
THE SUMMARIZATION OF ARABIC NEWS TEXTS USING
PROBABILISTIC TOPIC MODELING FOR L2 MICRO

LEARNING TASKS

by

Elsayed Sabry Abdelaal Issa

AN HLT INTERNSHIP REPORT

SUBMITTED TO THE DEPARTMENT OF LINGUISTICS

THE UNIVERSITY OF ARIZONA

2020

2

This project was fully or partially funded under a grant from the Institute of

International Education (IIE), acting as the administrative agent of the Defense

Language and National Security Education Office (DLNSEO) for The Language

Flagship (P.I.: Dr. Julio C. Rodriguez). One should not assume endorsement by

the Federal Government.

3

TABLE OF CONTENTS

SECTION 1 INTRODUCTION . 4
1.1 Motivation . 4
1.2 Objectives . 5
1.3 Outline of the Report . 5

SECTION 2 BACKGROUND . 6
2.1 Probabilistic Topic Modeling . 6
2.2 Text Summarization . 11
2.3 Microlearning . 12
2.4 The Arabic Language . 13

SECTION 3 IMPLEMENTATION AND PROBLEMS 15
3.1 Implementation of the Summarization Method 15

3.1.1 The Design of the Moroccan News Corpus 15
3.1.2 The Latent Dirichlet Allocation Algorithm 20
3.1.3 The Summarization Algorithm 29
3.1.4 Evaluation Method . 33

3.2 Arabic NLP Tools Evaluation . 35
3.2.1 The Earlier Arabic Morphological Analyzers 35
3.2.2 Stanford Arabic NLP Toolkit 38
3.2.3 Farasa Arabic NLP Toolkit 39
3.2.4 NLTK ISRI Arabic Stemmer Tool 41
3.2.5 Other Tools . 42

SECTION 4 CONCLUSION AND FUTURE WORK 43

APPENDIX A An example of document summary 45

4

SECTION 1

INTRODUCTION

The field of Natural Language Processing (NLP) combines computer science,

linguistic theory, and mathematics. Natural Language Processing applications aim

at equipping computers with human linguistic knowledge. Applications such as

Information Retrieval, Machine Translation, spelling checkers, as well as text sum-

marization, are intriguing fields that exploit the techniques of NLP. Text summariza-

tion represents an important NLP task that simplifies various reading tasks. These

NLP-based text summarization tasks can be utilized for the benefits of language

acquisition.

1.1 Motivation

The Arabic Flagship is an overseas summer and capstone program in Morocco

administered by the American Councils1 for qualified American students currently

enrolled in a domestic Flagship program. Since students travel to Morocco, they

need to gain more exposure to the Moroccan dialect and culture. The Language

Flagship Technology Innovation Center (Tech Center) at the University of Hawaii

at Manoa is the leading entity in the field of education technology that provides

the Flagship programs with the top-notch technologies nationwide to enhance the

processes of learning foreign languages. Therefore, the Tech Center started a project

that involved building a summarization tool for Arabic news articles from Moroccan

newspapers for microlearning tasks for L2 Arabic learners.

1https://flagship.americancouncils.org

5

1.2 Objectives

Given the increasing number of U.S. students learning Arabic and the need for

authentic pedagogical materials for language learning, as well as the use of new

emerging technologies in language acquisition, the Tech Center’s project stresses

several objectives. First, it aims at building a database for Moroccan news articles

in multiple genres, especially genres that leverage the linguistic and cultural com-

petence of the students. Second, it uses this database to build summaries using

Probabilistic Topic Modeling (PTM) that can be used by microlearning tasks. The

main objective of these microlearning tasks is to explore the perspectives and the

underlying assumptions surrounding several topics and address culturally appropri-

ate ways to react to them. In brief, this project aims at scraping Moroccan websites

and preparing the scraped data to provide the authentic and the most probable sen-

tences and phrases that microlearning tasks use. Microlearning refers to relatively

small learning units and short-term learning activities.

1.3 Outline of the Report

The report is organized as follows. The introduction (Section 1) describes the

motivation behind this report and introduces the objectives. Section 2 lays out

the concrete and necessary facts about topic modeling, text summarization, micro-

learning, and the Arabic language. Section 3 describes the implementation of the

summarization task and evaluates the available Arabic NLP tools. Section 4 sum-

marizes the results and future work.

6

SECTION 2

BACKGROUND

This section is divided into four subsections. It gives an overview of topic model-

ing, different algorithms of probabilistic topic modeling, text summarization meth-

ods, microlearning, and an overview of the Arabic language.

2.1 Probabilistic Topic Modeling

Topic Modeling is the process of extracting topics from a large number of texts

and documents. Probabilistic Topic Modeling (PTM) is an unsupervised technique

of machine learning. It is used to discover the underlying topics in a text document

or across several documents. The basic assumption behind topic modeling is that

a document can be represented by a set of latent topics, multinomial distributions

over words, and assume that each document can be described as a mixture of these

topics (Chang et al., 2009). Each document has then a set of topics and probability

distributions associated with them. At the same time, each topic has a set of

words and their probabilities of occurrence given that document and topic, i.e.,

topic models build bags for topics to extract information. In figure 2.1 on the next

page, the document is represented by four topics. These topics are ’Arts’, ’Budgets’,

’Children’, and ’Education’. Each topic, in turn, is a bag of words occurring in a

document (Blei et al., 2003).

There are several methods and algorithms under topic modeling. In their paper,

A Survey of Topic Modeling in Text Mining, Alghamdi and Alfalqi (2015) discuss

two main categories under the field of topic modeling. The first category, or basic

methods, includes Latent Semantic Analysis, Probabilistic Latent Semantic Analy-

7

Figure 2.1: An example article from the AP corpus

sis, Latent Dirichlet Allocation, Correlated Topic model (CTM). The second cate-

gory, or Topic Evolution Models, includes Topic Over time (TOT), Dynamic Topic

Models (DTM), Multiscale Topic Tomography (MTT), Dynamic Topic Correlation

Detection (DTCD), Detecting Topic Evolution(DTE).

Our topic models are implemented using Python GenSim library (Řeh̊uřek and

Sojka, 2010), which was introduced in 2008 to model similar topics, and it stands

for Generate Similar (GenSim)1. In GenSim, topic modeling can be done using

Latent Semantic Allocation (LSA) or Latent Dirichlet Allocation (LDA). These two

algorithms are used to perform classification on documents. On the one hand, Latent

Semantic Allocation (LSA) is a mathematical and statistical technique that is used

1https://radimrehurek.com/gensim/about.html

8

for extracting relations of the contextual usage of words in texts. Landauer et al.

(1998) identify three steps to employ Latent Semantic Allocation. First, the text

is represented as a term-sentence matrix (n by m matrix) where each row stands

for a unique word and each column stands for the text. Each entry aij weights the

word i in the sentence j. Suppose we have X matrix, the t⊤i (each row) is a vector

representation of the words while the dj (each column) is a vector representation

of the texts. The dot product of the two vectors gives the correlation between the

words over the set of texts.

X =

a11 . . . a1j . . . a1n
... . . .

... . . .
...

ai1 . . . aij . . . ain
... . . .

