glove and the cam. Table 11               
includes documentation for assembling the prototype. All prototype manufacturing will take place at both              
the Pomona and San Luis Obispo campuses. 
 
The facilities to be used for prototype manufacturing include Cal Poly Pomona campus and Cal Poly San                 
Luis Obispo Campus. 3D printing will be carried out in the Innovation Sandbox located on the Cal Poly                  
San Luis Obispo campus, using their 3D printers. The Innovation Sandbox is located in 197-205               
(Bonderson Projects Center). The axle will be manufactured in the San Luis Obispo machine shops. The                
final prototype/product will be assembled on the San Luis Obispo campus. The San Luis Obispo students                
require yellow tag certification to use the machine shops. 
 

 
Figure 16. Ultimaker 3+ Extended 3D Printer. 
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Table 10: MPI Manufacturing 
1. Proximal and Distal Phalanges, and Cam 

Step Parts/Tools Used Description Picture 

1.1 ● Ultimaker 3+ 3D 
Printer 

● PLA filament 

● Load the 3D printer with PLA 
filament. 

● Upload the “.stl” files of the 
proximal and distal phalanges to 
Cura. 

● Orient both parts upright with the 
most proximal sides laying on 
the bed of the printer. 

● Begin print. 

 

1.2 ● Files, exacto 
knife, sandpaper, 
pliers 

● Use files, knives, and sandpaper 
as necessary to remove 3D 
printing scaffolding and deburr 
edges 

 

1.3 ● 1.5mm drill bit 
● Hand drill 

● Using a 1.5mm drill bit, enlarge 
and clean the holes around the 
base of the proximal phalanx 

 

2. Glove 

Step Parts Used Description Picture 

2.1 ● 3M Thumb 
Stabilizer 

● Exacto knife 

● Use an exacto knife to cut off 
approximately one inch of the 
upper thumb strap and remove 
the stitches around the steel 
plates in the glove. 

● Remove the steel plates from the 
glove 

 

2.2 ● Scissors ● Place the printed proximal 
phalanx over the glove at the 
thumb. 

● Measure 1 inch of fabric from 
the base of the proximal phalanx 
and cut the excess material from 
the glove 
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3. Axle 

3.1 ● Lathe 
● Dowel Pin 
● 1.6mm Drill bit 
● Chamfer bit 

● Note: Follow all shop safety 
protocols 

● Install the dowel pin on the lathe. 
● Cut the dowel pin to length. 
● Use the tailstock and a 1.6mm 

drill bit to drill a blind hole 8 
mm deep into the dowel pin. 

● Use a chamfer bit to lightly 
deburr the hole. 

● Repeat on the opposite side of 
the dowel pin. 

 
 

 

3.2 ● M2x0.4 Tap Set ● Using a set of M2x0.4 taps, tap 
both holes 6mm deep 

 

3.3  ● Clean tapped holes of the dowel 
pin with compressed air and shop 
towels. 

● Degrease with warm soap and 
water. Dry thoroughly. 

 

4. BOA Fixture 

4.1 ● Boa S2-S Dial 
Closure System 
 

● Unscrew the top screw using a 
T-6 Torx Screwdriver. 

● Remove the top piece. 
● Remove the outer white locking 

dial. 
● Remove the opaque circular 

piece that houses the wire by 
pushing through from the bottom 
of the device. 

● Cut or untie the knot securing the 
existing wire and remove wire.  

● Resecure the new wire in the 
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same orientation as the original 
wire. 

 

4.2  ● Repeat the previous steps in 
reverse order to reassemble the 
Boa S2-S Dial closure system. 
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Table 11: MPI Assembly 
Step Parts Used Description Picture 

1.  ● Wire 
● Proximal phalanx 

● Thread the loose end of the wire 
through the hole on the dorsal 
side of the proximal phalanx 

 

 

2.  ● Wire 
● Cam 

● Take the wire and tie an “Arbor 
knot” around the cam as shown. 
Tighten the knot so that the knot 
rests where the line meets the 
cam. Center the wire along the 
groove of the cam 
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3.  ● Distal Phalanx 
(Left Side) 

● Cam 

● Install the cam with the wire to 
the left half of the distal phalanx 

 

4.  ● Distal Phalanx 
(right side) 

● Torsion spring 
● Axle 
● Shims 

● Place the right side of the distal 
phalanx on the left side of the 
distal phalanx 

