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Abstract 

During dropwise condensation from the ambient environment, water vapor present in air must 

diffuse to the surface of each droplet.  The spatial distribution of water vapor in the local 

surroundings of each individual droplet determines the total condensation rate.  However, available 

models for dropwise condensation in humid air assume that such systems of droplets grow either 

as an equivalent film or that the growth of each droplet is completely isolated; the interactions 

between droplets are poorly described and, consequently, predictions of total condensation rates 

may mismatch experimental observations.  This paper presents a reduced-order analytical method 

to calculate the condensation rate of each individual droplet within a group of droplets on a surface 

by resolving the vapor concentration field in the surrounding air.  A point sink superposition 

method is used to account for the interaction between droplets without requiring solution of the 

diffusion equation for a full three-dimensional domain containing all of the droplets.  For a 

simplified scenario containing two neighboring condensing droplets, the rates of growth are 

studied as a function of the inter-droplet distance and the relative droplet size.  For representative 

systems of condensing droplets on a surface, the total condensation rates predicted by the reduced-

order model match numerical simulations to within 15%.  The results show that assuming droplets 

grow as an equivalent film or in a completely isolated manner can severely overpredict 

condensation rates.  
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Nomenclature 

c   vapor concentration  

D   diffusion coefficient  

j   mass flux  

N   number of droplets in the system 

p   center-to-center pitch between the droplets  

r   position vector 

R   single droplet radius  

R   average droplet radius  

RH   relative humidity  

t   time  

T   temperature  

( ), ,x y z   Cartesian coordinates 

Greek 

( ), ,     toroidal coordinates 

   integration variable 

   contact angle  

   power law exponent 

   density 

   sink density intensity per unit area 

   integration variable 

  normalized vapor concentration field 



Subscripts  

c   contact area between the drop and the substrate 

iso   isolated from neighboring droplets 

l   liquid 

s  at the surface of the drop 

sys   in the presence of neighboring droplets (system) 

  far field 

1.0. Introduction 

Collection of water by condensation from humid air is a commonly occurring natural 

phenomenon also present in several engineering systems.  In nature, diverse plants and animals 

have adapted to survive in arid regions by harvesting water from moist air [1,2].  Condensation 

from atmospheric air has several practical applications and is an attractive alternative supply of 

fresh water in arid regions [3,4].  However, due to the limited amount of water vapor present in 

the air, requirement of cooling power [5], and the sensitivity of condensation to environmental 

conditions [3,6], accurate models that predict water harvesting capacity are critical to the design 

of harvesting systems for maximum yield [3,7,8].  Although, enhancing mass transfer during 

condensation in humid air is a topic that has been previously studied [9,10], modeling approaches 

still require further development to account for various factors in the prediction of water harvesting 

performance, such as ambient relative humidity [11], sub-cooling temperature, surface properties 

(i.e., surface roughness), and contact angle [12].  Improved modeling approaches would allow for 

more accurate design and scaling of water harvesting systems. 

 During dropwise condensation at a set of fixed conditions (i.e., ambient temperature, 

ambient relative humidity, and surface sub-cooling temperature), the characteristics of droplet 

growth are time- and space-dependent. These variations are attributed to differences in the vapor 

concentration field surrounding each droplet, which vary cyclically from initial nucleation of a 

droplet to eventual roll-off.  The spatiotemporal droplet growth has been often characterized by 

three stages [13-15].  In the first stage ( )i , drops are distributed homogeneously and the distance 



between the drops is relatively larger than the average radius of the droplets.  A common 

simplification is to assume that the droplets grow as if they are isolated from one another.  As time 

progresses and droplets grow larger, the distance between droplets decreases.  When the length of 

the vapor concentration profiles scales to the distance between drops, and the vapor distribution 

profiles overlap, it has been approximated that this closely-packed set of similarly-sized droplets 

can be approximated as a liquid film.  In the second stage ( )ii , droplets coalesce, leading to a 

constant surface area coverage and self-similar growth pattern.  Even though the size of the 

droplets can be different over a broad range, it is still commonly assumed that droplet growth can 

be described with a filmwise-like growth approximation.  As the droplets grow and the number of 

coalescence events decreases, the distance between droplets will increase, causing new droplets to 

nucleate in the bare space between the larger droplets.  Two families of drops will be present on 

the surface, small droplets corresponding these re-nucleated droplets and large droplets that 

originated at earlier stages.  Later, in the final stage ( )iii , droplets approach the capillary length 

and will roll off the surface due to gravity.  In summary, within each cycle, droplets increase in 

size by two primary mechanisms: direct condensation of vapor at the liquid-gas interface and 

coalescence of multiple droplets.  The growth of a system of droplets by condensation has been 

often described by the limiting theoretical cases of filmwise-like growth for closely-spaced 

droplets that compete for vapor in their surroundings or isolated growth of droplets spaced far 

apart. 

