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ABSTRACT

TRUSTWORTHY SYSTEMS AND PROTOCOLS FOR
THE INTERNET OF THINGS

FEBRUARY 2020

ARMAN POURAGHILY

B.Sc., UNIVERSITY OF TEHRAN

M.Sc., UNIVERSITY OF TEHRAN

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Tilman Wolf

Processor-based embedded systems are integrated into many aspects of everyday

life such as industrial control, automotive systems, healthcare, the Internet of Things,

etc. As Moore’s law progresses, these embedded systems have moved from simple

microcontrollers to full-scale embedded computing systems with multiple processor

cores and operating systems support. At the same time, the security of these devices

has also become a key concern.

Our main focus in this work is the security and privacy of the embedded systems

used in IoT systems. In the first part of this work, we take a look at the security of

embedded systems from a hardware point of view. We describe why we believe current

security approaches fall short when it comes to securing modern embedded processors.

We propose our hardware monitoring solution and expand it to cover a variety of

embedded systems with different architectural specifications and applications.
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In the second part, we shift our focus from hardware to software and protocols in-

volved in securing IoT systems and maintaining the privacy of the data they exchange.

We argue why conventional financial mechanisms cannot be applied to this context

when trying to monetize data sharing. We propose a financial mechanism based on

blockchain technology and demonstrate how it can replace conventional methods. We

discuss how the high processing demand of such protocols hinders widespread adop-

tion on different IoT systems, mostly ones based on low-end embedded processors. To

eliminate that barrier, we propose a novel, lightweight payment verification protocol

that uses a hybrid IoT ecosystem based on low-end and mid-range embedded systems

that can be horizontally integrated with other ecosystems and exchange data and

assets with monetary values such as cryptocurrencies.

The last part of this work is the further expansion of the aforementioned hardware

monitoring approach to enable it to secure high-end embedded systems. Using this

new hardware monitoring system, we build a prototype IoT system that runs our

proposed lightweight payment verification protocol to exchange data and money. By

evaluating this system, we illustrate how our hardware and software approaches can

be complementary to each other to safeguard IoT devices against remote attacks.

viii
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CHAPTER 1

INTRODUCTION

Over the past two decades, the idea of Cyber-Physical Systems (CPS) and their

use in a broader network, known as the Internet of Things (IoT), has attracted a

lot of attention as the technological foundation to address many important societal

problems relating to the environment, health care, transportation, etc. [27,60,65,67,

80]. Today, we can see traces of IoT devices in many different aspects of our daily

lives. According to Gartner, the number of IoT devices is expected to exceed 25

billion by 2020 [25], which shows how fast this new technology is finding its uses in

different applications.

Fundamentally, IoT systems interconnect three types of components: sensors that

detect or measure a physical property; computation that receives sensor data for

processing and making control decisions; and actuators that act in the physical world

in response. These three steps of sensing, computing, and acting can vary vastly in

their implementation based on the IoT application and use case.

As the application of IoT systems become more prevalent, new challenges and

concerns around their proper operation arise. Among those concerns, we can point to

the privacy and integrity of the data throughout the whole cycle, from the sensor to

the actuator, and the security of all the devices involved in the cycle with regard to

potential external adversaries. In this work, our main focus is on enhancing the secu-

rity of IoT systems and facilitating secure transactions between them while meeting

the privacy requirements of the applications in which they are being used.
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Since embedded systems are at the very core of sensing and actuation parts of any

IoT system (sometimes even in the computation part), the security and privacy of

the whole IoT system relies on the security and privacy of the underlying embedded

systems. For that reason, our main focus throughout this work is on embedded

systems and challenges around them.

In the first part of this work, we focus on enhancing the security of embedded sys-

tems as the underlying processing platform for IoT devices. We discuss the challenges

of securing these devices and how to overcome those challenges.

The second part of this work is about the algorithms used at the software level

and protocol level to ensure security and privacy of the information being exchanged

between different IoT devices. In this part, we describe the idea of horizontal inte-

gration, which tries to facilitate the data exchange between different IoT ecosystems

to pave the way for further use of IoT solutions in different new applications. As

the basis of the idea of horizontal integration is incentivizing data sharing by adding

monetary values to the data, having a robust and trustworthy financial mechanism is

crucial. We then explain why we believe blockchain technology is a suitable platform

for those financial transactions and how the current state of the art methods can be

used in that model. At the same time, we discuss how those discussed methods are

only applicable to mid-range and high-end embedded devices. As a big portion of IoT

devices is based on low-end embedded devices, these approaches come short serving

this group of IoT devices. We finally propose our lightweight payment verification

protocol, which is based on blockchain technology to make it possible for all of the

IoT devices to participate in horizontal integration.

The third part of this work is on joining the two approaches described in the first

and second part of the work. In this part, first, we discuss how we plan to expand

our hardware monitoring system to be applicable to yet another group of embedded

systems which is the high-end embedded systems. We then describe how a secure IoT
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ecosystem can be built using a variety of embedded systems including a high-end, a

mid-range, and a low-end IoT device, protected by our hardware monitoring approach

and running our proposed lightweight payment verification protocol.

1.1 Hardware Monitoring In Embedded Systems

Embedded systems by definition are computing systems that are used in devices

with main a functionality other than just computing. The term is usually used as

a counterpart to general purpose computers, which are designed solely for computa-

tional purposes. Architecturally, embedded processors, which are the core processing

elements of embedded systems, are no different than their general purpose counter-

parts. For example, Motorola 68000 [68], which was introduced in 1979 by Motorola

Semiconductors [47], was designed as a high-end microprocessor for computational

purposes. However, less than a decade after its introduction, in the early 1980s, it

was begin used as an embedded processor inside automobile engines by car designers.

What happened to Motorola 68000 is a good example of how embedded systems’

technology follows high performance computing. As the technology matures, pro-

cessing power can be realized at a lower cost. This cost can be in terms of power

consumption, area consumption, and actual monetary cost of production. As in the

context of general purpose computers, security has been an active area of research

since even before the actual processors came around and since embedded systems are

following the footsteps are general purpose computers, one might think why the secu-

rity of embedded systems should be any different from their predecessors? Why not

apply the same techniques that are used in general purpose processors to embedded

systems?

The answer to those questions is in the way embedded systems are being used.

Although architecturally today’s embedded systems are the same as yesterday’s gen-

eral purpose processors, they are different in the tasks they are fulfilling and the
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applications in which they are being used. Embedded systems are usually designed

on a tight budget. This tight budget usually translates to limited cost, limited energy

consumption (in battery operated devices), and limited processing power. These lim-

itations make software-based solutions such as virus detection software and intrusion

detection systems which are quite popular solutions in the context general purpose

processor, very inefficient for embedded systems.

Another differentiating factor between embedded systems and general purpose

computers is the use of them in real-time applications. The real-time nature of those

applications paired with the limited processing resources available in the system makes

the uncertainty imposed by the software solutions intolerable for these applications.

Finally, in some applications such as IoT, the systems are deployed in remote environ-

ments which makes accessing them harder. This remote environment is not always a

safe environment and in cases might be even hostile. The limited access to the devices

and their higher exposure to adversarial parties make software-based solutions which

are inherently reactive even less suitable for this type of embedded systems.

An alternative to software-based security solutions is hardware-based solutions.

Hardware-based solutions vary from circuit level to architecture and system level. In

this work, our focus is on hardware monitors which are hardware solutions at the

system level. Hardware monitors are dedicated hardware modules which are located

on the same system as the processor. They ideally do not require any changes to

the architecture of the CPU and only require certain information extracted from the

datapath of the processor. The main role of these hardware modules is to monitor the

execution of the application on the processor core and compare that runtime behavior

against a golden model of the application. The golden model which is extracted from

the source of the application needs to be loaded into the hardware monitor before

the application starts to run on the CPU. In the first part of this work, we discuss

the details of hardware monitors and why we believe that hardware monitors are
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more suitable security solutions than software-based approaches in the context of

embedded systems. We then propose our novel hardware monitoring approach which

expands the applicability of current hardware monitoring solutions to a wider range

of embedded systems including more modern architectures.

1.2 Horizontally Integrated IoT

Deployment of IoT solutions can be expensive since sensors, actuators, and com-

putation components are necessary. Traditionally, each application uses its own com-

ponents. Switching from dedicated computation infrastructure to cloud-based com-

putation platforms can reduce some of this cost. However, each application still needs

to setup and maintain its own set of sensors and actuators in the environment. An

alternative approach, which can make this investment more cost effective, is to share

that platform with other IoT applications. To facilitate that resource sharing, the

idea of horizontal integration of IoT components was proposed by Wolf et al. [78,79].

The system architecture we use in this work is based on the guidelines set in

horizontal integrated IoT and is shown in Figure 1.1. The structure aligns with the

layered IoT architecture presented by Wolf et al. in [78]. On the top layer, we

have the users or applications controlling the system. The user/application needs

to formulate and enter the constraints and specifications of the required IoT task.

Those constraints and specifications include the functionality of the tasks and how

much budget is allocated to this specific task (or how much the cost of using each

module in the system is).

Below is the context layer. This layer which receives the constraints and spec-

ifications from the user level, forms and enforces the system policies. It is in this

layer, where the system decides how much of the resources available in the lower

layers are needed to perform the task and how much can be spared. We proposed

the contract management unit in this layer to deal with leasing of extra resources.
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Figure 1.1. IoT architecture to enable horizontal integration.

In case the available resources in the system are not sufficient to perform the task,

this unit searches the marketplace to find other systems offering those resources. It

then contacts those systems and leases those resources for the period of time they are

needed. It is necessary for this unit to be tightly coupled with the policy enforcement

unit to know about the specifications of the resources needed, the budget dedicated

to acquiring them, and finally, about the time period those resources are needed for.

Another role of the contract management unit is to offer the excessive resources

the system owns on the market. This role also requires a very close relationship to
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the policy enforcement unit as the contract management unit needs to exactly know

which resources are idle for what time period and what the price of each resource

should be in the market.