● Place the torsion spring on the 
axle and seat on each leg to their 
respective anchoring points on 
the inside of the proximal and 
distal phalanges 

● Align the distal phalanx with the 
proximal phalanx 

● Line up the shims along the 
proximal anchoring holes 

● Insert the axle 

 

 

 

5.  ● Screws ● Use a T6 Torx screwdriver to 
install one screw on each end of 
the axle 
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6.  ● Glove 
● Proximal phalanx 

● Place the proximal phalanx over 
the remaining thumb portion of 
the glove cut from Manufacturing 
step 2.2 

 

 

7.  ● Size 5 ball-point 
sewing needle 

● Stretch thread 

● Using the sewing needle and 
thread, sew the proximal phalanx 
to the glove using a cross-stitch 
pattern as shown 

 

8.   ● Sew the BOA fixture to the base 
of the glove 

 

9.   ● Confirm that the thumb is under 
tension by flexing the IP joint. 
Confirm the return action by 
releasing the distal phalanx 
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Table 12. Bill of Materials 

Part 
Number Product Number Part Name Task Quantity Vendor 

1.   PLA 3D Printing Filament Prosthetic Thumb  1.0 in3 Innovation 
Sandbox 

2.   Loo’s and Company 
Medical Grade Wire 

Wire-Driven 
Mechanism 3 Ft 

Donation 
from Loo’s 
and Co. 

3.  B074N5CMPG Stretch Thread Thumb Attachment 10 Yd Amazon 

4.  6620K221 Stainless Steel Stock Internal Cam 1 McMaster-
Carr 

5.  90145A475 Dowel Pin Joint/Axle 1 McMaster-
Carr 

6.  9287K271 Torsion Spring Joint/Axle 1 McMaster-
Carr 

7.  90910A921 Screw Joint/Axle 2 McMaster-
Carr 

8.  98126A011 Shim Joint/Axle 2 McMaster-
Carr 

9.   Futuro Deluxe Thumb 
Stabilizer Wrist Attachment 1 Target 

 
16.0 Test Protocols 
Figure 17 below shows the network diagram for all testing activities.  
 
Also seen below in Table 13 is the pert chart for all testing. The pert chart numbers relate directly to the                     
steps taken in the network diagram. Testing will be performed on Cal Poly San Luis Obispo’s campus.                 
Testing preparation locations include the biomedical engineering senior design class room (192-329).            
Testing locations include the biomedical engineering lab (192-328) and the Cal Poly Machine Shop (aero               
hangar). Allison, Cale and Sahil can perform the testing preparation and hyper-extension testing on their               
own. Supervision from personnel is required in order to use the Instron Tester, and thus the Instron T.A.                  
(Eric Dubofsky) will be supervising the compressive and tensile testing.  
 
Compressive and tensile testing will be of the proximal and distal pieces on their own (not attached as                  
they would be in full assembly). The distal piece will however be completed with all internal parts (such                  
as cam, screws, shims, spring, etc.). The hyper-extension test will consist of the full prototype, with                
proximal and distal pieces fully attached to one another, connected by sewing mechanisms to the thumb                
stabilizer and with wire running through the assembly.  
 
The testing criteria for the tensile test is 100 lbs +/- 5 lbs. If the test fails, we will either use a higher rated                        
fishing line or look into using a stronger wire. 
The testing criteria for the compression test is 100 lbs +/- 10 lbs. If the test fails, we will look into using a                       
resin printer with Dr. Laiho.  
The testing criteria for the hyper-extension test is 25 lbs. If the test fails, we will need to determine which                    
part of the design failed first. If it is the hinges, then we will need to print them with a thicker outer                      
diameter. If it is the threading attachment of the prosthetic to the thumb stabilizer, then we will look into                   
using stronger thread, or add more holes so that there is more stitching. 
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Figure 17. Network Diagram for Testing Activities. 
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Table 13. Pert Chart for Testing Activities. 
Network 
Diagram 

Step 

Task Name Date Time Lab Space Personnel Equipment Materials 

1 3D print proximal 
phalanges - 9 samples 

02/02/20 By 12 
P.M. 

Innovation 
Sandbox 

Innovation 
Sandbox 
employees 

Ultimaker 3+ 
Extended 3D 
Printer 

PLA 

2 3D print distal 
phalanges - 9 samples 

02/02/20 By 12 
P.M. 