... . . .
...

am1 . . . amj . . . amn

= U

u1

. . .

uk

∗

σ1 . . . 0

... . . .
...

0 . . . σk

∗V⊤

v1
...

vk

Second, each cell frequency is weighted by the function of (TF-IDF)2 to express

the word importance and the information it carries in the text. Third, LSA applies

singular value decomposition (SVD) to the matrix, which is a form of factor analysis.

The SVD is used to transform the matrix X into three matrices: X = U

V⊤ as

illustrated above. The U is a term-topic (n by m) matrix that contains the weights

of words. The

is a diagonal (m by m) matrix where each row i corresponds to

the weights of a topic j. The V⊤ is the topic sentence matrix. In linear algebra,

2TF-IDF stands for term frequency-inverse document frequency, and it is a weight often used in

information retrieval and data mining. It is is a statistical measure used to evaluate how important

a word is to a document in a corpus. Term Frequency for term (t) is computed as follows: TF(t) =

(No. of times t appears in a document)/(total No. of terms in the document). Inverse Document

Frequency (IDF) measures how important a term is, and it is measured by the following equation:

idft = log N
dft

where N is the total number of documents (Manning et al., 2008).

9

the SVD is the decomposition of the X such that U and V are orthogonal (word

eigenvector) matrices and

is a diagonal matrix. In U and V, the u and v are

called the left and right singular vectors where the σs are called the singular values.

The resulting matrix D =

V⊤ describes how much a sentence represents a topic

(Allahyari et al., 2017).

Latent Dirichlet Allocation (LDA), on the other hand, is a generative proba-

bilistic model of a corpus. The idea is that ”documents are represented as random

mixtures over latent topics, where each topic is characterized by a distribution over

words” (Blei et al., 2003). In our project, we opt for Latent Dirichlet Allocation

(LDA) algorithm. It is considered as the simplest topic model (Blei, 2010). Blei

et al. (2003) illustrate that LDA assumes the following generative process for each

document w in a corpus D :

1. Choose N ∼ Poisson (ξ).

2. Choose θ ∼ Dir(α).

3. For each of the N words wn:

(a) Choose a topic zn ∼ Multinomial (theta)

(b) Choose a word wn from p(wn|zn, β), a multinomial probability condi-

tioned on the topic zn.

This can be interpreted as follows: 1) Given a k number of topics, 2) distribute

these k topics across document m following a Dirichlet distribution and assign each

word a topic, 3) for each word w in document m, assign word w a topic. More

formally, a k-dimensional Dirichlet random variable θ can take values in the (k-1)-

simplex. This is a k-vector θ that lies in the (k-1) if θi ≥ 0,
k

i=1 θi = 1. The

probability density on this simplex is as follows:

p(θ|α) = Γ(
k

i=1 αi)

Πk
i=1Γ(αi)

θα1−1
1 ...θαk−1

k ,

10

where the parameter α is a k-vector with components αi > 0, and where Γ(x)

is the Gamma function. Given the parameters α and β, the joint distribution of a

topic mixture θ, a set of N topics z, and a set of N words w is given by:

p(θ, z,w|α, β) = p(α|β)ΠN
n=1p(zn|θ)p(wn|zn, β),

where p(zn|θ) is simply θi for the unique i such that zin = 1. Integrating over θ and

summing over z, we obtain the marginal distribution of a document:

p(w|α, β) =

p(θ|α)(ΠN
n=1

zn

p(zn|θ)p(wn|zn, β))dθ.

Finally, the probability of the corpus is obtained by taking the product of the

marginal probabilities of single documents:

p(D|α, β) = ΠM
d=1

p(θd|α)(ΠNd

n=1

zdn

p(zdn|θd)p(wdn|zdn, β))dθd.

The LDA model is represented as a probabilistic graphical model in the figure

below.

Figure 2.2: Graphical model representation of LDA

The three levels of LDA explained above are represented by this figure. The

parameters alpha and β are corpus-level parameters. The variables θd are the

11

document-level variables. Finally, the variables zdn and wdn word-level variables

(Blei et al., 2003)

2.2 Text Summarization

Text summarization is the process of creating a concise and coherent summary

of a longer text while preserving the meaning and the important information in

the text (Allahyari et al., 2017). Moreover, Das and Martins (2007) hold that

the simple definition captures three essential features that characterize automatic

summarization. First, summaries are extracted from a single document or multiple

documents. Second, summaries should preserve the important key information.

Finally, they should be short. The following figure 3 shows that text summarization

can be divided into summaries that are based on the input type, the output type,

and the purpose of the summary.

Figure 2.3: The types of text summarization

Based on the output of the summarization task, there are two approaches;

extractive and abstractive summarization. The extractive method selects and

extracts the more relevant pieces or sentences than others in a longer text.

3https://aitor-mir.github.io/summarization.html

12

Abstractive approaches, on the other side, attempt to generate new content based

on the existing one (Das and Martins, 2007).

In this project, we use the extractive summarization approach. This approach

work by 1) Constructing an intermediate representation of the input text, which

expresses the most salient content. 2) Scoring the sentences based on the represen-

tation, which represents how well the sentence explains some of the most important

topics of the text. 3) Selecting a summary comprising a number of the top sentences

based on their scores (Allahyari et al., 2017).

2.3 Microlearning

Langreiter and Bolka (2006) define microlearning as a term that ”reflects the

emerging reality of the ever-increasing fragmentation of both information sources

and information units used for learning.” In other words, microlearning refers to

short-term-focused activities on small units of learning content (Hug and Friesen,

2007). From a language acquisition perspective, we define microlearning as a learn-

ing activity on small pieces of texts (summaries) based on longer news articles.

Summaries of news articles can be used by a microlearning approach to language

learning. In 15 minutes a day, a student can gain some linguistic proficiency by read-

ing a summary that contains words with the highest probability in a text. They can

learn more effective vocabulary and gain the gist of the entire article. This means

that microlearning is a way of teaching and delivering language content to learners

in small, concise, and accessible formats. Text summarization and microlearning

are motivated by some considerations. First, personal learning content leverages

the linguistic proficiency of language learners. If there is an online summarization

system for news articles in one language, learners of that language can advance their

linguistic as well as cultural competence by reading these summaries on daily ba-

sis. Second, exploiting the ever growing online content as a learning resource that

13

enriches learners’ linguistic and cultural competence. Third, summaries used in mi-

crolearning activities are heterogeneous and authentic content that can be used in

reading comprehension drills.

2.4 The Arabic Language

Arabic is a Semitic language spoken widely in the Middle East and several

African countries. Arabic has two standard forms, Classical Arabic which is not

widely spoken today and Modern Standard Arabic that is derived from Classical

Arabic and contains more modern vocabulary. Arabic also consists of a wide range

of varieties, which are considered the spoken Arabic dialects that all native speakers

learn as their mother tongue before they begin their formal education (Holes, 2004).