When acquiring extra resources, the contract management unit of the lessee in-

quires about the systems offering those resources on the marketplace. It then selects

the one which meets the criteria set by the policy enforcement unit. The contract

management unit then directly contacts its counterpart in the lessor system to ex-

change the information needed to establish a secure connection and also the account

information to make future payments. The next step in leasing resources from outside

systems is to pass this information to the resource allocation unit in the layer below.

Proposed resource allocation unit is co-located with the IoT control unit in the

control layer. It receives the contract information from the contract management

unit and coordinates with the IoT control unit to dedicate the resources accordingly.

The resource allocation unit also sets the data format conversion parameters in the

layer below and sets up the paths the data from each resource should traverse. This

could be a path from the global Internet to the control unit in case of using external

resources or it could be a path from the local resources to the information stream layer

of another system in case of renting out internal resources. The resource allocation

unit is also responsible for sending and receiving money once the contract is formed.

By doing so, it makes sure the information channel formed between the two systems

is up and running.

1.3 Organization and Contribution

The rest of this work is organized as follows:

In Chapter 2, we discuss the idea of hardware monitoring and challenges of secur-

ing embedded systems using hardware monitors in more details. We then describe

how the current hardware monitoring solutions have fallen behind of the technology
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used in modern embedded systems and in this chapter we take the first step to bridge

this gap by introducing our novel hardware monitoring system which can support

multiple tasks running on top of a simple realtime operating system.

In Chapter 3, we show how operating systems which previously assumed to be

secure entities can be vulnerable against remote attacks and be exploited. Then we

show how our monitoring method proposed in Chapter 2 can be further extended to

protect the whole system including the operating system itself. It is in this chapter

that we discuss how middle-range embedded systems vary from low-end systems in

terms of the processor architecture as well as the software running on top of them

including the operating systems and how that difference impact the design of our

hardware monitoring solution.

In Chapter 4, we shift our focus to horizontal integration of IoT systems and

the challenges of securing IoT devices involved in this horizontal integration. In this

chapter, we describe how current blockchain technology can be a good fit for this

paradigm but at the same time too heavy weight in terms of processing demand to be

used in low-end IoT devices. We then propose our lightweight payment verification

protocol which is based on Ethereum blockchain technology. We describe how this

lightweight protocol can be used even in low-end IoT devices which constitute a big

portion of current IoT devices to enables them to horizontally integrate with other

IoT systems without jeopardizing their security and privacy.

In Chapter 5, we describe our current plan to further expand our hardware mon-

itoring approach to further cover high-end embedded devices as well as mid-range

and low-end ones. We then show how an IoT system can be built using a variety of

IoT devices including low-end devices and high-end devices where each of those de-

vices can be secured using the hardware monitor at the hardware level. At the same

time, using the protocol proposed in Chapter 4 they can participate in a horizontally

integrated IoT ecosystem and securely exchange data and cryptocurrency.

8



CHAPTER 2

WORKLOAD MONITORING IN EMBEDDED SYSTEMS

Embedded processing systems are widely used and are a key technology for con-

trol systems, the Internet of Things, personal health monitoring, home automation,

and many other application domains. Due to their wide use and the importance of

their tasks, embedded systems need to be protected from hacking attacks. With an

increasing number of embedded systems being connected to networks, one typical

attack vector against embedded systems is through the global Internet.

Many embedded systems are based on general-purpose processing systems that are

vulnerable to the same type of attacks as conventional desktop and server computers,

albeit for a different set of applications. The National Vulnerability Database (NVD)

[50] shows that around 10% of vulnerabilities (6,518 out of 66,399) in systems are

related to overflows that can be exploited via a network. Many of these overflows then

enable an attacker to execute malicious code. Thus, the first part of our work, which

is presented in this chapter and the following chapter, focuses on protecting embedded

systems from this important type of attack using a security-enhanced processor.

While desktop and server computers have the processing power to run malware

detection software (e.g., virus scanner, intrusion detection system, etc.), embedded

systems are typically not able to do so due to resource constraints (e.g., limited

power budget, limited processing capacity, etc.). Instead, hardware-based protection

mechanisms have been developed, in particular “hardware monitors”, which track the

operation of the processing system and aim to detect and suppress malicious activity.
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A variety of different hardware-based solutions have been proposed to protect

embedded processing systems. In general, there have been three shortcomings in

existing work:

� Monitoring on systems with complex workloads is based on coarse indicators

(e.g., function call sequence [64]). This approach leaves the system vulnerable

to attacks that happen between indicators (e.g., within a function call).

� Fine-grained monitoring systems do not support multi-task workloads on oper-

ating systems. This constraint limits the applicability of this single-task moni-

toring to specialized domains (e.g., embedded control systems, network proces-

sors, etc.).

� Almost all of the existing work either target the very elementary embedded

systems which do not run an operating system or in case of dealing with the

embedded systems running an operating system, the OS is treated as a se-

cure and trusted entity. This leaves the modern OS-based embedded systems

vulnerable against attacks which target the operating system itself.

To make hardware monitors an effective protection mechanism for attacks on

embedded systems in any application domain, it is critical to develop fine-grained

monitoring on multi-task embedded systems. In this chapter, we present the design

of a hardware monitoring system that coordinates with the task switching dynamics

of an operating system to verify every instruction executed by applications. In the

next chapter, we shift our focus to the operating system itself and how to address the

vulnerabilities within the operating system.

The specific contributions of our work presented in this chapter are:

� Design of a Multi-Task Hardware Monitor System (MTHM) that supports

multi-tasking contexts and that operates in sync with an embedded operating

system (OS).
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� Prototype implementation of a hardware monitoring system on an FPGA-based

DE4 board.

� Evaluation of the prototype and a demonstration of system protection from a

stack smashing attack.

This security enhancement for embedded processors allows for the simultaneous

use of application-specific monitoring information for multiple applications [73]. The

remainder of this chapter describes the design, operation, and implementation of our

hardware monitoring system in more detail. In Section 2.1 we discuss other security

approaches for embedded processors, including monitoring. Section 2.2 provides the

security model and operation of our system while Section 2.3 describes the hardware

details and protocols involved in task switching using monitoring. Experimental

results are presented in Section 2.4. Section 2.5 concludes the chapter.

2.1 Related Work

Protection mechanisms for processing systems against code injection attacks are

manifold. Network devices, such as firewalls [45] and intrusion-detection systems

[46], can block malicious network traffic if packet payloads are not encrypted and if

detection rules (e.g., Snort [62]) are updated quickly enough. Programming language

extensions can generate code that is not vulnerable [37] if source code is available

and can be transformed appropriately. Stack protection mechanisms in program code

or in the operating system can defend against some attacks [15]. Memory protection

mechanisms that separate instruction and data memory (e.g., Harvard architecture or

No-eXecute (NX) bit) can avoid some attacks, but are still vulnerable [23]. A survey

of these various techniques can be found in the article by Younan et al. [83].

The prevention of stack smashing attacks has been the focus of significant work,

although most approaches require significant processor modifications and run-time
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execution slowdown. Dynamic instruction flow tracking (DIFT) [69] tags each in-

coming data value or its derivative with a one-bit tag to indicate that it should not

influence program control flow. The approach can require an execution slowdown due

to tag checking. CHERI [81] establishes a base and bounds for pointers, preventing

illegal accesses to memory which can lead to buffer overflow attacks. This approach

also involves data tagging and the use of a special-purpose capability processor and

registers to dynamically assess tags. The Hardbound approach [19] includes hardware

to check the address bounds of every pointer access to memory. A flexible software-

only approach [48] introduces a compiler pass for each application to insert bounds

checking operations in the code. Although flexible for a range of applications, an in-

crease in code size and application slowdown make the approach limited for embedded

applications.

One very effective protection mechanism is the use of hardware and software mon-

itoring to track different aspects of program behavior. The granularity of such mon-

itors ranges from a call sequence (e.g., [64]) to checksums over basic blocks (e.g., [6])

to per-instruction verification (e.g., [42]). Coarse monitoring granularity may not be

able to detect attacks that require only a few instructions to execute (such as demon-

strated for a denial-of-service attack in network processors [14]). Thus, our work

focuses on monitors that perform per-instruction monitoring and can detect attacks

immediately when program behavior changes. Due to the need for tight coupling,

such monitors are implemented in hardware and co-located with the processor core.

Existing hardware monitors have been used to monitor processors with single-task

workloads (e.g., [42]) or with a small number of tasks that are managed through a

control processor (e.g., [32]). However, an increasing number of embedded systems

use operating systems, where multiple tasks actively share the processor core and

tasks are dynamically added and removed. Our work focuses on providing security
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through instruction-level monitoring in such a highly dynamic workload controlled

by an operating system.

2.2 System and Security Model

To provide the necessary context for the Multi-Task Hardware Monitor System

design presented in Section 2.3, we briefly discuss the operation of MTHM and the

security model for our work.

2.2.1 Secure Processing with Hardware Monitors

Hardware monitors are components that are co-located with processor cores to

track the processing of software on that core. The objective is to assess the operation

of the processor and determine when incorrect behavior is detected (which can be

due to benign faults or malicious attacks). As discussed in related work, there are a

number of different approaches to monitoring based on what information is commu-

nicated from the processor to the monitor and what information is used to determine

if that behavior is “normal”.

In our work, we use a hardware monitor that receives information about every

instruction executed on the processor core and compares it to a “monitoring graph”

that is based on the analysis of the processing binary (similar to [42]). Each instruc-

tion is represented by a 4-bit hash value (to reduce the size of the monitoring graph

compared to the size of the binary) and state transitions correspond to possible con-

trol flow paths between instructions. We use a deterministic finite automaton (DFA)

representation of the monitoring graph (as described in [12]).

