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ABSTRACT

PROBABILISTIC INFERENCE WITH GENERATING
FUNCTIONS FOR POPULATION DYNAMICS OF

UNMARKED INDIVIDUALS

FEBRUARY 2020

KEVIN WINNER

B.Sc., UNIVERSITY OF MARYLAND, BALTIMORE COUNTY

M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Daniel Sheldon

Modeling the interactions of different population dynamics (e.g. reproduction,

migration) within a population is a challenging problem that underlies numerous eco-

logical research questions. Powerful, interpretable models for population dynamics are

key to developing intervention tactics, allocating limited conservation resources, and

predicting the impact of uncertain environmental forces on a population. Fortunately,

probabilistic graphical models provide a robust mechanistic framework for these kinds

of problems. However, in the relatively common case where individuals in the popula-

tion are unmarked (i.e. indistinguishable from one another), models of the population

dynamics naturally contain a deceptively challenging statistical feature: discrete la-

tent variables with unbounded/countably infinite support. Unfortunately,

existing inference algorithms for discrete distributions are applicable only for finite

distributions and while approximate inference algorithms exist for countably infinite

vi



discrete distributions, they are generally unreliable and inefficient. In this work, we

develop the first known general-purpose polynomial-time exact inference algorithms

for this class of models using a novel representation based on probability generating

functions. These methods are flexibe, easy to use, and significantly faster than ex-

isting approximate solutions. We also introduce a novel approximation scheme based

on this technique that allows it to gracefully scale to populations well beyond the

computational limits of any previously known exact or approximate general-purpose

inference algorithm for population dynamics. Finally, we conduct an ecological case

study on historical data demonstrating the downstream impact of these advances to

a large scale population monitoring setting.
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CHAPTER 1

INTRODUCTION

Count distributions (discrete distributions with infinite support, commonly N0,

the set of nonnegative integers) such as the Poisson distribution are widely used

to describe real world phenomena in ecology (Zonneveld, 1991; Royle, 2004; Dail &

Madsen, 2011), epidemiology (Farrington et al., 2003; Panaretos, 2007; Kvitkovicova

& Panaretos, 2011), queueing theory (Eick et al., 1993; Blanghaps et al., 2013) and

numerous other fields in the natural and social sciences. Despite their prevalence,

count distributions pose a significant challenge for probabilistic inference when used

in latent variable models.

To understand why, consider the simple model shown in Figure 1.1. This model is

known in the ecology literature as the N-mixture model (Royle, 2004) and is widely

used in the study of population dynamics (Kéry et al., 2005; Mazerolle et al., 2007;

Wenger & Freeman, 2008). The N-mixture model nicely showcases the subtle dif-

ficulty of performing inference with count-valued latent variables. In the original

version of the N-mixture model, n is assumed to have a Poisson prior with rate

λ and each observed variable yk is assumed to be iid with conditional distribution

yk ∼ Binomial(n, ρ).

Given this model and some values for y = (y1, . . . , yK), a researcher may be

interested in fitting the values of λ and/or ρ to their data. To do so, they write the

equation for the posterior distribution p(n,y), construct the likelihood function by

marginalizing out the latent variable n: p(y) =
∑

n∈N0 p(n,y), and finally optimize

the likelihood (e.g., numerically). Mathematically, this process seems trivial, but

1



n

yk
k=1:K

Figure 1.1. The N-mixture model of Royle (2004). In this model, K repeated
independent surveys are conducted of a study population. In each survey k, a count-
valued record yk is sampled iid from the true latent abundance n. Traditionally
yk ∼ Binomial(n, ρ) and n ∼ Poisson(λ), though other authors have extended the
model beyond this case.

unfortuantely for count distributions the infinite sum introduced by marginalization

cannot be computed by direct summation. Recently, Haines (2016) presented an

efficient closed form formulation of the likelihood function for the original formulation

of the N-mixture presented here, but in the general case where a closed form does not

exist, another strategy is needed.

In practice, researchers who wish to study models with latent count distributions

have adopted one of the following broad classes of approaches:

1. Ignore the latent process and perform regression on the observed counts di-

rectly (Link & Sauer, 1994; Ralph et al., 1995; Link & Sauer, 1997; Schmidt &

Pellet, 2009),

2. Truncate the support of the latent count distributions to a finite range (Royle,

2004; Dail & Madsen, 2011; Fiske & Chandler, 2011; Zipkin et al., 2014; Dennis

et al., 2015; Hostetler & Chandler, 2015),

3. Employ a sampling strategy such as MCMC (Kéry et al., 2009; Zipkin et al.,

2014; Hostetler & Chandler, 2015; Winner et al., 2015).

In the work that follows, we will focus on Options 2 and 3 above. Option 3 is

discussed in Chapter 7, but Option 2 is the method implemented in unmarked (Fiske
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& Chandler, 2011) (the R package used by ecologists for fitting these models to data)

and comprises the baseline in the majority of our experiments, so we will devote some

attention to it here.

In the truncated approach, the support of the count-valued latent variables (which

is originally N0 by definition) is restricted to [0, Nmax] where Nmax is a new hyperpa-

rameter we call the “truncation parameter”. Once the support has been truncated

to a finite discrete range, traditional message passing algorithms for discrete distri-

butions (Pearl, 1986; Lauritzen & Spiegelhalter, 1988; Jensen et al., 1990; Shenoy &

Shafer, 1990) may then be applied.

In general, the runtime of message passing algorithms in the truncated approach

scales directly with the chosen value of Nmax and so much attention has been given

to strategies for setting Nmax (Dail & Madsen, 2011; Fiske & Chandler, 2011; Dennis

et al., 2015). Setting Nmax too low may have an unintended impact on inference

and particularly on learning (Couturier et al., 2013; Dennis et al., 2015) while setting

Nmax too high is slow and discourages exhaustive model selection. In our experiments,

however, even a conservative value for Nmax is still prone to lead to bias in the case

of parameter estimation when compared with an exact inference method.

In this work, we develop a new approach to inference for models with latent count

variables. The key insight is to formulate a new representation for infinite factors

based on probability generating functions (PGFs). In the chapters that follow, we

will develop this representation as well as a family of novel exact and approximate

inference algorithms that use this PGF representation. Collectively, we refer to this

approach as “PGF inference”.

PGF inference is a very flexible approach and our exact inference algorithms are

the first known exact inference algorithms for many dynamics models including exten-

sions of the N-mixture models and so-called “Dail-Madsen” models (Dail & Madsen,

2011; Hostetler & Chandler, 2015) (with notable exception to those specific models
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addressed by Dennis et al. (2015) and Haines (2016)). We propose a novel family of

dynamics models we call “latent count models” (LCMs) that generalizes N-mixture

models and Dail-Madsen models and demonstrate how to apply PGF inference to

this family. Finally, we show empirically and theoretically that PGF inference is

significantly faster than existing general-purpose inference solutions.

1.1 Related Applications

In this work, we adopt the language of previous population monitoring research in

the ecological community and use models of population dynamics from that literature

to demonstrate our techniques. However, models with count-valued variables arise

in a number of other domains and the PGF inference techniques we develop for the

ecological community may also be applicable to many of these domains.

Fully observed time-series of counts have been extensively studied as “integer-

valued autoregressive” (INAR) models (Al-Osh & Alzaid, 1987; McKenzie, 2003) with

applications in many fields, including sociology, economics, medicine, and ecology.

Similar models have arisen in queuing theory. The most closely related model is

known as the Mt/G/∞ queue (Eick et al., 1993). Notably, the process is typically

assumed to be fully observed in these domains and as a result the types of questions

and inference challenges are very different from our domain where the count-valued

variables are latent.

Recently, the epidemiology community has adopted the models from (Royle, 2004)

and (Dail & Madsen, 2011) directly to model the spread of diseases in unmarked

populations (Brintz et al., 2018). In these settings, unmarked models may reflect

disease spread through poorly monitored populations, diseases with latent infections,

or even data that has been intentionally aggregated due to privacy concerns. This is

very exciting, as there seems to exist a direct analogue between the domains, but as

of yet this link seems relatively unexplored.
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1.2 Contributions

To our knowledge, our PGF inference techniques represent the first known broadly-

applicable, polynomial-time exact inference technology for a wide class of models with

latent count distributions including, but not necessarily limited to, LCMs. Our exact

inference algorithms scale to larger populations than existing approximate methods.

The approximate PGF inference technique we develop in Chapter 6 is the first known

inference algorithm for LCMs that does not scale with population size, meaning ro-

bust models of population dynamics can now be fit to data from massive geographic

and temporal scales. Chapter 5 presents a novel generalization of forward-mode au-

tomatic differentiation (Griewank & Walther, 2008) for evaluating high-order nested

derivatives more efficiently than existing naive approaches. Below we enumerate the

major contributions presented in this thesis:

1. Formulation of Latent Count Models (Chapters 4 and 5)

(a) Unification of existing open population dynamics models (Chapter 7)

2. PGF inference

(a) PGF representation for count distributions (Chapter 4)

(b) Efficient exact PGF inference algorithms (Chapters 4 and 5)

(c) Moment matching PGF approximation scheme (Chapter 6)

(d) Scalable approximate PGF inference algorithm (Chapter 6)

3. Generalized forward-mode automatic differentiation (Chapter 5)

1.3 Thesis organization

The rest of this document is organized as follows. Chapter 2 reviews the relevant

background material for statistical inference and learning in graphical models. The

hidden Markov model (HMM), the foundational model we use throughout the rest of
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the document, is reviewed in Section 2.1 and then in Chapter 3 we review domain-

specific extensions of the HMM in the population dynamics literature. Chapter 3

concludes with a novel model for population dynamics that will be used throughout

the later chapters.

In Chapter 4, we introduce the core PGF representation that underpins all of

PGF inference and is used throughout the rest of the thesis. Sections 2.3.1, 4.2,

and 4.2.1 serve as a useful background on PGFs and collect many useful operations

for manipulating PGFs. In Section 4.2.2 we demonstrate our first PGF inference

algorithm: pgf-forward, an analogue to the Forward algorithm for Hidden Markov

Models (Rabiner, 1989; Ghahramani, 2001) using PGFs. In Section 4.2.2 we demon-

strate how to implement pgf-forward for a special case of the LCM. While this is

the fastest of the exact inference algorithms we present, it does not generalize well to

other models.

In Chapter 5, we extend PGF inference in a black-box fashion using an extension

of standard forward-mode automatic differentiation (Griewank & Walther, 2008) (au-

todiff) to a more complete subset of the LCM family. The key insight in this chapter

is that the majority of inference tasks in PGF inference don’t require a complete

representation of the PGFs of intermediate factors, rather we generally only need the

value of the PGF (and some of its high-order derivatives) at a single point. This

is very similar to what is done by forward-mode autodiff, but requires a significant

generalization to handle functions with nested derivatives, which we present in Sec-

tion 5.2.2. In Section 5.2.2.3, we introduce gdual-forward, an implementation of

pgf-forward that uses our generalized forward-mode autodiff. Like our symbolic

algorithm from Chapter 4, gdual-forward is not an approximation, yet still scales

better than the baseline approximate inference technique.

Our exact inference algorithms from Chapters 4 and 5, along with the approximate

baseline trunc and sampling-based algorithms have the undesirable property that
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the computation time scales with two quantities: the total number of observation

events, and the magnitude of the observed counts. In Chapter 6, we introduce an

approximate PGF inference algorithm apgf-forward-s based on assumed density

filtering (Minka, 2001) (ADF) that scales with the number of observation events only.

In Section 6.2.1 we derive a moment-matching scheme called apgf for approximating

a distribution represented with a PGF. In Sections 6.2.2 and 6.2.3 we show how to

modify pgf-forward to perform efficient approximate PGF inference using apgf

in two approximate inference algorithms apgf-forward and apgf-forward-s.

Finally, in Chapter 7, we present an application of our approximate inference

algorithm from Chapter 6 to a large-scale population study using historical data from

the North American Breeding Bird Survey (Pardieck et al., 2019). This chapter also

summarizes the incorporation of our PGF inference techniques into unmarked (Fiske

& Chandler, 2011), the most widely used package in the ecological community for

fitting LCMs to count data.

1.4 Publications

Chapters 4 and 5 of this thesis present material from the following two publica-

tions:

Ch 4: Winner, K. and Sheldon, D. Probabilistic Inference with Generating Functions

for Poisson Latent Variable Models. In Advances in Neural Information Pro-

cessing Systems 29, 2016.

Ch 5: Winner, K., Sujono, D., and Sheldon, D. Exact inference for integer latent-

variable models. In International Conference on Machine Learning (ICML),

pp. 3761–3770, 2017.

Chapters 6 and 7 present unpublished work.

The following two publications are related but not featured here:
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• Winner, K., Bernstein, G., and Sheldon, D. Inference in a Partially Observed

Queueing Model with Applications in Ecology. In Proceedings of the 32nd In-

ternational Conference on Machine Learning (ICML), pp. 2512–2520, 2015.

• Sheldon, D., Winner, K., and Sujono, D. Learning in integer latent variable

models with nested automatic differentiation. In Proceedings of the 35th Inter-

national Conference on Machine Learning, (ICML), pp. 4622–4630, 2018.

Finally, the following unrelated publications feature research conducted during the

course of my degree:

• Winner, K., Noonan, M. J., Fleming, C. H., Olson, K., Mueller, T., Sheldon,

D., and Calabrese, J. M. Statistical inference for home range overlap. Methods

in Ecology and Evolution, 2018.

• Lin, T.-Y., Winner, K., Bernstein, G., Mittal, A., Dokter, A. M., Horton, K.

G., Nilsson, C., Van Doren, B. M., Farnsworth, A., La Sorte, F. A., Maji, S.,

and Sheldon, D. MistNet: Measuring historical bird migration in the US using

archived weather radar data and convolutional neural networks. Methods in

Ecology and Evolution, 2019.
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CHAPTER 2

BACKGROUND

In this chapter we will review some foundational material for the techniques pre-

sented in the remainder of the thesis. We assume a basic familiarity with the fun-

damental concepts of graphical models and statistical inference and develop here the

techniques and principles that form the baseline for our work. Chapter 3 has addi-

tional background on the models we build on and additional domain-specific related

work. Where not otherwise specified, the primary reference for this review was Mur-

phy (2012).

2.1 Graphical Models and Hidden Markov Models

The hidden Markov model (HMM) is a classic graphical model framework for

sequence data and particularly for time-series data. In general, a graphical model is

a concise way of specifying the dependencies between all the variables in our system.

They come in two types: directed and undirected. In the work presented throughout

this document, we focus exclusively on directed graphical models. An example of

a directed graphical model (indeed an HMM) is shown in Figure 2.1. The HMM

n1

y1 y2

n2

yK

nK...

Figure 2.1. The hidden Markov model. The latent variables ni form a Markov chain
and the observed variables yi depend only on a single corresponding latent variable.
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is divided into a set of observed variables, denoted graphically with shaded nodes

(the yk variables in Figure 2.1) and a set of latent variables, denoted graphically

with unshaded nodes (the nk variables in Figure 2.1). Note that we use the y1:K

subscript notation to describe the tuple of {y1, y2, . . . , yK} and so on. Also note

that traditionally in an HMM x is used to denote the latent variables (instead of n),

however in our applications the latent variables will always be count-valued (discrete

with countably infinite support) and so we choose to use n in our presentation of

HMMs to be consistent with later material.

In a directed graphical model like an HMM, the directed edges between nodes in

the graph denote conditional dependencies between variables and imply a concrete

method for factoring conditional distributions. More precisely, the graphical model

in Figure 2.1 specifies for instance that the distribution of y1 depends only on n1,

which is denoted by an edge between the two nodes.

In an HMM, the latent variables n1:K form a “Markov chain”: i.e. the distribution

of one latent variable nk depends only on the distribution of the preceding latent

variable nk−1. This property is known more generally as the “Markov property” and

is key to performing efficient inference with HMMs.

The structure of the HMM graphical model allows us to factor the joint distribu-

tion of the latent variables as follows:

p(n1:K) = p(n1, n2, . . . , nK) = p(n1)p(n2|n1) . . . p(nK |nK−1),

= p(n1)
K∏
k=2

p(nk|nk−1).

(2.1)

Furthermore, the traditional HMM assumes that each observed variable depends only

on a single corresponding latent variable, i.e. p(yk|n1:K) = p(yk|nk). As a result, the

joint distribution of all the variables factors simply as follows:
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p(n1:K ,y1:K) = p(n1:K)p(y1:K |n1:K),

= p(n1)
K∏
k=2

p(nk|nk−1)
K∏
k=1

p(yk|nk),

(2.2)

where the three components of 2.2 are called the initial distribution (p(n1)), the

transition model (p(nk|nk−1)), and the observation model (p(yk|nk)). When the tran-

sition model and observation model are the same for all k, the HMM is said to be

“stationary” or “homogenous”.

Note that in the work that follows, we will focus exclusively on HMMs where the

latent variables and observed variables are all discrete (and particularly on models

where their support is infinite), but the general HMM is equivalently defined whether

the variables are continuous or discrete.

2.2 Inference and Learning in Hidden Markov Models

The inference and learning approaches based on probability generating functions

that we develop later in this thesis are developed for hidden Markov models (HMMs).

We believe the techniques apply more broadly, but to understand the material pre-

sented here, it will suffice to understand the variety of inference and learning tech-

niques in use today for HMMs.

2.2.1 The forward-backward algorithm

The forward-backward algorithm is a powerful “message-passing” exact inference

algorithm for HMMs. It is a special case of the more general belief propagation

(BP) algorithm (Pearl, 1986) which is an exact inference algorithm for trees and

other directed acyclic graphs. We describe HMMs in detail in Section 2.1, but here

we focus on inference. In particular, the forward-backward algorithm computes the

following quantities in an HMM: the “filtered” marginals p(nk|y1:k), the “smoothed”
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marginals p(nk|y1:K), and the likelihood p(y1:K |θ) (where θ is the collection of all

model parameters).

The forward-backward algorithm is comprised of two “sub-algorithms”: the for-

ward algorithm and the backward algorithm. The forward algorithm recursively com-

putes each of the filtered marginals p(nk|y1:k) for k = 1, k = 2, and so on in a “left to

right” pass. Then the backward algorithm recursively computes each of the smoothed

marginals p(nk|y1:K) for k = K − 1, k = K − 2, and so on in a “right to left” pass.

2.2.1.1 Forward algorithm

The forward algorithm recursively computes “messages”, which are unnormalized

distributions of subsets of the variables. Specifically, define the “forward” messages:

αk(nk) := p(nk,y1:k) as the joint distribution of the kth latent variable and the first

k observed variables. These satisfy the recurrence:

α1(n1) = p(y1 |n1)p(n1), (2.3)

αk(nk) = p(yk |nk)
∑
nk−1

αk−1(nk−1)p(nk |nk−1), 1 < k ≤ K. (2.4)

This is the traditional definition of the forward messages, but later in this document

we will find it useful to split this recurrence into two steps by defining a set of

intermediate messages: γk(nk) := p(nk,y1:k−1). The recurrence then becomes:

γk(nk) =
∑
nk−1

αk−1(nk−1)p(nk |nk−1), (2.5)

αk(nk) = γk(nk)p(yk |nk). (2.6)

We will refer to Equation (2.5) as the prediction step (the value of nk is predicted

based on the observations y1:k−1), and Equation (2.6) as the evidence step (the new

evidence yk is incorporated). In finite models, the forward algorithm can compute

the αk messages for k = 1, . . . , K directly using Equations (2.5) and (2.6).
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The α-messages can also be used to compute the data likelihood as follows:

p(y1:K) =
∑
nK

αK(nK) =
∑
nK

p(nK ,y1:K) (2.7)

2.2.1.2 Backward algorithm

Where the forward algorithm operates recursively from “left-to-right”, from k = 1

to K, the backward algorithm operates recursively from “right-to-left”, from k = K

to 1. Like the forward algorithm, the backward algorithm computes another set of

messages, the β messages which are defined as:

βk(nk) := p(nk,yk+1:K), (2.8)

and which satisfy the following recurrence:

βk(nk) =
∑
nk+1

βk+1(nk+1)p(yk+1|nk+1)p(nk+1|nk). (2.9)

After computing the α and β messages, the “smoothed” posterior marginals µk(nk) :=

p(nk,y1:K) can be derived by µk(nk) ∝ αk(nk)βk(nk).

2.2.2 Variable elimination

A related family of exact inference algorithms, which we explain here in the con-

text of discrete HMMs, is variable elimination (VE). Variable elimination is defined

for undirected graphical models, though it can be applied to directed graphical models

(like an HMM) by converting the directed graph to an undirected one via a process

called “moralization”. For tree-structured graphs, moralization simply involves re-

placing the directed edges between pairs of nodes with undirected edges and then

defining pairwise factors between each pair of connected nodes. For HMMs, the fac-

tors would be:
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• ψ(n1),

• ψ(nk, nk−1), 1 < k ≤ K,

• and ψ(yk, nk), 1 ≤ k ≤ K.

In moralization, the factors are defined such that the full joint distribution (continuing

to use HMMs as an example) is factored as:

p(n1:K ,y1:K) = ψ(n1)
K∏
i=2

ψ(ni, ni−1)
K∏
j=1

ψ(nj, yj).

From this factorization, we can compute various marginal distributions by marginal-

izing out any subset of the latent variables (the observed variables y are fixed and

thus do not need to be marginalized). For instance, we could compute the posterior

marginal distribution of the kth latent variable as:

p(nk,y1:K) =
∑
n1

∑
n2

· · ·
∑
nk−1

∑
nk+1

· · ·
∑
nK

ψ(n1)
K∏
i=2

ψ(ni, ni−1)
K∏
j=1

ψ(nj, yj). (2.10)

If each of the latent variables has M possible values, then marginalizing all the latent

variables this way will take O(MK−1) time, which very quickly becomes intractable.