While these simplified descriptions of the condensation process are well accepted, and have 

historically been an invaluable tool for explaining empirical observations, there are some specific 

growth characteristics that cannot be reasonably captured.  For example, it has been observed that 

equally sized neighboring droplets growing in close proximity to each other have condensation 

rates up to 40% lower than predicted by isolated droplet growth models [12] and small droplets 

experience a reduced rate of growth when in close proximity to large droplets [16]; both 

phenomena are attributed to blocking of the lateral flux of vapor to the droplets.  Local vapor 

distribution has also been shown to play a fundamental role in understanding several freezing 

phenomena such as inter-droplet ice bridging [17,18] and frost halos [19].  Also, geometric 

discontinuities such as surface edges and corners can also lead to changes in the vapor 

concentration filed around the droplets which can dramatically affect the rate of growth.  Medici 

et al. [20] observed that droplets near the edges or a corner of a substrate grew ~500 % faster than 



a droplet near the center.  In general, the total rate of condensation on a surface depends on the 

distribution of vapor in the surroundings that is governed by interactions within the entire set of 

droplets on the surface as well as the substrate boundaries, which is time- and space-dependent; 

modeling approaches are required that can capture all of these transport complexities.  

At a given instant during the condensation process, the condensation rate of each individual 

droplet on a surface could be calculated by numerically solving the diffusion equation for the entire 

domain; however, due to the large number of differing size droplets, numerically modeling 

dropwise condensation in this multi-scale domain is rarely employed.  Analytical solutions for the 

diffusion equation are available for the case of a single isolated droplet [21], but this approach is 

only applicable for the condensation of droplets separated by large distances [12], which might 

rarely occur under practical conditions.  To account for interactions between droplets in the vapor 

concentration field, superposition methods have been used to describe the evaporation of 

suspended droplets during combustion [22].  Annamalai et al. [23] assumed suspended drops can 

be treated as point vapor sources to develop a point source method that solves for the evaporation 

rate of multiple droplets by superimposing Maxwell’s solutions for the evaporation of individual 

droplets.  The literature lacks a model that takes into account droplet interactions when solving the 

vapor concentration field during dropwise condensation of humid air on a substrate. 

This work develops a model to calculate the condensation rate during dropwise condensation 

from humid air by incorporating the interactions between all droplets using a point sink method to 

superpose solutions of the vapor-diffusion-driven condensation of each individual droplet.  The 

model requires as input the thermodynamic conditions (substrate temperature, air temperature, and 

relative humidity of the air), the location of the droplets, and the droplet contact angle.  The model 

is used to predict condensation of a pair of neighboring droplets for a range of inter-droplet 

distances and relative sizes; the results are compared to the predictions of a three-dimensional 

numerical solution of the diffusion equation. This comparison is also drawn for the prediction of 

the condensation rate of each individual droplet in representative systems of many droplets 

extracted from previously reported experimental images.  The model captures blocking effects due 

to differences in droplet size, as well as the effects of the complex spatial distribution of vapor 

concentration, on the condensation rate of each droplet.  This compact model achieves an 

intermediate complexity that retains good accuracy compared to the complete numerical solution 



of vapor concentration field, while accounting for critical additional physical phenomena 

compared to alternative analytical modeling approaches. 

2.0. Model Description 

2.1. Condensation of an isolated droplet 

For a droplet that is resting on a cooled surface kept at a constant temperature ( )sT  below the 

temperature ( )T  of the surrounding air at some relative humidity ( )RH , condensation of water 

vapor will occur on droplet surface.  In quiescent air, growth of the droplet is governed by the 

diffusion of water molecules to this liquid-vapor interface.  The concentration of water vapor 

( ),c r t  in the air surrounding the droplet obeys the diffusion equation: 

 

 
( )

( )2
,

,
c r t

D c r t
t


= 


  (1) 

 

The diffusion time scale for small condensing drops is of the order of 
2R D   10-7 s [21] (e.g., 

for an initial drop radius of ~5 μm and a diffusion coefficient of 25.4×10-6 m2 /s for water vapor in 

air), which is significantly smaller than the time scale of the growth of a droplet during 

condensation.  Thus, the vapor concentration field adjusts rapidly compared to changes in the drop 

shape and the droplet condensation process can be assumed to be quasi-steady.  Equation (1) can 

be rewritten as: 