The system architecture of our Multi-Task Hardware Monitor System, which sup-

ports multiple tasks, is illustrated in Figure 2.1. The figure shows that applica-

tion binaries are analyzed offline. During runtime, the comparison logic in MTHM

matches the monitoring graph to the currently active task on the processor. To do the
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Figure 2.1. System architecture of Multi-Task Hardware Monitor System.

operation, the OS-to-Monitor Interface (OMI) communicates the necessary context

information between the processor and the monitor. When the processor execution

does not match the expected behavior reflected in the monitoring graph of the current

task, a recovery signal is sent from the monitor to the processor to terminate the cur-

rent task. (More complex recovery and roll-back mechanisms could be implemented,

but are not discussed here.)

It is important to note that the hardware monitoring system is isolated from the

processor and thus cannot be tampered with remotely by the attacker (e.g., to change

the monitoring graph to match an attack). Related work discusses how to achieve

such isolation while still enabling dynamic installation of hardware monitoring graphs

through the use of cryptographic mechanisms [34].

2.2.2 Security Model

To justify how our proposed system provides a secure processing environment, we

briefly discuss the security model that is the basis for our work.
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2.2.2.1 Security Requirements

We require that our system meets the following security requirements:

SC1 The system should only allow execution of code as programmed in the exe-

cutable binaries of each task.

SC2 Secure processing should be provided for multiple, dynamically changing tasks.

SC3 Malicious code execution in one task should not affect other tasks.

In addition to security, there are also practical performance requirements. As we

show in our results, the hardware monitor does not reduce the performance of the

embedded processor in any way. The only overhead is a few instructions (five for our

experimentation) in the operating system code when switching tasks, which leads to

a negligible reduction in processing speed.

2.2.2.2 Attacker Capabilities

We make the following assumptions about the capabilities of an attacker that tries

to change the operation of the embedded system and/or tries to execute malicious

code on the embedded system:

AC1 An attacker can provide any input through input/output interfaces of the em-

bedded system.

AC2 An attacker can start and stop any task from an installed binary in the embed-

ded system (within the limitations of a maximum number of active tasks).

AC3 An attacker can tamper with any of the binaries.

In order to provide a practical solution for secure processing in an embedded

system, we also require some reasonable constraints on attacker capabilities:

AC4 An attacker cannot tamper with the operating system itself.
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AC5 An attacker cannot tamper with the hardware monitoring system (e.g., modi-

fying monitoring graphs for installed executables).

As discussed above, we do not discuss the secure installation of monitoring graphs,

which has been addressed in related work [34] in more detail.

2.3 Monitor Design

2.3.1 Task Management in the Operating System

A key aspect of our monitoring system is its ability to fit seamlessly within the

context switch operations of a typical operating system. As noted in Section 2.4, the

time required to switch monitoring graphs for different tasks is significantly less than

the typical time required for other activities in a context switch. In our implemen-

tation, graph switching is synchronized with other OS actions (e.g., register file save

and restore) that occur during a context switch so that user tasks are protected at

all times. Typical context switch activities for embedded operating systems, such as

µC/OS-II1 used for this work, include:

1. A timer or other OS event generates an interrupt triggering a context switch.

2. The OS scheduler determines the next process for execution. Our implementa-

tion uses a priority based scheme, although it can be replaced with a round-robin

or any other scheduling algorithm if necessary.

3. The OS provides the process ID (PID) of the next process to the monitoring

system, triggering a monitoring graph switch in the monitor. This switch in-

cludes monitor state saving for the process currently being monitored, and a

restoration of monitoring state for the next process.

1http://micrium.com/rtos/ucosii/overview/
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4. Concurrently, the OS saves process state (registers, program counter, etc.) for

the current task to main memory.

5. The OS retrieves process state for the next process from main memory and

restores it to processor registers.

6. The OS checks the status of the monitoring system to confirm that the monitor

for the next process is ready for use.

7. The OS sends a trigger to the monitoring system to start monitoring for the

newly-loaded process.

After the context switch is completed, the processor sends every instruction ex-

ecuted for the process to the monitoring system. In the next section, we provide a

detailed view of the monitoring system and how it interacts with the processor for

steps 3, 5, and 6 above.

2.3.2 Multi-Task Hardware Monitor System

A detailed view of our monitoring subsystem is shown in Figure 2.2. The portions

of the monitoring system can be split into three parts: monitoring hardware (three

boxes in upper left corner of the figure), which checks the per-instruction operation

of the companion processor; graph memory, which stores state information about

monitoring for each process, controller, and the processor interface.

The monitoring hardware checks each processor instruction using information from

the monitoring graphs stored in graph memory. In the figure, graphs for four separate

applications are stored in slots in the graph memory. Each graph includes one row per

instruction, effectively representing expected program control flow as a state machine

[12]. A read address pointer indicates the entry in the graph that corresponds to the

instruction that has just completed execution. During the execution of an instruction,

a multi-bit (in our case 4-bit) hash value of the instruction is generated and converted
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Figure 2.2. Detailed view of multi-context monitoring system

to a one-hot representation. This one-hot encoding is compared against the expected

next-instruction hash values (valid hash) that are stored in the graph entry for the

previously executed instruction. Since branch instructions may have several possible

next instructions, and, consequently, several possible valid hashes, multiple one-hot

valid hash bits may be set per entry. A match of any of these hashes indicates a valid

instruction. If no match occurs, an illegal instruction has been executed, leading to

the generation of a recovery signal which alarms the processor and prevent the attack

code from spreading or affecting the rest of the ecosystem. Our approach can handle

dynamic branch targets by profiling the code to determine all branch targets for an

application prior to graph generation. Entries for these targets are then added to the

graph.
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In the memory graph, states are grouped based on their fanin count and are

placed in the memory with regard to their groups (i.e. states within the same group

are located next to each other). base address registers cointains the base address of the

group to which the current state belongs [12]. The next read address (memory row) in

the monitoring graph is determined using next state information stored in the current

entry, the matched hash value, and information stored in base address registers. These

values are combined via addition and multiplication in the sequencing logic box in

the figure. The resulting address is stored in the address pointer and subsequently

added to the start address for the appropriate graph slot for the application. The

implemented monitor requires only one memory lookup per instruction.

Effectively, the monitoring information for each process at any given point in

execution is defined by the contents of the address pointer, the monitoring graph

for the process and the contents of the base address registers. If a context switch is

requested, these values must be updated to use values for the requested next process.

The procedure required for a context switch inside the monitoring system is described

next.

2.3.3 OS-to-Monitor Interface for Context Switch

In case of a context switch, control information is exchanged between the processor

and the monitoring system. The exchange of monitoring information (Step 3 in

Section 2.3.1) starts when the processor writes the PID of the next process into the

PID register in the processor interface of the monitoring system and sets a bit in the

Operation register. The monitoring system control FSM then performs the following

actions:

1. The address pointer for the currently executing process is saved in the PID

addresses storage so that it can be restored for the next invocation of the process.
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2. The graph ID (GID) associated with the next process is located in the PID to

GID binding storage using the PID written to the processor interface.

3. If the graph ID of the next process differs from the ID of the previous one, the

base address registers are loaded with values for the graph of the next process.

These values are loaded from the graph memory (e.g., Group 1 Addr, etc).

4. The GID is used to determine the frame address for the start of the appropriate

monitoring graph in graph memory for the process. This information is stored

in the GID to frame binding storage.

5. The address pointer value for the next process is restored from the PID addresses

storage.

6. The Done bit is set in the processor interface indicating that the monitoring

system is now ready to monitor the next process. This bit can be read by the

processor.

7. Once all other context switch activity for the next process has concluded (e.g.,

processor registers are loaded), the processor sets an Enable bit in the Operation

register of the processor interface, resuming monitoring. The processor waits

until this bit set is successfully made, ensuring synchronization. Instructions of

the newly-loaded process are then monitored.

In Section 2.4 we show that these steps can be performed in 17 clock cycles for

our prototype system.

2.3.4 OS-to-Monitor Interface for Process Creation

When a new task is being created by the OS, it is assigned a unique PID and a

GID by the operating system. Each known application has a predefined GID which

is known to both the processor and hardware monitor. Since many processes of the
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same application may exist, the GID may not be unique. The following steps are

used to initialize the security monitor for the new process.

1. The two identifiers (GID and PID) are passed to the monitor via the processor

interface. The monitor first searches for an empty slot in the PID addresses

storage and PID to GID binding storage to insert the new bindings.

2. While making these associations, the GID to frame binding storage is searched

to determine if the appropriate graph is already loaded. If it is available, the

next step is skipped.

3. If the GID is not found in the GID to frame binding storage, the GID is inserted

into the table. After a graph to remove is determined using a least recently used

approach, the new graph is then loaded into graph memory using the DMA

interface. Following graph loading, base addresses are updated.

4. The Done bit is set in the processor interface indicating that the monitoring

system is now ready to monitor the next process. This bit can be read by the

processor.

During system startup, monitoring graphs are loaded from an external memory

graph pool for the new processes that will be executed by the processor. Concurrently,

the processor performs a series of process creation operations including initialization

of the process stack and control block (registers, etc.). In Section 2.4, it is noted that

while process creation can require hundreds of cycles for the processor, if the appro-

priate monitoring graph is already in the monitoring system, monitoring information

update for process creation requires less than 20 cycles for the monitoring system.
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2.4 Prototype Implementation

2.4.1 System Setup

To verify the functionality of our monitoring system, we implemented an em-

bedded NIOS II-based processing system plus monitoring system using a Stratix IV

GX230 FPGA located on an Altera DE4 board. A single-core NIOS executing a

µC/OS-II operating system was used for testing. Monitoring logic and memory were

implemented in on-chip resources. Monitoring graphs were generated by passing code

through a standard MIPS GCC compiler flow to generate assembly-level instruc-

tions [12]. The output of the compiler allows for the identification of branch instruc-

tions and their target addresses. This information was used to generate monitoring

graphs for four MiBench2 applications (bitcount, qsort, basicmath, and stringsearch)

and malicious stack-smashing attack code. Our examination of all MiBench bench-

marks determined that the target for all dynamic branches could be determined at

compile time.