Innovation 
Sandbox 

Innovation 
Sandbox 
employees 

Ultimaker 3+ 
Extended 3D 
Printer 

PLA 

3 Cut 100 lb rated 
fishing line (12 inches) 
- 5 samples 

02/04/20 By 4 
P.M. 

192-329 N/A Scissors PowerPro fishing 
line (100 lb) 

4 Cut 40 lb rated fishing 
line (24 inches) - 12 
samples 

02/04/20 By 4 
P.M. 

192-329 N/A Scissors PowerPro fishing 
line 
(40 lb) 

5 Manufacture 1 axle, 
drill holes in 1 distal 
and 1 proximal piece 
for torsion spring, and 
cut the 100 lb rated 
fishing line 

02/04/20 By 4 
P.M. 

Aero Hangar N/A Hand drill, 
lathe, tap set, 
scissors 

PLA, PowerPro 
fishing line (100 
lb), stainless steel 
stock 

6 Manufacture entire 
assembly - 1 
prosthetic  

02/07/20 By 4 
P.M. 

192-329 N/A screwdriver , 
needle 

Proximal and 
distal phalange, 
internal cam, 
torsion spring, 
shams, screws, 
thread, thumb 
stabilizer, 100 lb 
PowerPro 

7 Perform compression 
testing 

02/11/20 12 P.M. 192-328 Eric Dubofsky 
(Instron TA) 

Instron Tester - 
compressive 
plates 

6 PLA proximal 
phalanges, 6 
PLA distal 
phalanges, 12 40 
lb rated fishing 
line  

8 Perform tensile testing 02/11/20 12 P.M. 192-328 Eric Dubofsky 
(Instron TA) 

Instron Tester - 
tensile grips 

5 100 lb rated 
fishing line 
samples 

9 Perform 
hyper-extension testing 

02/13/20 12 P.M. Aero Hangar N/A Vice - soft jaws, 
5 lb weights 

Completed 
prosthetic design 

10 Redesign/reprint 
design if fails to meet 
criteria 

02/20/20 12 P.M. Innovation 
Sandbox 

N/A Ultimater 3+ 
Extended 3D 
Printer 

PLA, or change 
of material? 

11 Final date for 
testing/redesigning 

03/03/20 12 P.M. “ ” “ ” “ ” “ ” 
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16.1 Tensile Testing  
Tensile testing will be performed in the Biomedical Engineering Materials Lab located in the              
Engineering IV building (192-328). In order to perform the tests, we will need to undergo training                
by the lab instructor as well as be supervised by him for the entire duration of using the Instron                   
Tester. We do predict the wire during tensile testing to withstand 100 pounds of force, because                
that is what the fishing line has been rated by the manufacturer.  

 
The Instron will be tested using a load 5 cm/s and the failure condition is until failure. The Instron                   
only goes to a force of 500 N (112.4 lbs), and so if the wire does not fail before then, the test will                       
stop at 500 N to prevent damage to the Instron tester. The test will succeed if the fishing wire can                    
withstand the force of the rated pound test (100 lbs). Testing Criteria: All five individual trials                
need to pass in order for tensile testing to be considered as passing. 

 

 
Figure 18. Instron Tester for Tensile Testing. 

 
Power Pro Braid Fishing Line  

1. Turn on and calibrate Instron Tester 
2. Measure and record line dimensions 
3. Load test samples and measure length between grips 
4. Zero gauge length, balance the load, and run the tensile test 
5. Repeat for 5 samples 
6. Ensure the average is within +/- 5 lbs of rated pound test (100lbs) 
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Figure 19. Power Pro Braid Fishing Line. 

 
16.2 Compression Testing 
Compression testing will be performed in the Biomedical Engineering Materials Lab located in             
the Engineering IV building (192-328). In order to perform the test, we will need to undergo                
training by the lab instructor as well as be supervised by him for the entire duration of using the                   
Instron Tester. In order to secure the proximal piece, we will be using the fishing wire to secure                  
the piece to the bottom compressive plate. The fishing wire will be wrapped through the piece                
(using the holes cut out of the piece for the threading for the attachment to the wrist strap), then                   
tied around the bottom of the bottom compressive plate. This will ensure that the proximal piece                
will not slide off the plate once contact has been made.  