 

 
2 0c =    (2) 

 

The solution to this Laplace equation must satisfy the boundary conditions at the substrate, at 

the surface of the droplet, and far away from the droplet.  The vapor concentration at the surface 

of the droplet ( )s sc r c=  is assumed to be equal to the saturated vapor pressure at the droplet surface 

temperature.  This assumption is valid when there is a small temperature drop across the height of 

the droplet during diffusion-driven condensation; the additional effects of external convection [24], 

thermocapillary flows [25], and the release of latent heat [26] on the interface temperature are not 



considered.  In the far field, the vapor concentration ( )c r c→ = corresponds to the vapor 

pressure at the air temperature and relative humidity.  There is zero mass flux normal to the 

substrate (i.e. 
0

0
z

c z
=

  = ).  For an analogous process of droplet evaporation, where the boundary 

conditions are the same but the mass flux direction changes, Popov [21] provided a closed-form 

solution for the concentration field in toroidal coordinates.  Ucar and Erbil [12] and Guadarrama-

Cetina et al. [27] later used this solution to describe droplets growing by condensation on polymeric 

surfaces under the assumption that they were isolated from one another.  Rewriting the solution 

for an evaporating droplet, the distribution of vapor in the area surrounding a condensing droplet 

is given by: 
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where   and   are toroidal coordinates ( 0     and     −   + ),   is the contact angle 

of the droplet with the substrate, and 1/2 cosh( )iP  − +  is the Legendre function of the first kind 

given by: 
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Equation (3) requires two numerical integrations with respect to   and  .  For the special case of 

a contact angle of the droplet set   = 90 deg in equation (3), the solution of equation (3) in toroidal 

coordinates converges to the solution of equation (2) in  Cartesian coordinates:  
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where 
2 2 2r x y z= + +  is the Euclidian distance from the origin to any point in the domain.  In 

general, for any contact angle, the rate of growth of a single drop isom  can be obtained by 

integrating the flux of vapor from the surroundings at the surface of the droplet ( )j r : 

 

 ( )( ) ( )iso l l c s

dm dV
m j r ds R D c c f

dt dt
   = = = = −   (6) 

 

where cR  is the contact radius of the droplet.  The condensation rate from the surface of the drop 

( )j r  and ( )f   are given by: 
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where for small contact angles ( )0 1f  → → ,while for large contact angles ( )180f  →  → . 

2.2. Point sink superposition method for vapor-diffusion-driven dropwise condensation 

Due to the linearity of the Laplace equation, the solution for the vapor concentration field 

surrounding a system of droplets can be described as a linear combination of the solutions for 

individual drops.  A point sink superposition method treats each condensing droplet as a point 

vapor sink located at the center of the droplet.  The model requires as inputs the sink intensities as 

if they were single isolated droplets in conjunction with the size and spatial distribution of the 

droplets; the substrate temperature and the contact angle of the droplet are also required.  Some of 

the additional assumptions are inherited from the single-droplet condensation model introduced in 

Section 2.1: (i) there is negligible thermal resistance across the droplet (i.e., the temperature at the 

droplet surface is equal to the temperature of the substrate), (ii) vapor transport to the surface is 

governed by diffusion, and (iii) the condensation process can be treated as quasi-steady.  In the 



two subsequent sections, the point sink method for a single condensing drop and systems of 

condensing droplets are introduced. 

2.2.1. Point sink method for a single condensing droplet on a substrate 

For a single point sink, the governing equation (2) transforms to a Poisson equation given by:  

 

 
2

( ) ( )
j

c r r r = − , (9) 

 

where ( )
j

r r −  is the Dirac delta function representing a sink with density per unit area   located 

at a point 
jr r= .  The distribution of vapor in the surroundings of a point sink can be calculated 

by integrating equation (9) from 0r = to and arbitrary location r : 

 

 ( )c c r
r


 − = . (10) 

 

If the point sink is assumed to capture vapor as a droplet located at the center of a hemispherical 

cap, the mass absorbed by the sink should be equal to the mass crossing the area of the 

hemispherical cap with contact angle  ; for the case of a droplet with contact angle   = 90 deg, 

the intensity is equal to ( )2iso c sm D R c c  = = −  as predicted from equation (5).  In general, 

for any contact angle the sink intensity per unit area can be derived from equation (6) and it is 

given by ( )isom f D  = .  Equation (10) provides the vapor concentration field in the 

surroundings of a single point sink with the intensity of a vapor-diffusion-driven condensing 

droplet with contact angle  . 