The attack code we use for our system is a C function which accepts a character

string as its only argument and copies it to a buffer located on its local stack frame [66].

void process_input(char *stringpassed) {

char name[90];

strcpy(name,stringpassed);

printf("Processing string .. !\n");

return;

}

In this poorly designed code, no check is made to determine if the string string-

passed is longer than the target buffer, so the return address of the function can be

overwritten with an address which points into the user-provided input string. Instead

2http://wwweb.eecs.umich.edu/mibench/
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Figure 2.3. Console display during stack smashing

of characters, this “string” can contain processor instructions which repetitively print

out “Attacked!!” on a terminal in a loop, although much more malicious behavior

could be imagined. A monitor for the code is able to detect the unplanned control

flow jump and stop the processor before the attack can perform this activity. The

hash values stored in the monitoring graph for the application will not match the val-

ues for the malicious instructions as they are executed during the attack. As shown

in Figure 2.3, we have confirmed that this attack will lead to unexpected results (an

attack message) if monitoring is not used.

2.4.2 Monitor Context Management

We have verified our ability to perform numerous context switches between mul-

tiple processes of the four monitored MiBench benchmarks both via simulation and

in emulation hardware. This switch includes both standard process state used by

the processor (e.g., register information, stack) and monitoring information using the

mechanism outlined in Section 2.3.3. Altera SignalTap, a hardware debugger, was

used to generate the waveforms shown in Figure 2.4.

The waveforms show the synchronization between the processor and the monitor

as a result of the context switch. First, the processor notifies the monitoring system

of the switch by writing the PID of the next process into the processor interface.

The monitor switch is started by the processor writing into the Operation register

of the interface. The value of the address pointer for the old process is stored and

the value for the new process is restored to/from PID address storage immediately
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Monitor readyPID change Context Switch CPU ready

GID change
PID change Task Create Monitor ready

Instruction hash matches graph memory Instruction hash doesn’t match graph memory

Attack detected Figure 2.4. SignalTap waveforms showing the trigger for monitor context switch
(Operation = 0x2), monitor switch finished (Done), and monitor restart monitoring
when CPU ready (Enable)

Monitor readyPID change Context Switch CPU ready

GID change
PID change Task Create Monitor ready

Figure 2.5. SignalTap waveforms showing the operations for monitor process cre-
ation (Operation = 0x1) and monitor update finished (Done)

after this trigger. The base address registers are then configured using the write data

port shown in Figure 2.2. After the control FSM performs the monitor update, the

Done signal is set in the processor interface indicating the monitor context switch

is finished. Finally, after the processor finishes other context switch operations, it

sets the Enable signal in the processor interface to restart monitoring. The processor

waits a cycle until this write is complete. Monitoring for the new process starts with

the first instruction received from the process.

Experiments in simulation and in the lab on FPGA hardware showed that the

processor is able to process data for the MiBench benchmarks equally fast both with

and without monitoring (e.g., no slowdown for monitoring). Context switch time

is extended by 5 cycles versus no monitoring to allow for monitor context switches.

This overhead accounts for the data exchanges between the processor and monitoring

system for synchronization. Overall, we found that the number of cycles needed to

perform a monitor context switch is 17 versus the 34 cycles needed for the processor to
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Monitor readyPID change Context Switch CPU ready

GID change
PID change Task Create Monitor ready

Instruction hash matches graph memory Instruction hash doesn’t match graph memory

Attack detected 

Figure 2.6. SignalTap waveforms showing the successful identification of a stack
smashing attack. Instruction hash values are checked against expected values stored in
the monitor graph. When a mismatch occurs, a recovery signal is triggered indicating
the process should be terminated.

save and restore registers (note that monitor and processor context switch operations

occur in parallel).

The amount of time needed to create a new process in the OS is about 600

clock cycles versus 17 to create process information in the monitor (Figure 2.5). If

a monitoring graph is loaded from main memory, the cycle count required for the

monitor increases to include reading the number of rows in the monitoring graph for

the new process into graph memory (about 80 for each of our applications).

2.4.3 Attack Detection and Protection

We have verified in both simulation and in hardware that our monitoring system

is able to detect the stack smashing attack described in Section 2.4.1 and notify the

processor so that the malicious process can be terminated. SignalTap waveforms

derived from observing hardware operation in system are shown in Figure 2.6. As

described in Section 2.3.2, an attack is detected when the hash of the CPU instruction

does not match the expected value stored in the monitoring graph for the application.

In our system, the implemented hash function counts the number of ones in the

instruction to form a four-bit hash value. The figure shows the four-bit hash value,

a one-hot version of the hash value, and the retrieved, expected hash value for the

instruction from the monitoring graph (read data[15:0]). In the waveforms, it can
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Available Nios II with HW monitor
on FPGA no HW monitor and controller

LUTs 182,400 1,341 406
FFs 182,400 1,166 522
Mem. bits 14,625,792 2,108,416 524,512
Pwr (mW) - 105.97 41.83

Table 2.1. Resource use and power consumption on a Stratix IV FPGA

be seen that the correct hash value is matched twice, but the third hash value is

incorrect, indicating a branch to an unexpected section of code. As a result of this

detection, a recovery signal is generated, notifying the processor that the process

should be terminated.

2.4.4 Monitoring System Resources

To provide some context regarding the amount of overhead required by the mon-

itoring system relative to the processor, hardware results of the system reported by

the Altera Quartus II tool are shown in Table 2.1. The lookup table (LUT), flip flop

(FF), and memory resources required for the monitor are appropriate compared to

the processor core. Dynamic power values are also shown in the table. These power

numbers were generated using Altera PowerPlay.

2.4.5 Discussion of Security Properties

We argue that the system we have designed and prototyped achieves the security

requirements we put forth in Section 2.2.2.

The key observation is that our hardware monitor can detect when a specific task

executes code that is different from the binary. In such a case, the hash value that is

reported from the processor core to the monitor does not match. There is a chance

that the attacker is lucky and the hash matches by coincidence or the attacker is clever

and aims to construct code that matches. This action, however, is very difficult to

achieve in practice and can be defeated by hiding the hash function [34]. In Chapter
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3, we introduce a technique to add diversity to hardware monitoring systems in a way

that even a successful attack to a particular application on one system would fail on

other systems. If the monitor detects deviation from the binary, then the processor

is signaled to stop execution of the attacked task. Thus, SC1 (no execution of attack

code) is achieved.

Our system supports multiple tasks that are switched dynamically by the operat-

ing system. The hardware monitor follows along in sync and associates the current

task on the processor core with the correct monitoring graph. Thus, we achieve SC2

(secure processing for multiple tasks).

Finally, when an attack occurs, the hardware monitor informs the operating sys-

tem about the attack and the targeted tasks are stopped using a conventional task

termination mechanism (similar to the kill command). This mechanism is specif-

ically designed to not affect other tasks. Thus, SC3 (isolation of attacked task) is

achieved.

We rely on the limitations of attacker capabilities, such as AC4 and AC5 (no

tampering of operating system or hardware monitor), to ensure that an attacker

cannot circumvent the security mechanisms we have put in place.

2.5 Summary and Conclusions

In this chapter, we presented security hardware for embedded processors that ex-

ecute multiple processes under the control of an operating system. Our monitoring

approach allows the operation of each process to be tracked at the instruction execu-

tion level. If a deviation from the expected instruction execution sequence is detected,

the monitor can quickly identify it and notify the processor to initiate process termi-

nation.

A significant contribution of the work is the inclusion of multi-context support in

the monitoring system. Monitoring state for each process can be quickly saved during
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a process context switch and previously-stored state can be reloaded. We document

the specific steps needed to ensure synchronization between the processor and monitor

to ensure that each process is always protected during execution. Using prototyping,

we show that our system is effective for multiple processes managed by an embedded

OS. A stack smashing attack is identified and suppressed. The monitoring system

does not impact application execution time.

In this chapter, we assumed that the operating system is a secure entity and the

main vulnerable point of an embedded system, is the applications running on top of

that operating system. In Chapter 3, we revisit this basic assumption that considers

the operating systems secure. In two different scenarios, we show how both a real-

time embedded operating system such as µC/OS-II and a full-scale general purpose

operating system such as Linux can also be vulnerable against attacks. We also

expand our hardware monitoring system accordingly in each scenario to ensure the

security of the system in presence of external threats targeting those vulnerabilities.
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CHAPTER 3

ADDRESSING VULNERABILITIES IN THE
OPERATING SYSTEM

The Internet of Things (IoT) represents the convergence of cyber-physical systems

(CPS), which control physical processes, and the Internet, which provides global

interconnectivity for access to data systems. Embedded systems are at the core of any

IoT solution as they provide the necessary computational power at the location where

devices interact with the physical world. Due to their deployment in the environment,

these embedded systems are typically constrained in their computational resources

(performance and/or energy) but still connected to a network to interact with the

other components of the IoT solution.

There are three aspects that are of particular importance when talking about the

security of IoT devices. First, the IoT devices are connected to the Internet and thus

vulnerable to remote attacks. Second, these embedded systems typically do not have

the processing capacity or power budget to run software-based defense mechanisms,

such as virus scanners or intrusion detection systems. Such software-based solutions,

although very commonly used as security solutions in network-connected workstation

and server computers, do not seem very suitable for IoT devices. Third, despite their

limited processing capability, the collective power of IoT devices is enormous due to

the big number of instances deployed in different environments and for a variety of

applications. Therefore, in case they go rouge, the implications could be catastrophic.

As discussed in Chapter 2, an effective defense mechanism that has been developed

in related work is “hardware monitors”. These monitors are logic components that
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are co-located with the embedded system processor core and track the execution of

software. Hardware monitors require no change or addition to the software that is

run on the processing system.