Variable elimination addresses this by refactoring the equation above by iteratively

“eliminating” one variable at a time. The process of “eliminating” a variable consists

of the following steps, which we demonstrate for the process of eliminating n1 from

Equation (2.10):

1. reorder the summation operators so that the variable to be eliminated is last:

∑
n2

· · ·
∑
nk−1

∑
nk+1

· · ·
∑
nK

∑
n1

ψ(n1)
K∏
i=2

ψ(ni, ni−1)
K∏
j=1

ψ(nj, yj),
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2. move all terms that do not include the variable to be eliminated outside of the

innermost sum:

∑
n2

· · ·
∑
nk−1

∑
nk+1

· · ·
∑
nK

K∏
i=3

ψ(ni, ni−1)
K∏
j=2

ψ(nj, yj)
∑
n1

ψ(n1)ψ(n2, n1)ψ(y1, n1),

3. define a new “temporary” factor containing all the factors with the variable to

be eliminated:

τ ′1(n1, n2) := ψ(n1)ψ(n2, n1)ψ(y1, n1),

where the subscript of the new factor corresponds to the order in which we

eliminate the variables,

4. marginalize the variable to be eliminated out of the new factor to define a new

factor:

τ1(n2) :=
∑
n1

ψ(n1)ψ(n2, n1)ψ(y1, n1),

5. substitute the new factor back into the original factored distribution:

∑
n2

· · ·
∑
nk−1

∑
nk+1

· · ·
∑
nK

K∏
i=3

ψ(ni, ni−1)
K∏
j=2

ψ(nj, yj)τ1(n2).

This process is then repeated for each of the variables to be eliminated, eventually

yielding the desired marginal distribution. The efficiency of variable elimination de-

pends on the order that the variables are eliminated.

For HMMs in particular, the forward algorithm is equivalent to performing vari-

able elimination in the order n1, . . . , nK and the backward algorithm is equivalent to

performing variable elimination in the order nK , . . . , n1. To compute the smoothed

marginals (p(nk |y1:K)), a naive approach would be to run variable elimination with

the order n1, . . . , nk−1, nK , nK−1, . . . , nk+1. However, to compute all K smoothed

marginals would require K variable elimination passes with this naive approach. The
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forward-backward algorithm avoids this by reusing components of the individual for-

ward and backward algorithms. This is also the general principle of message-passing

or belief propagation in tree-structured graphs: all marginals are computed using two

variable elimination passes.

In a later chapter we will run variable elimination with a non-standard elimination

order for HMMs as a way to compute smoothed marginals. This is because we do not

curently know how to implement the full forward-backward algorithm with PGFs.

2.2.3 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods can also be applied to perform

inference in HMMs, though they are arguably less commonly used for HMMs than

message-passing algorithms like the forward-backward algorithm. The intuition be-

hind MCMC methods is to perform a Markovian random walk over the space of latent

variables, model parameters, or some other state space of interest in such a way that

the proportion of time spent in each state x is proportional to some target density

p∗(x). For HMMs, the state space could for instance consist of the set of all latent

variables, n1:K and the target density could be the joint posterior distribution of the

latent variables p(n1:K |y1:K). The collection of (correlated) samples generated over

this random walk can then be used to estimate statistics of the true density.

The simplest MCMC method for HMMs and likely the most widely used MCMC

method in the population dynamics community is known as Gibbs sampling. In a

Gibbs sampler, each variable xi is repeatedly sampled individually and conditioned

on the most recently sampled value of all other variables x−i, which are kept fixed.

We use the notation xji to denote the jth sample of the ith variable and xj to denote

the set of the jth sample of all variables. In the simplest Gibbs sampler where

variables are resampled in a fixed sequence, this means we will resample each of the

K variables once after every K iterations of the sampler. In this way, we’ll begin
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at some initial point x0 and repeatedly take a step along one axis i according to the

conditional distribution p(xi|x−i). So long as each axis/variable is selected with equal

frequency/probability, the Gibbs sampler will eventually converge to the stationary

distribution, i.e. limn→∞ xn ∼ p∗(x) (Geman & Geman, 1984; Gelfand & Smith,

1990). It is worth noting that typically the full conditional distribution p(xi|x−i) can

be simplified by conditioning only on the Markov blanket of xi.

For HMMs, one simple form of a Gibbs sampler samples each of the latent variables

in sequence, beginning with n1 and continuing in an order such as: {n1
1, n

1
2, n

1
3, . . . , n

1
K ,

n2
1, n

2
2, . . . }. In an HMM, the Markov blanket of each latent variable has at most three

other variables (the preceeding latent variable, the subsequent latent variable, and the

corresponding observed variable) and the full conditional for the ith latent variable

can be written:

p(ni |n−i,y) = p(ni |ni−1, ni+1, yi), (2.11)

∝ p(ni |ni−1)p(ni |ni+1)p(ni | yi). (2.12)

and so, when sampling sequentially, the jth sample of the ith latent variable is dis-

tributed as:

nji ∼ p(nji |n
j
i−1, n

j−1
i+1 , yi).

Because each sample is conditioned only on the latest sample and not on the full

history of samples, the sequence of samples produced by a Gibbs sampler or other

MCMC sampler form a Markov chain. Note that this Markov chain of samples is

unrelated to the Markov chain that forms the backbone of the HMM.

Given a set of M complete samples from a Gibbs sampler, we can estimate the

target distribution by:

p̃(xi = z) =
1

M

M∑
j=1

1(xji = z),

17



where 1(e) is the indicator function, i.e. 1(e) = 1 if the expression e is true and

1(e) = 0 otherwise.

2.2.4 Learning in HMMs

One of the most common tasks in machine learning is parameter estimation: given

a model specification and a set of training data, fit values for each of the model

parameters that are consistent with the training data. There are a number of ways

to do this, in this section we focus specifically on parameter estimation for HMMs

and the case where ground-truth data for the latent variables is unavailable.

2.2.4.1 Maximum likelihood estimation

As discussed previously, the likelihood function L(D|θ) := p(D|θ) defines the prob-

ability of the observed data D given a particular configuration of the model parame-

ters θ. Given some data, a set of values for the observed variables, the corresponding

maximum likelihood estimate (MLE) parameters θMLE are then the configuration of

θ which maximizes the likelihood of our data:

θMLE := arg max
θ

L(D|θ).

In the case of HMMs, the likelihood function is computed using the forward algorithm

(see Equation (2.7)).

In practice, computing the MLE parameters by optimizing the likelihood is non-

trivial. In general, it is not possible to optimize the likelihood explicitly, i.e. there is no

closed form expression for θMLE and we must instead optimize the likelihood numer-

ically. In the chapters that follow, we generally use standard numerical optimization

methods from scientific computing packages, but a commonly used alternative for

HMMs is the Baum-Welch algorithm, which we discuss below.
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2.2.4.2 The Baum-Welch algorithm

For HMMs, one of the most common approaches to finding the MLE parameters

is the Baum-Welch algorithm (Baum et al., 1970). For completeness, we review the

algorithm here, but it will not be referenced elsewhere in this document.

The Baum-Welch algorithm is a special case of the Expectation-Maximization

(EM) (Dempster et al., 1977) algorithm for HMMs. The EM algorithm in general is

an iterative algorithm that alternates between two steps: first the expectation step

(or E step), then the maximization step (or M step), then the E step again, then the

M step, and so on. At any given time in the EM algorithm, we maintain an estimate

θ∗ of the model parameters. In the E step, we compute the expected value of the

sufficient statistics of the model given the current estimate of the model parameters θ∗

and then in the M step, we update our estimate of the parameters θ∗ by maximizing

the likelihood given all the observed variables and the expected value of the sufficient

statistics. This is generally repeated until the parameter estimates converge.

The Baum-Welch algorithm is an efficient application of EM to HMMs with finite

discrete-valued latent variables. In the Baum-Welch algorithm, the expected value

of the sufficient statistics in the E step is computed from the smoothed posterior

marginals by performing the forward-backward algorithm on the HMM. Given the

expectation of the sufficient statistics, each of the terms of the initial state distribu-

tion, the transition matrix, and the emission distribution can then be easily estimated

in the M step by setting them equal to their normalization realizations in the expected

complete data.

Note that Baum-Welch works only when the latent variables have finite support

and when the various distributions are all multinomial, though the more general

EM framework is well defined (but as yet unimplementable) for HMMs with non-

finite latent variables and arbitrary initial distributions, transition distributions, and

emission distributions.
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Figure 2.2. The assumed density filtering algorithm. A target distribution p is
factored into a product of components p =

∏
i ti. The intermediate distribution

qj is defined recursively as the product of the jth component tj and the previous
intermediate distribution qj−1. After computing each intermediate distribution qj,
the distribution is projected back to a simple approximating family Q.

2.2.5 Assumed density filtering

Assumed density filtering (ADF) is an approximate inference scheme for distribu-

tions where the true distribution p(θ) can be factored into a product of simple terms:

p(θ) ∝
K∏
i=1

ti(θ). (2.13)

The main idea in ADF is to define a simple approximating family Q (typically an

exponential family) which is “simpler” than the true distribution p(θ). Beginning

with an initial distribution q0(θ) ∈ Q, we will proceed by incorporating the first t1

factor into q0 (the “update” step), projecting back to Q to get q1 (the “projection”

step), and so on for each ti. This is demonstrated graphically in Figure 2.2.

The update step is defined as:

p̂i(θ) =
ti(θ)qi−1(θ)

Zi
, (2.14)

where Zi =
∫
θ
ti(θ)qi−1(θ)dθ is the (optional) normalizer. The projection step from

p̂i(θ) to Q is defined as:
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qi = arg min
q∈Q

DKL(p̂i(θ)||q(θ)). (2.15)

If Q is an exponential family, then the KL minimization for the projection step can be

performed via moment matching. For instance, if Q is a family of spherical Gaussian

distributions, then qi is given by the following expectation constraints Minka (2001):

Eqi [θ] = Ep̂i [θ],

Eqi [θᵀθ] = Ep̂i [θᵀθ] .

(2.16)

For tree-structured models such as HMMs, message-passing algorithms can be

seen as a special case of ADF (Heskes & Zoeter, 2003). In particular, when the model

is such that all messages remain in the exponential family, the forward algorithm

for HMMs is a (non-approximate, trivial) special case of ADF. When messages do

not remain in the exponential family, we can also define an approximate forward

algorithm with ADF as follows. To begin, recall that the forward algorithm defines a

factorization of p(n,y):

p(n,y) =
∏

1<i≤K

ψi(ni−1, ni, yi),

ψ1(n1, n0, y1) ∝ p(n1)p(y1|n1),

ψi(ni, ni−1, yi) ∝ p(yi|ni)
∑
ni−1

p(ni|ni−1), i > 1.

Each update step incorporates the next ψi(ni, ni−1, yi) term as before (which cor-

responds to one iteration of the forward algorithm):

p̂i(n1:i,y1:i) = p̂i−1(n1:i−1,y1:i−1) · ψi(ni, ni−1, yi). (2.17)

By marginalizing out all variables except ni from p̂i(n1:i,y1:i), we derive the following

approximation of the corresponding filtered marginal over ni:
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mi(ni) ∝
∑
n1:i−1

p̂i(n1:i,y1:i). (2.18)

We then project the filtered marginal mi(ni) back to Q by:

m̂i = arg min
m∈Q

DKL(mi ‖ m). (2.19)

Subsequent update steps may then use the approximate filtered marginals m̂i in place

of p̂i:

p̂i(n1:i,y1:i) = m̂i−1(ni−1) · ψi(ni, ni−1, yi). (2.20)

In Chapter 6, we will develop an approximation algorithm that is similar to ADF

in the PGF domain for HMMs. However we do not know whether our approximating

family is an exponential family and so our projection step is subtly different from

that used in ADF. More details on the relationship between the two algorithms are

in Section 6.1.1.

2.3 Distribution Representation

Throughout this work, we will be addressing the challenge of representation for

discrete distributions. Classically, there are a number of ways to represent a discrete

distribution. Given a parametric form of the distribution, such as X ∼ Poisson(λ),

we can specify the entire distribution by its parameters (in the Poisson case λ).

For arbitrary discrete distributions, we can also represent the terms of the prob-

ability mass function explicitly as a vector/matrix/tensor. Indeed, this is commonly

the representation used when working with discrete distributions in algorithms such

as the forward-backward algorithm (see Section 2.2.1). However, as we explore in

much greater detail later, this approach is not applicable for arbitrary discrete dis-

tributions with infinite support. To represent such a distribution, one approach from

the ecology literature Royle (2004); Dail & Madsen (2011) has been to truncate the
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support of the distribution to some finite range. Throughout this work we will com-

monly use trunc to refer specifically to the forward algorithm using such a truncated

representation.

In this work, we adopt probability generating functions (PGFs) for inference,

which we discuss below:

2.3.1 Probability generating functions

Let x = (x1, . . . , xd) be a vector of nonnegative integer-valued random variables

where xi ∈ Xi ⊆ N0. The set Xi may be finite (e.g., to model binary or finite discrete

variables), but we assume without loss of generality that Xi = N0 for all i by defining

factors to take value zero for integers outside of Xi. For any set α ⊆ {1, . . . , d}, define

the subvector xα := (xi, i ∈ α). We consider probability models of the form

p(x) =
1

Z

∏
α∈A

ψα(xα),

where Z is a normalization constant and {ψα} is a set of factors ψα : [N0]
|α| → R+

indexed by subsets α ⊆ {1, . . . , d} in a collection A.

A general factor ψα on integer-valued variables cannot be finitely represented. We

instead use the formalization of probability generating functions. Let s = (s1, . . . , sd)

be a vector of indeterminates corresponding to the random variables x. The joint

PGF of a factor ψα is

Fα(sα) =
∑
xα

ψα(xα) ·
∏
i∈α

sxii =
∑
xα

ψα(xα) · sxαα .

Here, for two vectors a and b with the same index set I, we have defined ab =
∏

i∈I a
bi
i .

The sum is over all vectors xα of non-negative integers.

Univariate PGFs of the form F (s) =
∑∞

x=0 Pr(X = x)sx = E[sX ], where X is

a nonnegative integer-valued random variable, are widely used in probability and
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statistics (Resnick, 2013; Casella & Berger, 2002), and have a number of nice prop-

erties. A PGF uniquely encodes the distribution of X, and there are formulas to

recover moments and entries of the the probability mass function from the PGF.

Most common distributions have closed-form PGFs, e.g., F (s) = exp{λ(s−1)} when

X ∼ Poisson(λ). Similarly, the joint PGF Fα uniquely encodes the factor ψα, and we

will develop a set of useful operations on joint PGFs. Note that we abuse terminol-

ogy slightly by referring to the generating function of the factor ψα as a probability

generating function; however, it is consistent with the view of ψα as an unnormalized

probability distribution.

2.4 Automatic Differentiation

In Chapter 6, we will demonstrate a relationship between PGF inference and func-

tion evaluation and show how techniques from forward-mode automatic differentiation

(autodiff) (Griewank et al., 2000; Griewank & Walther, 2008) can be applied to per-

form a black-box version of PGF inference. Here we will review forward-mode autod-

iff, based principally on the presentation of (Griewank & Walther, 2008) and (Baydin

et al., 2018). Reverse-mode autodiff, while widely used in the machine learning com-

munity, does not play a role in the work presented here and so we exclude it from

discussion. For a broader review of autodiff, including reverse-mode, see (Baydin

et al., 2018).

2.4.1 Forward-mode autodiff

Often in machine learning we have a complex function f(x) and we are interested

in knowing some derivative of f , d
dx
f(x). Historically, there are two commonly used

classes of approach to this kind of differentiation: symbolic differentiation (either

by manually working out the derivatives or by employing a symbolic differentiation
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library/tool) and numerical differentiation (by finite difference approximation). Au-

tomatic differentiation is distinct from both.

Like numerical differentiation, autodiff does not yield a general symbolic expres-

sion for the requested derivative. Instead, it evaluates the derivative at a fixed

point/set of points. However, like symbolic differentiation, it is an exact method,

computing the correct value of the requested derivatives. Finally, as the name implies

and similar to both symbolic libraries/tools and numerical differentiation, autodiff is

a more-or-less “black-box” method: the user need only provide an implementation of

their function f(x) and autodiff takes it from there.

The core concept of forward-mode automatic differentiation is a process we call

“function lifting”. If h(x) is an elementary function (e.g. binary addition and multi-

plication, unary power, exp, etc.) then the “lifted” version of h(x) is the function that

simultaneously implements the original elementary operation as well as the derivative

of that operation. Other functions that are ultimately comprised of some combination

of elementary operations can similarly be lifted by applying the chain rule through

each of the component operations in a “forward accumulation” pass.

This “lifting” process is typically performed in practice using a data structure

known as a “dual number”. A dual number is a first-degree Taylor series with the

following form:

x+ x′ε,

where x is a scalar representing the original value, x′ is the derivative of x with respect

to a fixed input variable, and ε is a new formal variable denoting a perturbation of the

input variable. We will use the notation 〈x, x′〉 to denote dual numbers. Conveniently,

dual number arithmetic efficiently lifts many elementary operations. As a result,

dual numbers (as truncated Taylor polynomials) are often the base representation

in modern autodiff libraries. Function lifting is typically achieved by overloading

elementary operations with their lifted equivalents. In this way, even a complex
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function can be lifted automatically so long as it is ultimately comprised only of

elementary operations that are overloaded by the autodiff library.

For example, suppose we have a function in our system like y = sin(z) where z

is some intermediate variable in the program and y and z are scalars. If we want to

know the derivatives of y with respect to some input variable x: dy
dx

, we can lift sin to

operate on a dual number: L(sin)(〈z, z′〉) where z′ = dz
dx

and L is the “lift operator”

that lifts a function to operate on dual numbers. For primitive operations, the lifted

equivalents are well known (see Griewank & Walther, 2008) and nested/combined

primitives can be joined according to similar principles.

The general principles of forward-mode autodiff can also be naturally extended

to compute high-order derivatives and jacobians, a topic which we explore in more

detail in Chapter 6.
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CHAPTER 3

MODELS FOR LATENT COUNTS

In this work, we focus on models containing latent variables whose support is

discrete and countably infinite. Most commonly, these variables are “count-valued”,

meaning more specifically that their support is N0, the set of non-negative integers.

We call these variables “count variables”. Such variables could represent the size

of a population, the frequency of an event, and many other discrete variable whose

support is positive and unbounded.

Models with latent count-valued variables arise commonly as partially observed

time series, wherein the latent count variables represent something like the size of

a indirectly observed population or a time-varying event frequency. In our case, we

are interested in modeling the size of a population that may be changing over time

by expressing the population dynamics of the system. In this chapter, we review

commonly used latent count models for population dynamics which can be seen as

special cases of the hidden Markov model (HMM), the more general family of graphical

models which we presented in Section 2.1. In 3.2, we present a formulation of a novel

family of population dynamics models that generalizes and extends existing models

and which will serve as the primary example in subsequent chapters.

3.1 Models for Population Dynamics of Unmarked Individ-

uals

The work described in this thesis builds directly on prior work on the dynamics

of “closed” and “open” populations in the ecological literature. The models used
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previously in this line of research can be shown to be special cases of the more general

model we introduce in Section 3.2.

Notably all of the models presented here contain latent count variables (discrete

latent variables whose support is countably infinite), meaning that traditional infer-

ence algorithms cannot be applied directly. As a result, previous applications of these

models have always been forced to include a small but significant alteration to the

model: truncating the support of the latent variables to some finite value Nmax. This

is not intended to be a mechanistic component of the models and indeed is left out of

the model descriptions of the work where those models are developed but is instead

a concession to the needs of implementability. The impact of this implicit modeling

assumption is discussed in much greater detail throughout the main chapters of this

thesis, where we refer to it as the “truncated method” or, when applied specifically

to the forward algorithm, as trunc.

3.1.1 Closed populations

The N-mixture model, presented originally by Royle (2004), is a statistical model

for “closed” populations, i.e. populations where individuals are assumed not to enter

or leave the population over the survey period. In it, repeated observations are

conducted of a population via transect or point count. The true abundance n is

assumed to be a latent variable whose distribution (called the mixture distribution)

is either Poisson or negative binomial. The observed variables yk ∈ {y1, . . . , yK} are

iid binomial samples of n. The two possible model configurations originally proposed

in (Royle, 2004) are given below and described graphically in Figure 3.1:

n ∼ Poisson(λ)

yk ∼ Binomial(n, ρ)

n ∼ NegBin(α, r)

yk ∼ Binomial(n, ρ)

However, these models are based fundamentally on the “closure” assumption: that

the observations are conducted on time scale over which the abundance is unlikely to

have changed. Therefore the utility of the N-mixture model for modeling population
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n

yk
k=1:K

Figure 3.1. The N-mixture model for closed populations. The latent variable n rep-
resents the true abundance of a population and does not change between observation
events. The observed variables yk are iid and represent the observed count at each
sampling occasion.

dynamics (wherein the population size is presumably changing over time) is neces-

sarily limited. In order to measure the effects of population dynamics, we must move

to models for “open” populations.

3.1.2 Open populations

In (Dail & Madsen, 2011), the authors introduced an extension of the N-mixture

model for “open” populations in which the size of the population is allowed to change

in between the surveys that are conducted. This model, hereafter referred to as

the “Dail-Madsen” model, assumed that while the abundance may vary between

observations, the sequence of latent abundances satisfies the Markov property. In

other words, the size of the population at time t+ 1 depends only on the size of the

population at time t.