Arabic linguistic features differ in morphology, syntax, and writing systems from

other languages. These linguistic features make it one of the complex languages that

poses a challenge not only to second language learners but also to Natural Language

Processing tasks. Arabic derivational or lexical morphology deals with how Arabic

words are formed. Derivational morphology follows the ’root and pattern’ principle

where the root is a semantic abstraction consisting of three consonants from which

words are derived following certain patterns or templates (Holes, 2004). Arabic in-

flectional morphology, on the other side, deals with how Arabic words interact with

syntax where they inflect to express grammatical categories such as gender, num-

ber, person, case and tense. This non-linearity in Arabic derivational morphology,

the sophisticated principles of derivation, and inflectional endings complicate the

attempts to morphological analysis, stemming or lemmatization.

Arabic sentence structure posits various types of complexities. Most Arabic sen-

tences are classified broadly into nominal, sentences that involve a subject and a

predicate, or verbal sentences. Verbal sentences, in turn, contain a verb, a subject

and/or an object. This entails that Arabic sentences follow either SVO or VSO

word order. However, Arabic sentences exhibit preposing and postposing sentence

14

constituents, which results in VSO, OVS, SOV word orders. Furthermore, Arabic

sentences exhibit an interesting phenomenon. They tend to connect using conjunc-

tions such as waa (and), and Paw (or), as well as commas to form run-on sentences.

Run-on sentences may constitute one paragraph or, sometimes, an entire page. This

phenomenon creates several problems for natural language processing tasks, and it

requires a highly efficient sentence splitter that targets sentence conjunctions to form

short meaningful sentences.

15

SECTION 3

IMPLEMENTATION AND PROBLEMS

This section discusses the implementation of the summarization method and the

problems incurred during the process of the design. It is divided into two subsections.

The first subsection focuses on the implementation of the summarization method.

The second subsection discusses and evaluates the different Arabic NLP tools used

and tested during the implementation of the topic model.

3.1 Implementation of the Summarization Method

This subsection discusses the design of the Moroccan News Corpus using the

Scrapy framework, and the implementation of both the LDA algorithm and the

summarization algorithm. It concludes with an evaluation of the results of the

summarized texts.

3.1.1 The Design of the Moroccan News Corpus

This part discusses the process of web scraping/crawling used in this project, and

the design of the Moroccan News Corpus that involves using Scrapy’s spiders and

crawlers as well as the CSS and XPath selectors. Web scraping, on the one hand,

refers to the process of data extraction from a website automatically using scraping

modules. On the other hand, web crawling is the process of following the links we

select. These definitions are fundamental to the case of scraping news articles for

the Moroccan newspapers because we found that web crawlers are more effective in

following news links than Scrapy spiders.

16

Scrapy is a free open source and collaborative framework for extracting data from

websites using CSS and XPath selectors.1 Scrapy has five spiders (scrapy.spider)

that determine both the behavior and the aim of scraping. These are scarpy.Spider

which is used to scrape data from websites while CrawlSpider that is used to follow

links on the website. XMLFeedSpider, on the one hand, scrapes XML documents

on the websites while CSVFeedSpider scrapes comma-separated value data on the

other hand. Finally, SitemapSpider handles all the URLs in the sitemap. We

used scrapy.Spider and CrawlSpider in our project to scrape/crawl the Moroccan

newspapers websites.2 Additionally, Rule and LinkExtractor objects are used to

build rules for the crawlers using regular expressions to crawl the newspaper links

and extract the relevant data.

Figure 3.1: Scrapy architecture

1https://scrapy.org
2https://docs.scrapy.org/en/latest/topics/spiders.html

17

The above diagram3 shows an overview of the scrapy architecture as well as the

data flow inside it. The scrapy algorithm as well as data flow are explained by

the following steps. First, the engine gets the initial requests to crawl from the

spider. Second, the engine schedules the requests in the scheduler and asks

for the next requests. Third, the scheduler returns the next requests to the

engine. Fourth, the engine sends the requests to the downloader through the

downloader middleware. Fifth, once the page finishes downloading, the down-

loader generates a response and sends it to the engine through the downloader

middleware. Sixth, the engine receives the response from the downloader and

sends it to the spider for processing through the spider middleware. Seventh,

the spider processes the response and returns scraped items and new requests to

the engine through the spider middleware. Eighth, the engine sends processed

items to the item pipelines, then send processed requests to the scheduler and

asks for other requests to crawl. Ninth, the process repeats until there are no more

requests from the scheduler.

To create a project, we use the terminal to create a CrawlSpider using the

following commands.

scrapy startproject <name of the project>

scrapy genspider <name of spider> <website domain> -t crawl

The first command creates a project folder with a name of our choice. After

changing the directory to the project folder, the second command is run to create

a spider of the kind CrawlSpider to crawl the links of the website. The following

code shows the CrawlSpider object under which there are the name of the spi-

der, the allowed domains, and the start URLs. The name of the spider should be

unique and different from the name of the project folder. We use it later to call the

spider/crawler for scraping/crawling.

3https://docs.scrapy.org/en/latest/topics/architecture.html

18

import scrapy

from scrapy.linkextractors import LinkExtractor

from scrapy.spiders import CrawlSpider, Rule

from ..items import AkhbaronaItem

from scrapy.loader import ItemLoader

class GoodCrawlerSpider(CrawlSpider):

name = "akhbar_crawler"

allowed_domains = ["www.akhbarona.com"]

start_urls = ["https://www.akhbarona.com/economy/index.1.html",

"https://www.akhbarona.com/politic/index.1.html",

"https://www.akhbarona.com/national/index.1.html",

"https://www.akhbarona.com/sport/index.1.html",

"https://www.akhbarona.com/world/index.1.html",

"https://www.akhbarona.com/health/index.1.html",

"https://www.akhbarona.com/technology/index.1.html",

"https://www.akhbarona.com/culture/index.1.html",

"https://www.akhbarona.com/last/index.1.html"]

The scrapy CrawlSpider inherits from the scrapy.Spider class to scrape data

from the website. Since news websites include hundreds of links to new articles

as well as future articles, the CrawlSpider proves the best choice along with Rule

and LinkExtractor objects. Regular expressions are used as well in building the

rules for the spider. According to the following rule, the spider crawls all the above

urls starting from the first page (index 1) to the last page for each category (i.e.,

economy, politic, ... etc.) in the news website.

rules = (Rule(LinkExtractor(allow=r"(economy|politic|national

|sport|world|health|technology|culture|last).*"),

19

callback="parse_item", follow=True),)

The callback function in the above code parses the response (web page) and

returns an item in the parse_item method below.4 Spiders are managed by Scrapy

engine. This engine first makes requests from URLs specified in start urls and passes

them to a downloader which is responsible for fetching web pages and feeding them

to the engine. When downloading finishes, the callback specified in the request is

called, which is the parse_item in the above code snippet. If the callback returns

another request, the same thing is repeated. If the callback returns an Item, the

item is passed to a pipeline to save the scraped data.

def parse_item(self, response):

item = AkhbaronaItem()

item["content"] = response.xpath(’//*[@id="article_body"]

/p/text()’).extract()

with open("akhbar.txt","a") as f:

f.write("content: {0}\n".format(item["content"]))

yield item

Scrapy uses either XPath or CSS selectors to select specific parts of the HTML

document to extract the relevant data. XPath, which stands for XML Path Lan-

guage, is a language for selecting nodes in XML (Extensible Markup Language)

documents, which can also be used with HTML (HyperText Markup Language).