Hardware monitors were initially introduced to protect embedded applications

running on top of a bare metal or simple firmware-based embedded system. However,

given the ever-changing nature of IoT applications and the recent advancements in

the technology used in IoT devices, the assumption of having a single embedded

application running on bare metal or a simple firmware does not fit the characteristics

of these modern devices anymore.

In an attempt to bridge the gap between the security requirements of IoT devices

and the available security solutions, in Chapter 2, we introduced a novel hardware

monitoring system which had the capability of monitoring multiple tasks running on

top of an embedded operating system. We showed how that monitoring system was

able to stay in sync with the processor core throughout the core’s entire process-

ing cycle and during the context-related operations such as process creation, context

switching, and process termination. We finally showed the effectiveness of this ap-

proach in defeating a buffer overflow attack in practice, using an FPGA prototype of

the proposed method alongside an embedded processing system.

In this chapter, we further expand our proposed hardware monitoring approach

to accommodate to yet another security need of today’s IoT devices: the security

of the system amid the vulnerabilities within the operating systems managing these

devices. In This chapter we explore the challenges of securing a low-end IoT device

managed by a simple real-time operating system. As an example, we use a NIOS II-

based embedded system running µC/OS-II. We show how we can extend our hardware

monitoring solution to not only protect the system while running user applications,

but also continuously monitor the system while the processor switches from a user task
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to the operating system or vice versa, and throughout the execution of the operating

system itself.

We also give a brief introduction to the work published by Provelengios et al [58]

which is a further advancement of the hardware monitoring technique to expand the

applicability of this technique to more advanced embedded systems running a Linux

kernel instead of a lightweight embedded operating system. We also briefly talk about

our future plans to extend this work to accommodate to the security needs of high-end

IoT devices in Chapter 5.

3.1 Hardware Monitoring in Low-End IoT Devices

Observing the recent advancements in the microprocessor technology and the

trend of using microprocessors in IoT devices, it is safe to say that single tasked

application specific processors have no use in today’s IoT systems. Microcontrollers

with single or multiple cores running an operating system are becoming mainstream.

For example, Raspberry Pi Zero [61] which has a single-core Arm 11 [4] processor and

can run a full-scale Linux, can be bought for 5 USD. As a result, the old hardware

monitoring approaches which target simple embedded applications running on bare

metal are no longer applicable to these new IoT devices.

In Chapter 2, we took the first step to address the challenge of securing these

new embedded systems by introducing multi-task support to the current hardware

monitoring solutions. In this part, we are going to expand that monitoring system to

include the real-time operating system as well.

In this part, we present the expanded version of our hardware-based monitoring

system that can track each instruction that is executed by the embedded processor and

check if it matches the expected behavior of the system. To determine what behavior

is correct, we analyze the operating system (OS) and application binaries to create

a monitoring graph for each. If the system is attacked, it necessarily will execute
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instructions that are not part of such a monitoring graph and thus the hardware

monitor can detect this deviation. Our system is able to track the dynamics of the

system (e.g., context switches and operating system interrupts) to ensure that the

monitor can verify the faithful execution of every single instruction on the embedded

processor.

The main contribution of this first part of our work is a lightweight security

mechanism that can track operating system and application execution and detect

attacks at the granularity of individual processor instructions without needing to

know any characteristics of such an attack. Specifically, this chapter presents the

following contributions:

� Design of a hardware-based monitoring system that can detect any deviation

in processing behavior in the operating system or application tasks, even when

caused by previously unknown attacks.

� Prototype implementation of a hardware-based monitoring system on an Altera

DE4 FPGA board using the µC/OS-II operating system to show the feasibility

of this approach.

� Evaluation of the prototype system shows the ability to dynamically switch con-

texts, handle interrupts, and detect attacks while requiring only a few hundred

logic gates and memory comparable to that of the instruction code and causing

a minimal processing slowdown of 6 processor cycles per context switch.

3.1.1 Related Work

The importance of security in embedded environments, such as in IoT, has long

been acknowledged in academic research [43] and by government institutions [22].

Recent attacks on Internet infrastructure exploited vulnerabilities in IoT devices to

launch distributed denial-of-service attacks [63], which highlights the continued need

for novel security solutions in this space.
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Several techniques are used to provide operating system security at run-time. Typ-

ical mechanisms include a trusted computing base and a reference monitor [36]. The

software mechanisms enforce a security policy and access to compute objects, respec-

tively. Dynamic information flow security [70] can be applied to operating systems

to prevent data from input channels from being used as instructions or jump targets.

A data-centric approach adds security information to storage locations and registers

to track security levels [75]. A more recent approach uses a neural network to eval-

uate use patterns for the processor program counter and cycles per instruction [84].

Anomalous operating system behavior can be observed from these parameters. The

Tamper Evident Processor [76] tags data values with hashes to identify unexpected

changes. These values are used to identify OS data modifications.

The idea of using a hardware-based monitoring system to detect processing devi-

ation is certainly not new: Monitors have been used to track function and system call

sequences (e.g., [64]), to verify checksums over basic blocks (e.g., [6]), and to validate

execution at a per-instruction level (e.g., [41]). What is new in our work is that we

extend our instruction-by-instruction level hardware monitoring approach for an envi-

ronment of complex, interacting software components (i.e., multiple processing tasks

running on an operating system). Such a fine-grained monitoring approach has not

previously been demonstrated for a full-scale operating system with multiple tasks.

Our previous work in [73] and the work presented in [31] consider multiple processing

tasks but do not monitor the operating system itself, which is often the target of at-

tacks. Coarser-grained approaches have considered operating systems and processing

tasks, but do not track processing behavior at the level of individual instructions,

which opens them up to vulnerabilities, such as described in [14], where attacks have

been executed on network processors using only a few instructions of malicious code.

A qualitative comparison of related work and our contribution is shown in Table 3.1.
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Table 3.1. Qualitative comparison to related work.

malware
Arora et al [6] Mao et al [41] Hu et al. [31]

Our previous this
scanner work [73] work

technique software hardware
overhead high low
granularity I/O basic block processor instruction
programs multiple single multiple
OS support yes no yes
OS monitor yes no yes

3.1.2 System and Security Model

To provide context for our design that we describe in Section 3.1.3 and evaluate

in Section 3.1.4, we briefly discuss the system architecture, the construction of a

monitoring graph, and the security model that is the basis for our work.

3.1.2.1 Monitoring Graph Construction

The basic idea of hardware monitoring is to compare system behavior against a

golden indicator. Here we use a fine-grained indicator called a monitoring graph.

This graph is a deterministic finite automaton in which the states are the assembly

instructions and edges are the possible transitions between those instructions. It can

be constructed by analyzing the binary code of an application. A big challenge in

graph construction is resolving indirect control flow instructions where the target

address of an instruction is determined by the content of a register. To handle these

instructions, source code analysis, profiling, and binary code emulation [72] can be

used. The graph extraction process is discussed in detail in [13].

3.1.2.2 System Architecture

The system architecture of our hardware monitoring system is shown in Fig. 3.1.

The processor core reports each executed instruction to the hardware monitor which

compares the instruction against an entry in the monitoring graph. In the case of
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Figure 3.1. System architecture of embedded hardware monitoring system that can
validate correct execution of applications and operating system.

deviation for an expected graph traversal due to attack, a recovery procedure is

initiated, as discussed in Section 3.1.4.

Such a hardware monitoring approach has been described in related work [6,41,64].

We choose the per-instruction monitoring approach proposed in [41], rather than the

per-basic-block monitoring presented in [6] or the system-call monitoring presented

in [64], to ensure fast response to attacks. Also, we use the 4-bit hash of the processed

instruction for reporting described in [34] (rather than the full instruction word) to

reduce memory requirements. Finally, we use the security techniques described in [34]

to prevent an attacker from tampering with the monitoring graph to avoid detection.

The challenge for this system, which is the main novelty over related work, is the

need to associate the current processing context (operating system or one of multiple

applications) with the correct monitoring context. As illustrated in Fig. 3.1, each

application and the OS have their own monitoring graph (and associated monitoring

state). When the processor switches between application and operating system pro-
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cessing (e.g., due to context switch, interrupts, etc.), the hardware monitor needs to

follow along with these dynamic changes.

3.1.2.3 Security Model

Having described the system architecture and the construction of a monitoring

graph, we consider security properties that are tied to the security model. The security

requirements of our system are:

• SR1: The system should only execute code that belongs to the operating system or

any of the validly installed applications.

• SR2: Any attack that introduces malicious code should be detected and stopped.

The attacker capabilities that we assume are:

• AC1: An attacker has access to the embedded system through any input/output

channel.

• AC2: An attacker can tamper with application and operating system binaries loaded

into the main memory, the processing stack, and data memory.

In our work, we also assume the following limitation on attacker capabilities:

• AC3: An attacker cannot tamper with the monitoring graph (e.g., by using the

techniques from [34]).

In addition to these security requirements, there are performance requirements,

such as low implementation cost and low performance overhead, to make the system

practically useful. The hardware monitoring system described in the following section

meets these requirements as we show in Section 2.4.

3.1.3 Monitor Design

This section describes the various aspects of our hardware monitor design in detail.
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Figure 3.2. Detailed view of multi-context monitoring system.

3.1.3.1 Operating System Task Management

The key aspect of our monitoring system is its ability to monitor both user and

operating system tasks. Task switching can be initiated by the operating system (e.g.,

new user task is scheduled), by applications invoking system calls, or by external

events (e.g., timer or external interrupt). In the first two cases, the context switch

happens synchronously, meaning that the instruction after which the context switch

occurs is known. Therefore, the appropriate information can be provided to the

hardware monitor prior to the event by adding a small piece of code to the OS and

the applications. However, in the latter case, the context switch can happen with no

prior notice.

Context switch procedure on the hardware monitor includes saving the state of the

monitoring graph for the code currently being executed and switching to the graph

for the next processor task. Since interrupts can happen asynchronously, this whole

procedure should be done seamlessly and without any coordination between the main
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processor and the hardware monitor. It also must be ensured that monitoring is

synchronized with OS task execution following OS context switch operations such as

register file save and restore.