This key assumption leads to the graphical representation of the Dail-Madsen

model shown in Figure 3.2, which may be recognized as a hidden Markov model

(HMM). All that remains is to specify the initial distribution of abundance p(n1),

the transition dynamics p(nk|nk−1), and the observation dynamics p(yk|nk). In their

original presentation of the model, Dail and Madsen factored the transition dynamics

into two components: survival (which they assume to be distributed as a binomial)

and recruitment (which they assume to be distributed as a Poisson). These transition
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Figure 3.2. The Dail-Madsen model for open populations. The latent variables ni
are discrete valued and represent the true population size at each sampling occasion
and the observed variables yi represent the observed count at each sampling occasion.

dynamics are a special case of the Latent Branching Process model we describe in

more detail below. Finally, the Dail-Madsen mdoel assumes that the observation

process is binomial and that the initial distribution is Poisson or negative binomial.

In the following years, numerous authors have extended the Dail-Madsen model

by introducing new transition dynamics (Hostetler & Chandler, 2015), introducing

explicit spatial interactions (Chandler et al., 2011, 2013), and modeling demographic

dynamics (Zipkin et al., 2014).

3.2 Latent Branching Process

We consider a hidden Markov model with integer latent variables n1, . . . , nK and

integer observed variables y1, . . . , yK . All variables are assumed to be non-negative.

The model is most easily understood in the context of its application to population

ecology or branching processes (which are similar): in these cases, the variable nk

represents the size of a hidden population at time tk, and yk represents the number of

individuals that are observed at time tk. However, the model is equally valid without

this interpretation as a flexible class of autoregressive processes (McKenzie, 2003).

We introduce some notation to describe the model. For an integer random vari-

able n, write y = ρ ◦ n to mean that y ∼ Binomial(n, ρ). This operation is known as

“binomial thinning”: the count y is the number of “survivors” from the original count

n. We can equivalently write y =
∑n

i=1 xi for iid xi ∼ Bernoulli(ρ) to highlight the

fact that this is a compound distribution. Indeed, compound distributions will play
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Figure 3.3. The latent branching process model. This model describes a hidden
Markov model with a particular set of transition dynamics. The observed variables
yk represent a noisy survey of each nk, the latent population size at each time. The
transition dynamics are split into two parts: an offspring process represented by xk
and an independent immigration process represented by mk.

a key role: for independent integer random variables n and x, let z = n � x denote

the compound random variable z =
∑n

i=1 xi, where {xi} are independent copies of x.

Our model, the “latent branching process” (LBP) is shown graphically in Figure

3.3 and is described concretely by:

nk = mk +

nk−1∑
i=1

xk−1,i, (3.1)

yk ∼ Binomialnk, ρk. (3.2)

The variable nk represents the population size at time tk. The random variable

xk−1 =
∑nk−1

i=1 xk−1,i is the number of offspring of individuals from the previous

time step, where xk−1,i is the total number of individuals “caused by” the ith in-

dividual alive at time tk−1. The collection of xk−1,i variables at each time step (i.e.

{xk−1,1, xk−1,2, . . . }) being iid. This definition of offspring is flexible enough to model

immediate offspring, surviving individuals, and descendants of more than one gener-

ation. The random variable mk is the number of immigrants at time tk, and yk is the

number of individuals observed at time tk, with the assumption that each individual

is observed independently with probability ρk. We have left unspecified the distri-

butions of mk and xk,i, which we term the immigration and offspring distributions,
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respectively. These may be arbitrary distributions over non-negative integers. We

will assume the initial condition n0 = 0, though the model can easily be extended to

accommodate arbitrary initial distributions.

3.2.1 Connections to Other Models

This model specializes to capture many different models in the literature. The

latent process of Eq. (3.1) is a Galton-Watson branching process with immigra-

tion (Watson & Galton, 1875; Heathcote, 1965). It also captures a number of different

AR(1) (first-order autoregressive) processes for integer variables (McKenzie, 2003);

these typically assume that the offspring process is binomial thinning of the current

individuals, i.e., Xk ∼ Bernoulli(δk). For clarity when describing this as an offspring

distribution, we will refer to it as Bernoulli offspring. With Bernoulli offspring and

time-homogenous Poisson immigration, the model is an M/M/∞ queue (McKenzie,

2003); with time-varying Poisson immigration it is an Mt/M/∞ queue (Eick et al.,

1993).

Many of the models in Section 3.1 are special cases of the LBP. When immigra-

tion is zero after the first time step and xk = 1, the population size is a fixed random

variable, and we recover the N -mixture model of (Royle, 2004). With Poisson immi-

gration and Bernoulli offspring, we recover the basic model of (Dail & Madsen, 2011)

for open metapopulations. In Chapter 7, we investigate how several other extensions

of the “Dail-Madsen” model fit into our LBP framework. Finally, other related mod-

els for unmarked insect populations also fall within this framework (Zonneveld, 1991;

Gross et al., 2007).
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CHAPTER 4

PROBABILISTIC INFERENCE WITH GENERATING
FUNCTIONS FOR POISSON LATENT VARIABLE

MODELS

4.1 Introduction

A key reason for the success of graphical models is the existence of fast algo-

rithms that exploit the graph structure to perform inference. For models with a

simple enough graph structure, these algorithms can compute marginal probabilities

exponentially faster than direct summation.

However, these fast exact inference methods apply only to a relatively small class

of models—those for which the basic operations of marginalization, conditioning, and

multiplication of constituent factors can be done efficiently. In most cases, this means

that the user is limited to models where the variables are either discrete (and finite)

or Gaussian, or they must resort to some approximate form of inference.

Why are Gaussian and discrete models tractable while others are not? The key

issue is one of representation. If we start with factors that are all discrete or all Gaus-

sian, then: (1) factors can be represented exactly and compactly, (2) conditioning,

marginalization, and multiplication can be done efficiently in the compact represen-

tation, and (3) each operation produces new factors of the same type, so they can

also be represented exactly and compactly.

Many models fail the restriction of being discrete or Gaussian even though they

are qualitatively “easy”. Section 3.1.1 provides a simple example, the N-mixture

model (Royle, 2004) that is commonly used to interpret field surveys in ecology.

The latent variable n ∼ Poisson(λ) represents the unknown number of individual
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Generating Function

F (s) =

∞∑
n=0

p(n, y1:3 = [2, 3, 5])sn

=
(
0.006s5 + 0.103s6 + 0.513s7

+ 1.000s8 + 0.802s9 + 0.218s10
)

× exp(8.438s− 15.410)

(a) (b) (c)

Figure 4.1. Generating functions for the N-mixture model. The N-mixture
model (Royle, 2004) is a simple model with a Poisson latent variable for which no
exact inference algorithm is known: (a) the model, (b) the prior and posterior for
λ = 20, ρ = 0.25, y1 = 2, y2 = 5, y3 = 3, (c) a closed form representation of the
generating function of the unnormalized posterior, which is a compact and exact
description of the posterior.

animals at a given site, which has support N0. Repeated surveys are conducted at

the site during which the observer detects each individual with probability ρ, so each

observation yk is Binomial(n, ρ). From these observations (usually across many sites

with shared λ), the scientist wishes to infer n and fit λ and ρ.

This model is very simple: all variables are marginally Poisson, and the unnor-

malized posterior has a simple form (e.g., see Figure 4.1b). However, until recently,

there was no known algorithm to exactly compute the likelihood p(y1:K). The naive

way is to sum the unnormalized posterior p(n, y1, . . . , yK) over all possible values of

n. However, n has a countably infinite support, so this is not possible. In practice,

users of this and related models truncate the infinite sum at a finite value (Royle,

2004). A recent paper developed an exact algorithm for the N-mixture model, but

one with running time that is exponential in K (Dennis et al., 2015). For a much

broader class of models with latent count variables (Kéry et al., 2009; Fiske &

Chandler, 2011; Chandler et al., 2011; Dail & Madsen, 2011; Zipkin et al., 2014),

there are no known exact inference algorithms. Current methods either truncate the

support (Fiske & Chandler, 2011; Chandler et al., 2011; Dail & Madsen, 2011), which
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is slow and interacts poorly with parameter estimation (Couturier et al., 2013; Dennis

et al., 2015), or use MCMC (Kéry et al., 2009; Zipkin et al., 2014), which is slow and

for which convergence is hard to assess.

The key difficulty with these models is that we lack finite and computationally

tractable representations of factors over variables with a countably infinite support,

such as the posterior distribution in the N-mixture model, or intermediate factors in

exact inference algorithms.

The main contribution of this chapter is to develop compact and exact representa-

tions of countably infinite factors using probability generating functions (PGFs) and

to show how to perform variable elimination in the domain of generating functions.

We provide the first exact pseudo-polynomial time inference algorithms (i.e., polyno-

mial in the magnitude of the observed variables) for a subset of the latent branching

process (LBP) model described in Section 3.2, which includes LBPs whose transition

dynamics are Poisson. In this chapter, we refer to this subset of the LBP family as

the “Poisson hidden Markov model” or Poisson HMM.

For example, the generating function of the unnormalized N-mixture posterior is

shown in Figure 4.1c, from which we can efficiently recover the likelihood p(y1 =

2, y2 = 5, y3 = 3) = F (1) = 0.0025. For Poisson HMMs, we first develop a PGF-

based forward algorithm to compute the likelihood, which enables efficient parameter

estimatation. We then develop a “tail elimination” approach to compute posterior

marginals. Experiments show that our exact algorithms are much faster than existing

approximate approaches, and lead to better parameter estimation.

4.1.1 Related work

Several previous works have used factor transformations for inference. Bickson &

Guestrin (2010) show how to perform inference in the space of characteristic functions

(see also (Mao & Kschischang, 2005)) for a certain class of factor graphs. Xue et al.
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(2016) perform variable elimination in discrete models using Walsh-Hadamard trans-

forms. Jha et al. (2010) use generating functions (over finite domains) to compute

the partition function of Markov logic networks. McKenzie (2003) describes the use

of PGFs in discrete time series models, which are related to our models except they

are fully observed, and thus require no inference.

4.2 Variable Elimination with Generating Functions

Our approach to inference in models with latent count variables will be to imple-

ment the same abstract set of operations as variable elimination, but using a represen-

tation based on probability generating functions. In this chapter, we will demonstrate

these techniques on “Poisson HMMs”, a special case of the latent branching process

(LBP) model from Section 3.2. The Poisson HMM is identical to the LBP except

that it assumes that the arrival distribtution is always Poisson and that the offspring

distribution is always Bernoulli, i.e.:

mk ∼ Bernoulli(δk),

xk,i ∼ Poisson(λk).

However, because variable elimination will produce intermediate factors on larger

sets of variables, and to prepare for later chapters where we will generalize these

methods to a larger class of models, we will abstract for now from the Poisson HMM

and employ notation general for graphical models with multivariate factors and their

corresponding multivariate generating functions. Background on probability gener-

ating functions (PGFs) and their notation is in Section 2.3.1. A concrete application

of these techniques to the Poisson HMM is presented beginning in Section 4.2.2.
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4.2.1 Operations on Generating Functions

Our goal is to perform variable elimination using factors represented as PGFs. To

do this, the basic operations we need to support are are multiplication, marginaliza-

tion, and “entering evidence” into factors (reducing the factor by fixing the value of

one variable). In this section we state a number of results about PGFs that show

how to perform such operations. For the most part, these are either well known or

variations on well known facts about PGFs (see Feller, 1968, Chapters 11, 12), which

we present here for ease of reference. The proofs of all operations are collected at the

end of the section.

First, we see that marginalization of factors is very easy in the PGF domain:

Proposition 4.1 (Marginalization). Let ψα\i(xα\i) :=
∑

xi∈Xi ψα(xα\i, xi) be the fac-

tor obtained from marginalizing i out of ψα. The joint PGF of ψα\i is Fα\i(sα\i) =

Fα(sα\i, 1). The normalization constant
∑

xα
ψα(xα) is equal to Fα(1, . . . , 1).

Entering evidence is also straightforward:

Proposition 4.2 (Evidence). Let ψα\i(xα\i) := ψα(xα\i, a) be the factor resulting

from observing the value xi = a in ψα. The joint PGF of ψα\i is Fα\i(sα\i) =

1
a!

∂a

∂sai
Fα(sα)

∣∣
si=0

.

Multiplication in the PGF domain—i.e., computing the PGF of the product

ψα(xα)ψβ(xβ) of two factors ψα and ψβ—is not straightforward in general. However,

for certain types of factors, multiplication is possible. We give two cases.

Proposition 4.3 (Multiplication: Binomial thinning). Let ψα∪j(xα, xj) = ψα(xα) ·

Binomial(xj|xi, ρ) be the factor resulting from expanding ψα to introduce a thinned

variable xj := ρ ◦xi, where i ∈ α and j /∈ α. The joint PGF of ψα∪j is Fα∪j(sα, sj) =

Fα(sα\i, si(ρsj + 1− ρ)).

Proposition 4.4 (Multiplication: Addition of two variables). Let ψγ(xα, xβ, xk) :=

ψα(xα)ψβ(xβ)I{xk = xi + xj} be the joint factor resulting from the introduction of a
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new variable xk = xi + xj, where i ∈ α, j ∈ β, k /∈ α∪ β, γ := α∪ β ∪{k}. The joint

PGF of ψγ is Fγ(sα, sβ, sk) = Fα(sα\i, sksi)Fβ(sβ\j, sksj).

The four basic operations above are enough to perform variable elimination on a

large set of models. In practice, it is useful to introduce additional operations that

combine two of the above operations.

Proposition 4.5 (Thin then observe). Let ψ′α(xα) := ψα(xα) · Binomial(a|xi, ρ) be

the factor resulting from observing the thinned variable ρ◦xi = a for i ∈ α. The joint

PGF of ψ′α is F ′α(sα) = 1
a!

(siρ)a ∂
a

∂tai
Fα(sα\i, ti)

∣∣∣
ti=si(1−ρ)

.

Proposition 4.6 (Thin then marginalize). Let ψ(α\i)∪j(xα\i, xj) :=
∑

xi
ψα(xα) ·

Binomial(xj|xi, ρ) be the factor resulting from introducing xj := ρ ◦ xi and then

marginalizing xi for i ∈ α, j /∈ α. The joint PGF of ψ(α\i)∪j is F(α\i)∪j(sα\i, sj) =

Fα(sα\i, ρsj + 1− ρ).

Proposition 4.7 (Add then marginalize). Let ψγ(xα\i, xβ\j, xk) :=
∑

xi,xj
ψα(xα) ·

ψβ(xβ)I{xk = xi+xj} be the factor resulting from the deterministic addition xi+xj =

xk followed by marginalization of xi and xj, where i ∈ α, j ∈ β, k /∈ α ∪ β, γ :=

(α\i)∪(β\j)∪{k}. The joint PGF of ψγ is Fγ(sα\i, sβ\j, sk) = Fα(sα\i, sk)Fβ(sβ\j, sk).

Proofs — Operations on Generating Functions

Proof of Proposition 4.1. This is a standard fact about multivariate PGFs:

Fα(sα\i, 1) =
∑
xα

ψα(xα)s
xα\i
α\i 1xi =

∑
xα\i

(∑
xi

ψα(xα\i, xi)
)
s
xα\i
α\i

The fact
∑

xα
ψα(xα) = Fα(1, . . . , 1) follows by marginalizing each variable one at a

time.
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Proof of Proposition 4.2.

∂a

∂sai
Fα(sα)

∣∣∣
si=0

=
∑
xα\i

∑
xi

ψα(xα\i, xi)s
xα\i
α\i

∂a

∂sai
sxii

∣∣∣
si=0

= a!
∑
xα\i

ψα(xα\i, a)s
xα\i
α\i

The final equality holds because ∂a

∂sai
sxii
∣∣
si=0

= a! if xi = a and zero otherwise.

Proof of Proposition 4.3. The PGF is

Fα∪j(sα, sj) =
∑
xα

∑
xj

ψα(xα) Binomial(xj |xi, ρ)sxαα s
xj
j

=
∑
xα

ψα(xα)sxαα
∑
xj

Binomial(xj |xi, ρ)s
xj
j

=
∑
xα

ψα(xα)sxαα (ρsj + 1− ρ)xi

=
∑
xα

ψα(xα)s
xα\i
α\i
(
si(ρsj + 1− ρ)

)xi
= Fα(sα\i, si(ρsj + 1− ρ))

In the third line, we used the fact that the PGF of the Binomial distribution is∑
x Binomial(x|n, ρ)sx = (ρs+ 1− ρ)n.

Proof of Proposition 4.4.

Fγ(sα, sβ, sk) =
∑

xα,xβ ,xk

ψα(xα)ψβ(xβ)I{xk = xi + xj}sxαα s
xβ
β s

xk
k

=
∑
xα,xβ

ψα(xα)ψβ(xβ)sxαα s
xβ
β s

xi+xj
k

=
∑
xα,xβ

ψα(xα)ψβ(xβ) · sxα\iα\i · (sksi)
xi · sxβ\jβ\j · (sksj)

xj

=
(∑

xα

ψα(xα) · sxα\iα\i · (sksi)
xi
)
·
(∑

xβ

ψβ(xβ) · sxβ\jβ\j · (sksj)
xj
)

= Fα(sα\i, sksi) · Fβ(sβ\j, sksj)
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Proof of Proposition 4.5. We can combine Propositions 4.3 and 4.2 to first expand

the factor with a thinned variable xj = ρ ◦ xi and then observe xj = a. We get

F ′α(sα) =
1

a!

∂a

∂saj
Fα(sα\i, si(ρsj + 1− ρ))

∣∣∣
sj=0

=
1

a!

(
∂a

∂tai
Fα(sα\i, ti)(siρ)a

∣∣∣
ti=si(ρsj+1−ρ)

)∣∣∣∣∣
sj=0

=
1

a!
(siρ)a

∂a

∂tai
Fα(sα\i, ti)

∣∣∣
ti=si(1−ρ)

.

Proof of Proposition 4.6. This is an immediate consequence of Proposition 4.3 and

Proposition 4.1 by setting si = 1 in Proposition 4.3.

Proof of Proposition 4.7. This is an immediate consequence of Proposition 4.4 and

Proposition 4.1 by setting si = 1 and sj = 1 in Proposition 4.4.

4.2.2 The PGF-Forward Algorithm for Poisson HMMs

We now use the operations from the previous section to implement the forward

algorithm for Poisson HMMs in the domain of PGFs. The forward algorithm is an

instance of variable elimination, but in HMMs is more easily described using the

following recurrence for the joint probability p(nk, y1:k):

p(nk, y1:k)︸ ︷︷ ︸
αk(nk)

=
∑
nk−1

p(nk−1, y1:k−1)︸ ︷︷ ︸
αk−1(nk−1)

p(nk|nk−1)p(yk|nk)

We can compute the “forward messages” αk(nk) := p(nk, y1:k) in a sequential

forward pass, assuming it is possible to enumerate all possible values of nk to store

the messages and compute the recurrence. In our case, nk can take on an infinite

number of values, so this is not possible.
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nk–1

yk–1 yk

nkzk

mk

!k–1 !k

!k "k

Figure 4.2. Factor graph of the Poisson HMM.

We proceed instead using generating functions. To apply the operations from the

previous section, it is useful to instantiate explicit random variables mk and zk for

the number of new arrivals in step k and survivors from step k − 1, respectively, to

get the model (see Figure 4.2):

mk ∼ Poisson(λk), zk = δk−1 ◦ nk−1,

nk = mk + zk, yk = ρk ◦ nk.

Such that the transition distribution p(nk|nk−1) can now be written:

p(nk|nk−1) =
∞∑

mk=0

∞∑
zk=0

p(mk)p(zk|nk−1)p(nk|zk,mk),

which can be equivalently written as a discrete convolution over all mk and zk st

mk+zk = nk. Substituting this into the recurrence for αk(nk) and reorganizing terms

gives the following updated recurrence:

αk(nk) = p(yk|nk)
∞∑

mk=0

∞∑
zk=0

p(mk)p(nk|zk,mk)

ψk(zk)︷ ︸︸ ︷
∞∑

nk−1=0

αk−1(nk−1)p(zk|nk−1)︸ ︷︷ ︸
γk(nk)

(4.1)
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Algorithm 1 forward
1: ψ1(z1) := I{z1 = 0}
2: for k = 1 to K do
3: γk(nk) :=

∑
zk,mk

ψk(zk)p(mk)I{nk = zk +mk}

4: αk(nk) := γk(nk)p(yk |nk)
5: if k < K then
6: ψk+1(zk+1) :=

∑
nk
αk(nk)p(zk+1 |nk)

Algorithm 2 pgf-forward
1: Ψ1(s) := 1
2: for k = 1 to K do
3: Γk(s) := Ψk(s) · exp{λk(s− 1)}
4: Ak(s) := Evidence(Γk(s), yk, ρk)
5: if k < K then
6: Ψk+1(s) := Ak

(
δks+ 1− δk

)
7: function Evidence(F (s), y, ρ)
8: return 1

y! (sρ)y · F (y)
(
s(1− ρ)

)

We have introduced the intermediate factors ψk(zk) and γk(nk) to clarify the

implementation.

forward (Algorithm 1) is a dynamic programming algorithm based on this re-

currence to compute the αk messages for all k. However, it cannot be implemented

due to the infinite sums. pgf-forward (Algorithm 2) instead performs the same

operations in the domain of generating functions—Ψk, Γk, and Ak are the PGFs of

ψk, γk, and αk, respectively. Each line in pgf-forward implements the operation

in the corresponding line of forward using the operations given in Section 4.2.1.

In Line 1, Ψ1(s) =
∑

z1
ψ1(z1)sz1 = 1 is the PGF of ψ1. Line 3 uses “Add then

marginalize” (Proposition 4.7) combined with the fact that the Poisson PGF for mk

is exp{λk(s−1)}. Line 4 uses “Thin then observe” (Proposition 4.5), and Line 6 uses

“Thin then marginalize” (Proposition 4.6).