CSS, which stands for Cascading Style Sheet, is a language for applying styles to

HTML documents. It defines selectors to associate those styles with specific HTML

elements.5

One of the helpful tools in building the response.xpath or response.css

is the scrapy shell from the command line, which opens a shell where

4http://doc.scrapy.org/en/latest/topics/spiders.html
5http://doc.scrapy.org/en/latest/topics/selectors.html

20

URLs can be fetched. The use of the scrapy shell and the Chrome

developer tools help write CSS or XPath selectors. The following

code response.xpath(’//*[@id="article_body"]/p/text()’).extract() ex-

tracts all news articles from the news website indicated in the crawler above puts

them in items called ”content,” and stores the articles in json file after invoking the

following code on the command line.

scrapy crawl <name of the spider> -o <name of the file>.json

Scrapy framework is more powerful and faster than beautiful soup and selenium,

which are other frameworks or modules used in scraping Internet data. In the

first week of the internship, we tried beautiful soup and selenium, especially to

scrape heavy javascript news websites. However, they provided neither optimal nor

quick results like scrapy. The use of these modules requires writing more extended

code, while scrapy uses the minimum lines of code for optimal results. One of

the advantages of scrapy is that it represents a compatible framework with other

modules such as beautiful soup and selenium. In other words, the three modules can

be used together to scape heavy javascript websites in particular. The Moroccan

News Corpus consists of articles scarped from 20 newspapers. These articles handle

several topics such as politics, economy, sports, culture, health, etc.6

3.1.2 The Latent Dirichlet Allocation Algorithm

Since topic modeling is the process to extract the hidden topics from large vol-

umes of texts, there are several algorithms for topic modeling, as mentioned in

section 2.1. in chapter 2. In the following discussion, we implement a Latent Dirich-

let Allocation (LDA) model. The quality of the extracted clear topics depends on

the quality of text preprocessing, as well as the optimal number of topics. The

6The Moroccan News Corpus and all the relevant scrapy crawlers are available on GITHUB via

the following link: https://github.com/Elsayedissa/The-Moroccan-News-Corpus

21

following discussion illustrates the preprocessing of the raw text and the building of

the model using the LDA algorithm.

This first part of the following code reads all json files, that contain the scraped

data as illustrated in the previous subsection, and confirms that these files exist in

the directory by printing a list of them. Every json file consists of several dictionaries

where each dictionary represents a document (text or news article). In other words,

the json dictionary consists of a key that is ”content” and a value. The ”content” is

the item assigned to scrapy Items class in the scrapy code (see section 3.1.1). The

dictionary value is the news article scarped from the website. After reading the json

files, the second code snippet below appends all these dictionaries to documents= [

] and outputs a list of dictionaries.

import os

import json

path_to_json = "~/path to json files"

json_files = [pos_json for pos_json in os.listdir(path_to_json)

if pos_json.endswith(".json")]

print("Reading the following files: ", json_files)

documents=[]

reading the json files in the specified directory

for index, js in enumerate(json_files):

with open(os.path.join(path_to_json, js)) as json_file:

json_data = json.load(json_file)

documents.append(json_data)

The following code iterates through these news articles stored in documents,

cleans the text from the non-Arabic text, digits, punctuation symbols, and other

encoded Arabic words, and splits them into tokens. It also appends these tokens

22

to the list tokens.The code also cleans the data from empty lists that are created

during the process of crawling. The final product is the cleaned_data, which is a

list of lists of tokens.

tokens = []

for docs in documents:

for doc in docs:

for line in doc["content"]:

text = re.sub(r"[\d+ a-zA-Z? & , \xd8 << >> . :"]’, " ", line)

tkns = text.split()

tokenss = []

for token in tkns:

tokenss.append(token)

tokens.append(tokenss)

cleaned_data = [item for item in tokens if item != []]

After cleaning the data, the following code removes stop words from the Arabic

text. Arabic stop words in the NLTK corpus were not comprehensive, so that we

added more stop words to the corpus to improve the preprocessing of the raw text.

In addition to updating the NLTK corpus with the necessary Arabic stop words,

we also used the extend() method to add stop words that we find during the

first evaluations of the model results. Our approach here added stop words that

affect the performance of the model. Most of these words are the names of the

newspapers, countries and other proper names due to our inability to find a Named

Entity Recognition (NER) tool for Arabic and integrate it in our code.

from nltk.corpus import stopwords

stop_words = stopwords.words("arabic")

stop_words.extend([])

get rid of the stop words

23

no_stopwords_data = [[word for word in doc if word not in stop_words

if len(word)>3] for doc in cleaned_data]

The following code serves as the lemmatizer for the Arabic language. The NLTK

ISRIS Stemmer is a light stemming system that does not use root dictionary.7 This

light stemmer removes diacritics, prefixes and suffixes. Therefore, it is a light stem-

mer that deals with linear morphology. Other stemmers deal with non-linear mor-

phology where they render the root words or the stems into their consonantal roots

such as the Khoja stemmer (Khoja and Garside, 1999).

The ISRIS stemmer performed poorly because we could not integrate other stem-

mers into our models because either they are unavailable or perform poorly as well.

The difference between light stemmers and other stemmers will be highlighted in

section 3.3., as well as an evaluation of Arabic natural language processing tools

that we used in this project. The final product is the list lemmatized_data, which

the lemmas from the texts.

from nltk.stem.isri import ISRIStemmer

stemmer = ISRIStemmer()

lemmatized_data = []

for items in bigram_data:

lemmas = []

for token in items:

#remove the three-letter and two-letter prefixes

token = stemmer.pre32(token)

removes the three-letter and two-letter suffixes

token = stemmer.suf32(token)

removes diacritics

token = stemmer.norm(token, num=1)

7https://www.nltk.org/ modules/nltk/stem/isri.html

24

lemmas.append(token)

lemmatized_data.append(lemmas)

print (lemmatized_data[0:2])

The lemmatized data is bigramed using gensim’s built-in function Phrases()

that concatenates words into bigrams. Before implementing the LDA model, the

lemmatizer and the bigramer are used interchangeably, depending on the LDA’s

results. Therefore, we implemented two LDA models. The first model uses the

lemmatizer first, and the bigramer benefits from the lemmatized data. The second

model uses the bigramer first; then, the lemmatizer lemmatizes the bigrams. We

found that the results of the LDA model that uses the first approach are better than

the results of the LDA model that uses the second approach. Therefore, we adopt

the first approach in this report as the following code shows.

create the bigrams given a minimum count

bigrams = gensim.models.Phrases(lemmatized_data, min_count=5)

print (bigrams)

bigrams_model = gensim.models.phrases.Phraser(bigrams)

print (bigrams_model)

bigram_data = [bigrams_model[doc] for doc in lemmatized_data]

print (bigram_data[0:2])

The core concepts in the Gensim package are dictionaries, corpora, vector space

model, bag of words vector and the topic model.8 By performing these two steps

(the lemmatization and the bigrams) in the previous two snippets of code, the data

is ready. Gensim’s Dictionary and doc2bow objects convert the data to unique

IDs. In other words, they create the dictionary and the corpus (bag of words). The

dictionary is a bag of words created from lists of sentences, and the doc2bow is used

8https://radimrehurek.com/gensim/intro.html

25

to give these words unique numerical IDs. The corpus is the input collection of

texts.

the dictionary

dictionary = corpora.Dictionary(bigram_data)

the corpus

corpus = [dictionary.doc2bow(d) for d in bigram_data]

print (corpus[0:2])

Now it is time to design our LDA model. Most of the LdaModel parameters are

set to the default values as indicated by Gensim’s documentation.9 However, the

most critical parameter is the num_topics (the number of topics) parameter. Our

topic model will provide the topic keywords for each topic and the percentage of

contribution of topics in each document.