Our OS monitoring approach has been developed for µC/OS-II, a widely used

embedded operating system. All the OS internal functions (e.g. task scheduling),

interrupt service routines, and system calls, handling software traps were continuously

monitored.

3.1.3.2 Multi-Task Hardware Monitor System

A detailed view of our monitoring subsystem is shown in Fig. 3.2. The portions

of the monitoring system can be split into: monitoring hardware, which checks the

per-instruction operation of the companion processor; graph memory, which stores

state information about monitoring graphs; sequencing logic, which determines the

next state in the graph; processor interfaces, which coordinates with the processor

when context-related information is received; and bookkeeping tables, which associate

monitoring graphs with specific user and OS tasks. The tables also keep track of

the monitoring status for each graph. Monitoring graphs can be loaded into a secure

memory from external memory via a cryptographic coprocessor. Activity in the

monitoring hardware is controlled by a finite state machine. We have implemented

this system and evaluated its performance on a DE4 FPGA board.

For each executed instruction, the monitoring hardware checks the instruction

versus an entry in the associated monitoring graph. If an unexpected result is deter-

mined from the comparison, the instruction execution is flagged as a possible attack

and the processor is either reset or interrupted. Graphs are loaded into slots in the

graph memory. Once loaded, the starting address of the slot is associated with the

graph ID (GID) of the appropriate graph in the bookkeeping tables.
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Once the OS creates a new task, it sends a message to the hardware monitor

with the process ID (PID) of the newly created task and its relevant graph ID. Then

the hardware monitor loads the appropriate graph into its graph memory if it is not

already resident and associates this PID with the received GID in the bookkeeping

tables. These bookkeeping tables are consulted and updated during a context switch.

3.1.3.3 Context Switch Handling

In the processor, context switches can be triggered by three different events: Inter-

rupts, System Calls, and the Scheduler resuming a user application. Next, we discuss

how the hardware monitor follows the processor’s context switch in each case and

thus ensures the security of the system continuously.

• Interrupts: The most frequent triggers of context switching are interrupts. Since

interrupts happen asynchronously, the physical interrupt signal (IRQ) is presented to

both the processor and the monitoring hardware. The ISR monitoring graph is always

resident in monitoring graph memory. If the monitor detects an illegal instruction

execution during the execution of the ISR, it resets the processor. The processor

can elect to disable interrupts. In this case, the processor writes to a register in

the monitor indicating that it should ignore future IRQ strobes. The monitor keeps

tracking the processor until the processor writes the disable interrupt command into

its status register.

• System Calls: Another source of context switching is system calls. During these

calls, the user function is suspended until the operating system returns control back

to it. For monitoring, system calls are assigned a GID and control is passed to a

monitoring graph for the system function. When a user task calls a system func-

tion, the GID of the function is determined from a field embedded in the user task

monitoring graph for the executed instruction. Once the GID for the system call is

determined, the hardware monitor saves the state of the current task’s monitoring in
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the bookkeeping tables, finds the memory slot holding that system call’s graph using

its GID and starts traversing that graph. During the automatic loading of the system

call’s monitoring graph, the CPU is stalled by the deactivation of the Done signal

from the monitor.

• OS Scheduler: The most common source of context switches is the OS user task

scheduler. The two most frequent invocations of the OS scheduler are from the timer

ISR and an application’s system call to yield the processor. When the scheduler

is invoked, it chooses the next process to execute. In µC/OS-II, a priority-based

scheduler is used, although round-robin or other approaches are also possible. When

the next task is determined, the processor forwards the task’s PID to the monitor. The

monitor identifies the appropriate monitoring graph by consulting the bookkeeping

tables. Once the monitoring graph information is in place, the context switch is made

and monitoring is switched from the ISR or system call monitoring graph to the graph

for the user task. The processor is notified that it can proceed via the Done output

from the monitor.

3.1.3.4 Recovery

When an attack is detected, the monitor signals a reset to the processor. For ap-

plication processes, the operating system can simply kill the process and use internal

mechanisms to recover memory and restart the application. Many embedded appli-

cations can recover from such a restart. If necessary, more complex checkpointing

and recovery mechanisms can be implemented. If the reset occurs during operating

system processing, then the entire system needs to be restarted.

One concern with the recovery process is that a simple attack (e.g., caused by a

small number of I/O operations) can cause a costly recovery operation (e.g., rebooting

the system). An attacker could use this as a denial-of-service mechanism. However,

the hardware monitoring system ensures that the attack does not succeed (i.e., no
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Interrupt occurs Monitor matches the 
next instruction

Monitor starts its context 
switch 

CPU stalls while the monitor 
is performing context switch

Monitor finishes context switch and 
matches  firs t instruction in ISR

Figure 3.3. Context switch interactions between processor and monitor.

Monitor detects  the deviation from 
monitoring graph and asserts reset flag

Figure 3.4. Attack on processor system, which is detected by hardware monitor.

malicious code is executed) and no attack vectors beyond this denial of service are

available to an attacker.

3.1.4 Prototype Implementation

We have developed a prototype implementation of the hardware monitoring sys-

tem to show its effectiveness in providing security to embedded operating systems

and their applications.

3.1.4.1 System Setup and Attack Scenario

Our system consists of a simple NIOS II soft processor, which is augmented by our

hardware monitor. The system is described in Verilog and implemented on Terasic

DE4 FPGA board utilizing an Altera Stratix IV FPGA. To install new binaries and
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graphs, another NIOS II core with a dedicated RSA decryption engine for secure

hardware monitor loading is co-located with the main processor and the hardware

monitor. The role of this co-located processor is to read encrypted binaries and graphs

from an SD card, decrypt and verify them, and feed them to the main processor and

the hardware monitor. Security installation of the binaries and graphs are discussed

in detail in [34].

To test the ability of the hardware monitor to detect runtime attacks, we imple-

mented a format string attack scenario [18]. Exploiting the vulnerability in snprintf

function, we overwrite the first instruction of the interrupt service routine and replace

it with a call to an arbitrary function which prints a simple message on the console.

In a practical attack, this redirection of control flow can be used to execute arbitrary

attack code.

3.1.4.2 System Operation

Under normal operation, our hardware monitor follows along with the context

switches that occur in the operating system. When switching from an application

process to the operating system (or the other direction), the current monitoring con-

text is stored and the new monitoring context is loaded.

Fig. 3.3 shows the interactions that take place during such a context switch. Our

hardware monitor is blocking in the sense that the embedded processor stalls if the

processor switches between contexts more quickly than the monitor (see cycles 10–

16 in Fig. 3.3). While this stalling causes a slight overhead (see Section 3.1.4.5), it

ensures that no instruction is executed without being monitored.

3.1.4.3 Detection of Attack

When the processor is being attacked and the execution of attack code is at-

tempted, the monitor reports an instruction execution that does not match with the

monitoring graph of the application binary or operating system that is currently ac-
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Table 3.2. Monitoring graph sizes for operating system and applications.

number of number of graph size
instructions graph entries (bits)

µC/OS-II 22,913 23,625 850,500
basic math 10,446 11,563 416,268
bitcount 6,731 7,823 281,628
qsort small 7,113 9,055 325,980
qsort large 7,302 9,116 328,176

tive. Fig. 3.4 shows such an attack detection. In particular, at cycle 18, there is a

difference between the reported hash value (0x0008, i.e., 3 in one-hot coding) and the

acceptable hash values (0x0800, i.e., 11 in one-hot coding). Thus the reset signal is

asserted.

These results show that the security requirements (SR1 and SR2 in Section 3.1.2.3)

are met. In particular, as long as the attacker cannot modify the monitoring graphs

(AC3), any change in the processing system (AC1 and AC2) that leads to any change

in processing behavior can be detected by the monitoring system.

3.1.4.4 Monitoring Graph for Benchmarks and the OS

Using the graph extraction method described in [13], we extracted the monitoring

graph for µC/OS-II and a set of benchmarks from [28]. To run the benchmarks on

our NIOS based platform, minor modifications were performed. For example, our

system does not have a file system. Therefore, we had to use static predefined data

sets instead of reading from files. The number of instructions, the number of graph

memory entries, and the total graph sizes in graph memory for each benchmark and

the OS are shown in Table 3.2.

3.1.4.5 Monitoring System Overhead

There are two types of overhead that we need to consider for our system. One

overhead is the additional on-chip area that is required by the hardware monitor.

This area consists of the logic necessary to implement monitoring functionality and
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Table 3.3. Resource use on a Stratix IV FPGA.

Available Nios II w/o HW monitor Secure HW
on FPGA HW mon. + controller mon. loading

LUTs 182,400 2,997 764 2,603
FFs 182,400 3,200 922 2,936
Mem. bits 14,625,792 2,199,552 2,580,288 977,332

context switching and the memory that is necessary to store monitoring graphs and

contexts. We show the resources necessary for implementing the hardware monitor

in Table 3.3. The hardware monitor requires less logic than the embedded processor

since its functionality is much simpler. It does require comparable memory resources

because the monitoring graph needs to be stored in a format that allows fast transition

between states (within one processor cycle). In addition, the system requires a mech-

anism for securely loading monitoring graphs (to avoid tampering by an attacker).

This security mechanism requires resources comparable to that of the processor and

is shown in the final column of the table.

From these resource figures, the hardware monitoring system may seem relatively

expensive to implement. However, the absolute resource use is very small. Also,

the cost of the monitor does not increase with a higher-performance processor. For

example, a higher-end processor may require more logic and have significantly more

data memory, but the monitoring system would require the same amount of resources.

Also, the secure loading system would only be required once when using a multi-core

embedded system. Thus, the overall resource consumption is practically feasible.