 
We will be testing until failure or up to 500 N (maximum load rate for the Instron tester). We                   
expect the proximal piece to not fail, but we do expect the proximal piece to fail. Human bone of                   
the femur can withstand forces up to 4,000 N before breaking. This is approximately 900 lbs of                 
force. No material we choose will have the strength to match human bone, and so therefore we                 
are only going to test up to a fraction of that. We want to test the proximal and distal pieces up to                      
100 lbs of force on the Instron compression test. If it can withstand that force, it should be good                   
for our purposes. Testing Criteria: All three individual trials of the specific test run need to pass in                  
order for compression testing to be considered as passing for that particular test. 

 

 
Figure 20. Instron Tester for Compression Testing. 
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Proximal and Distal PLA Phalanges 
1. Exchange tensile Grips for compressive plates 
2. Turn on and calibrate Instron Tester 
3. Turn on materials tester and computer 
4. Load necessary software 
5. Measure all samples 
6. Load proximal phalanx 

a. Use fishing line to attach to bottom compressive plate 
b. Measure support span length 

7. Calibrate and start the experiment 
8. Repeat test 3 times per phalange 

a. 2 orientations: horizontal along both axes 
i. See Figures 27, 29 & 31 below for orientation 1 of the proximal piece 

ii. See Figures 33, 35 & 37 below for orientation 2 of the proximal piece 
b. 6 total tests 

9. Repeat step 6 through 8 with distal phalange 
a. 6 total tests 

i. See Figure 39 below for orientation 1 of the distal piece 
ii. See Figure 43 below for orientation 2 of the distal piece 

 
16.3 Attached Segments in Hyper-Extension 
The hyperextension test will be done in the Cal Poly Machine Shop - Aero Hangar. There is not                  
any special requirements needed to perform this test, other than obtain a red/yellow tag to have                
access to the hanger (which all team members have completed as of December 2, 2019).  

 
Testing will be completed until failure, or until 15 lbs, whichever comes first. Testing Criteria:               
The individual trial needs to pass in order for hyper-extension testing to be considered as passing. 

 
Hyper-extension 

1. Secure the prosthetic to the 3D printed hand model 
2. Secure hand model with prosthetic in vice with soft jaws in pronated orientation 

a. See Figures 56 & 57 below for orientation 
3. Hang weights off of the distal phalanx of the prosthetic in one pound increments, until               

failure 
a. To complete our testing, we used a bucket, and filled it in increments of 15 oz of                 

water (15.34 oz = 1 lb) 
 

16.4 Water Testing 
Water testing will be done in the Biomedical Engineering Materials Lab located in the              
Engineering IV building (192-328). Due to PLA’s tendency to absorb water, and thus break down               
and lose rigidity, we want to make sure that our product will not be compromised due to sweat,                  
water or rain.  
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In order to complete this testing, we will be 3D printing two prosthetic thumbs, and coating one                 
prosthetic with XTC-3D, a high performance 3D print coating. Both parts will be soaked in a                
water bath for 30 minutes, and the structural integrity will be compared between the two parts. 

 
17.0 Testing Data and Analysis 

17.1 Tensile Testing 
Initial tensile testing was conducted on February 6, 2020 in 192-328 at 12:00 P.M.. Three testing                
attempts were conducted, and all three tests failed. 

 
We measured and cut the 100 lb rated fishing line to be 6 inches, and made 5 samples. For the                    
first round of testing, we secured the fishing line between the tensile grips, and ran the first test.                  
However, as seen in Figure 23, the stress concentration was too high and the fishing line snapped                 
just below the tensile grips. We then attempted to secure the fishing line by taking off the tensile                  
grips, and tying the line around the pins that secure the grips into place, as seen in Figure 25.                   
However, this test also failed due to the fact that the knot slipped. We tied it with a fisherman's                   
knot, and the double uni knot (which is the best knot for our specific fishing line), and both tests                   
failed at around 20 lbs due to the knot slipping. Finally, we removed the pins and tied the wire                   
around the holes in the instron, however this test also failed. The internal edges were too sharp                 
and cut the wire during the test, and so we need a new method in order to proceed with tensile                    
testing.  

 

 
Figure 21. Fishing line samples 02/06/20. 
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Figure 22 & 23. Tensile testing 02/06/20, attempt 1. 

 

 
Figure 24. Fisherman's knot. 
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Figure 25. Tensile testing 02/06/20, attempt 2. 

 

 
Figure 26. Tensile testing 02/06/20, attempt 3. 
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17.11 Conclusion: 
 

 
Figure 27. Tensile Testing, 02/06/20 

All tensile testing failed.  
 