Implementation and Complexity. The pgf-forward algorithm as stated is

symbolic. It remains to see how it can be implemented efficiently. For this, we need

to respresent and manipulate the PGFs in the algorithm efficiently. We do so based

on the following result:

Theorem 4.1. All PGFs in the pgf-forward algorithm have the form f(s) exp{as+

b} where f is a polynomial with degree at most Y =
∑

k yk.

Proof. We verify the invariant inductively. It is clearly satisfied in Line 1 of pgf-

forward (f(s) = 1, a = b = 0). We check that it is preserved for each op-
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eration within the loop. In Line 3, suppose Ψk(s) = f(s) exp{as + b}. Then

Γk(s) = f(s) exp{(a+ λk)s+ (b− λk)} has the desired form.

In Line 4, assume that Γk(s) = f(s) exp{as + b}. Then one can verify by taking

the ykth derivative of Γk(s) that Ak(s) is given by:

Ak(s) = (aρk)
yk ·

(
syk

yk∑
`=0

f (`)(s(1− ρk))
a``!(yk − `)!

)
· exp{a(1− ρk)s+ b}

The scalar (aρ)yk can be combined with the polynomial coefficients or the scalar

exp(b) in the exponential. The second term is a polynomial of degree yk + deg(f).

The third term has the form exp{a′s+b′}. Therefore, in Line 4, Ak(s) has the desired

form, and the degree of the polynomial part of the representation increases by yk.

In Line 6, suppose Ak(s) = f(s) exp{as+b}. Then Ψk+1(s) = g(s) exp
{
aδks+

(
b+

a(1−δk)
)}

, where g(s) is the composition of f with the affine function δks+1−δk, so

g is a polynomial of the same degree as f . Therefore, Ψk+1(s) has the desired form.

We have shown that each PGF retains the desired form, and the degree of the

polynomial is initially zero and increases by yk each time through the loop, so it is

always bounded by Y =
∑

k yk.

The important consequence of Theorem 4.1 is that we can represent and manip-

ulate PGFs in pgf-forward by storing at most Y coefficients for the polynomial f

plus the scalars a and b. The detailed algorithm, based on this proof of Theorem 4.3,

is given in Algorithm 3.

The complexity of the resulting algorithm is given below:

Theorem 4.2. The running time of pgf-forward for Poisson HMMs is O(KY 2).

Proof. We assume a polynomial f is represented as a vector of coefficients {fi} of

length deg(f) + 1. arrivals takes constant time. The running time of evidence is
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Algorithm 3 pgf-forward implementation

Require: Vectors λ, δ, ρ, y
Ensure: Likelihood p(y1:K)
1:
2: a← 0, b← 0, f(s)← 1
3: for k = 1 to K do
4: [a, b]← arrivals(a, b, λk)
5: [a, f ]← evidence(a, f, yk, ρk)
6: if k < K then
7: [a, b, f ]← survivors(a, b, f, δk)

8: return f(1) exp{a+ b}
9:

10: function arrivals(a, b, λ)
11: a′ ← a+ λ
12: b′ ← b− λ
13: return a′, b′

14: function evidence(a, f, y, ρ)
15: a′ ← a(1− ρ)
16: g ← 0, df ← f
17: for ` = 0 to y do
18: g ← g + df/(a``!(y − `)!)
19: df ← deriv(df)

20: g ← compose(g, s(1− ρ))
21: g ← (aρ)ysyg
22: return a′, g

23:
24: function survivors(a, b, f, δ)
25: a′ ← aδ
26: b′ ← b+ a(1− δ)
27: f ′ ← compose(f, δs+ 1− δ)
28: return a′, b′, f ′

Algorithm 4 tail-eliminate
Ensure: Unnormalized marginal p(ni, y1:K)

1: φi,i+1(ni, zi+1) := αi(ni)p(zi+1|ni)
2: for j = i+ 1 to K do

3: ηij(ni, nj) :=
∑

mj ,zj

φ(ni, zj)p(mj)p(nj |zj ,mj)

4: θij(ni, nj) :=ηij(ni, nj)p(yj |nj)
5: if j < K then
6: φi,j+1(ni, zj+1) :=θij(ni, nj)p(zj |nj−1)

7: return p(ni, y1:K) =
∑
nK

θiK(ni, nK)

Algorithm 5 pgf-tail-eliminate
Ensure: PGF of unnormalized marginal p(ni, y1:K)

1: Φi,i+1(s, t) := Ai(s(δit+ 1− δi))
2: for j = i+ 1 to K do

3: Hij(s, t) := Φij(s, t) exp{λk(t− 1)}
4: Θij(s, t) := 1

yj !
(tρj)

yj ∂
yjHij(s,u)

∂u
yj

∣∣∣
u=t(1−ρj)

5: if j < K then

6: Φi,j+1(s, t) := Θij(s, δjt+ 1− δj)
7: return ΘiK(s, 1)

O(y deg(f)) = O(Y 2): Lines 19 and 20 are executed y times and take time propor-

tional to deg(g) and deg(df), respectively, each of which is no more than deg(f). The

operations outside the loop are bounded by O(y+ deg(f)). (Note that the compose

operation in Line 22 is linear in deg(g)—simply multiply the ith coefficient of g by

(1−ρ)i for all i.) The survivors function takesO(Y 2) time. The compose operation

in Line 29 is more costly than the one on Line 22: we must expand
∑

i gi(δs+ 1− δ)i

to compute the coeffients of si for all i—this can be done in O(deg(g)2) time by a

number of methods, e.g., applying the Binomial Theorem to expand each term. The

arrivals, evidence, and survivors functions are each called K or K − 1 times.

Therefore, the overall running time is O(KY 2).
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4.2.3 Computing Marginals by Tail Elimination

pgf-forward allows us to efficiently compute the likelihood in a Poisson HMM.

We would also like to compute posterior marginals, the standard approach for which is

the forward-backward algorithm Rabiner (1989). A natural question is whether there

is an efficient PGF implementation of the backward algorithm for Poisson HMMs.

While we were able to derive this algorithm symbolically, the functional form of the

PGFs is more complex and we do not know of a polynomial-time implementation.

Instead, we adopt a variable elimination approach that is less efficient in terms of

the number of operations performed on factors (O(K2) instead of O(K) to compute

all posterior marginals) but with the significant advantage that those operations are

efficient. The key principle is to always eliminate predecessors before successors in the

Poisson HMM. This allows us to apply operations similar to those in pgf-forward.

Define θij(ni, nj) := p(ni, nj, y1:j) for j > i. We can write a recurrence for θij

similar to Equation (4.1). For j > i+ 1:

θij(ni, nj) = p(yj|nj)
∑
mj ,zj

p(mj)p(nj|zj,mj)

φij(ni,zj)︷ ︸︸ ︷∑
nj−1

θi,j−1(ni, nj−1)p(zj|nj−1)︸ ︷︷ ︸
ηij(ni,nj)

.

We have again introduced intermediate factors, with probabilistic meanings φij(ni, zj)

= p(ni, zj, y1:j−1) and ηij(ni, nj) = p(ni, nj, y1:j−1).

pgf-tail-eliminate (Algorithm 5) is a PGF-domain dynamic programming al-

gorithm based on this recurrence to compute the PGFs of the θij factors for all

j ∈ {i + 1, . . . , K}. The non-PGF version of the algorithm is given in Algorithm 4

for comparison. We use Θij, Φij, and Hij to represent the joint PGFs of θij, φij, and

ηij, respectively. The algorithm can also be interpreted as variable elimination using

the order zi+1, ni+1, . . . , zK , nK , after having already eliminated variables n1:i−1 and

z1:i−1 in the forward algorithm, and therefore starting with the PGF of αi(ni). pgf-
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tail-eliminate concludes by marginalizing nK from ΘiK to obtain the PGF of the

unnormalized posterior marginal p(ni, y1:K). Each line of pgf-tail-eliminate uses

the same operations given in Section 4.2.1. Line 1 uses “Binomial thinning” (Propo-

sition 4.3), Line 3 uses “Add then marginalize” (Proposition 4.7), Line 4 uses “Thin

then observe” (Proposition 4.5) and Line 6 uses “Thin then marginalize” (Proposi-

tion 4.6).

Implementation and Complexity. The considerations for implementating

pgf-tail-eliminate are similar to those of pgf-forward, with the details being

slightly more complex due to the larger factors. The detailed implementation is found

in Algorithm 6.

Algorithm 6 pgf-tail-eliminate implementation
Require: Vectors λ, δ, ρ, y, index i, parameters f, a, b of initial PGF Ai(s) = f(s) exp{as + b} (from

pgf-forward)
Ensure: Final PGF for unnormalized marginal p(ni, y1:K) in form f(s) exp{as+ b}

1: Initialize: f(s, t) exp{ast+ bs+ ct+ d}
2: [a, b, c, d, f ]← init-survivors(a, b, f, δi)
3: for j = i+ 1 to K do
4: [c, d]← arrivals(c, d, λk)
5: [a, c, f ]← evidence(a, c, f, yk, ρk)
6: if k < K then
7: [a, b, c, d, f ]← survivors(a, b, c, d, f, δk)

8: return f(s, 1) exp{(a+ b)s+ (c+ d)}

9: function init-survivors(a, b, f, δ)
10: a′ ← aδ
11: b′ ← b(1− δ)
12: c′ ← 0
13: d′ ← b
14: f ′(s, t)←

∑
i fis

i(δt+ 1− δ)i
15: return a′, b′, c′, d′, f ′

16: function arrivals(c, d, λ)
17: c′ ← c+ λ
18: d′ ← d− λ
19: return c′, d′

20: function evidence(a, c, f, y, ρ)
21: a′ ← a(1− ρ)
22: c′ ← c(1− ρ)
23: g ← 0, df ← f
24: for ` = 0 to y do

25: g ← g +
mult(df, (as+ c)y−`)

`!(y − `)!
26: df ← partial(df, t)

27: g ← compose(g, t(1− ρ))
28: g ← ρysyg
29: return a′, g

30: function survivors(a, b, f, δ)
31: a′ ← aδ
32: b′ ← b+ a(1− δ)
33: c′ ← cδ
34: d′ ← d+ c(1− δ)
35: f ′ ← compose(f, δt+ 1− δ)
36: return a′, b′, f ′

Similar to pgf-forward, the following theorems describe the closed form of the

factors in pgf-tail-eliminate and bound its runtime.

Theorem 4.3. All PGFs in the pgf-tail-eliminate algorithm have the form f(s, t)·

exp{ast+bs+ct+d} where f is a bivariate polynomial with maximum exponent most

Y =
∑

k yk.
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Proof. We again proceed inductively. From the proof of Theorem 4.1, we initially

have that Ai(s) = f(s) exp{as + b} where deg(f) =
∑i

k=1 yk. Then, in Line 1, we

have

Ψi,i+1(s, t) = f
(
s(δit+ 1− δi)

)
exp{aδist+ a(1− δi)s+ b}

The first term is a bivariate polynomial f ′(s, t) :=
∑deg(f)

i=0 fis
i(δit + 1 − δi)

i with

max-degree equal to deg(f), and the second term has the desired exponential form.

In Line 3, suppose Φij(s, t) = f(s, t) exp{ast + bs + ct + d}. Then Hij(s, t) =

f(s, t) exp{ast+ cs+ (c+ λk)t+ (d− λk)}, which has the desired form.

In Line 4, the suppose Hij(s, u) = f(s, u) exp{ast+ bs+ cu+ d}. One can verify

by calculating the yth partial derivative of Hij with respect to u that:

Θij(s, t) =ρ
yj
j ·

(
tyj

yj∑
`=0

(as+ c)yj−`

`!(yj − `)!
· ∂

`

∂u`
f(s, u)

∣∣
u=t(1−ρj)

)
·

exp
{
a(1− ρj)st+ bs+ c(1− ρ)t+ d

}

The term in parentheses is again a bivariate polynomial—the largest exponent of s and

t have both increased by yj, so the max-degree increases by yj. The exponential term

is in the desired form and can absorb the scalar ρyj . Therefore, in Line 4, Θij(s, t)

has the desired form, and the degree of the polynomial part of the representation

increases by yj.

In Line 6, suppose Θij(s, t) = f(s, t) exp{ast + bs + ct + d}. Then Φi,j+1(s, t) =

g(s, t) exp
{
aδkst+

(
b+a(1− δk)

)
s+ cδkt+

(
d+ c(1− δk)

)}
, where g(s, t) = f(s, h(t))

is the composition of f with the affine function h(t) = δkt+ 1− δk, so g is a bivariate

polynomial of the same degree as f . Therefore, Φi,j+1(s, t) has the desired form.

We have shown that each PGF retains the desired form. Furthermore, the max-

degree of the polynomial is initially equal to
∑i

k=1 yk and increases by yj for all

j = i+ 1 to K, so it is always bounded by Y =
∑K

k=1 yk.
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Theorem 4.4. pgf-tail-eliminate can be implemented to run in time O(Y 3(log Y+

K)), and the PGFs for all marginals can be computed in time O(KY 3(log Y +K)).

Proof. We assume for simplicity that all polynomials have max-degree equal to the

upper bound Y . A bivariate polynomial is represented as a matrix of Y 2 coefficients

for the monomials sitj.

The running time of init-survivors function is dominated by Line 16, which

takes O(Y 2) time. For each term in the sum, the coefficients of the polynomial

(δt+ 1− δ)i can be computed in O(i) = O(Y ) time (e.g., by the Binomial Theorem)

and then multiplied by fi to determine the coefficients of sitj for all j. This repeats

O(Y ) times, once for each term in the sum.

The running time of arrivals is O(1).

The running time of survivors is O(Y 3). The compose operation in Line 41

can be structured as

∑
i,j

fijs
i(δt+ 1− δ)j =

∑
i

si
∑
j

fij(δt+ 1− δ)j

For each value of i, we compose the univariate polynomial
∑

j fijt
j with the affine

function δt+ 1− δ. This can be done in O(Y 2) time, as in the proof of Theorem 4.2,

for a total running time of O(Y 3).

The total running time of pgf-tail-eliminate excluding the evidence function

is therefore O(KY 3).

The running time of one call to evidence is O(yY 2 log Y ). It is dominated by

Line 29. The multiplication in this line can be structured as

(∑
i,j

(df)ijs
itj
)

(as+ c)y−` =
∑
j

tj
(∑

i

(df)ijs
i
)

(as+ c)y−`

For each value of j, we multiply two univariate polynomials in s whose total degree

is at most Y . This can be done in time O(Y log Y ) using a fast Fourier transform.
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We repeat this at most Y ·y times—once for each possible value of j and `. The total

running time of a single call to evidence is thereforeO(yY 2 log Y ). The total running

time of all calls to the evidence function is O(
∑K

j=i+1 ykY
2 log Y ) = O(Y 3 log Y ).

The overall running time is therefore O(Y 3(K + log Y )).

4.2.4 Extracting Posterior Marginals and Moments

After computing the PGF of the posterior marginals, we wish to compute the

actual probabilities and other quantities, such as the moments, of the posterior dis-

tribution. This can be done efficiently:

Theorem 4.5. The PGF of the unnormalized posterior marginal p(ni, y1:K) has the

form F (s) = f(s) exp{as + b} where f(s) =
∑m

j=0 cjs
j is a polynomial of degree

m ≤ Y . Given the parameters of the PGF, the posterior mean, the posterior variance,

and an arbitrary entry of the posterior probability mass function can each be computed

in O(m) = O(Y ) time as follows, where Z = f(1) exp{a+ b}:

1. µ := E[ni|y1:k] = ea+b−logZ
∑m

j=0(a+m)cj

2. σ2 := Var(ni|y1:k) = µ− µ2 + ea+b−logZ
∑m

j=0((a+m)2 −m)cj

3. Pr(ni = `|y1:k) = eb−logZ
∑min{m,`}

j=0 cj
a`−i

(`−i)!

Proof. We assume for the proof that the PGF is already normalized, which can be

done by setting b ← b − logZ. For (i) and (ii), we use the following standard facts

about PGFs: µ = F (1)(1) and σ2 = F (2)(1)− µ2 + µ Casella & Berger (2002). Then

we have:
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µ = F (1)(1) =
d

ds
f(s)eas+b

∣∣∣
s=1

= f ′(1)ea+b + af(1)ea+b

= ea+b

m∑
i=0

(mfi + afi)

= ea+b

m∑
i=0

(a+m)fi

And

F (2)(1) =
d2

ds2
f(s)eas+b

∣∣∣
s=1

= f (2)(1)ea+b + 2f (1)(1)aea+b + a2f(1)

= ea+b
(
f (2)(1) + 2af (1)(1) + a2f(1))

)
= ea+b

m∑
i=0

(
m(m− 1)fi + 2amfi + a2fi

)
= ea+b

m∑
i=0

((a+m)2 −m)fi

For part (iii), we use the following standard fact about the Taylor expansion of

the exponential:

eas =
∞∑
j=0

aj

j!
sj

Then we have:

F (s) =
( m∑
i=0

fis
i
)
eas+b

= eb
( m∑
i=0

fis
i
)( ∞∑

j=0

aj

j!
sj
)

= eb
m∑
i=0

∞∑
j=0

fi
aj

j!
si+j

= eb
∞∑
`=0

s`
min{m,`}∑

i=0

fi
a`−i

(`− i)!
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The final expression reveals the unique explicit representation of the PGF as a formal

power series in s. The coefficient of s`, which is equal to the value of the PMF at `,

is eb
∑min{m,`}

i=0 fi
a`−i

(`−i)! .

4.3 Experiments

We conducted experiments to demonstrate that our method is faster than stan-

dard approximate approaches for computing the likelihood in Poisson HMMs, that it

leads to better parameter estimates, and to demonstrate the computation of posterior

marginals on an ecological data set.

4.3.1 Running Time

We compared the runtimes of pgf-forward and the truncated forward algorithm,

a standard method for Poisson HMMs in the ecology domain (Dail & Madsen, 2011).

The runtime of our algorithm depends on the magnitude of the observed counts. The

runtime of the truncated forward algorithm is very sensitive to the setting of the

trunctation parameter Nmax: smaller values are faster, but may underestimate the

likelihood. Selecting Nmax large enough to yield correct likelihoods but small enough

to be fast is difficult (Chandler; Couturier et al., 2013; Dennis et al., 2015). We

evaluated two strategies to select Nmax. The first is an oracle strategy, where we first
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searched for the smallest value of Nmax for which the error in the likelihood is at most

0.001, and then compared vs. the runtime for that value (excluding the search time).

The second strategy, adapted from (Dennis et al., 2015), is to set Nmax such that the

maximum discarded tail probability of the Poisson prior over any nk is less than 10−5.

To explore these issues we generated data from models with arrival rates λ = Λ×

[0.0257, 0.1163, 0.2104, 0.1504, 0.0428] and survival rates δ = 0.2636× [1, 1, 1, 1] based

on a model for insect populations (Zonneveld, 1991). We varied the overall population

size parameter Λ ∈ {10, 20, . . . , 100, 125, 150, . . . , 500}, and detection probability ρ ∈

{0.05, 0.10, . . . , 1.00}. For each parameter setting, we generated 25 data sets and

recorded the runtime of both methods.

Figure 4.3 shows that pgf-forward is 2–3 orders of magnitude faster than even

the oracle truncated algorithm. The runtime is plotted against Λρ ∝ E[Y ], the pri-

mary parameter controlling the runtime of pgf-forward. Empirically, the runtime

depends linearly on the magnitude of observed counts instead of what we predicted

theoretically (that it scaled quadratically) —this is likely due to the implementation,

which is dominated by loops that execute O(Y ) times, with much faster vectorized

O(Y ) operations within the loops.

4.3.2 Parameter Estimation

We now examine the impact of exact vs. truncated likelihood computations on

parameter estimation in the N-mixture model (Royle, 2004). A well-known feature

of this and related models is that it is usually easy to estimate the product of the

population size parameter λ and detection probability ρ, which determines the mean

of the observed counts, but, without enough data, it is difficult to estimate both

parameters accurately, especially as ρ → 0 (e.g., see (Dennis et al., 2015)). It was

previously shown that truncating the likelihood can artificially suppress instances

where the true maximum-likelihood estimates are infinite (Dennis et al., 2015), a
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phenomenon that we also observed. We designed a different, simple, experiment

to reveal another failure case of the truncated likelihood, which is avoided by our

exact methods. In this case, the modeler is given observed counts over 50 time steps

(K = 50) at 20 iid locations. She selects a heuristic fixed value of Nmax approximately

5 times the average observed count based on her belief that the detection probability

is not too small and this will capture most of the probability mass.

To evaluate the accuracy of parameter estimates obtained by numerically max-

imizing the truncated and exact likelihoods using this heuristic for Nmax we gener-

ated true data from different values of λ and ρ with λρ = E[y] fixed to be equal

to 10—the modeler does not know the true parameters, and in each cases chooses

Nmax = 5E[y] = 50. Figure 4.4 shows the results. As the true λ increases close to and

beyond Nmax, the truncated method cuts off significant portions of the probability

mass and severely underestimates λ. Estimation with the exact likelihood is noisier

as λ increases and ρ → 0, but not biased by truncation. While this result is not

surprising, it reflects a realistic situation faced by the practitioner who must select

this trunctation parameter.

4.3.3 Marginals

We demonstrate the computation of posterior marginals and parameter estimation

on an end-to-end case study to model the abundance of Northern Dusky Salamanders

at 15 sites in the mid-Atlantic US using data from (Zipkin et al., 2014). The data

consists of 14 counts at each site, conducted in June and July over 7 years. We first

fit a Poisson HMM by numerically maximizing the likelihood as computed by pgf-

forward. The model has three parameters total, which are shared across sites and

time: arrival rate, survival rate, and detection probability. Arrivals are modeled as a

homogenous Poisson process, and survival is modeled by assuming indvidual lifetimes

are exponentially distributed. The fitted parameters indicated an arrival rate of 0.32
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individuals per month, a mean lifetime of 14.25 months, and detection probability of

0.58.