The other overhead is the processing delay that is introduced by stalling the

processor core during a context switch (see Section 3.1.4.2). The delay for an interrupt

on the processor (without any monitoring in place) is 6 cycles. As Fig. 3.3 shows,

an additional 6 cycles of stalling is introduced by the hardware monitor which is not

comparable to the hundreds of cycles needed to execute the ISR itself. The effect of

this additional delay depends on the frequency of interrupts in the system. It should
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be noted that the original NIOS based system had the highest possible clocking rate

of 198MHz and adding the hardware monitor and the cryptographic processor to it

did not impose any slow down in terms of maximum clocking frequency.

These results show that our hardware monitoring system, which can detect any at-

tack that changes processing behavior, can be implemented with reasonable amounts

of additional hardware resources and practically no performance degradation on the

system.

3.2 Hardware Monitoring in Mid-Range IoT Devices

In this chapter, so far, we described a hardware monitoring approach to protect

embedded systems running a lightweight embedded operating system. Running an

operating system enables such embedded systems to run multiple tasks at the same

time. The main contribution of the work presented in this chapter was to extend the

hardware monitoring solution proposed in Chapter 2 to seamlessly follow the execu-

tion of the code (application of OS) running on the embedded processor throughout

the entire operation of the system.

The embedded system we described here was a good representative of low-end

embedded systems. However, there are other types of embedded systems already in

use whose characteristics do not quite match the representative system we discussed

here. The main difference between such embedded systems and our represented sys-

tem mostly relies on the amount of processing power they have. Having more resources

enables embedded systems to run more complicated operating systems which conse-

quently provides a better platform for a variety of embedded applications. One of

the most prominent classes operating systems in the jargon of embedded systems is

distributions of Linux kernel. We explore the challenges of monitoring an embedded

system running Linux in a separate work [58]. The main barrier we faced in that work

was the big size of the Linux codebase which results in a big monitoring graph for the
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kernel. Using the onchip memory available on the FPGA for storing the monitoring

graph, we could not afford such a high memory requirement. One compromise we

made in that work was to limit the scope of the monitoring to the system calls as the

first line of defense in the OS.

3.3 Summary and Conclusions

In summary, embedded systems are particularly vulnerable to attacks. Their

limited resources do not allow the use of conventional software-based defense mecha-

nisms. In this chapter, we presented a hardware-based security mechanism that can

ensure correct execution of applications and operating system code at the granularity

of individual instructions. Our prototype system shows that the proposed mechanism

is feasible for these highly dynamic environments and effective in detecting any at-

tack, even those that were previously unknown. We believe that this work presents

an important step towards secure embedded processing systems for a broad range of

applications domains.
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CHAPTER 4

A LIGHTWEIGHT PAYMENT VERIFICATION
PROTOCOL FOR BLOCKCHAIN TRANSACTIONS ON

IOT DEVICES

Over the past two decades, the idea of Cyber-Physical Systems (CPS) and their

use in a broader network, known as the Internet of Things (IoT), has attracted a

lot of attention as the technological foundation to address many important societal

problems relating to the environment, healthcare, transportation, etc. [27, 60, 65, 67,

80]. Fundamentally, IoT systems interconnect three types of components: sensors

that detect or measure a physical property, computation that receives sensor data

for processing and making control decisions, and actuators that act in the physical

world in response. These three steps of sensing, computing, and acting can vary

vastly in their implementation based on the IoT application and use case. However,

the basic control loop that spans the physical and computational world can be found

throughout the IoT space.

Conventionally, each IoT application needs to deploy its own set of sensors and

actuators in the environment, provide network connectivity to them, and implement

its computation/control algorithm on a dedicated computing system. The capital cost

of setting up such vertically integrated IoT solutions can be a significant impediment

to the adoption and wide-spread use of IoT-based solutions. In order to achieve large-

scale use of the Internet of Things, we have argued that it is equally important to

enable a horizontally integrated Internet of Things [78].

Horizontal integration allows for IoT components that belong to different admin-

istrative entities to be combined together dynamically to implement a new IoT appli-
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cation. For example, an autonomous drone could use a local weather sensor to query

wind conditions to determine its flight path. Clearly, deploying wind sensors along

all the potential paths of such a drone would be cost-prohibitive. However, reusing a

weather sensor, which has already been deployed for local weather forecasting or an

agricultural monitoring application facilitates this new IoT application without the

need for a new sensor deployment. In the IoT industry, we see the first steps towards

such a common IoT infrastructure on the computation side. Several vendors, such as

Amazon IoT as part of Amazon Web Services [2], Microsoft Azure [44], and Google

Cloud IoT [26] offer cloud-based IoT platforms that remove the need for dedicated

computing infrastructure. A logical next step is to develop environments that also

allow sharing of sensors and actuators.

A key question in horizontally integrated IoT systems is why anyone would want

to share access to their sensors or actuators. Some systems, such as the early Internet,

rely on all users to cooperate for the common good. Such a premise is difficult to

maintain in IoT environments, where sensors and actuators may have significant

costs of deployment and operation. Thus, it is critical to develop a basis for economic

transactions in IoT. Access to sensors, actuators, and computation can be offered as

services that IoT users and their applications can access in return for payment.

As we monetize the data collected by these devices and get financial transactions

involved in the context, these IoT devices become attractive targets for attackers.

In the previous parts of this work, we focused on how to strengthen the hardware

platform of these IoT devices against remote attacks. While a hardware monitor can

make sure that the running software is sticking to its original intended behavior, it

is of no use if the software is not protecting the assets it controls properly and leaks

information which could jeopardize the privacy of those assets.

Clearly, there are many interesting technical questions on how to build a fully

interoperable, horizontally integrated IoT environment. For example: How can we
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build an IoT marketplace so that applications find suitable services [79]? How can

we achieve interoperability between components? How can we manage resources on

actuators? How can we achieve privacy and security? We have alluded to some of

these challenges in prior work [56, 78] and by no means do we or the community

have answers to all of them yet. In this chapter, we put some of these challenges

aside and focus specifically on the question of how to implement economic transac-

tions between IoT components that belong to different administrative entities. In

particular, we consider the challenge that many typical IoT components are based on

low-end embedded systems with limited computational and communication resources.

Thus, we aim to find solutions that limit computational demands and that reduce

communication through a decentralized design.

We present a Ticket-Based Verification Protocol (TBVP), a technique for enabling

economic transactions in IoT systems that can meet practical constraints. TBVP uses

blockchain [49] technology as the foundation for establishing an economic value for

IoT transactions. However, running a blockchain client requires high processing ca-

pability as well as high network bandwidth, demands that are not always available to

IoT devices. By introducing two logically separated entities, a contract manager and

a transaction verifier, in TBVP, we reduce the demand for running a blockchain client

to only one entity per administrative domain. As a result, we reduce the processing

requirement of the IoT devices to simple encryption/decryption and signature veri-

fication. By doing so, we enable any IoT device, regardless of processing power and

available network bandwidth, to horizontally integrate in an IoT economic ecosystem.

The specific contributions of our work are:

� Design of a Ticket-Based Verification Protocol that enables performance-constrained

IoT devices to participate in financial transaction in an IoT ecosystem.

� Implementation of a prototype system that realizes blockchain-based transac-

tions on typical low-end embedded systems.
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� Presentation of results showing that the proposed approach is effective in per-

forming payment transactions with low performance requirements.

Our work shows that our TBVP system is an effective approach to enabling eco-

nomic transactions in an IoT system. The economic relationships that can be es-

tablished using such transactions enable interactions between IoT components from

different administrative entities and thus enable horizontal integration in future IoT

systems.

The remainder of this chapter is organized as follows. Section 4.1 briefly dis-

cusses related work. The connection between horizontal integration and the need for

economic transactions is argued in Section 4.2. Section 4.3 describes the current state-

of-the-art blockchain solutions and their drawbacks. The details of our Ticket-Based

Verification Protocol and how it is able to address those drawbacks are discussed in

Section 4.4. A prototype implementation and its results are presented in Section 4.5.

Section 4.6 summarizes and concludes this chapter.

4.1 Related Work

An economic transaction encompasses several aspects: typically, there is a com-

modity or service that is provided and a payment that is given in return. In the

context of information technology systems, these transactions are sometimes referred

to as “smart contracts” [71]. The idea of paying for access to IoT components was de-

scribed in our work [79] and later by Worner et al. [82]. The confluence of embedded

system technology, cryptocurrencies, and smart contracts is described by Omohun-

dro [52]. A brief survey by Conoscenti et al. describes some work in this area [17].

The work by Zhang et al. [85] describes an e-business architecture that focuses on

smart contracts in IoT systems. The concepts of blockchains are referenced in this

context, but no clear use or deployment ideas are provided.
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The work by Christidis et al. [16] describes the use of blockchains to establish

trust in an IoT system to facilitate sharing of services and smart contracts. Similarly,

Bahga et al. [7] use blockchains in an Industrial Internet of Things (IIoT) context

to achieve trust among components. Neither work uses blockchains in an economic

sense, i.e., there is no explicit exchange of payment between components. The work

by Huckle et al. [35] describes how the Internet of Things can use blockchains to

enable applications for the sharing economy. This work has a similar goal as ours,

i.e., enabling economic rewards for all players in an ecosystem, but proposes to use IoT

components to enable payments (e.g., near-field communication to authorize credit

card payment). We aim to enable economic exchanges between IoT components for

use of IoT services.

The idea of using offchain transactions to reduce the overhead of these transactions

is described by Heilman et al. [30]. The Raiden Network described in [29] uses offchain

transactions to reduce transaction overhead. This work describes a simple transaction

scenario for IoT systems, however its processing power requirement and network

traffic consumption make it almost impossible for such solutions to be adopted in IoT

setups where low-end devices are used. Our work describes a protocol that enables

IoT devices within different administrative domains to exchange cryptocurrencies

and data regardless of their processing capability and available network bandwidth

by introducing a logically centralized gateway within each administrative domain.