The knot in the wire could not withstand a great force, as seen in Figure 27. The loads varied                   
greatly as the knots slipped, and therefore all testing was inaccurate and therefore failed. Because               
of this, we are going to change materials to Loo’s and Company medical grade wire, as noted in                  
our detailed design II section. This wire was given to Andrew as a free sample at a medical device                   
convention in Pomona. We have also received the testing documents for the wire, and have               
decided to move forward with it. If we have time next quarter and the resources to purchase more                  
wire, we will perform our own tests, however we will not be able to do so before March 17.  

 
17.2 Compression Testing 
Initial compression testing was conducted on February 20, 2020 in 192-328 at 12:30 P.M.  

 
Proximal pieces were tested first. We tested three parts in two different directions. The pieces               
were secured by using extra fishing line to tie the piece around the bottom compression plate. In                 
the first orientation, the proximal piece failed at 38 N, due to a crack along the holes, seen in                   
Figure 29. During the second test, the proximal piece slipped at initial contact with the top                
compressive plate because the wire was not tight enough, so the test was stopped at around 4 N,                  
the part was resecured and the test was run again. The piece minorly cracked at 45 N, but the test                    
was run until the maximum load was applied (500 N). The part had a crack seen in Figure 31, but                    
the structural integrity of the part was not completely compromised, as it was still able to                
withstand 500 N. The third test was run, and there was a minor crack at 50 N (seen in Figure 33),                     
but the test was run until the maximum load was achieved. This test also showed that the part                  
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could still withstand a load of 500 N.  
 

 
Figure 28 & 29. Proximal compression testing 02/20/20, orientation 1, attempt 1. 
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Figure 30 & 31. Proximal compression testing 02/20/20, orientation 1, attempt 2. 

 

 
Figure 32 & 33. Proximal compression testing 02/20/20, orientation 1, attempt 3. 
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The proximal pieces were then tested in another direction; pressure from the upper compressive              
plate was applied to the outer portion of the proximal piece. They were also secured using extra                 
fishing line, and tied securely to the bottom compressive plate. The first test was run, and the part                  
failed at 70 N along the support material, as seen in Figure 35. The second test was run and the                    
part failed at 170 N. As seen in Figure 37, the inner portion of part shattered. Finally, the third test                    
was run, and the part had a minor crack at 47 N, another crack at 100 N, but still withstood                    
compression until the load maxed out at 500 N.  

 

 
Figure 34 & 35. Proximal compression testing 02/20/20, orientation 2, attempt 1. 
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Figure 36 & 37. Proximal compression testing 02/20/20, orientation 2, attempt 2. 

 

 
Figure 38 & 39. Proximal compression testing 02/20/20, orientation 2, attempt 3. 

 
The next testing was conducted on the distal pieces. The distal pieces were connected with the                
internal cam inside. We wanted to test the distal pieces in two directions. The first compressive                
test was run with the distal piece laying on its side, and the load was set to 2 N in order to hold                       
the part in place and prevent slipping. There were three trials of this test run, and all three tests                   
passed. They withstood the maximum load the instron could give, of 500 N. All three parts can be                  
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seen in Figure 41, and none had any defects. When we attempted to run the test in the second                   
orientation (with the compressive plate putting pressure on the top of the distal piece), the parts                
slipped. We will need to retest the pieces once the set screws are able to hold the parts together. 

 

 
Figure 40. Distal compression testing 02/20/20, orientation 1. 

 

 
Figure 41. Distal compression testing 02/20/20. 
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Figure 42. Distal compression testing 02/20/20, orientation 2, attempt 1. 

 

 
Figure 43. Distal compression testing 02/20/20, orientation 2, attempt 1. 

 
The second round of distal compression testing was conducted on February 26, 2020 in 192-328 at 12:00                 
P.M.  
 
The distal pieces were connected with two set screws and two screws with the internal cam inside. The                  
orientation of the test can be seen below in Figure 44. The first test conducted failed, because the set                   
screws came out of their internal holes. The test failed due to the internal components; the two distal parts                   
were unharmed as seen in Figure 45. The second test made it to 500 N, but the part is deformed as seen in                       
Figure 46 and 47. The set screws and screws stayed in tact. For the third test, the distal piece also                    
withstood 500 N of force, but the part deformed and there were lots of cracks in the material, as seen in                     
Figure 48 and 49. The set screws and screws stayed in tact; the part failed because of the material.  
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Figure 44 & 45. Distal compression testing 02/26/20, orientation 2, attempt 1. 

