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ABSTRACT: Nitrogenase catalyzes the reduction of N2
to NH3, supporting all biological nitrogen fixation.
Electron donors to this enzyme are ferredoxin or
flavodoxin (in vivo) and sodium dithionite (in vitro).
Features of these electron donors put a limit on
spectrophotometric studies and electrocatalytic applica-
tions of nitrogenase. Although it is common to use methyl
viologen as an electron donor for many low-potential
oxidoreductases, decreased nitrogenase activity is ob-
served with an increasing concentration of methyl
viologen, limiting its utility under many circumstances.
In this work, we suggest that this concentration-depend-
ent decrease in activity can be explained by the formation
of a dimer of the radical cation of methyl viologen
(Me2V

•+)2 at higher methyl viologen concentrations. In
addition, viologens functionalized with positively and
negatively charged groups were synthesized and studied
using spectroscopy and cyclic voltammetry. A sulfonated
viologen derivative, 1,1′-bis(3-sulfonatopropyl)-4,4′-bipyr-
idinium radical {[(SPr)2V

•]−}, was found to support full
nitrogenase activity up to a mediator concentration of 3
mM, while the positively charged viologen derivative was
not an efficient reductant of nitrogenase due to the high
standard redox potential. The utility of [(SPr)2V

•]− as an
electron donor for nitrogenase was demonstrated by a
simple, sensitive spectrophotometric assay for nitrogenase
activity that can provide accurate values for the specific
activity and turnover rate constant under argon. Under
N2, the formation of ammonia was confirmed. Because of
the observed full activity of nitrogenase and low
overpotential, [(SPr)2V

•]− should also prove to be
valuable for nitrogenase electrocatalysis, including bio-
electrosynthetic N2 reduction.

The biological reduction of N2 to NH3 is catalyzed by the
enzyme nitrogenase. The molybdenum-dependent nitro-

genase consists of two component proteins (Figure 1a): the
molybdenum−iron protein (MoFeP) and the iron protein
(FeP).1 MoFeP houses two unique cofactors, the electron
carrier [8Fe-7S] (P-cluster) and the catalytic [7Fe-9S-1Mo-C-
homocitrate] (FeMo-co).2 FeP contains a single [4Fe-4S]
cluster and two MgATP binding sites. During the catalytic
cycle, the FeP is reduced by either flavodoxin or ferredoxin (in
vivo)3,4 or sodium dithionite or reduced methyl viologen (in
vitro)5,6 and binds two MgATP molecules. Then, FeP
transiently associates with the MoFeP and transfers an
electron, followed by hydrolysis of two MgATP molecules

and dissociation from MoFeP.7 The released oxidized FeP is
reduced, and the two MgADP molecules are replaced by two
MgATP molecules, making FeP ready for another round of
MoFeP reduction. This cycle (called the FeP cycle) is repeated
four times to cause the accumulation of four electrons and four
protons on FeMo-co as two bridging hydrides and two
protons. This four-electron reduced state [called E4(4H)]
releases H2 and binds N2 with a reduction by two electrons.8,9

Four more electron/proton delivery cycles must be completed
to achieve the reduction of the N2 to two ammonia molecules
(eq 1). In the absence of N2, hydrides and protons react, and
H2 is evolved (eq 2).

N 16MgATP 8H 8e 2NH H

16MgADP 16P
2 3 2

i

+ + + → +

+ +

+ −

(1)

4MgATP 2H 2e H 4MgADP 4P2 i+ + → + ++ −
(2)

Elucidation of aspects of the mechanism of nitrogenase and
the application of this enzyme in biofuel and biosynthetic cells
are of high interest for chemical conversion and energy-related
efforts. This requires an efficient reductant for nitrogenase that
does not affect the enzyme activity. In addition, it would be
valuable if the reductant showed a large change in its extinction
coefficient between its reduced and oxidized forms so that it
could be used for spectroscopic studies, and it showed
reversible electrochemical behavior at the electrode surface
with a low overpotential to support nitrogenase electrocatalysis
(i.e., the standard potential difference between the mediator
and [4Fe-4S] cluster of FeP of nitrogenase). Most in vitro
studies of nitrogenase over decades have utilized the reductant
sodium dithionite. While convenient for fixed-time product
measurement, sodium dithionite is of limited value in
spectroscopic investigations due to its low extinction
coefficient and in electrocatalysis due to its irreversible
electrochemical reaction at the electrode surface. Alkyl
viologens, for example, methyl viologen, represent a sound
alternative to sodium dithionite and have been applied as
stoichiometric reductants and as electrochemical mediators for
enzymes such as hydrogenase,10−12 formate dehydrogen-
ase,13,14 and CO dehydrogenase.15,16