2.2.2. Point sink superposition method for multiple condensing droplets on a substrate 

For a system with N  sinks at arbitrary locations 
jr  with j  = 1, 2, 3 …, N  having the 

condensation intensity of droplet of with contact angle  , the concentration of the vapor at a 

location r  in the domain due to the N  humidity sinks is obtained from the superposition of the 

concentration contours produced by each humidity sink (developed in Section 2.2.1) and is given 

by: 
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1
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( )

N
sys j

j j

m
c c r
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=
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−
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where jr r−  is the distance from an arbitrary location r  to the location of the j th humidity sink 

located at jr , and 
,sys jm  is the rate of condensation of the j th humidity sink in the system. 

It is of interest to calculate the effect that an array of surrounding sinks would have on the 

condensation of a single droplet in the system.  Let a point sink be replaced by a droplet i  at the 

location ir , while all the other j  locations are occupied by surrounding point sinks. The location 

of this droplet’s surface is described by a vector sir  from the droplet center and the concentration 

of  vapor at the surface of the droplet can be obtained from substituting i sir r r= +   in equation (11) 

which results in: 
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=
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Because the temperatures of all droplets are assumed to be equal (at the substrate 

temperature), the vapor concentration at the surface of the droplet is the same for every droplet in 

the system, 1 1 2 2( ) ( ) .. ( )s s s s s i sir r r r r rc c c+ + += = = .  While the magnitude of sir  is different for 

each point on the droplet surface, it can be assumed that this magnitude is small in comparison 

with the distance between the droplets si i jr r r− .  If we further assume si cir R  for the term i  

in the summation, then equation (12) can be rewritten as a system of N  equations: 
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where i  =  1, 2, … N   represents each droplet location on the substrate, and j  = 1, 2, … N  

represents the surrounding humidity sinks at each droplet location, as shown in Figure 1. 

The solution of the condensation rate of each droplet in the system is simplified if droplet-

to-droplet interaction is cast as a correction factor  given by the ratio between the condensation 

rate of the droplet within the system of multiple droplets versus the condensation rate of the droplet 

as if it was isolated: 

 

 
sys

iso

m
 =

m
 ,  (14) 

 

where   = 1 indicates that a droplet will grow as if it were isolated.  Because all the droplets are 

assumed to have the same vapor concentration at their surfaces, by dividing equation (13) by 

)( sc c −  and using the definition of the correction factor given in equation (14) the system of 

equations (13) can be rewritten in terms of the correction factor   as:  
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  (15) 

 

The solution of the system of equations provides the correction factor for each droplet; from 

equation (14) the condensation rate for each droplet can be obtained.  Introducing the normalized 

concentration field as: 
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r

c c
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−
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−
, (16) 

 

and dividing equation (11) by sc c − , the potential concentration field can be rewritten in terms 

of the correction factor as: 
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Thus, the normalized concentration contour field is obtained once the correction factors have been 

determined from equation (15). 

Equations (14) to (17) provide a closed-form solution for the instantaneous condensation 

rate and normalized local vapor concentration for vapor-diffusion-driven dropwise condensation 

from humid air by the point sink superposition method. 

3.0. Results 

3.1. Condensation of a pair of droplets 

This section compares the condensation rates predicted for a pair of neighboring droplets 

obtained using the point sink superposition method developed in Section 2.0 against a three-

dimensional numerical solution of the diffusion equation.  The case considers two droplets resting 

on a substrate with a contact angle of   = 120 deg, separated by a pitch p and contact radii 1cR  

and 2cR .  The condensation rates are predicted for a range of contact radii varying from 10 μm to 

310 μm and inter-droplet distances from 120 μm to 1140 μm.  The temperature of the droplets is 

assumed to be equal to the substrate temperature subT  = 5 C , and thus the vapor concentration at 

the surface of the droplet is sc = 0.0035 kg/m3.  The concentration at the outer surface of the domain 

is taken at c = 0.00124 kg/m3 for 70% relative humidity at an air temperature of airT = 20 C . 