 

 
Figure 46 & 47. Distal compression testing 02/26/20, orientation 2, attempt 2. 
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Figure 48 & 49. Distal compression testing 02/26/20, orientation 2, attempt 3. 

 
17.21 Conclusion: 

 
Proximal Pieces: 

 
Figure 50. Proximal Compression Testing for Orientation 1, 02/20/20. 
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Figure 51. Proximal Compression Testing for Orientation 2, 02/20/20. 

 
Proximal testing in orientation 1 and orientation 2 failed.  

 
Each test had cracks either along the holes, or where the part internally loses thickness. The tests                 
still were able to withstand a force of 500 N, so we are feeling confident that if we change                   
materials so something slightly stronger, it would be able to still withstand that force, and               
possibly not crack. We also tested the pieces without anything supporting the inside of the               
prosthetic, which is unrealistic for when the patient is wearing it. In reality, the residual of the                 
thumb will be supporting the prosthetic where the material gets thinner and cracked, so we do                
believe that the prosthetic when he is wearing it will be able to support a greater force without                  
failing. 
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Distal Pieces:  

 
Figure 52. Distal Compression Testing for Orientation 1, 02/20/20. 

 

 
Figure 53. Distal Compression Testing for Orientation 2, 02/20/20. 
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Figure 54. Distal Compression Testing for Orientation 2, 02/26/20  

 
Distal testing in orientation 1 was a success and distal testing in orientation 2 failed. 

 
Orientation 1 (force from the side) succeeded. The parts were able to withstand a force of 500 N                  
without failing. There were no cracks noticeable, and the parts retained their structure as seen in                
Figure 41 above. Figure 52 represents the Load Vs. Extension for the distal pieces in orientation                
1. It is seen that as the instron compression plates extended and the piece was compressed, there                 
were no dips indicating any cracks in the material, and all three tests passed the test as they made                   
it to 500 N.  

 
Orientation 2 (force from the top) failed. In the first test, it was the internal components such as                  
the set screw that caused the part to fail. The internal parts came out and so the distal piece was                    
not intact and able to withstand 500 N. In the second and third test, the two halves of the distal                    
piece and internal parts stayed intact, but the PLA material was cracked. Figure 54 shows               
numerous cracks that the second and third test experiences. There were numerous cracks (which              
are shown as dips in the graph), which can be seen in Figures 46 and 48.  

 
The patient will most likely not experience a force of 500 N directly on the top of the distal piece,                    
and so we were expecting the test to fail. We are planning on changing materials, and so we are                   
hoping that next quarter the stronger 3D printed material will be able to withstand a higher force,                 
without cracking.  

 
17.3 Hyper-Extension Testing 
Hyperextension testing was conducted on March 5, 2020 in the Aero Hangar  at 12:30 P.M.  

55 



 

 
The test was conducted by attaching the 3D printed hand model to a block of wood, and securing                  
the prosthetic assembly over top of the hand/wood. The hand was secured horizontally in soft               
jaws of a vice, as seen in Figure 55 and 56. A bucket (measured at 14.6 g) was secured to the                     
prosthetic using extra of the fishing line, as seen in Figure 58. The bucket was secured along the                  
axis of rotation between the proximal and distal pieces, and 16 oz of water were slowly poured                 
into the bucket.  

 
The part failed at 13 lbs (1 lb of the bucket, and 12 additions of 16 oz of water). The part failed                      
due to a crack in the material. We were expecting the stitching holding the proximal piece to the                  
glove, or the hinge to fail. However, we are reprinting our final product that we will deliver to our                   
patient in a stronger material. 

 

 
Figure 55. Prosthetic Secured to Hand Model. 
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Figure 56 & 57. Compression Testing Orientation. 

 

 
Figure 58 & 59. Bucket Secured to Prosthetic. 
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Figure 60 & 61. Tools for Testing. 

 

 
Figure 62. Hyperextension Testing, 03/05/20. 

 
17.31 Conclusion: 
Hyper-extension testing failed. The proximal piece cracked due to the weight of the bucket and               
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water, as seen above in Figure 62. Due to the failure of the other tests,we anticipated that the                  
material would also fail during the hyper-extension test. We are changing the material of our final                
product to carbon fiber, and therefore believe that the stronger 3D printed material will be able to                 
withstand a greater force without cracking.  