#the model

print ("Please Wait, Printing Topics ... ")

for k in [10, 20, 30, 40]:

lda = gensim.models.ldamodel.LdaModel (corpus=corpus,

id2word=dictionary,

num_topics=k,

random_state=100,

update_every=1,

chunksize=100,

passes=10,

alpha=’auto’,

per_word_topics=True)

print ("Number of topics %d" % k)

9https://radimrehurek.com/gensim/models/ldamodel.html

26

print ("perplexity: %d" % lda.log_perplexity(corpus))

coherence=gensim.models.CoherenceModel(model=lda, corpus=corpus,

coherence="u_mass")

print ("coherence: %d" % coherence.get_coherence())

To choose the best number of topics or, rather optimize the number of topics,

we used similarity measures such as perplexity and coherence score. Perplexity,

on the one hand, is a measurement of the performance of a probability model in

predicting a sample, or it refers to the log-averaged inverse probability on unseen

data (Hofmann, 1999). It is the average branching factor in predicting the next

word.

Per = N

1

P (w1w2...wn)

where N is the number of words. The logarithmic version of perplexity is expressed

as follows:

Per = 2−(1/N)

log2p(wi)

where the exponent is the number of bits to encode each word. Since perplexity is

a measurement of the good performance of a probability distribution in predicting

a sample as defined above. So, the log perplexity of a probability distribution p can

be defined as:

2H(p) = 2−

xp(x)log2p(x)

where the H(p) is the entropy10 of the distribution and x ranges over events. We

try to capture the degree of uncertainty of a model in assigning probabilities to a

10Entropy is a way of quantifying the complexity of a message that would be sent between a

sender and a receiver over a noisy communication channel (Shannon, 1948, 1951). Therefore, lower

entropy means lower perplexity.

27

text. If the model has higher probabilities, then it has lower perplexity. In GenSim,

perplexity is calculated to return per-word likelihood 2(−bound) using a chunk of

documents as evaluation corpus. On the other hand, coherence score measures a

single topic by measuring the degrees of similarity between high scoring words in

this single topic (Röder et al., 2015). The coherence module in GenSim library is

an implementation of Röder et al. (2015) paper.

We select the model with the highest coherence score. The following figure

shows the results of the topic model concerning the different number of topics. The

following two figures show pyLDAis plots for 20 and 14 topics, respectively.

Figure 3.2: A pyLDAVis visualization of an LDA Model of 20 topics

28

Figure 3.3: A pyLDAVis visualization of an LDA Model of 14 topics

The model with 14 topics performs better than the model with 20 topics. The

number of topics parameter represented a critical problem for our topic model. Every

time we run the model on new data, we change the number of topics to obtain the

best results. We attribute this to several reasons. First, the bad performance of both

the lemmatizer and the bigramer affects the choice of the number of topics. Second,

the Arabic extended run-on sentences contribute to this choice because we use an

extractive approach to text summarization. We tried several number of topics, and

we reached the following conclusion. Since we use the extractive approach to text

summarization and since we use these summaries for L2 micro-leaning tasks, we

decided to get summaries per topic. This gives us flexibility in choosing the number

of topics, that in turn provides us with the number of summaries. Our final decision

involved feeding the topic model with no more than 2000 documents (i.e., news

articles) and setting the number of topics to 100. The summarization algorithm

results in 100 summaries, and this is what we mean by summaries per topic. On the

other hand, summaries per document (i.e., news article) can involve more processing

29

of the Arabic sentence which is beyond the scope of this project. In short, summaries

per topic provides us with the most prominent sentence that expresses the entire

idea behind the news article without any further processing of the sentence, and

this is optimal for L2 microlearning tasks.

3.1.3 The Summarization Algorithm

As discussed in section 2.2 in chapter 2, we adopt an extractive approach to

text summarization11. The basic steps in the summarization pipeline involve: 1)

constructing an intermediate representation of the input text, which expresses the

most salient content. 2) Scoring the sentences based on the representation, which

represents how well the sentence explains some of the most important topics of the

text. 3) Selecting a summary comprising a number of the top sentences based on

their scores.

However, our summarization algorithm involved using the intermediate repre-

sentation (the result of the LDA) to reveal the most dominant topics. The following

code12 is a function that gets the most dominant topic in a topic model.

import pandas as pd

print ("Please Wait, Printing the Dominant Topics ... ")

def format_topics_sentences(ldamodel=None, corpus=corpus, texts=cleaned_data):

sent_topics_df = pd.DataFrame()

Get main topic in each document

for i, row_list in enumerate(ldamodel[corpus]):

row = row_list[0] if ldamodel.per_word_topics else row_list

11All the codes for the LDA model, the summarization codes, and the evaluated summaries

are available on GITHUB via the following link: https://github.com/Elsayedissa/Arabic-News-

Summaries
12 this code is extracted from https://www.machinelearningplus.com/nlp/topic-modeling-

gensim-python/#18dominanttopicineachsentence

30

print(row)

row = sorted(row, key=lambda x: (x[1]), reverse=True)

Get the Dominant topic, Perc Contribution and

Keywords for each document

for j, (topic_num, prop_topic) in enumerate(row):

if j == 0: # => dominant topic

wp = ldamodel.show_topic(topic_num)

topic_keywords = ", ".join([word for word, prop in wp])

sent_topics_df = sent_topics_df.append(pd.Series([int(topic_num),

round(prop_topic,4),

topic_keywords]),

ignore_index=True)

else:

break

sent_topics_df.columns = ["Dominant_Topic",

"Perc_Contribution",

"Topic_Keywords"]

Add original text to the end of the output

contents = pd.Series(texts)

sent_topics_df = pd.concat([sent_topics_df, contents], axis=1)

return(sent_topics_df)

df_topic_sents_keywords = format_topics_sentences(ldamodel=lda,

corpus=corpus,

texts=cleaned_data)

Format the dominant topics and put them in a dataframe

df_dominant_topic = df_topic_sents_keywords.reset_index()

df_dominant_topic.columns = ["Document_No",

"Dominant_Topic",

31

"Topic_Perc_Contrib",

"Keywords",

"Text"]

#print (df_dominant_topic)

print ("A sample of the keywords \n", df_dominant_topic["Keywords"][:1])

print ("A sample of the text \n", df_dominant_topic["Text"][:1])

df_dominant_topic["Text"].to_csv("ss.csv", sep = "\t", header = True,

index = False,encoding = "utf-8")

save to file

#df_dominant_topic.columns["Text"].to_csv("dominant_topics_lda.csv",

sep="\t",header = True,

index = False,

encoding = "utf-8")

The above function organizes the results in a data frame with five columns; docu-

ment number, the dominant topic, the topic percentage contribution, the keywords,

and text. The following figure shows the final results.