Figure 4.5. Posterior
marginals for abundance of
Northern Dusky Salaman-
ders at 1 site. See text.

Figure 4.5 shows the posterior marginals as com-

puted by pgf-tail-eliminate with the fitted param-

eters, which are useful both for model diagnostics and

for population status assessments. The crosses show

the posterior mean, and color intensity indicates the

actual PMF. Overall, computing maximum likelihood

estimates required 189 likelihood evaluations and thus

189 × 15 = 2835 calls to pgf-forward, which took

24s total. Extracting posterior marginals at each site

required 14 executions of the full pgf-tail-eliminate routine (at all 14 latent vari-

ables), and took 1.6s per site. Extracting the marginal probabilities and posterior

mean took 0.0012s per latent variable.
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CHAPTER 5

EXACT INFERENCE FOR INTEGER
LATENT-VARIABLE MODELS

5.1 Introduction

In Chapter 4, we introduced a new technique for exact inference in models with

latent count variables. The approach executes the same operations as variable elim-

ination, but with factors represented in a compact way using probability generating

functions (PGFs). In that chapter, we demonstrated a symbolic implementation of

an inference algorithm using the PGF representation. This symbolic approach is effi-

cient, but depends crucially on properties of the Poisson distribution and the Poisson

HMM.

In this chapter, we extend the PGF-based techniques from the preceding chapter

to the broader class of latent branching processes (see Section 3.2). To do so, we

introduce a new algorithmic technique based on higher-order automatic differenti-

ation (Griewank & Walther, 2008) for inference with PGFs. A key insight is that

most inference tasks do not require a full symbolic representation of the PGF. For

example, the likelihood is computed by evaluating a PGF F (s) at s = 1. Other

probability queries can be posed in terms of derivatives F (k)(s) evaluated at either

s = 0 or s = 1. In all cases, it suffices to evaluate F and its higher-order derivatives

at particular values of s, as opposed to computing a compact symbolic representation

of F . It may seem that this problem is then solved by standard techniques, such

as higher-order forward-mode automatic differentiation (Griewank & Walther, 2008).

However, the requisite PGF F is complex—it is defined recursively in terms of higher-

order derivatives of other PGFs—and off-the-shelf automatic differentiation methods
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do not apply. We therefore develop a novel recursive procedure using building blocks

of forward-mode automatic differentiation (generalized dual numbers and univariate

Taylor polynomials ; Griewank & Walther, 2008) to evaluate F and its derivatives.

This algorithmic contribution leads to the first efficient exact algorithms for the

family of latent branching processes (LBPs). Additional discussion of the LBP family

and its relationship with other models is available in Chapter 3. Our algorithms

permit exact calculation of the likelihood for all of these models even when they are

partially observed.

We demonstrate experimentally that our new exact inference algorithms are more

scalable than competing approximate approaches, and support learning via exact

likelihood calculations in a broad class of models for which this was not previously

possible.

5.1.1 Problem Statement

In this chapter, we seek to solve the following problems for the broad class of

LBPs:

• Compute the likelihood L(θ) = p(y1:K ; θ) for any θ,

• Compute moments and values of the pmf of the filtered marginals p(nk | y1:k; θ), for

any k, θ,

• Estimate parameters θ by maximizing the likelihood.

We focus technically on the first two problems, which will enable numerical optimiza-

tion to maximize the likelihood. Another standard problem is to compute smoothed

marginals p(nk | y1:K ; θ) given both past and future observations relative to time step

k. Although this is interesting, it is technically more difficult, and we defer it for

future work.
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5.2 Methods

The standard approach for inference in HMMs is the forward-backward algo-

rithm (Rabiner, 1989), which is a special case of more general propagation or message-

passing algorithms (Pearl, 1986; Lauritzen & Spiegelhalter, 1988; Jensen et al., 1990;

Shenoy & Shafer, 1990). In Chapter 4, we showed how to implement the forward

algorithm using PGFs for models with Bernoulli offspring and Poisson immigration.

We will now extend that result to more general latent count models.

5.2.1 Forward Algorithm with PGFs

In Chapter 4 we observed that, for some conditional distributions p(nk |nk−1) and

p(yk |nk), the operations of the forward algorithm can be carried out using PGFs. In

this section, we develop a more general presentation of the recurrences for the pgf-

forward algorithm that apply to the broader family of LBP models and reiterate

the result of Theorem 4.5, which is critical for the autodiff approach we develop in

Section 5.2.2.

In the pgf-forward algorithm, the PGF-based equivalent to the traditional

forward algorithm, we define the PGFs Γk(uk) and Ak(sk) of γk(nk) and αk(nk),

respectively, as:

Γk(uk) :=
∞∑

nk=0

γk(nk)u
nk
k , (5.1)

Ak(sk) :=
∞∑

nk=0

αk(nk)s
nk
k . (5.2)

The PGFs Γk and Ak are power series in the variables uk and sk with coefficients equal

to the message entries. Technically, Γk and Ak are unnormalized PGFs because the co-

efficients do not sum to one. However, the normalization constants are easily recovered

by evaluating the PGF on input value 1: for example, Ak(1) =
∑

nk
αk(nk) = p(y1:k).

This also shows that we can recover the likelihood as AK(1) = p(y1:K). After nor-
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malizing, the PGFs can be interpreted as expectations, for example Ak(sk)/Ak(1) =

E[sNkk | y1:k].

In general, it is well known that the PGF F (s) of a non-negative integer-valued

random variable X uniquely defines the entries of the probability mass function and

the moments of X, which are recovered from (higher-order) derivatives of F evaluated

at zero and one, respectively:

Pr(X = r) = F (r)(0)/r!, (5.3)

E[X] = F (1)(1), (5.4)

Var(X) = F (2)(1)−
[
F (1)(1)

]2
+ F (1)(1). (5.5)

More generally, the first q moments are determined by the derivatives F (r)(1) for

r ≤ q. Therefore, if we can evaluate the PGF Ak and its derivatives for sk ∈ {0, 1},

we can answer arbitrary queries about the filtering distributions p(nk, y1:k), and, in

particular, solve our three stated inference problems.

But how can we compute values of Ak, Γk, and their derivatives? What form do

these PGFs have? One key result from Chapter 4, which we generalize here, is the

fact that there is also a recurrence relation among the PGFs.

Proposition 5.1. Consider the probability model defined in Equations (3.1) and

(3.2). Let Fk be the PGF of the offspring random variable Xk, and let Gk be the

PGF of the immigration random variable Mk. Then Γk and Ak satisfy the following

recurrence:

Γk(uk) = Ak−1

(
Fk(uk)

)
·Gk(uk) (5.6)

Ak(sk) =
(skρk)

yk

yk!
· Γ(yk)

k

(
sk(1− ρk)

)
(5.7)

Proof. A slightly less general version of Equation (5.6) appeared in Chapter 4; the gen-

eral version appears in the literature on branching processes with immigration (Heath-
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Figure 5.1. Circuit diagram of Ak(sk)

cote, 1965). Equation (5.7) follows directly from general PGF operations outlined in

Chapter 4.

The PGF recurrence has the same two elements as the pmf recurrence in equa-

tions (2.5) and (2.6). Equation (5.6) is the prediction step: it describes the PGF of

γk(nk) = p(nk, y1:k−1) in terms of previous PGFs. Equation (5.7) is the evidence step:

it describes the PGF for αk(nk) = p(nk, y1:k) in terms of the previous PGF and the

new observation yk. Note that the evidence step involves the ykth derivative of the

PGF Γk from the prediction step, where yk is the observed count. These high-order

derivatives complicate the calculation of the PGFs.

5.2.2 Evaluating Ak via Automatic Differentiation

The recurrence reveals structure about Ak and Γk but does not immediately imply

an algorithm. In Chapter 4, we showed how to use the recurrence to compute symbolic
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representations of all PGFs in the special case of Bernoulli offspring and Poisson immi-

gration: in this case, they proved that all PGFs have the form F (s) = f(s) exp(as+b),

where f is a polynomial of bounded degree. Hence, they can be represented compactly

and computed efficiently using the recurrence. The result is a symbolic representation,

so, for example, one obtains a closed form representation of the final PGF AK , from

which the likelihood, entries of the pmf, and moments can be calculated. However,

the compact functional form f(s) exp(as + b) seems to rely crucially on properties

of the Poisson distribution. When other distributions are used, the size of the sym-

bolic PGF representation grows quickly with K. It is an open question whether the

symbolic methods can be extended to other classes of PGFs.

This motivates an alternate approach. Instead of computing Ak symbolically, we

will evaluate Ak and its derivatives at particular values of sk corresponding to the

queries we wish to make (cf. Equations (5.3)–(5.5)). To develop the approach, it is

helpful to consider the feed-forward computation for evaluating Ak at a particular

value sk. The circuit diagram in Figure 5.1 is a directed acyclic graph that describes

this calculation; the nodes are intermediate quantities in the calculation, and the

shaded rectangles illustrate the recursively nested PGFs.

Now, we can consider techniques from automatic differentiation (autodiff) to com-

pute Ak and its derivatives. However, these will not apply directly. Note that Ak

is defined in terms of higher-order derivatives of the function Γk, which depends on

higher-order derivatives of Γk−1, and so forth. Standard autodiff techniques can-

not handle these recursively nested derivatives. Therefore, we will develop a novel

algorithm.

5.2.2.1 Computation Model and Dual Numbers

We now develop basic notation and building blocks that we will assemble to

construct our algorithm. It is helpful to abstract from our particular setting and
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describe a general model for derivatives within a feed-forward computation, follow-

ing (Griewank & Walther, 2008). We consider a procedure that assigns values to a

sequence of variables v0, v1, . . . , vn, where v0 is the input variable, vn is the output

variable, and each intermediate variable vj is computed via a function ϕj(vi)i≺j of

some subset (vi)i≺j of the variables v0:j−1. Here the dependence relation i ≺ j simply

means that ϕj depends directly on vi, and (vi)i≺j is the vector of variables for which

that is true. Note that the dependence relation defines a directed acyclic graph G

(e.g., the circuit in Figure 5.1), and v0, . . . , vn is a topological ordering of G.

We will be concerned with the values of a variable v` and its derivatives with

respect to some earlier variable vi. To represent this cleanly, we first introduce a

notation to capture the partial computation between the assignment of vi and v`. For

i ≤ `, define fi`(v0:i) to be the value that is assigned to v` if the values of the first i

variables are given by v0:i (now treated as fixed input values). This can be defined

formally in an inductive fashion:

fi`(v0:i) = ϕ`(uij)j≺`, uij =


vj if j ≤ i

fij(v0:i) if j > i

This can be interpreted as recursion with memoization for v0:i. When ϕ` “requests”

the value of uij of vj: if j ≤ i, this value was given as an input argument of fi`, so

we just “look it up”; but if j > i, we recursively compute the correct value via the

partial computation from i to j. Now, we define a notation to capture derivatives of

a variable v` with respect to an earlier variable vi.

Definition 5.1 (Dual numbers). The generalized dual number 〈v`, dvi〉q for 0 ≤ i ≤ `

and q > 0 is the sequence consisting of v` and its first q derivatives with respect to vi:

〈v`, dvi〉q =

(
∂p

∂vpi
fi`(v0:i)

)q
p=0
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We say that 〈v`, dvi〉q is a dual number of order q with respect to vi. Let DRq be the

set of dual numbers of order q. We will commonly write dual numbers as:

〈s, du〉q =
(
s,
ds

du
, . . . ,

dqs

duq

)
in which case it is understood that s = v` and u = vi for some 0 ≤ i ≤ `, and the

function fi`(·) will be clear from context.

Our treatment of dual numbers and partial computations is more explicit than

what is standard. In particular, we are explicit both about the variable v` we are

differentiating and the variable vi with respect to which we are differentiating. This is

important for our algorithm, and also helps distinguish our approach from traditional

automatic differentiation approaches. Forward-mode autodiff computes derivatives of

all variables with respect to v0, i.e., it computes 〈vj, dv0〉q for j = 1, . . . , n. Reverse-

mode autodiff computes derivatives of vn with respect to all variables, i.e., it computes

〈vn, dvi〉q for i = n − 1, . . . , 0. In each case, one of the two variables is fixed, so the

notation can be simplified.

5.2.2.2 Operations on Dual Numbers

The general idea of our algorithm will resemble forward-mode autodiff. Instead

of sequentially calculating the values v1, . . . , vn in our feed-forward computation, we

will calculate dual numbers 〈v1, dvi1〉q1 , . . . , 〈vn, dvin〉qn , where we leave unspecified

(for now) the variables with respect to which we differentiate, and the order of the

dual numbers. We will require three high-level operations on dual numbers. The first

one is “lifting” a scalar function.

Definition 5.2 (Lifted Function). Let f : Rm → R be a function of variables

x1, . . . , xm. The qth-order lifted function Lqf : (DRq)
m → DRq is the function that

accepts as input dual numbers 〈x1, du〉q, . . . , 〈xm, du〉q of order q with respect to the

same variable u, and returns the value
〈
f(x1, . . . , xm), du

〉
q
.
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Lifting is the basic operation of higher-order forward mode autodiff. For functions

f consisting only of “primitive operations”, the lifted function Lqf can be computed

at a modest overhead relative to computing f .

Proposition 5.2 ((Griewank & Walther, 2008)). Let f : Rm → R be a function that

consists only of the following primitive operations, where x and y are arbitrary input

variables and all other numbers are constants: x + cy, x ∗ y, x/y, xr, ln(x), exp(x),

sin(x), cos(x). Then Lqf can be computed in time O(q2) times the running time of

f .

Based on this proposition, we will write algebraic operations on dual numbers,

e.g., 〈x, du〉q × 〈y, du〉q, and understand these to be lifted versions of the correspond-

ing scalar operations. The standard lifting approach is to represent dual numbers as

univariate Taylor polynomials (UTPs), in which case many operations (e.g., multipli-

cation, addition) translate directly to the corresponding operations on polynomials.

We will use UTPs in the proof of Theorem 5.1.

The second operation we will require is composition. Say that variable vj separates

vi from v` if all paths from vi to v` in G go through vj.

Theorem 5.1 (Composition). Suppose vj separates vi from v`. In this case, the dual

number 〈v`, dvi〉q depends only on the dual numbers 〈v`, dvj〉q and 〈vj, dvi〉q, and we

define the composition operation:

〈v`, dvj〉q ◦ 〈vj, dvi〉q := 〈v`, dvi〉q

If vj does not separate vi from v`, the written composition operation is undefined. The

composition operation can be performed in O(q2 log q) time by composing two UTPs.

Proof. If all paths from vi to v` go through vj, then vj is a “bottleneck” in the partial

computation fil. Specifically, there exist functions F and H such that vj = F (vi)
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and v` = H(vj). Here, the notation suppresses dependence on variables that either

are not reachable from vi, or do not have a path to v`, and hence may be treated as

constants because they they do not impact the dual number 〈v`, vi〉q. Now, our goal

is to compute the higher-order derivatives of v` = H(F (vi)). Let F̂ and Ĥ be infinite

Taylor expansions about vi and vj, respectively, omitting the constant terms F (vi)

and H(vj):

F̂ (ε) :=
∞∑
p=1

F (p)(vi)

p!
εp, Ĥ(ε) :=

∞∑
p=1

H(p)(vj)

p!
εp.

These are polynomials in ε, and the first q coefficients are given in the input dual

numbers. The coefficient of εp in Û(ε) := Ĥ(F̂ (ε)) for p ≥ 1 is exactly dpv`/dv
p
i

(see Wheeler, 1987, where the composition of Taylor polynomials is related directly

to the higher-order chain rule known as Faà d́ı Bruno’s Formula). So it suffices

to compute the first q coefficients of Ĥ(F̂ (ε)). This can be done by executing

Horner’s method (Horner, 1819) in truncated Taylor polynomial arithmetic (Griewank

& Walther, 2008), which keeps only the first q coefficients of all polynomials (i.e., it

assumes εp = 0 for p > q). After truncation, Horner’s method involves q additions

and q multiplications of polynomials of degree at most q. Polynomial multiplication

takes time O(q log q) using the FFT, so the overall running time is O(q2 log q).

We have assumed that all paths from vi to v` go through vj, and we wish to show

that there exist functions F̃ and H̃ such that

vj = F (vi) := F̃ (vi, vA)

v` = H(vj) := H̃(vj, vB)

and all nodes in vA and vB are either not reachable from vi or have no path to v`.

Note that if a variable vk is not reachable from vi, then the scalar value v` may still

depend on vk, but the derivatives dqv`
dvqi

do not depend on vk, so it is safe to treat vk as
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a fixed constant relative to the dual number 〈v`, dvi〉q. If vk has no path to v`, neither

v` nor the derivatives dqv`
dvqi

depend on vk.

The construction of F̃ is easy:

F̃ (vi, vA) := fij(vi, v0:i−1)

The nodes v0:i−1 precede vi in the topological ordering, and hence have no path from

i.

To construct H̃, we reason about the partial computation fj`(v0:`) from vj to

v`. Recall that this is defined recursively starting with ϕ`(vk)k≺`, and terminating

whenever a variable vp is reached for p ≤ j. Consider any such variable vp that

is reached by the calculation. Then vp must satisfy p ≺ q for q > j (otherwise

the recursion would not reach vp), and, furthermore, there must be a path from

vq to v` (otherwise the recursion does not reach vq). In other words, there is a

path vp, vq, . . . , v` for q > j. However, this implies that vp is not reachable from vi,

otherwise we would contradict the assumption that all paths from vp to v` go through

vj. Therefore, if we consider the subset of variables vB ⊆ v0:j−1 on which fj` depends,

none of these variables is reachable from vi. Therefore we can write:

H̃(vj, vB) = fj`(vj, vB)

where we omit from fj` the arguments on which it does not depend.

The final operation we will require is differentiation. This will support local func-

tions ϕ` that differentiate a previous value, e.g., v` = ϕ`(vj) = dpvj/dv
p
i .

Definition 5.3 (Differential Operator). Let 〈s, du〉q be a dual number. For p ≤ q,

the differential operator Dp applied to 〈s, du〉q returns the dual number of order q− p

given by:

Dp〈s, du〉q :=
(dps
dup

, . . . ,
dqs

duq

)
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Algorithm 7 Ak(sk)
if k = 0 then

[1:] return αk =
1
[2:] uk = sk(1− ρk)
[3:] sk−1 = Fk(uk)

[4:] γk =
Ak−1(sk−1) ·Gk(uk)
[5:] αk = dyk

du
yk
k

γk ·
(skρk)

yk/yk!
[6:] return αk

Algorithm 8 LAk(〈sk, dsk〉q) — gdual-forward

if k = 0 then
[1:] return 〈αk, dsk〉q = (1, 0, . . . , 0)

[2:] 〈uk, dsk〉q = 〈sk, dsk〉q · (1− ρk)
[3:] 〈sk−1, duk〉q+yk = LFk

(
〈uk, duk〉q+yk

)
[4:] 〈γk, duk〉q+yk =

[
LAk−1

(
〈sk−1, dsk−1〉q+yk

)
◦

〈sk−1, duk〉q+yk
]
× LGk

(
〈uk, duk〉q+yk

)
[5:] 〈αk, dsk〉q =

[
Dyk〈γk, duk〉q+yk ◦ 〈uk, dsk〉q

]
×(

ρk〈sk, dsk〉q
)yk/yk!

[6:] return 〈αk, dsk〉q

The differential operator can be applied in O(q) time.

This operation was defined in (Kalaba & Tesfatsion, 1986).

5.2.2.3 The gdual-forward Algorithm

We will now use these operations to lift the function Ak to compute 〈αk, sk〉q =

LA
(
〈sk, dsk〉q), i.e., the output of Ak and its derivatives with respect to its input.

Algorithm 7 gives a sequence of mathematical operations to compute Ak(sk). Algo-

rithm 8 shows the corresponding operations on dual numbers; we call this algorithm

the generalized dual-number forward algorithm or gdual-forward. Note that a dual

number of a variable with respect to itself is simply 〈x, dx〉q = (x, 1, 0, . . . , 0); such

expressions are used without explicit initialization in Algorithm 8. Also, if the dual

number 〈x, dy〉q has been assigned, we will assume the scalar value x is also available,

for example, to initialize a new dual variable 〈x, dx〉q (cf. the dual number on the

RHS of Line 3). Note that Algorithm 7 contains a non-primitive operation on Line 5:

the derivative dykγk/du
yk
k . To evaluate this in Algorithm 8, we must manipulate the

dual number of γk to be taken with respect to uk, and not the original input value

sk, as in forward-mode autodiff. Our approach can be viewed as following a different

recursive principle from either forward or reverse-mode autodiff: in the circuit dia-
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gram of Figure 5.1, we calculate derivatives of each nested circuit with respect to its

own input, starting with the innermost circuit and working out.

Theorem 5.2. LAK computes 〈αk, dsk〉q in time O
(
K(q + Y )2 log(q + Y )

)
where

Y =
∑K

k=1 yk is the sum of the observed counts and q is the requested number of

derivatives. Therefore, the likelihood can be computed in O(KY 2 log Y ) time, and the

first q moments or the first q entries of the filtered marginals can be computed in time

O
(
K(q + Y )2 log(q + Y )

)
.

Proof. To see that gdual-forward is correct, note that it corresponds to Algo-

rithm 7, but applies the three operations from the previous section to operate on

dual numbers instead of scalars. We will verify that the conditions for applying each

operation are met. Lines 2–5 each use lifting of algebraic operations or the functions

Fk and Gk, which are assumed to consist only of primitive operations. Lines 4 and 5

apply the composition operation; here, we can verify from Figure 5.1 that sk−1 sepa-

rates uk and αk−1 (Line 4) and that uk separates sk and γk (Line 5). The conditions

for applying the differential operator on Line 5 are also met.