The condensation rate correction factors from the point sink method can be obtained by solving 

the system of equations in the Equation (15) for two droplets as:  
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By substituting the corrections factors given into Equation (17), the normalized concentration field 

for two drops can be calculated as: 



 

 1 1 2 2

1 2

( ) c cR R
r

r r r r

 
 = +

− −
  (19) 

 

The numerical simulations are performed by using the finite volume schemes implemented in 

ANSYS Fluent 17.2 [28].  Figure 2 (a) shows the meshed spherical cap used as computational 

domain; the pair of droplets, which are much smaller than the overall domain, are located on the 

substrate in the center as shown in the zoomed view in Figure 2 (b).  As boundary conditions, the 

vapor concentration was prescribed at the outer surface of the domain and on the surface of each 

drop, and a zero flux condition was prescribed on the substrate surface.  The shape and size of the 

domain were chosen to ensure domain-independent results.  Considering all of the different cases, 

a typical domain used a mesh with ~106 elements; a mesh independence analysis, with local 

refinements near the surfaces of the droplets in the regions of high concentration gradients, was 

performed to confirm that results of the numerical calculations were independent of the size of the 

elements used.  The criteria for convergence was set at a normalized absolute error of ~10-12. 

The effects of inter-droplet distance on the condensation rate are first explored by changing 

droplet pitch between two droplets of the same size 1 2c c cR R R= = .  Figure 3 (a) shows the 

correction factor 1 2  = =  as function of the droplet pitch for all of the sizes considered.  The 

predictions using the point sink method (shown as solid lines) closely matches the results of the 

numerical simulations (shown as symbols).  The relative error between these two values, for all 

the cases considered, remains below 4%.  For a selected case, Figure 4 shows the normalized vapor 

concentration field ( )r at the substrate plane in a region near the two droplets; local agreement 

between the model and the numerical simulations is observed in the field. 

Each droplet will grow as if it were completely isolated for a correction factor equal to unity; 

in the limit of the droplet pitch being very large ( )p → , the droplets will have no effect on each 

other ( )1 → .  All of the cases shown in Figure 3 tend to   = 1 with increasing pitch; only for 

relatively extreme separation distances (e.g., droplets separated by a pitch one hundred times their 

radii) does this value become near unity.  At a given pitch, the correction factor reduces as the size 

of the droplets increase.  If the correction factor is replotted as a function of the non-dimensional 

ratio between the pitch of the droplet pair and their contact radii, as shown in Figure 3 (b), then all 



of the data from Figure 2 (a) fall onto a single master curve for the correction factor. From Figure 

3 (b), it can again be observed that the correction factor increases with an increasing ratio between 

the droplet pitch and their contact radii. This curve can be used to define a threshold separation 

distance at which it can be assumed that droplets of the same size have negligible interaction with 

each other.  For example, a value of cp R  > 25 (i.e., droplets separated at a distance more than 25 

times greater than their contact radii) the correction factor is   > 0.95. 

The reduction of the condensation rate as the droplets become closer (i.e., as the pitch 

decreases) is further examined in Figure 5 by plotting contours of the normalized concentration 

field ( )r  around the two droplets given by Equation (19) at the plane that coincides with the 

substrate at z  = 0.  The panels of Figure 5 show the results for two droplets with contact radii cR  

= 60 μm at different pitches.  A zone of depleted vapor emerges between the droplets that 

significantly reduces the concentration gradient normal to the droplet surface in the direction 

toward the other droplet (compared to the opposing direction). As the distance between the droplets 

decreases, this depletion zone becomes more severe as the maximum concentration of vapor 

decreases; hence, the condensation rate of each drop will be further reduced as they are brought 

closer.  From the example case shown in Figure 5, two droplets with cR  = 60 μm separated by a 

distance equal to p  = 180 μm would condense 25% less rapidly compared to the same size isolated 

droplet.  Even for pitches that are 9 times larger than the droplet radius, the condensation rate 

would be reduced by 9.5%. 

The relative sizes of the droplets in the pair also plays an important role in affecting the 

condensation behavior.  This is analyzed by considering a droplet with contact radius 1cR  = 10 μm 

that is in the surroundings of a relatively larger droplet with a contact radius 2cR .  Figure 6 (a) and 

(b) respectively show the condensation rate correction factors for these two droplets, 1  and 2  

for 2cR  increasing from 10 μm to 310 μm, as function of droplet pitch. The relative error between 

the point sink superposition method prediction (solid lines) and the numerical simulation results 

(data points) increases as the ratio between the droplet radii increases and the pitch is reduced; for 

all the cases the relative error was larger for the smaller drop. 