32

Figure 3.4: The Results of the Most Dominant Topics

The following code retrieves the most representative sentence/s for each domi-

nant topic model.

most representative sentence for each topic

Display setting to show more characters in column

pd.options.display.max_colwidth = 0

sent_topics_sorteddf_mallet = pd.DataFrame()

sent_topics_outdf_grpd = df_topic_sents_keywords.groupby

(’Dominant_Topic’)

for i, grp in sent_topics_outdf_grpd:

sent_topics_sorteddf_mallet =

pd.concat([sent_topics_sorteddf_mallet,

grp.sort_values([’Perc_Contribution’],

ascending=False).head(1)], axis=0)

Reset Index

sent_topics_sorteddf_mallet.reset_index(drop=True, inplace=True)

33

Format

sent_topics_sorteddf_mallet.columns = ["Topic_Num",

"Topic_Perc_Contrib",

"Keywords",

"Representative Text"]

Show

print (sent_topics_sorteddf_mallet)

save to file

sent_topics_sorteddf_mallet["Representative Text"].

to_csv("sentences1_lda.csv",

sep = "\t", header=True,

index = False, encoding = "utf-8")

3.1.4 Evaluation Method

The evaluation techniques of automatic summarization involve two methods.

The extrinsic method, on the one hand, judges the quality of summaries based on

how they are helpful for a given task. It involves a comparison between the source

document and the summarized document. Then, it measures how many ideas of

the source document are covered by the summary or a content comparison with an

abstract written by a human. On the other hand, the intrinsic method is based on

the analysis of the summary. This method can be further classified into content

evaluation and text quality evaluation (Steinberger and Ježek, 2012). The following

figure shows the taxonomy of these measures.

In this project, we use the text quality evaluation method that provides four

criteria to analyze several linguistic aspects of the text. These four criteria are

grammaticality, non-redundancy, reference, and coherence. Grammaticality means

that the text should not include any non-textual items such as punctuation errors

or incorrect words, while non-redundancy indicates that redundant data should not

34

Figure 3.5: The taxonomy of summary evaluation measures

be included. Reference clarity shows that nouns and pronouns should be clearly

referred to in the summary, and coherence refers to the coherent structure of the

sentences (Steinberger and Ježek, 2012). The summaries are assigned a number on

a scale from 0 to 4 (0 = very poor, 1 = poor, 2 = acceptable, 3 = good, 4 = very

good).

Scale/Criteria Grammaticality Non-redundancy Reference Coherence

0 0 0 0 0
1 0 0 0 0
2 0 1 25 0
3 0 11 12 0
4 100 88 63 100

Table 3.1: The evaluation summary for 100 summaries

The above table summarizes the scores given to the 100 sentences that were

scored by hand by a human evaluator. Since our summarization method is extrac-

tive, which means that we extract the most prominent sentence that summarizes the

entire text, as well ones that are error free in grammaticality and coherence. Refer-

35

ence and anaphors represent a problem. The extracted sentences included anaphors

that refer to other antecedents in previous sentences in the text. This concludes

that nouns and pronouns are not clearly referred to when we use the extractive

method in summarization. Some summaries included redundant data, such as some

repeated proper names.

3.2 Arabic NLP Tools Evaluation

In this project, there were several attempts to use Arabic morphological ana-

lyzers, POS taggers, and stemmers to prepare the processed raw data in the pre-

processing stage to get optimal results when implementing the topic model. This

section evaluates some of the tools attempted during the design of the LDA model.

3.2.1 The Earlier Arabic Morphological Analyzers

Morphological Analyzers analyze texts and output the tokens with their mor-

phological information. The Buckwalter Morphological Analyzer BAMA 1.0 (Buck-

walter, 2002a) or BAMA/AraMorph 2.0 (Buckwalter (2002b) is one of the first

morphological analyzers for Arabic. The engine is written in Perl that accepts in-

put in Arabic Windows encoding (cp1256). BAMA’s documentation outlines the

running of the analyzer using input/output files through the command line. The

documentation neither shows any details about the installation nor the integration

of the BAMA into other systems. Three files build the analyzer’s lexicon. The

first file contains all Arabic prefixes, their combinations, and their English glosses.

These prefixes are up to 4 characters long. The second file contains Arabic suffixes

and their combinations. These suffixes are up to 6 characters long. The third file

contains all Arabic stems that are not specified any length.

The algorithm is simple because most of the rules are already in the three files

that constitute the lexicon. The algorithm involves six steps which are tokenization,

36

word segmentation, dictionary lookup, compatibility check, analysis report and sec-

ond lookup for orthographic variations. The Arabic words are segmented into their

affixes and stems according to these rules: 1) the prefix can be 0 to 4 characters

long, 2) the stem does not have any length limit, and 3) the suffix can be 0 to 6

characters long. This segmentation step is done by regular expressions. Then, the

dictionary is queried for the existence of the prefix, stem and suffix. If they are

found, the algorithm checks if they are compatible with each other. If the prefix,

stem and suffix are compatible with each other, the analysis report outputs the dif-

ferent solutions for a word. Finally, if no analysis is found, there will be a spelling

check by looking up the orthographic variants.

Due to the problems we encountered in using the analyzer in Arabic Windows

encoding (cp1256) and the inability to integrate it into our topic modeling prepro-

cessing step, we looked at its implementation in python. Pyaramorph 13 is a python

reimplementation of the Buckwalter morphological analyzer. It contains a broad set

of tables to represent information about roots and affixes that contribute to mor-

phological analysis of Arabic words. This morphological analyzer also supported

UTF-8 encoding. Although it worked very well in the command line, we could not

integrate it into our code. Moreover, the analyzer can handle only short phrases

and sentences. It can be installed using (pip install pyaramorph) and called from

the command line using (pyaramorph) as the following figure shows.

13https://pypi.org/project/pyaramorph/

37

Figure 3.6: The analysis of a sentence by pyaramorph in the command line

Since we could not integrate the pyaramorph in our code, we tried the AraCom-

Lex (Attia et al., 2011). It is an open-source large-scale finite-state morphological

analyzer. The analyzer benefits from finite-state technology that handles concate-

native and non-concatenatice morphotactics efficiently. It also uses Foma compiler

and a lexical database that is edited, validated, and used to update and extend

the morphological analyzer automatically (Attia et al., 2011). The lemma form is

used as the base form in the implementation of this finite-state transducer. Lexical

entries, along with their possible affixes and clitics in a lexc language. A lexc file

contains several lexicons connected through ’continuation classes’ which determine

the path of concatenation. The readme file does not tell us more about the mor-

phological analyzer. However, it gives details about installing the Foma compiler

and the commands necessary to run our inquiries in the command line. Although

Foma compiler allows sharing this morphological analyzer with third parties, we

38

were not able to integrate and use it in our code. Therefore, we looked for other

tools. Instead of using morphological analysis in the preprocessing stage, we turned

our plan into stemmers. Therefore, we used Stanford Arabic NLP toolkit to 1) stem

Arabic words 2) tag Arabic words, then splitting sentences based on the position of

Arabic conjunctions (waa and - Paw or).