Our recent studies17 revealed that methyl viologen is an
efficient reductant for nitrogenase (Figure 1b,c), supporting
substrate reduction activity similar to the activity measured
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with sodium dithionite. However, the catalytic performance of
nitrogenase is observed to be dependent on the methyl
viologen concentration. At millimolar concentrations, methyl
viologen causes significant inhibition of nitrogenase activity as
a reductant in spectrophotometric activity assays5 and
electrolysis cells.18 This effect is not well understood. As a
result, most nitrogenase kinetic studies still rely on dithionite.
In this Communication, we studied the inhibitory effect of
methyl viologen and further report a viologen derivative that
can be efficiently used in the millimolar concentration range
that enables a high-utility spectroscopic activity assay to
quantify the flow of electrons through nitrogenase. In addition,
the viologen derivative is useful for electrocatalysis studies with
nitrogenase.
The effect of methyl viologen concentration on nitrogenase

activity was demonstrated via a spectroscopic study of
nitrogenase (0.4 μM MoFeP and 6 μM FeP) and a radical
cation form of methyl viologen (Me2V

•+) in the activity assay
buffer containing 100 mM MOPS (pH 7.0), 6.7 mM MgCl2, 5
mM ATP, and an ATP regeneration system (30 mM
phosphocreatine, 0.2 mg/mL phosphocreatine kinase, and
1.3 mg/mL bovine serum albumin). The mixture led to rapid
oxidation of Me2V

•+ to Me2V
2+ followed at 606 nm, reflecting

the nitrogenase catalytic reduction of protons to H2 under
argon (Figure 2a). A typical time curve is shown in Figure 2b.
The rate constant (kobs) obtained with different Me2V

•+

concentrations reveals that increasing concentrations of
Me2V

•+ result in decreasing rate constants (kobs) as shown in
Figure 2c. The highest value of kobs (11 s−1) was observed at

250 μM methyl viologen. No significant background process
took place in the absence of nitrogenase components.
We sought to understand the origin of the inhibitory effect

at higher concentrations of Me2V
•+. It is known that persistent

π-radicals such as Me2V
•+ can take part in radical−radical

interactions19 that result in the formation of a dimer
(Me2V

•+)2 (Figure 2d). The reported association constant of
Me2V

•+ is 1300 M−1.19 Figure 2c (red) shows the development
of the dimer as a function of the total Me2V

•+ concentration,
which is consistent with the decrease in kobs for nitrogenase
catalysis.
The dimerization of methyl viologen can increase the formal

potential (see the Supporting Information for more details),
thereby decreasing the driving force between this mediator and
nitrogenase. Our theoretical analysis of the methyl viologen
redox couple based on the Nernst equation showed a
maximum positive shift of +30 mV as a result of increasing
methyl viologen concentration in the range of 0.05−3 mM
(Figure S3). Similar results were obtained experimentally by
using cyclic voltammetry (Figure S3). This shift should not
have a major effect on nitrogenase catalysis. This suggested
that dimerization inhibits the activity of nitrogenase by another
mechanism.
In an effort to overcome the inhibitory effect of methyl

viologen, we synthesized two viologen derivatives: 1,1′-bis[3-
(trimethylammonium)propyl]-4,4′-bipyridinium tetrabromide
{[(NPr)2V]Br4} bearing two additional positively charged
ammonium groups20 and 1,1′-bis(3-sulfonatopropyl)-4,4′-
bipyridinium [(SPr)2V] bearing two additional negatively
charged sulfonic groups.21 These derivatives were first tested