There is a very significant reduction in the condensation rate of the small droplet as the size of 

the larger neighboring droplet increases (see Figure 6 (a)). For example, at p = 600 μm, for the 



larger droplet increasing in size from 10 μm to 310 μm, the correction factor of the smaller droplet 

decreases from 1 = 0.98 to  1  = 0.41.  Comparatively, the correction factor for the larger droplet 

is universally 2  > 0.98 for all the cases at this pitch.  This can be further explained by Figure 7, 

which shows the normalized vapor concentration field ( )r  at the substrate for 1cR  = 10 μm and 

2cR = 60 μm at different pitches.  The concentration field is almost entirely governed by the larger 

droplet, which causes the smaller droplet to lie in a zone of depleted vapor. As the large droplet 

comes closer, the smaller droplet has a reduced concentration of vapor available in its immediate 

surroundings; however, the concentration field observed from the perspective of the larger droplet 

is relatively unaffected. 

Reduced condensation rates for small droplets in the surroundings of relatively larger droplets 

has previously been observed in experiments; Leach et al. [16] reported small droplets near larger 

droplets grew 20% slower compared to more isolated droplets of the same size.  Depletion of vapor 

has also been reported as a factor causing the inhibition of droplet nucleation on the bare substrate 

nearby large droplets during condensation [27]. 

3.2. Condensation in systems of many droplets 

This section first compares the overall condensation rates and water vapor distribution obtained 

for a system of multiple droplets using the point sink superposition method against a numerical 

simulation of the same system.  The computational domain, boundary conditions, and 

implementation approach used for the numerical simulations are similar to those described in 

Section 3.1, but updated to accommodate more than two droplets at the center of the domain.  

Secondly, the point sink superposition method is used to predict the condensation rate of randomly 

distributed systems of droplets having size distributions resembling previously reported 

experimental data [11]; these predicted rates are compared against alternative reduced-order 

prediction methods. 

To implement the point sink superposition method, the locations and sizes of the droplets in 

the system are inserted into equation (15), and the correction factor and condensation rate of each 

droplet are obtained by solving the system of equations.  Subsequently, the normalized local vapor 

concentration field at the substrate is obtained by substituting the correction factors into equation 

(17). The thermodynamic conditions (i.e., substrate temperature, air temperature, relative humidity 

and vapor concentrations) are the same as defined previously in Section 3.1. 



3.2.1. Comparison of point sink superposition method versus prediction via numerical 

simulations 

The point sink superposition method predictions are first compared with numerical simulations 

to verify the superposition approach for a system of multiple droplets.  The system of droplets used 

for this comparison is shown in Figure 8, which contains 16 droplets and resembles a time during 

condensation when the drop size distribution is broad and there are larger bare spaces between the 

droplets.  The vapor concentration field is shown for the numerical simulation in Figure 8 (a) and 

for the point sink method in Figure 8 (b); the vapor distributions around the droplets obtained from 

both models are observed to be similar.  The ability of the point sink superposition method to match 

the numerical simulations can be further investigated by comparing the condensation rates of each 

individual droplet, as well as the total condensation rate, predicted by both of the models, as 

summarized in Table 1.  The total condensation rate error was found to be ~14%, and the error for 

individual droplets was generally on the same order.  These findings are consistent with the 

comparisons presented for the case of two condensing droplets shown in Section 3.1.  Because the 

vapor concentration distribution around the droplets determines their condensation rate, droplets 

of similar size have a higher condensation rate when they are nearer the edge of the system.  For 

example, droplet 16 in the system of droplets shown in Figure 8, which is located near the edge of 

the system, has a larger condensation rate compared to droplet 8 located near the center.  The area 

surrounding the droplets deep in the center of the array is almost entirely depleted of vapor, and 

all droplets interact and significantly influence one another. This behavior, which causes droplets 

near the edge of the system to grow faster than droplets near the center, has previously observed 

by Medici et. al. [20].  Another unique validation case for a different system of droplets is provided 

in the Supplementary Materials. 

3.2.2. Comparisons of point sink superposition method versus prediction via conventional 

reduced-order models 

The condensation rates predicted for a system of droplets using the point sink superposition 

method, which accounts for the complete vapor diffusion behavior, is compared against 

condensation rates estimated using the highly simplified approaches of assuming completely 

isolated droplet growth or filmwise-like growth behavior, as is often employed in the literature 

[16,20].  The condensation rate of isolated droplet growth is obtained from equation (6), while the 

condensation rate of filmwise-like growth is obtained from a simplified one-dimensional diffusion 



resistance analysis.  This filmwise growth model assumes that a system of closely-spaced droplets 

behaves as a film of equivalent condensate volume.  By solving equation (2) in the direction normal 

to the surface of the film and from scaling the extension of the concentration profile to a region 

where the diffusion of vapor is dominant, the condensation rate of the film can be obtained as 

previously reported by Medici et. al [20]. 