3.2.2 Stanford Arabic NLP Toolkit

Arabic Stanford NLP toolkit14 consists of a parser, word segmenter, and a part-

of-speech (POS) tagger. The original Stanford POS tagger was developed for English

and written in Java based on a maximum entropy model as described by Toutanova

and Manning (2000). More languages were added, including Arabic, as described in

(Diab et al., 2004). The tagger’s version for Arabic is trained on the Arabic Penn

Treebank (ATB), and the algorithm is based on a Support Vector Machine (SVM)

approach, which is a supervised learning algorithm for classification. The algorithm

undertakes a number of classification tasks given a number of features extracted

from a predefined linguistic context to predict the class of a token (Diab et al.,

2004). The accuracy of the tagger is 96.50%, and the readme file shows detailed

instructions on how to use the tagger in the command line.

Since Arabic uses run-on sentences, we thought that we could use a POS tagger

to tag Arabic texts. Based on these tags, we can split sentences based on 1) Arabic

punctuation (commas, periods, exclamation marks and questions marks), 2) Arabic

conjunctions (waa and - Paw or). The structure of Arabic run-on sentences involves

simple short sentences that are connected using conjunctions such as (waa and -

Paw or). Therefore, our approach was that we tag our Arabic texts using Stanford

POS tagger; then, based on these tags, we can simplify Arabic run-on sentences by

splitting them.

Interestingly, this tagger can be imported and used by NLTK. The following

14https://nlp.stanford.edu/projects/arabic.shtml

39

code snippet shows this process.

import nltk and the stanford POS tagger

import nltk

from nltk.tag import StanfordPOSTagger

directory to the full tagger in English, Chinese, Arabic ... etc

stanford_dir = "~/stanford-postagger-full-2018-10-16"

add directory to the Arabic model

modelfile = stanford_dir+"/models/arabic.tagger"

add directory to the main jar file of the tagger

jarfile = stanford_dir+"/stanford-postagger.jar"

call the StanfordPOSTagger object

tagger = StanfordPOSTagger(model_filename = modelfile,

path_to_jar = jarfile)

tag Arabic text using split() method

tagger.tag("arabic text goes here".split())

Although this code provides good tagging results, we encountered two problems.

First, since our topic model uses a large number of texts, the tagger took too much

time to tag all these texts. Second, our methodology to split tagged Arabic run-

on sentences did not yield optimal results. We changed our minds and decided to

follow an extractive method to text summarization, as illustrated earlier in section

2.2. Third, the above code shows that we used the POS tagger models and jar files

from local machines, and we did not integrate it fully into our code. Therefore, we

thought of the Stanford Core NLP15 and using their api to either segment or tag

words, but we can across another two tools that we discuss in sections 3.3.3 and

3.3.4 below.

15https://pypi.org/project/stanfordnlp/, and https://stanfordnlp.github.io/stanfordnlp/

40

3.2.3 Farasa Arabic NLP Toolkit

Farasa is considered the most up-to-date Arabic NLP toolkit that involves seg-

mentation, spell checking, POS tagging, lemmatization, diacritization, constituency,

and dependency parsing, and named entity recognition.16 Farasa’s segmenter is im-

plemented using a support-vector-machine-based segmenter that uses a variety of

features and lexicons to rank possible segmentations of a word. These features in-

volve ”likelihoods of stems, prefixes, suffixes, their combinations; presence in lexicons

containing valid stems or named entities; and underlying stem templates” (Abdelali

et al., 2016). Farasa is implemented in Java, and its readme files have outdated

information about installation and usage. We downloaded Farasa lemmatizer and

segmenter from the website indicated in footnote 15. All our attempts to run them

on the command-line failed. We contacted the author to get instructions on how to

use them, but we did not receive any responses. We wanted to use Farasa’s lem-

matizer because it gave the best lemmatization results amongst the tool we used so

far.

Although we were not able to use Farasa, the website provided the following code

to integrate Farasa modules into other codes from other programming languages.

The following code integrates Farasa lemmatizer into our model using python, and

connects to its API and passes sentences one by one.

import http.client

conn = http.client.HTTPSConnection(’farasa-api.qcri.org’)

payload = ’{\"text\": \"arabic sentence here\"}’.encode(’utf-8’)

headers = { ’content-type’: ’application/json’,

’cache-control’: ’no-cache’, }

conn.request(’POST’, ’/msa/webapi/pos’, payload, headers)

res = conn.getresponse()

16http://qatsdemo.cloudapp.net/farasa/demo.html

41

data = res.read()

print(data.decode(’utf-8’))

This code gave good results; however, we encountered some problems. Techni-

cally, we could not pass sentence by sentence. It would take too much time. More

interestingly, their API17 disappeared, and has a message that says ”coming soon.”

Although Farasa is the most up-to-date NLP toolkit, we were neither able to use its

jar files on the command line due to the outdated documentation nor its API due to

updating and construction. The successful solution to the lemmatization problem

was the Information Science Research Institute’s (ISRI) Arabic stemmer (Taghva

et al., 2005).

3.2.4 NLTK ISRI Arabic Stemmer Tool

The ISRI is a root-extraction stemmer without a root dictionary, which serves

as a light stemmer. Light stemming means removing diacritics represented by short

vowels, stopwords, punctuation, numbers, the definite article, prefixes, and suffixes

(Taghva et al., 2005). The characteristics of this stemmer are: 1) it is implemented

in python and integrated into NLTK which can be invoked easily 2) it is well-

documented in the NLTK documentation.18 The following code shows a function

that uses the ISRI stemmer. Although the stemmer did not yield good results

compared to Farasa lemmatizer, it did a relatively good job in the preprocessing

stage in our topic model.

from nltk.stem.isri import ISRIStemmer

stemmer = ISRIStemmer

def lemmatizer(token):

removes the three-letter and two-letter prefixes

17https://farasa-api.qcri.org
18https://www.nltk.org/ modules/nltk/stem/isri.html

42

token = stemmer.pre32(token)

removes the three-letter and two-letter suffixes

token = stemmer.suf32(token)

removes diacritics

token = stemmer.norm(token, num=1)

return token

3.2.5 Other Tools

There are several other tools that we did not try during the internship. These

tools include Standard Arabic Morphological Analyzer (SAMA) (Graff et al., 2009),

ElixirFM morphological analyzer (Smrž, 2007), Alkhalil morphological analyzer

(Ould Abdallahi Ould Bebah et al., 2010; Boudchiche et al., 2017), Xerox Arabic

morphological analysis and generation (Beesley, 1998), Khoja POS tagger (Khoja,

2001), and stemmer (Khoja and Garside, 1999).

43

SECTION 4

CONCLUSION AND FUTURE WORK

The present report describes the work done in a summer internship for the Lan-

guage Flagship Technology Innovation Center (Tech Center) at the University of

Hawaii at Manoa. The Tech Center is a leading entity in the field of education

technology for the Flagship program run by the American Councils. Therefore, the

Tech Center took the initiative to build a summarization tool for Moroccan news

articles for L2 microlearning tasks.