 
17.4 Water Testing 
We have decided not to conduct the water testing. We are switching to the 3D printers at Cal Poly                   
Pomona that can print with carbon fiber impregnated nylon. Therefore, there is no need to               
conduct a test to determine if PLA will withstand 30 minutes of a water bath. 

 
18.0 Patient Fitting 
On March 10, 2020, the Cal Poly SLO team met with Andrew and the patient in Oxnard, CA.  
 
We performed an initial fitting of the prosthetic with the patient. He told us that the brace is comfortable, 
however when he attempted to lift items too heavy the entire brace would slip over the residual of the 
thumb and fall off. We determined the cause of this to be that the brace was too loose along the palm of 
the hand. After quickly sewing the top of the glove to make the fit tighter, the patient was able to grasp 
and lift items.  
 
The distal phalanx bent forward  as intended. When he propelled the residual of his thumb, the wire 
shortened, causing the distal phalanx to bend inwards, allowing him to grasp items. However, we noticed 
that the spring was too weak to propel the distal component back to the starting position after grasping the 
items. We will be implementing a design change to add another spring on the inside of the prosthetic to 
allow for that to happen. 
 
Figures 63 and 64 below show how the prosthetic fits on the patient. 
 

 
Figure 63. Initial Fitting, 03/10/20. 
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Figure 64. Initial Fitting, 03/10/20. 

 
19.0 Conclusions 
At the end of two quarters, we have successfully 3D printed and built a functional prosthetic thumb                 
prototype for a Cal Poly Pomona student who lost his thumb in an industrial accident. The prosthetic                 
meets the specifications he requested: it was cost effective, lightweight, body-powered and attached to the               
wrist comfortably. The patient had originally requested that we incorporate a way for him to continue                
weight lifting into the design. However, after discussing with the patient, we decided to first focus on a                  
design that allowed him to regain basic functionality of his left. 
 
After attempting to perform tensile testing, we had to determine that the test failed. We were unable to                  
secure the fishing line to the Instron without the wire cutting on sharp edges, slipping from the tensile                  
grips or having the knots come undone at a lower force than the wire was supposed to withstand. Because                   
of that, we decided to replace the fishing line in our design with a sample of medical grade wire that                    
Loo’s and Company has donated to our group. They have also offered to provide us with their testing                  
data, and upon receiving that information we will cross reference it to ensure that it can withstand the                  
tensile force that we would like it to. We did not attempt to perform testing on the medical grade wire                    
because we have only received a small sample of around three feet, and we did not have enough of the                    
sample to both use for our prototype and use for tensile testing.  
 
Compression testing also failed for the proximal pieces. They were unable to withstand a force of 500 N                  
without cracking or severe deformation. Compression testing failed in vertical orientation for the distal              
piece, and passed for horizontal orientation. The hyper-extension test also failed. After the other two               
failed tests, this was expected and used as an opportunity to solidify a workable protocol for testing of                  
future materials. Since all of these failures came from cracking of the PLA 3D printed material, we have                  
decided to make a design change from the prototype to our final product of changing the print material to                   
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carbon fiber impregnated nylon. This material is a much stronger material than PLA, and thus we are                 
expecting after the design change that when we rerun testing in the spring quarter, the tests would all pass.  
 
Due to the fact that Pomona is on a semester system, we will be continuing to work with Andrew on this                     
final design next quarter, up until May. We will be completing user testing in April, and making any                  
comfort changes for the patient (such as adding foam to the inside of the prosthetic where it rests upon the                    
thumb residual if he experiences discomfort). All the design changes we stated above are going to be                 
implemented after this quarter ends, and the final product will be given to the patient at the end of May.  
 
20.0 Discussion 
While five of our six testing methods did fail, we are taking those tests into account as we finalize our                    
prototype into our final product that we will be presenting to our patient in May. Our prototypes main use                   
was to test the feasibility of our design, and to determine whether or not the wire driven prosthetic option                   
would work for our patient. The design did end up articulating as intended, as the wire shortens the                  
proximal phalanx closes allowing the patient to grasp items.  
 