For the running time, note that the total number of operations on dual numbers

in LAK , including recursive calls, is O(K). The order of the dual numbers is initially

q, but increases by yk in each recursive call (Line 4). Therefore, the maximum value

is q + Y . Each of the operations on dual numbers is O(p2 log p) for dual numbers of

order p, so the total is O(K(q + Y )2 log(q + Y )).

5.3 Experiments

In this section we describe simulation experiments to evaluate the running time of

gdual-forward against other algorithms, and to assess the ability to learn a wide

variety of models for which exact likelihood calculations were not previously possible,

by using gdual-forward within a parameter estimation routine.
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5.3.1 Running Time vs Y

We compared the running time of gdual-forward with the symbolic implemen-

tation of the pgf-forward algorithm from the previous chapter as well as trunc,

the standard truncated forward algorithm (Dail & Madsen, 2011). pgf-forward is

only applicable to the Poisson HMM from Chapter 4, which, in the terminology of

LBPs, is a model with a Poisson immigration distribution and a Bernoulli offspring

distribution. trunc applies to any choice of distributions, but is approximate. For

these experiments, we restrict to Poisson HMMs for the sake of comparison with the

less general symbolic pgf-forward algorithm.

A primary factor affecting running time is the magnitude of the counts. We mea-

sured the running time for all algorithms to compute the likelihood p(y; θ) for vectors

y := y1:K = c × (1, 1, 1, 1, 1) with increasing c. In this case, Y =
∑

k yk = 5c. pgf-

forward and gdual-forward have running times O(KY 2) and O(KY 2 log Y ),

respectively, which depend only on Y and not θ. The running time of an FFT-based

implementation of trunc is O(KN2
max logNmax), where Nmax is the value used to

truncate the support of each latent variable. A heuristic is required to choose Nmax

so that it captures most of the probability mass of p(y; θ) but is not too big. The

appropriate value depends strongly on θ, which in practice may be unknown. In

preliminary experiments with realistic immigration and offspring models (see below)

and known parameters, we found that an excellent heuristic is Nmax = 0.4Y/ρ, which

we use here. With this heuristic, trunc’s running time is O(K
ρ2
Y 2 log Y ).

Figure 5.3 shows the results for ρ ∈ {0.15, 0.85}, averaged over 20 trials with

error bars showing 95% confidence intervals of the mean. gdual-forward and

trunc have the same asymptotic dependence on Y but gdual-forward scales

better empirically, and is exact. It is about 8x faster than trunc for the largest Y

when ρ = 0.15, and 2x faster for ρ = 0.85. pgf-forward is faster by a factor of

log Y in theory and scales better in practice, but applies to fewer models.
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5.3.2 Running Time for Different θ

We also conducted experiments where we varied parameters and used an oracle

method to select Nmax for trunc. This was done by running the algorithm for

increasing values of Nmax and selecting the smallest one such that the likelihood was

within 10−6 of the true value (see Winner & Sheldon, 2016).

We simulated data from Poisson HMMs and measured the time to compute the

likelihood p(y; θ) for the true parameters θ = (λ, δ, ρ), where λ is a vector whose kth

entry is the mean of the Poisson immigration distribution at time k, and δ and ρ

are scalars representing the Bernoulli survival probability and detection probability,

respectively, which are shared across time steps. We set λ and δ to mimic three differ-

ent biological models; for each, we varied ρ from 0.05 to 0.95. The biological models

were as follows: ‘PHMM’ follows a temporal model for insect populations (Zonneveld,

1991) with λ = (5.13, 23.26, 42.08, 30.09, 8.56) and δ = 0.26; ‘PHMM-peaked’ is sim-

ilar, but sets λ = (0.04, 10.26, 74.93, 25.13, 4.14) so the immigration is temporally

“peaked” at the middle time step; ‘NMix’ sets λ = (80, 0, 0, 0, 0) and δ = 0.4, which

is similar to the N-mixture model (Royle, 2004), with no immigration following the

first time step.

Figure 5.2 shows the running time of all three methods versus ρ. In these models,

E[Y ] is proportional to ρ, and the running times of gdual-forward and pgf-

forward increase with ρ due to the corresponding increase in Y . pgf-forward

is faster by a factor of log Y , but is applicable to fewer models. gdual-forward

perfoms best relative to pgf-forward for the NMix model, because it is fastest when

counts occur in early time steps.

Recall that the running time of trunc is O(N2
max logNmax). For these models,

the distribution of the hidden population depends only on λ and δ, and these are the

primary factors determining Nmax. Running time decreases slightly as ρ increases,
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because the observation model p(y |n; ρ) exerts more influence restricting implausible

settings of n when the detection probability is higher.

5.3.3 Parameter Estimation

To demonstrate the flexibility of the method, we used gdual-forward within an

optimization routine to compute maximum likelihood estimates (MLEs) for models

with different immigration and growth distributions. In each experiment, we gener-

ated 10 independent observation vectors for K = 7 time steps from the same model

p(y; θ), and then used the L-BFGS-B algorithm to numerically find θ to maximize the

log-likelihood of the 10 replicates. We varied the distributional forms of the immi-

gration and offspring distributions as well as the mean R := E[Xk] of the offspring

distribution. We fixed the mean immigration λ := E[Mk] = 6 and the detection

probability to ρ = 0.6 across all time steps. The quantity R is the “basic reproduc-

tion number”, or the average number of offspring produced by a single individual,

and is of paramount importance for disease and population models. 1 We varied R,

which was also shared across time steps, between 0.2 and 1.2. The parameters λ and

R were learned, and ρ was fixed to resolve ambiguity between population size and

detection probability. Each experiment was repeated 50 times; a very small number

of optimizer runs failed to converge after 10 random restarts and were excluded.

Figure 5.4 shows the distribution of 50 MLE estimates for R vs. the true val-

ues for each model. In all cases the distribution of the estimate is centered around

the true parameter. It is evident that gdual-forward can be used effectively to

produce parameter estimates across a variety of models for which exact likelihood

computations were not previously possible.

1It is well known in branching processes that if R > 1, the population will tend to “explode”
(grow to ∞), and if R < 1, the population will die out with probability 1.
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Figure 5.2. Runtime of gdual-forward vs baselines. Top: PHMM. Center:
PHMM-peaked. Bottom: NMix. See text for descriptions.
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Figure 5.3. Running time vs. Y . Top: ρ = 0.15, bottom: ρ = 0.85.

Figure 5.4. Estimates of R in different models. Titles indicate immigration and
offspring distribution. 50 trials summarized as box plot for each model, parameter
combination.
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CHAPTER 6

APPROXIMATE INFERENCE FOR INTEGER
LATENT-VARIABLE MODELS

6.1 Introduction

As we’ve seen in the preceding chapters, performing inference in models with

count-valued latent variables is a difficult task. When faced with count data, a re-

searcher generally has four options:

1. ignore the latent dynamics and perform regression on the counts (Link & Sauer,

1994; Ralph et al., 1995; Link & Sauer, 1997; Schmidt & Pellet, 2009),

2. truncate the support of the count distributions to a finite range (Royle, 2004;

Dail & Madsen, 2011),

3. adopt a sampling strategy (Kéry et al., 2009; Hostetler & Chandler, 2015; Win-

ner et al., 2015),

4. or, as we developed in preceding chapters, employ PGF inference (Winner &

Sheldon, 2016; Winner et al., 2017; Sheldon et al., 2018).

As seen in previous chapters, our PGF-based techniques for exact inference scale

significantly better than existing approximate inference approaches. However, the

runtime of our exact inference methods as well as the approximate inference meth-

ods scales with the magnitude of the observed counts and the size of the population,

either through a dependence on the magnitude of the latent abundance (the trun-

cated method (Royle, 2004; Dail & Madsen, 2011; Dennis et al., 2015; Winner &
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Sheldon, 2016; Winner et al., 2017)), through the magnitude of the observed counts

(PGF-based methods (Winner et al., 2017; Sheldon et al., 2018)), or through the

time to convergence (sampling (Winner et al., 2015)). As we increase the temporal

and geographical scale/resolution at which we choose to study a population, the sur-

veyed population size will also increase, eventually leading to a point where our data

becomes too large for us to be apply any dynamics model.

In this chapter, we present a novel approximate algorithm based on the PGF

inference techniques of the previous chapters that completely removes the runtime

scaling of PGF inference with respect to the magnitude of the data/the size of the

population. This approximate algorithm closely matches the pgf-forward algorithm

of Chapter 4 and still applies the correct models of population dynamics.

The approximation is introduced by assuming that some of the intermediate fac-

tors in the pgf-forward algorithm belong to a simple parametric family of distri-

butions and repeatedly projecting them back to this family as they deviate according

to the general framework of the assumed density filtering (ADF) technique.

In Section 6.2.1, we present our novel parametric distribution of choice and a

moment-matching routine called apgf to project a PGF into this family. Then in

Sections 6.2.2 and 6.2.3 we show how to utilize apgf to perform ADF in the pgf-

forward algorithm. Finally, in Section 6.3 we evaluate the approximation quality

and runtime of our algorithms against the most widely used baseline, trunc.

6.1.1 Relation to assumed density filtering

The approximation algorithm we develop in Section 6.2 is based on assumed den-

sity filtering (ADF) (Maybeck, 1982; Lauritzen, 1992; Boyen & Koller, 1998), an

approximate inference scheme wherein a distribution of interest is factored into a se-

quence of intermediate components that are iteratively approximated by projecting

back to a simple approximate family (see Section 2.2.5 for more details on ADF).
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There are, however, several subtle differences between our algorithm and traditional

ADF. Primarily, ADF typically uses an approximating family in the exponential fam-

ily so that the minimization of KLD can be done via moment matching, i.e. selecting

the member of the exponential family whose expected sufficient statistics match those

of the distribution to be approximated.

The approximating family we propose in Section 6.3 is likely not in the exponential

family, but we use a moment-matching scheme regardless. Our scheme matches the

first two moments of nk, which would correspond to an exponential family with nk

and n2
k as sufficient statistics. This is primarily due to features of working in the

PGF domain: it is not known how to efficiently minimize (or even compute) the

KLD between two arbitrary count distributions given only their PGFs, but we can

compute a finite number of moments from a PGF quite easily (see Equation (6.1)).

This allows us to construct a black-box projection method in the PGF domain based

on traditional moment-matching, even though we can’t guarantee that the projection

is truly minimizing the KLD.

Assumed density filtering also has a well-known extension to the “Expectation

Propagation” (EP) algorithm which we do not address in this chapter. As in previous

chapters, the main bottleneck in extending this technique to EP has to do with not

knowing how to efficiently multiply two arbitrary factors together in the PGF domain,

which can be seen when trying to adapt the backward algorithm to the PGF domain

and was the primary motivator behind the development of pgf-tail-eliminate in

Chapter 4. It is possible that the approximations we develop here may be able to

mitigate this, but we leave this very interesting problem for future work.

6.2 Methods

Performing approximate inference with ADF requires three key components: a

“simple” family of distributions, a procedure to project a distribution into the simple

75



ℱ
𝐴#(𝑠)

A#()(𝑠)

𝐴*#()(𝑠)

A#(+(𝑠)

𝐴*#(+(𝑠)

Figure 6.1. Assumed density filtering for pgf-forward. F is a family of approxi-
mate distributions. After each iteration of pgf-forward, the intermediate PGF Ak
is projected to a corresponding approximate PGF Âk via apgf.

family (which in our case needs to be done in PGF space) and an inference algorithm

that repeatedly applies this approximation (Minka, 2001). See Figure 6.2 for an

overview of the complete process.

In Section 6.2.1 we define a novel count distribution parameterized by its mean

and variance which unifies the binomial, Poisson, and negative binomial distributions.

This distribution is the only discrete distribution we are aware of that can be under-,

equi-, or over-dispersed and which is amenable to differentiation via autodiff (which

is required for performing PGF inference). In Section 6.2.1 we also show how to

project the PGF of a distribution into this family by using the corresponding moment

generating function (MGF) in an algorithm called apgf.

In Section 6.2.2 we apply apgf to pgf-forward, the base PGF inference al-

gorithm for LBPs from Section 4.2.2. We call the resulting approximate inference

algorithm apgf-forward. One convenient side effect of using apgf to approximate

the PGFs in pgf-forward is that the challenging high-order derivatives required

can now be expressed in closed form without the need to resort to autodiff. Although

computing the derivatives this way is a small change and does not mathematically

alter the computation, it does result in a fundamental improvement to the scalability

and so in Section 6.2.3 we define this modified algorithm as apgf-forward-s.
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6.2.1 PGF Approximation – apgf

It is well known that for ADF, if our approximating family of distributions are

in the exponential family, then we can project back to the approximating family (by

minimizing KLD) via moment matching. In our case, the approximating family we

define in Equation (6.3) is not obviously in the exponential family, and in general, it

is not known how to evaluate the KL divergence between the PGFs of two arbitrary

count distributions. We can, however, use a PGF to easily compute the moments

of the corresponding distribution (as we show below). Given the first k moments

of this distribution, we can then construct a distribution from our approximating

family that matches those moments of the original distribution. While this approach

is very similar to traditional moment matching, where we would match the expected

sufficient statistics, this is indeed an important distinction between our method and

traditional ADF, and so future work may seek to establish that our new moment

matching scheme is guaranteed to also be minimizing the KLD. In the rest of this

section, we will use “moment-matching” to refer to our new technique of moment

matching in the PGF domain and not to the traditional sense of moment matching

via sufficient statistics.

Let FX(s) be a (normalized or unnormalized) PGF for a random variable X that

we wish to approximate by some computationally simpler PGF F̂X(s). In Theorem 4.5

and Equations (5.4) and (5.5), we showed how to use a PGF to compute the mean and

variance of a distribution. We can generalize this result to compute the kth moment

of a RV X from its PGF FX(s) by constructing the MGF of X as follows:

MX(t) = FX(et),

mk = E[Xk] = M (k)(0),

=
dk

dtk
FX(et)

∣∣∣∣
t=0

,
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so long as FX(s) is k-times differentiable at 1. As in Chapter 5, we can use dual

numbers to efficiently compute the first k moments of X:

[m0, . . . ,mk] = FX (exp {〈t = 0, dt〉k}) , (6.1)

where 〈t = 0, dt〉k is a dual number for t and the k derivatives of t wrt itself at 0. In

Taylor polynomial form, 〈t = 0, dt〉k is simply [0, 1, 0, 0, . . . ].

Given the first k moments from FX(s), we can then construct the PGF F̂X(s) of

a parametric distribution with the same moments. For our purposes, the PGF F̂X(s)

should exist in closed form, be computationally simple, and the high-order derivatives

of F̂X(s) should all exist.

If we only wish for F̂X to match the first moment of FX , then we can use a Poisson

distribution with mean m1 for F̂X :

F̂X(s) := em1(s−1), (6.2)

where m1 = E[X]. If, however, we wish for F̂X to match the first two moments of FX ,

there are several choices for two-parameter discrete distributions, including the bino-

mial distribution, the negative binomial distribution, the Conway-Maxwell-Poisson

(CMP) distribution (Conway & Maxwell, 1962), the generalized Poisson distribu-

tion (Consul & Jain, 1973), and many others. Unfortunately, these distributions all

have one of two problems: either they cannot handle both overdispersion and un-

derdispersion (binomial and negative binomial), or the PGF (and/or its derivatives)

cannot be evaluated efficiently (CMP and generalized Poisson).

As a result, we propose for F̂X the following casewise discrete distribution param-

eterized by its mean µ and variance σ2:
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F̂X(s;µ, σ2) :=


[(1− p) + ps]n, n =

⌊
µ2

µ−σ2

⌉
, p = µ

n
if σ2 ≤ µ

eλ(s−1), λ = µ if σ2 = µ(
q

1−(1−q)s

)r
, r = µ2

σ2−µ , q = µ
σ2 if σ2 ≥ µ

(6.3)

where F̂X has the PGF of a binomial, Poisson, or negative binomial whenever FX

is underdispersed, equidispersed, or overdispersed, respectively. In all cases, F̂X is

parameterized such that the mean and variance of F̂X match those of FX as closely

as possible. Indeed if σ2 ≥ µ, the mean and variance of F̂X and FX will match exactly.

To see why, we consider first the Poisson case: F̂X(s;µ, σ2) = eλ(s−1). The mean

of X is: EF̂ [X] = λ and the mean is equal to the variance. This is the simplest case,

and we simply set λ = µ.

In the binomial case, F̂X(s;µ, σ2) = [(1 − p) + ps]n, the mean and variance of X

are:

µ = np,

σ2 = np(1− p),

with the additional restriction that n must be a positive integer. Ignoring the restric-

tion on n for the moment, we can see that p must equal µ/n. Substituting this value

for p into the equation for VarF̂ [X] and solving for n gives:
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σ2 = np(1− p)

= n
µ

n

(
1− µ

n

)
= µ

(
1− µ

n

)
µ

n
= 1− σ2

µ

n =
µ

1− σ2

µ

=
µ2

µ− σ2

Then, to force n to be integral, we round to the nearest integer:

n =

⌊
µ2

µ− σ2

⌉
p =

µ

n

Note that if σ2 < µ, it is possible that µ2

µ−σ2 will not be integral and will need to

be rounded in order to yield a valid binomial distribution. In this case, the mean of

F̂X will still match FX and F̂X will still be underdispersed with variance σ̂2 bounded

by:

σ2 ≤ σ̂2 ≤ µ. (6.4)

Finally, for the negative binomial case, F̂X(s;µ, σ2) =
(

q
1−(1−q)s

)r
, the mean and

variance of X are:

µ =
(1− q)r

q
,

σ2 =
(1− q)r
q2

.

Solving the first equation for r gives:

r =
qµ

1− q
.
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Substituting this value of r into the equation for the variance and solving for q gives:

σ2 =
(1− q) qµ

1−q

q2

=
qµ

q2

=
µ

q

q =
µ

σ2

Substituting this value for q back into the equation for r above and simplifying gives

the following for r:

r =
µ
σ2µ

1− µ
σ2

=
µ2

σ2
(
1− µ

σ2

)
=

µ2

σ2 − µ

While the casewise presentation of the distribution suggests it is discontinuous

with respect to µ and σ2, the three cases are closely related as described in the

following theorem:

Theorem 6.1. When parameterized by their mean µ and variance σ2, both the bino-

mial and negative binomial distributions have the following PGF:

F (s;µ, σ2) =

[
σ2

µ
+ (1− σ2

µ
)s

] µ2

µ−σ2

.

So long as one of the following sets of conditions holds:

a) F (s;µ, σ2) is overdispersed (σ2 > µ),
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b) or F (s;µ, σ2) is underdispersed (σ2 < µ) and µ2 = c(µ− σ2) for some c ∈ Z+.

Furthermore, as σ2 → µ, both distributions converge in distribution to the Poisson.

Proof. With exception to the restriction in the Binomial PGF that the number of

trials, n, be integral, the Binomial and Negative Binomial PGFs are identical when

the distributions are parameterized by their mean and variance. To see why, let

F̂X(s; n̂, p̂) be the PGF of the binomial distribution:

F̂X(s; n̂, p̂) = [(1− p̂) + p̂s]n̂

and let ĜX(s; r̂, q̂) be the PGF of the negative binomial distribution:

ĜX(s; r̂, q̂) =

[
q̂

1− (1− q̂s)

]r̂
If, instead of parameterizing the distributions by their natural parameters, we instead

parameterize both distributions by their mean µ and variance σ2 according to the

following parameter relations:

n̂ =
µ2

µ− σ2
,

p̂ = 1− σ2

µ
,

r̂ =
µ2

σ2 − µ
,

q̂ =
µ

σ2
,

ignoring for now the restriction that n̂ be integral, then the PGFs F̂X and ĜX above

become:

F̂X(s;µ, σ2) =

[
σ2

µ
+

(
1− σ2

µ

)
s

] µ2

µ−σ2

,

ĜX(s;µ, σ2) =

[
µ/σ2

1− (1− µ/σ2)s

] µ2

σ2−µ
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when parameterized by their mean and variance. If we manipulate ĜX algebraically

as follows:

ĜX(s;µ, σ2) =

[
µ/σ2

1− (1− µ/σ2)s

] µ2

σ2−µ

=

[
1− (1− µ/σ2)s

µ/σ2

]−1 µ2

σ2−µ

=

[
σ2

µ
−
(
σ2

µ
− 1

)
s

] µ2

µ−σ2

=

[
σ2

µ
+

(
1− σ2

µ

)
s

] µ2

µ−σ2

= F̂X(s;µ, σ2)

which is the PGF of F̂X likewise parameterized by its mean and variance.

Note that in this parameterization, if σ2 < µ and n̂ is not integral, then F̂X does

not define a valid probability distribution as the corresponding pmf fX(x) (which has

infinite support, unlike the Binomial) will necessarily have negative entries (for some

x > n̂). Interestingly, F̂X(1) =
∑

x∈X fX(x) = 1, so in some applications, this invalid

distribution may still be useful. In our work, however, n̂ is always rounded.

To see the convergence of the binomial and negative binomial cases to the Poisson

case, consider what happens as σ2 → µ. For a binomial distribution with mean µ

and variance σ2, the natural parameterization in terms of the number of trials n and

the probability of success p is:

n =
µ

1− (σ2/µ)
,

p = 1− σ2

µ
.

As σ2 → µ−, the limits of n and p are:
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lim
σ2→µ−

µ

1− (σ2/µ)
=∞,

lim
σ2→µ−

1− σ2

µ
= 0.

The limiting distribution of a binomial distribution with mean µ as n→∞ and p→ 0

is a Poisson distribution with mean np = µ.