This project involved building a corpus for Moroccan news articles by scraping

Moroccan newspaper websites. It also developed a summarization tool using the La-

tent Dirichlet Allocation (LDA) algorithm that has an implementation in Python’s

gensim package. We use the extractive approach by which we extract the most

prominent sentence that expresses the entire ideas of a given document. This is

done by identifying the most salient topics in a document by the LDA model.

The results indicated that both the LDA and the summarization algorithms

provided well-structured summaries for the news articles. The evaluation method

showed that the grammaticality and coherence of the summaries scored the highest

values, while there remained some redundant data and errors in reference to nouns

and pronouns in the extracted sentences. Besides these errors, there are several

imperfections of the model, such as the inability to summarize texts per document

(i.e., news articles). Instead, we summarized texts based on the number of topics.

In other words, the number of topics determines the number of summaries we get

for each document.

For future work, more improvements will be made on both the topic model and

the summarization model algorithms. For the topic model, we intend to improve

44

its output by enhancing the preprocessing phase and comparing these output to

other latent algorithms such as the Latent Semantic Analysis. The summarization

algorithm also needs more work. If we adopted the abstractive method, we would

need to do more processing of the Arabic sentences. In other words, the abstractive

method provides us with machine-generated summaries which involve more complex

technical implementation. Finally, more evaluation measures will be used.

45

APPENDIX A

An example of document summary

Figure A.1: An example article from a Moroccan newspaper

46

REFERENCES

Abdelali, A., Darwish, K., Durrani, N., and Mubarak, H. (2016). Farasa: A fast
and furious segmenter for arabic. In Proceedings of the 2016 conference of the
North American chapter of the association for computational linguistics: Demon-
strations, pages 11–16.

Alghamdi, R. and Alfalqi, K. (2015). A survey of topic modeling in text mining.
Int. J. Adv. Comput. Sci. Appl.(IJACSA), 6(1).

Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B.,
and Kochut, K. (2017). Text summarization techniques: a brief survey. arXiv
preprint arXiv:1707.02268.

Attia, M., Pecina, P., Toral, A., Tounsi, L., and van Genabith, J. (2011). An open-
source finite state morphological transducer for modern standard arabic. In Pro-
ceedings of the 9th International Workshop on Finite State Methods and Natural
Language Processing, pages 125–133. Association for Computational Linguistics.

Beesley, K. R. (1998). Xerox arabic morphological analysis and generation. Roman-
isation, Transcription and Transliteration, The Document Company-Xerox.

Blei, D. M. (2010). Introduction to probabilistic topic models.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal
of machine Learning research, 3(Jan):993–1022.

Boudchiche, M., Mazroui, A., Bebah, M. O. A. O., Lakhouaja, A., and Boudlal,
A. (2017). Alkhalil morpho sys 2: A robust arabic morpho-syntactic analyzer.
Journal of King Saud University-Computer and Information Sciences, 29(2):141–
146.

Buckwalter, T. (2002a). Arabic morphological analyzer (aramorph). Linguistic Data
Consortium, Philadelphia.

Buckwalter, T. (2002b). Buckwalter arabic morphological analyzer version 1.0. Lin-
guistic Data Consortium, University of Pennsylvania.

Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J. L., and Blei, D. M. (2009).
Reading tea leaves: How humans interpret topic models. In Advances in neural
information processing systems, pages 288–296.

47

Das, D. and Martins, A. F. (2007). A survey on automatic text summarization. Lit-
erature Survey for the Language and Statistics II course at CMU, 4(192-195):57.

Diab, M., Hacioglu, K., and Jurafsky, D. (2004). Automatic tagging of arabic text:
From raw text to base phrase chunks. In Proceedings of HLT-NAACL 2004: Short
papers, pages 149–152. Association for Computational Linguistics.

Graff, D., Maamouri, M., Bouziri, B., Krouna, S., Kulick, S., and Buckwalter, T.
(2009). Standard arabic morphological analyzer (sama) version 3.1. Linguistic
Data Consortium LDC2009E73.

Hofmann, T. (1999). Probabilistic latent semantic analysis. In Proceedings of the
Fifteenth conference on Uncertainty in artificial intelligence, pages 289–296. Mor-
gan Kaufmann Publishers Inc.

Holes, C. (2004). Modern Arabic: Structures, functions, and varieties. Georgetown
University Press.

Hug, T. and Friesen, N. (2007). Outline of a microlearning agenda. Didactics of
Microlearning. Concepts, Discourses and Examples, pages 15–31.

Khoja, S. (2001). Apt: Arabic part-of-speech tagger. In Proceedings of the Student
Workshop at NAACL, pages 20–25.

Khoja, S. and Garside, R. (1999). Stemming arabic text. Lancaster, UK, Computing
Department, Lancaster University.

Landauer, T. K., Foltz, P. W., and Laham, D. (1998). An introduction to latent
semantic analysis. Discourse processes, 25(2-3):259–284.

Langreiter, C. and Bolka, A. (2006). Snips & spaces: managing microlearning (on
microlearning and microknowledge in a microcontent-based web). In Micromedia
& e-learning 2.0.: Gaining the Big Picture. Proceedings of Microlearning Confer-
ence 2006., pages 79–97. Innsbruck: Innsbruck UP.

Manning, C. D., Raghavan, P., et al. (2008). Introduction to Information Retrieval.
Cambridge University Press.

Ould Abdallahi Ould Bebah, M., Boudlal, A., Lakhouaja, A., Mazroui, A., Meziane,
A., and Shoul, M. (2010). Alkhalil morpho sys: A morphosyntactic analysis
system for arabic texts.

48

Řeh̊uřek, R. and Sojka, P. (2010). Software Framework for Topic Modelling with
Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks, pages 45–50, Valletta, Malta. ELRA. http://is.muni.

cz/publication/884893/en.

Röder, M., Both, A., and Hinneburg, A. (2015). Exploring the space of topic co-
herence measures. In Proceedings of the eighth ACM international conference on
Web search and data mining, pages 399–408. ACM.

Shannon, C. E. (1948). A mathematical theory of communication. Bell system
technical journal, 27(3):379–423.

Shannon, C. E. (1951). Prediction and entropy of printed english. Bell system
technical journal, 30(1):50–64.

Smrž, O. (2007). Elixirfm: implementation of functional arabic morphology. In
Proceedings of the 2007 workshop on computational approaches to Semitic lan-
guages: common issues and resources, pages 1–8. Association for Computational
Linguistics.

Steinberger, J. and Ježek, K. (2012). Evaluation measures for text summarization.
Computing and Informatics, 28(2):251–275.

Taghva, K., Elkhoury, R., and Coombs, J. (2005). Arabic stemming without a root
dictionary. In International Conference on Information Technology: Coding and
Computing (ITCC’05)-Volume II, volume 1, pages 152–157. IEEE.

Toutanova, K. and Manning, C. D. (2000). Enriching the knowledge sources used in
a maximum entropy part-of-speech tagger. In Proceedings of the 2000 Joint SIG-
DAT conference on Empirical methods in natural language processing and very
large corpora: held in conjunction with the 38th Annual Meeting of the Asso-
ciation for Computational Linguistics-Volume 13, pages 63–70. Association for
Computational Linguistics.

http://is.muni.cz/publication/884893/en