Figure 1. (a) Simplified catalytic scheme for in vitro nitrogenase catalysis. (b) Mediated electrocatalytic system utilizing nitrogenase showcased
under argon. (c) Cyclic voltammograms recorded with solutions of activity buffer (black), upon addition of 50 μM methyl viologen (red), and then
upon addition of the nitrogenase complex (MoFeP:FeP, 1:15, blue). The activity buffer contains 100 mM MOPS (pH 7.0), 6.7 mM MgCl2, 5 mM
ATP, and an ATP regeneration system (30 mM phosphocreatine, 0.2 mg/mL phosphocreatine kinase, and 1.3 mg/mL bovine serum albumin).
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using the voltammetric approach.17 Cyclic voltammograms
were recorded in the activity assay buffer, after addition of the
corresponding viologen at 50 μM and after the addition of 0.4
μM MoFeP and 6 μM FeP (Figure 3). As shown in Figure 3a,
in the presence of [(NPr)2V]

4+, the current did not change
after addition of nitrogenase, reflecting the fact that this
derivative does not efficiently reduce nitrogenase FeP (−0.4 V
vs NHE, measured at pH 8 in the presence of MgATP),22,23

likely due to its higher standard reduction potential (−0.32 V

vs NHE). The standard potential of (SPr)2V (−0.40 V vs

NHE) was 40 mV more positive than that of methyl viologen,

but it was sufficient to reduce nitrogenase (Figure 3b).
The rate constants in the presence of Me2V

2+ and (SPr)2V

were 13 and 12 s−1, respectively, with the corresponding

viologen at 50 μM. kobs was determined using eq 3 derived for

nitrogenase electrocatalysis17

Figure 2. Methyl viologen cation radical (Me2V
•+) as a reductant in a spectrophotometric activity assay for nitrogenase under argon. (a)

Spectrophotometric evidence of the oxidation of 0.45 mM Me2V
•+ by nitrogenase and (b) time course at 606 nm measured in a cuvette with a 0.2

cm path length. (c) kobs vs [Me2V
•+] (black) and calculated Me2V

•+ dimer concentration (red). (d) Redox transition of methyl viologen to Me2V
•+

and the dimerization reaction. Conditions: 0.4 μM MoFeP and 6 μM FeP in activity assay buffer (0.5 mL; n = 3).

Figure 3. Voltammetric studies of viologen derivatives (a) (NPr)2V
4+ and (b) (SPr)2V. Cyclic voltammograms were recorded with solutions of

activity assay buffer (black), upon addition of 50 μM viologen derivative (red), and upon addition of the nitrogenase complex (MoFeP:FeP, 1:15,
blue).
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where kobs is the observed kinetic constant for substrate
reduction, icat is the current of the catalytic reaction, ip is the
peak current of the mediator in the absence of nitrogenase, n is
the number of electrons in the electrochemical reaction (n =
1), F is Faraday’s constant, v is the scan rate, CMed

o is the
mediator concentration, R is the ideal gas constant, T is the
reaction temperature, and CE

o = CMoFeP
o in the presence of an

excess of FeP.
A spectroscopic study similar to that described above was

performed to test the nitrogenase activity at higher
concentrations of [(SPr)2V

•]−. Panels a and b of Figure 4
show the spectra and time course at 600 nm in the presence of
nitrogenase, respectively. No decrease in activity was observed
with an increase in the concentration of (SPr)2V to 3 mM
(Figure 4c). In addition, our studies revealed that (SPr)2V in
its one-electron reduced form is prone to dimerize with an
association constant of 841 M−1 (Figure S5 and Figure 4c).
This finding shows that [(SPr)2V

•]− achieves high efficiency
with nitrogenase, likely due to the additional negatively
charged groups preventing interference in the nitrogenase
catalytic cycle.
To confirm N2 reduction in the presence of [(SPr)2V

•]− as
an electron donor, 0.4 μM MoFeP and 6 μM FeP were added
to the activity assay buffer containing 1 mM [(SPr)2V

•]− under
N2 in a sealed vial and left to react until all the reductant was
consumed. The formation of 143 μM ammonium was
confirmed using a fluorometric assay.24

Previously described spectrophotometric activity assays for
nitrogenase utilized sodium dithionite25 or titanium(III)
citrate26 as the electron donor. These methods are limited
by the low stability and low extinction coefficients of these
electron donors. For these methods, the measurement of
nitrogenase activity still relies on the assays requiring the
obligatory product quantification: NH3 by fluorometric assay
and H2 by gas chromatography. Here, we tested [(SPr)2V