For a negative binomial distribution with mean µ and variance σ2, the natural

parameterization in terms of the number of trials r and the probability of failure p is:

r =
µ2

σ2 − µ
,

p =
µ

σ2
.

As σ2 → µ+, the limits of r and p are:

lim
σ2→µ+

µ2

σ2 − µ
=∞,

lim
σ2→µ+

µ

σ2
= 1.

The limiting distribution of a negative binomial distribution with mean µ as r →∞

and p→ 1 is a Poisson distribution with mean µ.

Theorem 6.1 is important for likelihood optimization as it implies that the ap-

proximating distribution changes smoothly as the variance crosses the mean. This

observation is supported empirically by our experiments in Section 6.3.

Pseudocode for the apgf algorithm is presented in Algorithm 9. The computa-

tional bottleneck is in Lines 2 and 3 where the first and second derivatives of the

moment generating function are computed. Using the techniques of Chapter 5, this

can be performed in a black-box manner using automatic differentiation. Unlike the
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Algorithm 9 apgf(FX)

1: MX(t) = FX(et)/FX(1)
2: µ = M ′

X(0)
3: σ2 = M ′′

X(0)− µ2

4: if σ2 < µ then

5: n = round
(

µ2

µ−σ2

)
6: p = µ/n
7: F̂X(s;n, p) = (1− p+ ps)n

8: else if σ2 == µ then
9: λ = µ

10: F̂X(s;λ) = eλ(s−1)

11: else if σ2 > µ then
12: r = µ2

σ2−µ
13: q = µ/σ2

14: F̂X(s; r, q) =
(

q
1−(1−q)s

)r
15: F̂X = F̂X/FX(1)
16: return F̂X

high-order derivatives needed in previous algorithms (gdual-forward), apgf com-

putes only two derivatives of MX and can be computed in time proportional to a

constant times the time needed to evaluate FX(s) once.

Also note that the pseudocode in apgf does not assume that FX is a normalized

PGF. If FX is not normalized, then Z = FX(1) 6= 1 is used to renormalize the MGF

in line 1 and then in the penultimate line, F̂X = F̂X/FX(1), F̂X is “renormalized” to

match FX . In this way, apgf may be applied to the PGFs of both normalized and

unnormalized distributions.

6.2.1.1 Adding a minimum support constraint to apgf

When using the underdispersed case of the apgf distribution, the resultant distri-

bution (which is binomial) will have finite support with upper limit n. While we found

that n was generally likely to be large enough in practice, we did include the option

to specify a minimum value for n in our implementation for the sake of robustness:
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n∗ = max

(
nmin,

⌊
µ2

µ− σ2

⌉)
,

p =
µ

n∗
.

Note that, like when n is rounded, if this override is triggered, F̂X will still be

underdispersed and will still have the correct mean.

6.2.2 The apgf-forward Algorithm

In Chapter 5, we saw that the PGF recurrence that defined the pgf-forward

algorithm led to a deeply nested sequence of high-order derivatives. By using apgf,

we can use an assumed density filtering (ADF) (Minka, 2001) approach to repeatedly

project the intermediate messages back to the parameteric distribution defined in

Equation 6.3.

The primary recurrence for the apgf-forward algorithm is presented in Algo-

rithm 10. Note that although we could validly apply apgf to the Ak PGFs instead

of the Γk messages (by exchanging the order of Lines 3 and 4 and changing Line

3 to operate on Ak), we will see in Section 6.2.3 that applying apgf immediately

before applying the differential operator in Line 4 leads to a significant performance

improvement that would not be possible with a different approximation schedule.

The exact effect of applying apgf to the Γk PGF in each pass through the pgf-

forward recurrence is somewhat subtle. Γk is an arbitrary PGF defined recursively

in terms of the preceding Ak−1 PGF. Evaluating apgf(Γk) will require computing

the first two derivatives of Γk (and consequently of Ak−1 and any more deeply nested

PGFs). As we saw in Chapter 5, derivatives of Ak−1 still require the expensive

evaluation of a derivative of order yk−1.

However, the Γ̂k PGF returned by apgf is a simple parametric distribution and

will no longer be nested: it no longer contains any reference to Γk or Ak−1. As a

result, in the next loop through the apgf-forward recurrence, the evaluation of
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Algorithm 10 apgf-forward

1: if k = 0 then
2: [1:] return 1

3: [2:] Γk(uk) = Ak−1(Fk(uk)) ·Gk(uk)
4: [3:] Γ̂k = apgf(Γk)

5: [4:] Ak(sk) = (skρk)
yk/yk! · dyk

du
yk
k

Γ̂k(uk)
∣∣∣
uk=sk(1−ρk)

6: [5:] return Ak(sk)

apgf(Γk+1) will “bottom out” at Γ̂k. This collapses the chain of recursion and limits

the degree to which high-order derivatives become nested, leading to a significant

improvement in runtime complexity:

Theorem 6.2. The runtime of the apgf-forward algorithm is O(Kȳ2 log ȳ) where

ȳ = maxi yi is the maximum observed count and K is the number of observations.

Proof. The computational bottleneck in each iteration of the apgf-forward recur-

rence is in line 4 where a derivative of order yk is taken:

dyk

duykk
Γ̂k(uk)

∣∣∣∣
uk=sk(1−ρk)

.

As discussed in the proof of Theorem 5.2, this derivative can be computed in time

O(y2
k log yk) times the time to evaluate Γ̂k, which is constant. As discussed in Section

6.2.1, the call to apgf in line 3 takes constant time with respect to the time to

evaluate Γk. Therefore, the total complexity of each iteration of the recurrence is

O(y2
k log yk) times a constant.

If ȳ = maxk yk, then the worst case complexity for each iteration is O(ȳ2 log ȳ)

and thus the total worst case complexity to perform all K iterations of the recurrence

is O(Kȳ2 log ȳ).
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6.2.3 apgf-forward-s — Improving the apgf-forward Algorithm

In apgf-forward and the PGF inference algorithms in Chapters 4 and 5, the

most significant computation challenge has always resulted from the high-order dif-

ferentiation necessary for conditioning on new evidence. In apgf-forward this

happens in line 4 where Γ̂k is differentiated yk times.

In general, the original PGF Γk is an arbitrary PGF and cannot be differentiated

efficiently without automatic differentiation. apgf-forward manages to break the

nesting of high-order derivatives, but it still requires this application of high-order

autodiff and thus the runtime still depends on the magnitude of the counts. In this

section, we introduce a significant improvement to apgf-forward that completely

removes the scaling with respect to y by computing the high-order derivatives in closed

form. Mathematically, this improved algorithm is identical to apgf-forward, but

the runtime scales only with the number of observations K.

To begin, note that the approximate PGF Γ̂k is known in closed form (see Equation

6.3). However, this particular form of apgf was chosen so that the y-th derivatives

can also be written in closed form as:

Lemma 6.1.

dy

duy
Γ̂(u;µ, σ2) :=


py n!

(n−y)!
(1− p+ pu)n−y, for y ≤ n if σ2 ≤ µ

λyeλ(u−1), if σ2 = µ

qr(1− q)y (r+y−1)!
(r−1)!

(1− u(1− q))−r−y , if σ2 ≥ µ

(6.5)

where n, p, λ, r, and q have the same definition as in Equation 6.3. The y-th

derivative of Γ̂ in all cases consists only of primitive operations and can be computed

in constant time.

Proof. Note that in apgf-forward, Γ̂ is one of the three cases of the apgf PGF

given in Equation 6.3. Each of the three cases of F̂X in Equation 6.3 can be written in
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the form g(f(s) ·h) where f(s) is a function of s whose derivatives wrt s are constant,

i.e.:

dy

dsy
f(s) = c,∀y ≥ 1.

Critically, this means we can derive the high-order derivatives of Γ̂k by repeatedly

applying the chain rule and without invoking the more general Faà di Bruno’s formula.

In the derivations that follow, we use the natural parameterization of the PGFs for

readability, but note that the parameterization by µ and σ2 can be adopted without

loss of generality.

In the Poisson/equidispersed case, Γ̂k(u;λ) = eλ(u−1). Working out the derivatives

is relatively straightforward:

dy

duy
Γ̂(u;λ) =

dy

duy
eλ(u−1)

= e−y
dy

duy
eλu

= e−λ
(
λyeλu

)
= λyeλ(u−1)

In the binomial/underdispersed case, Γ̂k(u;n, p) = (1 − p + pu)n has the form of

a polynomial. Again, applying the chain rule to Γ̂k(u;n, p) is fairly straightforward:

dy

duy
Γ̂(u;n, p) =

dy

duy
(1− p+ pu)n

=

[
d

du
f(u)

]y
·
[

dy

df(u)y
f(u)n

]
, f(u) = 1− p+ pu

= py · n!

(n− y)!
f(u)n−y

= py · n!

(n− y)!
(1− p+ pu)n−y

so long as n ∈ Z+, y ∈ N0, n ≥ y.
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Finally, in the negative binomial/overdispersed case, Γ̂k(u; r, q) =
(

q
1−u(1−q)

)r
.

Once more, applying the chain rule works out simply as follows:

dy

duy
Γ̂(u; r, q) =

dy

duy

(
q

1− u(1− q)

)r
= qr

dy

duy
(1− u(1− q))−r

= qr
[
d

du
f(u)

]y
·
[

dy

df(u)y
f(u)−r

]
, f(u) = 1− u(1− q)

= qr [(−1)y(1− q)y] ·
[
(−1)y

(r + y − 1)!

(r − 1)!
f(u)−r−y

]
= qr(1− q)y (r + y − 1)!

(r − 1)!
(1− u(1− q))−r−y

That the runtime is constant wrt u, y, µ, and σ2 is trivial.

We call the version of apgf-forward which uses these closed form derivatives

instead of autodiff apgf-forward-s and provide complete pseudocode in Algorithm

11.

Theorem 6.3. The runtime of the apgf-forward-s algorithm is O(K) where K

is the number of observations and does not depend on the magnitude of the observed

counts at any time step.

Proof. The proof of Theorem 6.3 follows directly from the proof of Theorem 6.2

and the replacement of the high-order derivative computation with a constant time

routine.

6.3 Experiments

In this section we investigate the performance tradeoff between approximate in-

ference with apgf-forward-s, approximate inference with the truncated forward

algorithm (Dail & Madsen, 2011), and exact inference with gdual-forward.
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Algorithm 11 apgf-forward-s

if k = 0 then
[1:] return 1

[2:] Γk(uk) = Ak−1(Fk(uk)) ·Gk(uk)
[3:] Γ̂k(·;µ, σ2) = apgf(Γk)
if σ2 < µ then

n = round
(

µ2

µ−σ2

)
p = µ/n

[4:] Âk(sk) = (skρk)yk

yk!
· pykk n!

(n−yk)!
(1− p+ psk(1− ρk))n−yk

else if σ2 == µ then
λ = µ
[4:] Âk(sk) = (skρk)yk

yk!
· λeλ(sk(1−ρk)−1)

else if σ2 > µ then
r = µ2

σ2−µ
q = µ/σ2

[4:] Âk(sk) = (skρk)yk

yk!
· qr(1− q)yk (r+yk−1)!

(r−1)!
(1− sk(1− ρk)(1− q))−r−yk

[5:] return Âk(sk)

All experiments in this section were performed using simulated data from a latent

branching process (see Chapter 3) with distributions defined by the following PGFs:

Fk(uk) = eγ(uk−1)︸ ︷︷ ︸
Poisson

· ((1− δ) + δuk)︸ ︷︷ ︸
Bernoulli

, (offspring)

Gk(uk) = eιk(uk−1), (arrivals)

yk ∼ Binomial(nk, ρ), (detection)

where γ, δ, ιk, and ρ define the recruitment rate (the mean offspring per individual

per timestep), survival rate, immigration rate, and detection rate respectively. In

general, these parameters are not time varying, although the initial arrival rate is

parameterized independently and denoted λ (i.e. ι0 = λ) following the standard of

Dail & Madsen (2011) and unmarked (Fiske & Chandler, 2011).
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All experiments were conducted on a 2012 MacBook Pro with a 2.3 GHz Intel

Core i7 with 16GB 1600 MHz DDR3 RAM running macOS version 10.14.6. All

experiments were conducted in R version 3.4.1.

6.3.1 Likelihood approximation quality and runtime

We evaluated the approximation quality of apgf-forward-s in two ways: how

does the accuracy of log-likelihood calculation change as the evaluation point moves

further from the generative parameters and how do the accuracy and runtime change

as the parameters of the generative model change?

Results of the experiments are shown in Figures 6.2, 6.3, and 6.4. Each sample

of data consists of M = 3 IID sites with T = 6 equally spaced observations. The

arrival and offspring distributions in all experiments were Poisson. This corresponds

to the trend dynamics of unmarked Fiske & Chandler (2011). We repeated these

experiments with other arrival and offspring distributions and got similar results.

In the first set of experiments, shown in Figure 6.2, we took a single sample of

data using the following generative model parameters θ0 = {λ0 = 60, γ0 = 0.95, ρ0 =

0.5, ι0 = 4}, where λ0, γ0, ρ0, and ι0 are the initial arrival rate, the recruitment rate,

the detection rate, and the immigration rate, respectively. We then evaluated how

the NLL changes as you vary the parameters away from θ0. Four results are shown

in Figure 6.2, each varying one of the four model parameters while keeping the other

3 fixed to the generative values.

In general, the difference in NLL between gdual-forward (which computes the

exact likelihood) and apgf-forward-s is negligible, suggesting that the approxima-

tion in apgf is a reasonable one in this setting. Note that although the offspring and

arrival distributions are Poisson, the messages in the forward algorithm are perhaps

“Poisson-like” but they are not marginally Poisson. If this were the case, apgf would

not be an approximation and apgf-forward-s would be exact. Indeed, in practice
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we see that the approximating distribution is almost always either the binomial case

or the negative binomial case (though again, the true distribution is likely neither of

these).

In the second set of experiments, shown in Figures 6.3 and 6.4, we varied one of the

parameters of the generative model to produce a new set of parameters θ∗, sampled

30 data samples, and then compared the mean NLL at θ∗ on each sample and mean

runtime to compute each value using gdual-forward and apgf-forward-s. In

each figure, 4 results are shown where one of the four model parameters is varied

while the rest are kept at θ0 = {λ0 = 80, γ0 = 0.95, ρ0 = 0.5, ι0 = 8}.

Again, the difference in NLL between apgf-forward-s and gdual-forward is

negligible in all cases. However, apgf-forward-s is as much six times faster than

gdual-forward in our trials, and demonstrates constant runtime scaling with re-

spect to each of the 4 model parameters, which is consistent with our theoretical anal-

ysis. Furthermore, as we demonstrated empirically in Chapter 5, gdual-forward

is generally significantly faster than the standard approximate method trunc, so by

transitivity, apgf-forward-s is also significantly faster than trunc. We investi-

gate the relationship between apgf-forward-s and trunc in more detail in Section

6.3.2 and Chapter 7.

6.3.2 Parameter estimation

We compared the accuracy of maximum likelihood parameter estimates obtained

by optimizing the approximate likelihood with apgf-forward-s versus those ob-

tained by optimizing trunc.

We varied the detection probability ρ from 0.05 to 0.95 and then learned the other

4 model parameters (listed with their generative values: λ = 20, ι = 3, γ = 0.7, and

δ = 0.25) simultaneously, treating ρ as fixed to its true (varying) value. In each trial

we generated 10 samples. In the first two rows of Figure 6.5 we show the RMSE
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of the MLE estimates from each method relative to the generating parameters. In

general, there is a small cost paid from using apgf-forward-s, but qualitatively the

resultant MLE parameters are very similar between both methods.

In the bottom left panel of Figure 6.5, we took the MLE parameters from each trial

and plotted the exact NLL (using gdual-forward) of the estimates from trunc

vs the exact NLL of the estimates from apgf-forward-s. In general, the true

NLL of the MLE parameters from both methods are very similar, suggesting that

each approximation technique results in small trade offs between the different model

parameters.

Finally, in the bottom right panel of Figure 6.5, we show the average runtime of pa-

rameter estimation using each method. In these experiments, using apgf-forward-s

for parameter estimation was between 3 to 18 times faster than using trunc, though

in general as population size increases, the gap between the two methods will only

widen.

6.3.3 Discussion

Across our experiments, our approximate algorithm, apgf-forward-s, seems

to be a very good approximation to the exact algorithm, gdual-forward, and

performs very similarly to the state of the art truncated algorithm, trunc. This is,

of course, predicated on the assumption that the apgf distribution in Equation 6.3

is a good approximation to the true factors in gdual-forward. In our experience

with both real and simulated data, the filtered marginals computed using gdual-

forward are indeed generally unimodal and approximately Poisson (with potentially

significant over- or underdispersion). It is unclear whether the LBP family can be

configured in such a way that apgf would be a poor approximation, but if generalizing

this technique to other model families, similar care should be taken to evaluate the

appropriateness of apgf.
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According to our experiments, the cost of adopting apgf-forward-s in terms

of approximation quality or in parameter estimation appears to be negligible, while

the potential gain in runtime is significant. In fact, the empirical runtime results

presented are, if anything, likely misleading to the detriment of apgf-forward-s.

The experiments we present here are relatively small in scale, but as the population

size increases, the gap between the runtime of apgf-forward-s (which does not

depend on population size) and that of all other existing methods will only grow.

There are two important caveats to note about the results in this section. Firstly,

note that the truncation hyperparameter Nmax is being configured naively. Nmax

represents the upper bound on the support in trunc. The schedule we use for

setting Nmax = max(y) + 20 is the default behavior in unmarked (Fiske & Chandler,

2011), but in practice authors have developed their own techniques for configuring this

hyperparameter (Royle, 2004; Gross et al., 2007; Dail & Madsen, 2011). In Chapters

4 and 5 our comparisons with trunc used a much more conservative approach to

setting K. With a more conservative setting of K, we would expect trunc to perform

similarly to the other methods at the cost of a potentially significant increase in

computation time. We discuss this in more detail in Chapter 7.

Secondly, there are several well-known parameter confounding issues in parameter

estimation for LBPs. The most widely-studied of these is the conflation of the overall

population size and the detection probability. We explore this tradeoff in more detail

in Chapter 7, but address it here by keeping the detection probability, ρ, fixed in our

parameter estimation experiments. However, it is still possible for the other model

parameters to trade off in complex ways (i.e. the likelihood surface is relatively

flat in a reasonably large region around the true MLE parameters). We see this in

the relatively chaotic plots of RMSE in Figure 6.5. The plot of exact NLL in that

figure, however suggests that both methods do roughly the same in terms of finding

parameters that explain the data well, even if the exact MLE estimates from each
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method differ slightly. This implies that care should be taken when interpreting MLE

estimates from any of these methods in a biological sense.

Overall, apgf-forward-s (and, by extension, apgf-forward) has excellent

performance with regards to likelihood approximation. At the same time, apgf-

forward-s also offers a fundamentally different degree of scaling with population size

(constant vs superquadratic) relative to all existing exact or approximate inference

algorithms for LBPs.
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Figure 6.2. Comparison of NLL accuracy between apgf-forward-s and gdual-
forward on a fixed data sample as the evaluation point is varied. gdual-forward
shows the exact NLL while apgf-forward-s is an approximation to the true likeli-
hood. In each plot, a different model parameter is varied while the rest are kept at
the generative values.
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Figure 6.3. Comparison of NLL accuracy between apgf-forward-s and gdual-
forward at generative parameter values as generative parameters are varied.
gdual-forward shows the exact NLL while apgf-forward-s is an approxima-
tion to the true likelihood.
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Figure 6.4. Comparison of runtime between apgf-forward-s and gdual-
forward at generative parameter values as generative parameters are varied.
gdual-forward shows the exact NLL while apgf-forward-s is an approxima-
tion to the true likelihood.
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Figure 6.5. Parameter estimation with apgf-forward-s. Top two rows show
RMSE for estimates of 4 different model parameters as the detection probability ρ
is varied. Bottom left panel plots the exact NLL at the final parameter estimates
using trunc against those from apgf-forward-s for each trial. Bottom right panel
shows the mean runtime.
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CHAPTER 7

POPULATION DYNAMICS CASE STUDY WITH UNMARKED

7.1 Introduction

The PGF-based techniques we have developed in the preceding chapters for exact

and approximate inference in latent branching processes (LBPs) have been shown

to have significant advantages over existing techniques in simulated settings. The

asymptotic scaling of the apgf-forward-s algorithm from Chapter 6 in particu-

lar offers a fundamentally new capability to scale population dynamics models to

population sizes far beyond what has been studied using existing methods.

To investigate the capabilities of our PGF-based algorithms in real-world set-

tings, we incorporated gdual-forward, apgf-forward, and apgf-forward-s

into unmarked (Fiske & Chandler, 2011), the most widely used R package for fitting

models to populations of unmarked individuals, i.e. populations where individuals

cannot be differentiated from one another. In Section 7.2 we show how the mod-

els currently supported by unmarked relate to the LBP framework we introduced in

Chapter 3.

Using our R implementation of apgf-forward-s, we conducted a scalability case

study on data from the North American Breeding Bird Survey (BBS) (Pardieck et al.,

2019). We fit six LBP models to six years of count data from three highly abundant

bird species in Massachusetts and present results in Section 7.3.

It is our hope that adopting our flexible LBP framework will allow future re-

searchers to easily develop and test novel, complex models of population dynamics in

a black-box fashion and then deploy them to datasets collected at a variety of scales.
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7.1.1 Related Work

Much attention has been given to the related questions of occupancy (the pres-

ence/absence of a species over a geographic region) and species richness (the variety of

species in a given region over a particular time) using the BBS record (see e.g. Boulin-

ier et al., 1998; Nichols et al., 2001; Altwegg & Nichols, 2019). Within this literature,

several authors have used the BBS (and other studies with large geographic/temporal

extent) to estimate species detectability (Boulinier et al., 1998; Nichols et al., 2001)

and species accumulation (Dorazio et al., 2006; MacKenzie et al., 2017), directly ad-

dressing the imperfect detection of point-count survey data. While these questions

are closely related to ours, the treatment of variables are binary presence/absence

variables leads to a fundamentally different set of inference problems.