Two different characteristic droplet systems are considered for this analysis, as shown in Figure 

9.  The system shown in Figure 9 (a) resembles the earliest stages of growth (i.e., regime i as 

discussed in Section 1.0) after nucleation when the droplets have similar sizes and are closely 

spaced, while Figure 9 (b) resembles a later stage during condensation when there are a significant 

number of coalescence events (i.e., regime ii as discussed in Section 1.0) that leads to a broader 

droplet size distribution.  These systems of droplets are randomly generated to achieve the same 

droplet distribution characteristics as observed in our previous experiments [11].  The point sink 

superposition model is evaluated considering the entire domain area in Figure 9.  To avoid the 

influence of edge effects, the comparisons only consider the condensation behavior within a region 

near the center of the system (viz. within the dashed square shown in Figure 9); it was separately 

confirmed that this region is not affected by the edges of the domain, and therefore representative 

of the condensation behavior on an infinite plane. 

The total condensation rates of the droplets enclosed by the dashed squares shown in Figure 9 

are summarized in Table 2 (a). The total condensation rate estimated by the isolated droplet growth 

model severely overpredicts condensation rates obtained by the point sink superposition method 

for both systems.  During evaluation of the point sink superposition model, the average 

condensation rate correction factor for the droplets within the area enclosed by the dashed square 

shown in Figure 9 (a) was found to be i  = 0.13.  Droplets in closer proximity to neighboring 

droplets grow at smaller rates compared to droplets that are spaced further away from their 

neighbors.  For example, the condensation correction factor of the droplet a1 in Figure 9 (a) is 

lesser than the similarly sized droplet a2 (see Table 2 (b)).  Large bare spaces between the droplets 

promote higher condensation rates for individual droplets because vapor can diffuse vertically 

toward the substrate and then laterally toward the peripheral of the droplets; conversely, droplets 

in the neighborhood block the lateral diffusion of the vapor, causing depletion of vapor, as 

discussed in Section 3.1.  In comparison to the system of droplets shown in Figure 9 (a), the system 

of droplets shown in Figure 9 (b) has a smaller average condensation correction factor of ii = 



0.07 due to a reduction of the distance between droplets.  There is also a broader distribution of 

sizes and vapor in the surrounding of relatively small droplets is depleted by large droplet 

neighbors.  For instance, the small droplet b1 shown in Figure 9 (b) has a condensation correction 

factor equal to   = 0.02, compared to   = 0.10 for a larger droplet b2.  While filmwise-like growth 

is commonly used to characterize droplet growth in such systems, the filmwise-like condensation 

model can lead to errors in prediction because its intrinsic assumption of an equivalent condensate 

volume yields a condensing interface with a different area compared to the total surface area of 

the droplets; in addition, the filmwise-like condensation model heavily relies on scaling 

approximations to predict the concentration profile.  Even though the filmwise-like condensation 

model provides a better prediction compared to assuming that droplets grow as if they were 

isolated, the filmwise-like growth model overestimates the total condensation rate by ~60% 

compared to the prediction of the point sink superposition method for the specific systems shown 

in Figure 9. 

4.0. Conclusions 

This paper presents a methodology to calculate the condensation rates of each individual 

droplet within large systems of many droplets during vapor-diffusion-driven dropwise 

condensation from humid air.  This methodology treats each individual droplet as a point humidity 

sink so as to allow superposition of the solutions to the diffusion equation for each individual drop.  

The model thereby captures the interaction between all droplets within the system, accounting for 

spacing between droplets and their relative differences in size (such as the effect of large droplets 

on blocking water vapor flux toward small nearby droplets).  This methodology is shown to 

accurately predict the total condensation rate and local vapor distribution for systems of droplets 

by validation against a three-dimensional numerical solution of the diffusion equation.  In 

comparison with highly simplified droplet growth models, viz., assuming completely isolated 

droplets or filmwise-like growth, the critical importance of including droplet interaction effects is 

demonstrated by comparing to the total condensation rate calculated using the point sink method 

for droplet systems representative of dropwise condensation.  
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(b) 

 

Figure 1.  Schematic diagram of a droplet condensing on a substrate surrounded by multiple point 

humidity sinks: (a) the top view shows the vector position of the center droplet i and surrounding 

humidity sinks at the locations of the other droplets j, and the (b) side view shows the substrate, 

droplets, and boundary conditions. 
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Figure 2.  Schematic diagram of the computational domain and boundary conditions used for 

numerical simulation of a condensing pair of droplets.  (a) The far-field outer boundary of the 

domain (blue surface) is represented by large spherical cap, with (b) the pair of droplets (green 

surfaces) located on the substrate at the center (as shown in ~250× magnified section view A-A). 