•]−

as a stable and easy to prepare reductant for nitrogenase in a
spectrophotometric activity assay. The assay was performed in
a cuvette with a path length of 0.2 cm in the presence of 0.5
mM [(SPr)2V

•]−. The extinction coefficient was determined to
be 9925 M−1 cm−1 at 600 nm. Figure 4d shows the well-
pronounced dependence of the catalytic rate constant on FeP
concentration. The dependence of the nitrogenase reaction
rate on MoFeP concentration was also studied spectrophoto-
metrically and exhibits a linear relationship between the
reaction rate and the concentration of MoFeP (see Figure S6).
The lowest concentrations of nitrogenase proteins measured
by this assay were 40 nM FeP and 20 nM MoFeP (see Figure
S6). The sensitivity of the assay is 0.0074 s−1 μM−1 for FeP
(determined for <0.4 μM FeP, in the presence of 0.4 μM
MoFeP) and 0.0266 s−1 μM−1 for MoFeP (in the presence of 6
μM FeP). It is expected that utilization of [(SPr)2V

•]− as a
reductant for nitrogenase should facilitate many mechanistic
and genetic engineering studies because it provides a fast and
sensitive determination of nitrogenase activity. The application
of (SPr)2V as an electrochemical mediator in bioelectrosyn-
thetic N2 reduction is promising because, in contrast to methyl
viologen, it shows a lower overpotential and allows the use of
higher concentrations of the electrochemical mediator, which

Figure 4. [(SPr)2V
•]− as an electron donor for the spectrophotometric activity assay for nitrogenase under argon. (a) Spectrophotometric evidence

of the oxidation of [(SPr)2V
•]− by nitrogenase in activity assay buffer and (b) time course at 606 nm. (c) kobs vs [(SPr)2V

•]− (black) and calculated
[(SPr)2V

•]− dimer concentration (red). (d) Plot of kobs vs [FeP] measured spectrophotometrically at 600 nm in the presence of 0.5 mM
[(SPr)2V

•]−. Conditions: 0.4 μM MoFeP, 6 μM FeP in activity assay buffer (0.5 mL; n = 3), and cuvette path length of 0.2 cm.
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does not inhibit nitrogenase activity and may result in higher
product formation rates.
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Schuhmann, W., Rüdiger, O., and Plumere,́ N. (2015) A Redox
Hydrogel Protects the O2-Sensitive [FeFe]-Hydrogenase from
Chlamydomonas reinhardtii from Oxidative Damage. Angew. Chem.,
Int. Ed. 54, 12329−12333.
(11) King, P. W., Posewitz, M. C., Ghirardi, M. L., and Seibert, M.
(2006) Functional Studies of [FeFe] Hydrogenase Maturation in an
Escherichia coli Biosynthetic System. J. Bacteriol. 188, 2163−2172.
(12) Tatsumi, H., Takagi, K., Fujita, M., Kano, K., and Ikeda, T.
(1999) Electrochemical study of reversible hydrogenase reaction of
Desulfovibrio vulgaris cells with methyl viologen as an electron carrier.
Anal. Chem. 71, 1753−1759.
(13) Kuwabata, S., Tsuda, R., and Yoneyama, H. (1994) Electro-
chemical conversion of carbon dioxide to methanol with the
assistance of formate dehydrogenase and methanol dehydrogenase
as biocatalysts. J. Am. Chem. Soc. 116, 5437−5443.
(14) Enoch, H. G., and Lester, R. L. (1975) The purification and
properties of formate dehydrogenase and nitrate reductase from
Escherichia coli. J. Biol. Chem. 250, 6693−6705.
(15) Shin, W., Lee, S. H., Shin, J. W., Lee, S. P., and Kim, Y. (2003)
Highly Selective Electrocatalytic Conversion of CO2 to CO at − 0.57
V (NHE) by Carbon Monoxide Dehydrogenase from Moorella
thermoacetica. J. Am. Chem. Soc. 125, 14688−14689.
(16) Hadj-Saïd, J., Pandelia, M.-E., Leǵer, C., Fourmond, V., and
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