Large-scale dynamics analyses with count-valued variables have been performed

with the BBS dataset. Many studies have focused on modeling the trend in the

observed counts over time (Geissler & Sauer, 1990; Link & Sauer, 1994; Sauer et al.,

1994; Ralph et al., 1995; Link & Sauer, 1998; Hines et al., 1999; Rosenberg et al.,

2019). In general, these approaches either performed regression on the observed

counts directly, or focused their inference on the issue of estimating detectability, using

simple models for the inter-observation population dynamics. Hostetler & Chandler

(2015) applied a number of unmarked dynamics models to BBS data using the trunc

method. As the authors note in that paper, computational limitations prevented

experimentation with additional models in their case study.

7.2 Model

Unmarked (Fiske & Chandler, 2011) supports six models for population dynamics:

‘constant’, ‘notrend’, ‘trend’, ‘autoreg’, ‘Ricker’, and ‘Gompertz’. All six of these

models can be shown to be special cases of the latent branching process model de-

scribed in Chapter 3. Furthermore, the models with density-independent offspring
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nk–1

yk–1 yk

nksk

mk

ok

Figure 7.1. The structure of unmarked dynamics models. The variables nk and yk
are the latent abundance and observed abundance, respectively, mk is the number of
immigrants, sk is the number of survivors, and ok is the number of offspring.

processes (‘constant’, ‘notrend’, ‘trend’, and ‘autoreg’) are amenable to automatic

inference using our PGF-based methods from Chapters 5 and 6.

The six unmarked dynamics models use a common parameterization, though not

every model uses all of these parameters. The parameters are:

λ: the rate of initial arrivals (at time t = 0),

ι: the rate of immigration (at times t > 0),

ω: the survival rate,

γ: the offspring (recruitment) rate, and

ρ: the detection rate.

Similarly, each of the unmarked dynamics models is a hidden Markov model

(HMM) with a common structure. This structure is described graphically in Fig-

ure 7.1. In these models, nk is the abundance at time k, yk is the observed count at

time k, mk is the number of immigrants between time k − 1 and time k, sk is the
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Dynamics Immigr. (mk) Survival (sk) Offspring (ok)

constant Poiss(γ) Binom(nk−1, ω) 0
notrend Poiss((1− ω)λ) Binom(nk−1, ω) 0
trend Poiss(ι) 0 Poiss(nk−1 · γ)

autoreg Poiss(ι) Binom(nk−1, ω) Poiss(nk−1 · γ)
ricker Poiss(ι) 0 Poiss

(
nk−1 exp

(
γ
(
1− nk−1

ω

)))
gompertz Poiss(ι) 0 Poiss

(
nk−1 exp

(
γ
(

1− log(nk−1+1)

log(ω+1)

)))
Table 7.1. Transition distributions for unmarked dynamics.

number of survivors from time k−1 to time k, and ok is the number of offspring from

time k−1 to time k. Note that in unmarked, counts may be collected across multiple

sites and/or counts may be replicated multiple times at each counting occasion. These

extensions to the LBP model are trivial and omitted from our presentation here only

for clarity. Our implementation in unmarked supports both extensions natively.

In this HMM framework, the dynamics models of each unmarked model are defined

by the initial distribution of abundance, the transition distributions of mk, sk, and

ok, and the observation distribution of yk. For all six models, the initial arrival

distribution is Poisson with rate λ and the observation distribution is Binomial with

count n and rate ρ. The transition distributions for each model are shown in Table

7.1.

In all cases, nk = mk + sk + ok. Note that in unmarked, the 3 parameters of

dynamics (ω, γ, and ι) can vary between sites, but not over time. This restriction

is not true in our LBP framework where all parameters may vary across time and

between sites.

To express these dynamics models as LBPs, we must convert the transition dy-

namics above into an offspring PGF F and an arrival PGF G. The offspring PGF

describes the number of “offspring” per individual per time step which, notably, may
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Dynamics Offspring PGF Arrival PGF

constant FBernoulli(s;ω) FPoisson(s; γ)
notrend FBernoulli(s;ω) FPoisson(s; (1− ω)λ)
trend FPoisson(s; γ) FPoisson(s; ι)

autoreg FBernoulli(s;ω) · FPoisson(s; γ) FPoisson(s; ι)
ricker FPoisson

(
s; exp

(
γ
(
1− nk−1

ω

)))
FPoisson(s; ι)

gompertz FPoisson

(
s; exp

(
γ
(

1− log(nk−1+1)

log(ω+1)

)))
FPoisson(s; ι)

Table 7.2. PGFs for unmarked dynamics.

include both the recruitment process and the survival process1. The arrival PGF

describes the number of “immigrants” to the population, which are assumed to be

independent of the current population size.

To convert the transition distributions for sk and ok into an offspring PGF, the

following well-known relationships are useful to remember:

if X =
n∑
i=1

xi,

and xi ∼ Bernoulli(p),

then X ∼ Binomial(n, p).

if X =
n∑
i=1

xi,

and xi ∼ Poisson(λ),

then X ∼ Poisson(nλ).

In Table 7.2 we show the corresponding PGFs for each of the unmarked dynamics

models. Note that while the density-dependent dynamics Ricker and Gompertz

fit the LBP framework, it is not currently clear whether they are compatible with

our PGF inference methodology. Specifically, the appearance of nk−1 in the PGFs for

Ricker and Gompertz implies that the individual offspring distributions are not

independent of one another and therefore Proposition 4.4 does not apply. As a result,

these two dynamics models are not currently supported by our R implementations of

1In other words, there is nothing fundamentally different between the two processes except,
traditionally, the distribution used for each.
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PGF inference, though future work may be able to add support for these and other

density dependent dynamics.

7.2.1 Beyond unmarked

While the LBP family neatly generalizes the models supported by unmarked, the

family also extends beyond those models currently in use in unmarked. In Chapter

5, we demonstrated LBPs where the immigration distribution was overdispersed (via

a negative binomial) and LBPs where the offspring distribution was a geometric

distribution. Indeed the LBP framework allows modelers to use virtually any discrete

distribution (or combination thereof) for the offspring and immigration distributions.

Further work could also extend the family to allow observation distributions besides

the Binomial.

7.3 Case Study

To demonstrate the potential of adopting a LBP representation and performing

approximate inference with apgf-forward-s, we conducted a case study on data

from the North American Breeding Bird Survey (BBS) (Pardieck et al., 2019). We

collected count data from Massachusetts for 3 abundant species: House Sparrow (HS;

Passer domesticus), Ovenbird (OB; Seiurus aurocapilla), and Wood Thrush (WT;

Hylocichla mustelina).

The BBS is a multi-species monitoring program that has been conducted contin-

uously in the United States and Canada since 1966. BBS data is collected once a

year (typically in June) at over 4000 sites by a team of volunteer experts. Each site

consists of a roughly 24.5 mile long roadside route divided as evenly as possible into

50 stops. At each stop, a 3-minute survey is conducted wherein every bird seen or

heard within a 0.25-mile radius is recorded. Most routes in the BBS dataset are reli-

ably recorded in almost every year, but in the experiments that follow, we excluded
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in each experiment any route where more than half of the years in question had miss-

ing data. For 2013-2018, this meant there were 14, 16, and 12 routes included for

house sparrows, ovenbirds, and wood thrushes, respectively and for 1966-2018, there

were 17 routes included for all three species. The total counts over all routes for the

2013-2018 dataset were (HS: 3110, OB: 2526, WT: 458) and the average count per

route per year was (HS: 35.7, OB: 24.5, WT: 5.1). For the 1966-2018 dataset, the

total counts were (HS: 23230, OB: 14359, WT: 9675) and the average counts were

(HS: 27.8, OB: 15.8, WT: 11.2).

For each species, we used apgf-forward-s in the framework of unmarked and

trunc to fit several LBPs to the BBS counts. Data from each route was treated

as a separate site and routes that were missing data during the study period were

dropped. The model parameters were shared across all sites and optimized jointly

with the exception of the initial arrival rate, λ. Analysis of each species was performed

independently, i.e. no data or parameters were shared across species.

It is well-known in the literature that statistically speaking it can be difficult to

differentiate between the case of a large population with small detection probability

and the case of a small population with large detection probability (Banks-Leite et al.,

2014; Gervasi et al., 2014; Dennis et al., 2015). A number of methods have been

developed in recent years to independently estimate the detection probability (e.g.

Nichols et al., 2000; Schmidt & Pellet, 2009; Dejean et al., 2012) by modifying the

study design or collecting additional covariate data.

The truncated algorithm of Dail & Madsen (2011) (trunc) inadvertently avoids

this problem by artificially limiting the maximum possible abundance. In our ex-

periments with trunc, we tie Nmax, the maximum abundance to a species specific

minimum value for the detection probability ρ, ρmin(s) by setting Nmax(s,y) = maxk yk
ρmin(s)

.

Intuitively, this is setting Nmax to be the maximum possible abundance given some

assumption about the lowest possible detection rate we expect. For our three species,

107



Species Method Dynamics R ι ρ AIC Mean rt (s)

House Sparrow apgffwd trend+imm 1.001 7.300 0.213 725.8 214.9
House Sparrow trunc trend+imm 0.871 3.540 0.618 1560.0 9539.0

Ovenbird apgffwd trend+imm 1.022 1.330 0.379 493.7 240.5
Ovenbird trunc constant 0.928 1.434 0.703 1071.2 810.0

Wood Thrush apgffwd trend+imm 0.856 1.918 0.335 308.7 308.7
Wood Thrush trunc trend+imm 0.651 1.833 0.733 414.2 95.3

Table 7.3. MLE parameters of min AIC models for 6 years of Breeding Bird Survey
counts of 3 species fit using apgf-forward-s and trunc. In each case, 6 models
were fit with both apgf-forward-s and trunc. MLE estimates are given for growth
rate R, mean immigration rate ι, and detection probability ρ from the model with
the lowest AIC. Average runtime of fitting all 6 models is reported along with the
AIC as computed by the corresponding algorithm.

we used the following values for ρmin: ρmin(s) = {s = ‘HS′ : 0.5; s = ‘OB′ : 0.3; s =

‘WT′ : 0.1}.

Another way to address this identifiability problem is to incorporate covariate

data. While covariate data is sometimes available in the BBS record, our focus in this

case study is on scalability, so we developed a simpler tactic that applies generically

to all species for the purposes of this case study. For both apgf-forward-s and

trunc, the detection probability ρ was a learned parameter and the initial arrival

rate λi for each site i was a fixed parameter derived from ρ and the vector of counts

yi from site i:

λi =
yi[1]

ρ
. (7.1)

Setting λi this way is essentially setting it to a value which is consistent with the

detection probability. While this is not guaranteed to be the maximum likelihood

value of λi, it allows us to estimate ρ and the rest of the parameters simultaneously

given only the count data.

In Table 7.3 we show the MLE estimates of three quantities (R, ι, and ρ) using

apgf-forward-s and trunc from the model with minimum AIC for each species

using data from 2013-2018. We also report the dynamics model used in the minimum

108



Species Dynamics R ι ρ Mean rt (s)

House Sparrow notrend 0.851 0.386 0.386 3885.6
Ovenbird trend+imm 1.002 0.698 0.281 3918.4

Wood Thrush trend+imm 0.965 0.713 0.279 4596.3

Table 7.4. MLE parameters of min AIC models for 53 years of Breeding Bird Survey
counts of 3 species fit using apgf-forward-s. In each case, 6 models were fit.
MLE estimates are given for growth rate R, mean immigration rate ι, and detection
probability ρ from the model with the lowest AIC. Average runtime of fitting all 6
models is reported.

AIC result as well as the average time to fit each of the models. The parameter R

is the growth rate (the mean number of offspring per individual per time step), ι is

the mean immigration per timestep (in trials with immigration enabled), and ρ is the

detection rate.

In Table 7.4 we show the same quantities using all data from 1966-2018 fit with

only apgf-forward-s. We excluded trunc from this comparison for computational

reasons. For wood thrush (the smallest population), fitting a constant dynamics

model (the fewest parameters) with trunc, took 6 hours. Fitting the same model to

house sparrow data took over 10 hours with trunc.

Finally, complete MLE parameters for all models are available in Table 7.5 (for

the 2013-2018 dataset) and Table 7.6 (for the 1966-2018 dataset).

7.3.1 Discussion

In general, in the 2013-2018 experiment there was little difference in the time taken

by apgf-forward-s to fit each model to the different species. The small variation

in average runtime we observed could easily be due to details of the optimization

schedule. By comparison, the runtime of trunc varied greatly across the three

species, with the model fitting on house sparrows taking, on average, 100 times longer

than on wood thrushes, even given the much more conservative truncation parameter

used for wood thrushes (based on assuming ρmin(HS) = 0.5 and ρmin(WT ) = 0.1).
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This demonstrates well the scale-dependence of trunc on the population size and

count magnitude.

The actual MLE parameter estimates returned by the two methods also display

interesting disparities. We see for instance in the results from trunc significantly

higher estimates of the detection probability ρ than with apgf-forward-s. For the

smaller populations (ovenbirds and wood thrushes), the MLE estimate of ρ computed

by apgf-forward-s was within the range we assumed in our configuration of ρmin,

which suggests that this is not just an artifact of our assumptions when setting ρmin

but indeed a more fundamental effect of using a truncated distribution in the first

place. As we demonstrated in Chapter 6, apgf-forward-s does a good job ap-

proximating the true likelihood without significant biases across a range of parameter

regimes, so we believe it is preferable for producing trustworthy MLE estimates at

these scales. The disparities in AIC computed by each method are also likely due to

the values of ρ(min) as we see smaller discrepancies in the species where ρ(min) was

small (Wood thrushes) than in the species where it was larger (House sparrows).

When we increased the amount of available data to include the entire BBS archive

(1966-2018), we saw the runtime of apgf-forward-s increase roughly 16-fold. This

is fairly consistent with the rougly 9-fold increase in the number of years and roughly

1.2x increase in the number of routes included in the longer study. By comparison, in

the cases we tried the runtime of trunc increased less consistently with the number

of years included, but still took significantly longer than apgf-forward-s. This is

somewhat surprising given a key speedup implemented in unmarked for trunc: the

model parameters are not allowed to change over time, even with covariates, meaning

that computing the matrix of transition probabilities, the largest computational bot-

tleneck, can be done once and reused across the entire chain. Our PGF techniques

are not limited to being time-homogenous, and our implementation therefore does

not implement any type of caching of this type. There is a potential improvement
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by implementing similar caching strategies in the PGF domain, but we note that our

technique still outperforms the standard truncated approach with respect to runtime

even without these engineering improvements.
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Species Method Dynamics R ι ρ AIC Runtime (s)

House Sparrow apgffwd notrend 0.814 1.391 0.134 934.1 112.1
House Sparrow trunc notrend 0.716 0.946 0.300 2626.1 5404.1
House Sparrow apgffwd constant 0.995 37.28 0.051 790.8 537.3
House Sparrow trunc constant 0.866 4.724 0.585 1795.9 6028.0
House Sparrow apgffwd trend 1.037 - 0.256 737.3 59.9
House Sparrow trunc trend 0.915 - 0.614 1572.9 5365.6
House Sparrow apgffwd autoreg 1.037 - 0.256 739.3 119.0
House Sparrow trunc autoreg 0.914 - 0.614 1574.9 12987.9
House Sparrow apgffwd trend+imm 1.001 7.300 0.213 725.8 145.8
House Sparrow trunc trend+imm 0.871 3.540 0.618 1560.0 4845.5
House Sparrow apgffwd autoreg+imm 1.001 7.300 0.213 727.8 315.1
House Sparrow trunc autoreg+imm 0.871 3.538 0.618 1562.0 22602.9

Ovenbird apgffwd notrend 0.586 0.709 0.585 562.0 323.6
Ovenbird trunc notrend 0.934 0.098 0.674 1071.9 339.6
Ovenbird apgffwd constant 0.999 3.095 0.273 534.8 193.2
Ovenbird trunc constant 0.928 1.435 0.703 1071.2 398.4
Ovenbird apgffwd trend 1.044 - 0.378 494.07 121.4
Ovenbird trunc trend 0.992 - 0.835 972.2 260.8
Ovenbird apgffwd autoreg 1.044 - 0.378 496.07 220.6
Ovenbird trunc autoreg 0.992 - 0.836 974.2 1047.6
Ovenbird apgffwd trend+imm 1.022 1.330 0.379 493.7 190.7
Ovenbird trunc trend+imm 0.963 0.889 0.843 971.2 360.4
Ovenbird apgffwd autoreg+imm 1.022 1.330 0.379 495.7 393.2
Ovenbird trunc autoreg+imm 0.964 0.888 0.843 973.2 2453.2

Wood Thrush apgffwd notrend 0.702 0.992 0.300 342.8 398.6
Wood Thrush trunc notrend 0.700 0.383 0.783 462.3 40.6
Wood Thrush apgffwd constant 0.826 2.885 0.294 323.1 433.6
Wood Thrush trunc constant 0.554 2.900 0.639 432.5 45.1
Wood Thrush apgffwd trend 0.982 - 0.295 310.0 121.0
Wood Thrush trunc trend 0.863 - 0.625 421.3 33.7
Wood Thrush apgffwd autoreg 0.982 - 0.295 312.0 248.7
Wood Thrush trunc autoreg 0.863 - 0.625 423.3 158.4
Wood Thrush apgffwd trend+imm 0.856 1.918 0.335 308.7 245.0
Wood Thrush trunc trend+imm 0.651 1.833 0.733 414.2 33.1
Wood Thrush apgffwd autoreg+imm 0.856 1.918 0.335 310.7 396.9
Wood Thrush trunc autoreg+imm 0.659 1.791 0.729 416.2 260.8

Table 7.5. MLE parameters of all models for 6 years of Breeding Bird Survey
counts of 3 species fit using apgf-forward-s and trunc. MLE estimates are given
for growth rate R, mean immigration rate ι, and detection probability ρ from each
model along with AIC and runtime.
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Species Dynamics R ι ρ AIC Runtime (s)

House Sparrow notrend 0.851 0.386 0.386 10804.4 5553.2
House Sparrow constant 0.997 2.758 0.102 12216.4 5384.1
House Sparrow trend 1.010 - 0.351 6612.0 1309.8
House Sparrow trend+imm 1.010 0.001 0.351 6614.0 2294.3
House Sparrow autoreg+imm 1.010 0.001 0.351 6616.0 4886.5

Ovenbird notrend 0.911 0.133 0.667 5568.2 3811.0
Ovenbird constant 0.978 2.145 0.335 5022.8 8634.8
Ovenbird trend 1.016 - 0.258 4150.6 1297.8
Ovenbird autoreg 1.016 - 0.258 4152.6 2812.7
Ovenbird trend+imm 1.003 0.698 0.281 4143.2 2402.8
Ovenbird autoreg+imm 1.003 0.698 0.281 4145.2 4551.2

Wood Thrush notrend 0.943 0.133 0.429 4901.1 2621.2
Wood Thrush constant 0.997 2.758 0.102 12216.4 5384.1
Wood Thrush trend 0.983 - 0.258 4047.7 1604.6
Wood Thrush autoreg 0.983 - 0.258 4049.7 4706.0
Wood Thrush trend+imm 0.965 0.713 0.279 4041.0 2284.1
Wood Thrush autoreg+imm 0.965 0.713 0.279 4043.0 6882.2

Table 7.6. MLE parameters of all models for 53 years of Breeding Bird Survey
counts of 3 species fit using apgf-forward-s. MLE estimates are given for growth
rate R, mean immigration rate ι, and detection probability ρ from each model along
with AIC and runtime.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

In this work, we have detailed a new representation for count distributions and

a set of inference and learning algorithms based on this representation. For models

with latent count variables, our PGF representation generally trades an uncomputable

operation (marginalization by numerical summation) for simple marginalization (via

PGF evaluation, see Proposition 4.1) and difficult but tractable conditioning (via

high order derivatives, see Proposition 4.2). Our exact inference algorithms (pgf-

forward, pgf-tail-eliminate, gdual-forward) demonstrate how to implement

PGF inference efficiently and were the first exact inference methods for this class

of model. Our approximate inference algorithm (apgf-forward-s) represents a

fundamental advance in scalability over existing approximate inference algorithms.

While our work has laid the groundwork for using PGFs for probabilistic infer-

ence, there is still significant room for further work that builds upon what we have

presented. To start, there are numerous additional algorithms which could poten-

tially be adapted to the PGF domain. Even for HMMs, the backward algorithm

and the Baum-Welch algorithm are possible direct extensions from this work. In

other models with latent counts, algorithms such as Hamiltonian Monte Carlo or

Metropolis-Hastings could potentially benefit from a PGF representation.

The Unified Binomial Distribution we present in Chapter 6 may have additional

applications. The Latent Branching Process model has a variety of extensions that

could be added. The most significant of which is perhaps generalizing the observation

process from a strict binomial distribution to an arbitrary observation distribution.
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Finally, while the PGF inference toolkit we presented in Chapters 4 and 5 is appli-

cable to multivariate PGFs, we encountered significant implementation and scalabil-

ity challenges when implementing multivariate versions of these techniques, namely

the combinatorial nature of multiple partial derivatives of multivariate PGFs. This

is worth revisiting, potentially using some of the advancements that led to the de-

velopment of apgf-forward-s. Similarly, applying PGF inference to undirected

graphical models is theoretically possible, but our initial explorations suggested that

it held significant computational challenges.
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