The compression testing we performed on the proximal piece was tested without any internal support. In                
reality, when our patient is wearing the thumb and undergoing a compressive force in either direction, the                 
residual of his thumb will be providing a counterforce. We do believe that in that instance, the PLA                  
material would be able to withstand the force of 500 N without cracking. However, since our test failed                  
for that part, and Cal Poly Pomona has access to a carbon fiber impregnated nylon 3D printer, we will be                    
printing our final product with that. Carbon fiber is a much stronger material than PLA, and so we do                   
expect it to be able to pass the tests that PLA failed.  
 
By the end of May, we will have a completed product for our patient to receive and use until he decides to                      
move forward with a real prosthetic company.  
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21.0 Appendix 
 

 
Figure 65. Completed Pugh Matrixes. 
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Figure 66. Purchase Requisition Form (11/17/2019). 
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Figure 67. Purchase Requisition Form (01/09/2020). 
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Figure 68. Purchase Requisition Form (01/21/2020). 
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Table 13. Design Hazard Checklist  

Team: 
Prosthetic 
Thumb 

Sponsor: Dr. Mehrdad Haghi 

  Y/N 

Y 1. Will any part of the design create hazardous revolving, reciprocating, running, 
shearing, punching, pressing, squeezing, drawing, cutting, rolling, mixing or similar 
action, including pinch points and sheer points? 

N 2. Can any part of the design undergo high accelerations/decelerations? 

N 3. Will the system have any large moving masses or large forces? 

N 4. Will the system produce a projectile? 

N 5. Would it be possible for the system to fall under gravity creating injury? 

N 6. Will a user be exposed to overhanging weights as part of the design? 

N 7. Will the system have any sharp edges? 

N 8. Will any part of the electrical systems not be grounded? 

N 9. Will there be any large batteries or electrical voltage in the system above 40 V? 

N 10. Will there be any stored energy in the system such as batteries, flywheels, hanging 
weights or pressurized fluids? 

N 11. Will there be any explosive or flammable liquids, gases, or dust fuel as part of the 
system? 

Y 12. Will the user of the design be required to exert any abnormal effort or physical 
posture during the use of the design? 

N 13. Will there be any materials known to be hazardous to humans involved in either the 
design or the manufacturing of the design? 

N 14. Can the system generate high levels of noise? 

Y 15. Will the device/system be exposed to extreme environmental conditions such as 
fog, humidity, cold, high temperatures, etc? 

Y 16. Is it possible for the system to be used in an unsafe manner? 

N 17. Will there be any other potential hazards not listed above? If yes, please explain in 
Table 14. 
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Table 14. Design Hazard Corrective Actions. 

For any “Y” responses, add (1) a complete description, (2) a list of corrective actions to be taken, and 
(3) date to be completed on the reverse side. 

Description of Hazard Planned Corrective Action Planned Date 

1. The user will experience pinch points 
and/or irritation of the skin where the 
prosthetic meets the residual of the thumb. 

We are researching medical grade foam 
that we plan on lining the distal piece 
with to provide comfort for the user 
when he starts to experience pain from 
the contact points of the prosthetic. 

02/20/20 

12. The user will be required to exert more 
effort to use the device than he is normally 
doing.  

We will have to teach the user how to 
use the device, and make sure he 
understands that this is a learning 
process and he will have to continue to 
practice using the prosthetic until it 
becomes a natural movement. 

03/06/20 

15. The user will most likely be wearing 
the device in all weather conditions. It is 
possible that extreme weather conditions 
could diminish the strength or tarnish the 
appearance of the product.  

PLA is a material that absorbs water, 
and thus can start to break down. We 
will be coating the prosthetic in a high 
performance coating to protect the PLA 
from undergoing damage with water 
absorption. We will be testing whether 
the coating works by placing the 
prosthetic in a bowl of water for 10 
minutes, taking it out and letting it dry, 
then testing the strength. 

Coating: 
02/20/20 
 
Testing: 
02/26/20 

16. It is possible for the prosthetic to be 
used in an unsafe manner. If the user uses 
it to lift extremely heavy objects (or 
weighlift) using the prosthetic, there is a 
strong possibility that the linkages or wire 
will not be able to withstand the force and 
fail, causing a minor or severe injury to the 
patient. 

We will test the chosen material to 
determine the maximum weight the 
user can use before the prosthetic will 
fail. We will test this using the material 
of the prosthetic, the linkages between 
the proximal and distal pieces, and 
finally the strength of the wire. We will 
incorporate a high factor of safety. 
Once this value is determined, we will 
inform the user not to go over this value 
due to the possibility of failure and 
injury.  
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