For the case shown in (b), the pair of droplets have contact radii 1cR  = 10 μm and 2cR  = 60 μm 

and are separated at a distance p  = 110 μm.  
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Figure 3.  (a) Condensation rate correction factor   for a pair of equally sized droplets having 

varying contact radii cR  as function of droplet pitch p  (correction factor compared to the case of 

an isolated droplet).  The predictions using the point sink method are shown as solid lines while 

results of the numerical simulations are shown as symbols.  (b) Correction factor for all of the 

cases in (a) presented as a function of the ratio between the droplet pitch and contact radii, cp R .  



 

 

Figure 4.  Normalized vapor concentration field ( )r  at the substrate plane in a region 

surrounding condensing droplets having the same size 1 2c c cR R R= = = 60 μm spaced apart at a 

pitch p = 120 μm. Results are shown for the numerical simulations (top panel) and for point sink 

method based prediction (bottom panel).  
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Figure 5.  Normalized vapor concentration field ( )r at the substrate plane predicted using the 

point sink superposition method in a region surrounding two condensing droplets having the same 

size 1 2c c cR R R= = = 60 μm and spaced apart at four pitches of (a) 180 μm, (b) 300 μm, (c) 420 

μm, and (d) 540 μm..  
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Figure 6.  Condensation rate correction factors (a) 1  for a small droplet, 1cR  = 10 μm, and (b) 

2 for the relatively larger neighbor droplet, 10 μm < 2cR  < 310 μm, as function of the pitch 

between the two droplets.  The predictions using the point sink method are shown as solid lines 

while results of the numerical simulations are shown as symbols.  
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Figure 7.  Normalized vapor concentration field ( )r  at the substrate plane predicted using the 

point sink superposition method for a small condensing droplet 1cR  = 10 μm nearby a larger 

condensing droplet 2cR  = 60 μm at four pitches of (a) 120 μm, (b) 240 μm, (c) 360 μm, and (d) 

480 μm.  
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Figure 8.  Normalized vapor concentration field ( )r  at the substrate plane for a system of 16 

condensing droplets obtained using (a) the numerical solution of the vapor diffusion equation and 

(b) the point sink superposition method modeling approach.  
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Figure 9.  Systems of randomly generated droplets having (a) 172 droplets with an average radius 

of 30.1 μm and standard deviation of 5.0 μm and (b) 66 droplets with average radius of 143.3 μm 

and standard deviation of 69.9 μm.  Analysis of the condensation behavior is restricted to within 

the dashed squares containing a subset of (a) 112 and (b) 32 droplets.  



Tables 

Table 1.  Condensation rate of individual droplets, as well as the overall condensation rate, for the 

system of droplets shown in Figure 8.  The error compares condensation rates from the numerical 

simulations to those obtained using the point sink superposition method. 

Droplet 

Tag 

m [ x10-12 kg/s] Error 

[%] Numerical Model 

1 3.4 3.0 11.0 

2 3.8 4.9 30.3 

3 8.5 8.6 2.1 

4 19.5 21.3 9.3 

5 44.0 50.3 14.3 

6 23.6 26.5 12.3 

7 17.6 27.8 58.1 

8 25.4 34.1 34.5 

9 20.6 22.6 9.7 

10 42.4 50.1 18.2 

11 1.0 0.4 56.6 

12 35.3 38.7 9.7 

13 70.1 79.2 13.0 

14 73.6 80.4 9.2 

15 27.9 31.2 12.1 

16 59.0 65.1 10.3 

Total 475.3 544.2 14.5 

  



Table 2.  (a) Total condensation rates calculated by the point sink method, the isolated droplet 

growth model, and the filmwise-like growth model for the systems of droplets inside the dashed 

square shown in Figure 9 (a) and Figure 9 (b).  (b) Correction factor for droplets a1, a2, b1 and b2.  

System m [ x10-10 kg/s] 

Isolated Film Model 

Figure 9 (a) 39.2 7.9 5.1 

Figure 9 (b) 53.3 7.9 4.7 

(a) 

Droplet Tag    

a1 0.14 

a2 0.09 

b1 0.02 

b2 0.10 

(b) 
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