4.2 Horizontally Integrated IoT

Before presenting the details of our TBVP architecture in Section 4.4, we briefly

discuss the value of horizontal integration in IoT and the economic relationships that

are formed among IoT components.
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4.2.1 The Need for Horizontal Integration

Deployment of IoT solutions can be expensive since sensors, actuators, and com-

putation components are necessary. Traditionally, each application uses its own com-

ponents. Switching from dedicated computation infrastructure to cloud-based com-

putation platforms can reduce some of this cost. However, each application still needs

to set up and maintain its own set of sensors and actuators in the environment. An

alternative approach, which can make this investment more cost effective, is to share

that platform with other IoT applications. In order to facilitate that resource sharing,

we proposed horizontal integration of IoT components [78,79].

4.2.2 Economic Relationships and Systems

Having well-defined architectural guidelines to ensure interoperability is the first

step in adding support for horizontal integration. However, given the cost of deploying

and operating sensors and actuators, it is not very likely for IoT infrastructure owners

to voluntarily share their resources with others. However, it can make economic sense

for the owners to do so if they can be compensated for the service they provide. We

believe it is crucial to have a proper economic relationship between service providers

and consumers in order to incentivize platform owners to share their resources.

Given the nature of IoT systems, the amount of money being transferred between

IoT systems is typically small, but the frequency and diversity of those transactions

may be high. This is exactly the opposite of what current financial mechanisms are

good at. The current financial systems rely on a logically centralized ledger that keeps

track of account balances and validates and commits transfers between them. The

main drawback of such systems is the cost of setting up and running that centralized

entity. The cost of having such a capable centralized ledger imposes high fees on each

transaction it processes.
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An alternative to the current centralized ledger approach is the use of a blockchain

[49], which decentralizes and democratizes the financial system by letting the parties

themselves take care of the bookkeeping and validating of transactions. By doing

so, blockchains eliminate the need for a centralized ledger and therefore remove the

capital cost of having such a central entity. As a result, blockchains impose lower

overhead or fees for each transaction.

In terms of blockchain networks, there are multiple systems that have been de-

veloped, such as Bitcoin [9], Ethereum [20], and Litecoin [40]. We chose to base our

system on Ethereum since it offers a powerful protocol for building applications in a

decentralized manner. Those applications include, but are not limited to, financial

applications, which are described in more detail in [11]. Ethereum’s cryptocurrency,

Ether, is also one of the most popular cryptocurrencies in the market, which means

it is more likely for our system to be adopted as a solution in practice.

4.3 Current Blockchain-Based Solution

In this section, we first discuss the basics of current blockchain-based networks

and how they operate and address the challenge of high transaction fees and low

number of transactions per second associated with main-chain-based transactions.

Then, we discuss the typical drawbacks of such approaches and how our proposed

solution addresses those challenges.

4.3.1 Operation

As discussed above, a large number of small transactions are necessary for an IoT

system. One efficient way to use a blockchain for a large number of small transactions

is the use of payment channels [10]. A payment channel is useful when two parties

are doing business with each other frequently. The idea is for both parties to keep
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Figure 4.1. Space-Time diagram for money and data exchange through payment
channel as proposed by Poon et al. [54].

track of fund transfers between themselves (in a provable format) and then settle the

balance only once on the blockchain when they are done.

Payment channels can be implemented using a smart contract in Ethereum some-

what similar to joint accounts in conventional banking system but with a slight differ-

ence. The parties open a joint account and each of them initially puts some amount

of money in that. Then, when they do business, instead of transferring actual money,

they transfer ownership of their shares from the funds locked up in that bank ac-

count. In order to avoid paying bank fees, these ownership transfers should be done

offline but in a provable way. Finally, after they are done with their transactions, the

parties go to the bank with the most up-to-date version of their balance sheet and

split the money accordingly. Although this process seems simple at the first glance,

there are some nuanced implementation considerations to make sure nobody is able

to cheat and both parties are able to withdraw their money from the joint account

at any time they want. The space-time diagram for these interactions is shown in
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Figure 4.2. Data structure used in the smart contract.

Figure 4.1. Imagine Bob and Alice are two business partners who have a lot of busi-

ness transactions on a regular basis. They are also willing to use payment channels in

order to avoid high transaction fees associated with regular transactions on the main

chain. The following describes the steps they need to take in order to setup and use

an off-chain payment channel.

4.3.1.1 Setting Up The Joint Account

Alice first provides Bob with her account address so Bob can go ahead and create

a smart contract (the joint account) on the blockchain. After creating the smart

contract, Bob moves some amount of money to that smart contract. This new contract

will be an account by itself, which has an address. By providing that address to Alice,

she can read the code being run on that contract and the amount of money Bob has

moved to that contract. In the contract, there is a variable called commited amount

that determines how much of the money being held by the contract is promised to

Alice. The contract should provide a mechanism for both Bob and Alice to call off the

arrangement and withdraw their share anytime they want regardless of what the other

party wills. It should also provide a mean to change the value of the commited amount

variable determining Alice’s share.
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4.3.1.2 Moving Funds

In order to transfer money, Bob only needs to change the amount of money he

promised to Alice by changing the commited amount variable in the contract. But

sending messages to the contract has to be done through the main blockchain and

therefore imposes transaction fees. To avoid these fees, instead of updating the value

of that variable on the main chain, every time he wants to send a payment, Bob crafts

a message which updates that variable [55]. We call that message commit message

here. Bob then signs that commit message and sends it to Alice (instead of sending

it to the contract). Having that message, Alice is assured that she can claim her

money anytime by just publishing that message, destined to the contract address,

on the blockchain. In our example, it is only Bob who pays Alice, which makes the

payment channel unidirectional. In case a bidirectional payment channel is needed,

an extended version of the contract can be used, where there are two variables, one

for each party’s commitment to the other.

4.3.1.3 Closing the Account

One major difference between the proposed Ethereum smart contract and the

joint accounts in the conventional banking system is that in the conventional banking

system each withdrawal request should be signed by both parties. This requirement

enables each party to blackmail the other by not agreeing to sign a withdrawal trans-

action when the other is willing to. We avoid this problem by letting each party

request to close the joint account by sending a close request message to the contract.

Prior to that message, the party willing to close the account should have submitted

the most recent commit message signed by the other party to update the value of

the commited amount variable. When one party requests to close the account, the

account cannot close immediately since the other party might not have published

their latest commitment messages yet. Therefore, after receiving the close request,
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Figure 4.3. Flow of information and money in (a) current blockchain-based solutions
versus (b) our proposed Ticket-Based Verification Protocol

.

the contract has to wait for a period of time called complaint free period. During this

period, each party has a chance to update their submitted commit message. This

complaint free period will be restarted after a party submits a new commit message.

In order to avoid stalling the contract forever by either parties, we add a sequence

number to each commit message. The contract accepts a commit message only if its

sequence number is bigger than the last message received. Figure 4.2 shows the data

structure used in the smart contract between the parties.

4.3.2 Drawbacks

So far, we have briefly discussed how the state-of-the-art blockchain-based net-

works utilize payment channels to facilitate fast and low-fee transactions between busi-

ness partners. Figure 4.3(a) demonstrates how information and money flow through

the blockchain, as well as off the blockchain, in a conventional payment channel setup.

In such setup, every single participating IoT device (both buyers and sellers) needs

to be connected to the blockchain in order to:

1. Set up a smart contract for every business partnership;
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2. Constantly monitor the blockchain for changes to the associated smart con-

tracts;

3. Receive and validate transactions targeting the smart contracts when providing

a service to another node; and

4. Send a valid transaction to spend from a smart contract in order to purchase a

service or information when buying.

Requiring all the participating devices to be connected to the blockchain network

implies a running blockchain client on those devices. However, running a blockchain

client imposes high incoming network traffic to the node and demands high processing

power in the device. Having access to high network bandwidth is not always the

case for IoT devices and most such devices do not utilize high-end processing units.

Another impediment to widespread use of current blockchain-based approaches is

the need for separate blockchain accounts for each of the devices participating in

horizontal integration. Having multiple accounts means setting up multiple escrow

services and locking up a bigger sum of money for a single administrative domain.

Although internal transactions within payment channels are done off the chain and do

not incur fees, setting up payment channels and closing them should be done through

the main chain and therefore there are fees associated with such operations. We can

summarize the drawbacks of current blockchain-based solutions as follows:

� High communication and processing overhead imposed on IoT devices.

� Strong reliance on the operating system and therefore the lack of portability.

� Requirements for multiple blockchain accounts and therefore high cost of con-

solidating the accounts.

Our proposed Ticket-Based Verification Protocol is designed to address these three

major challenges and therefore paves the way of using blockchain-based transaction
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mechanisms on widely used low-end IoT devices. In the next section, we discuss the

details of our TBVP and describe how it addresses each of these issues.

4.4 The Ticket-Based Verification Protocol

In Section 4.3, we presented existing solutions and summarized the three major

drawbacks of such approaches. In this section, we discuss the details of our Ticket-

Based Verification Protocol and describe how it addresses those three challenges.

4.4.1 Blockchain-Based and Blockchain-Agnostic Operations

The tasks performed by IoT devices to implement financial transactions can

be divided into two categories: blockchain-based and blockchain-agnostic operations.

Blockchain-based tasks include setting up a smart contract, moving money into the

contract, sending commit messages (verified promises) to the contract, and closing

the contract and claiming the funds. In contrast, receiving a commit message from a

partner and validating that message is something that does not need any connection

to the blockchain and therefore is a blockchain-agnostic operation. This logical divi-

sion is shown in Figure 4.3(a), where each IoT node has a Transaction Verifier (TV)

taking care of blockchain-agnostic operations along with a Contract Manager (CM)

which is responsible for handling blockchain-based operations.

4.4.2 Separation of Contract Manager and Transaction Verifier

The IoT node uses the CM unit initially to set up a joint account with a partner

device and deposit funds into that account. After the account has been set up, the

device is ready to provide units of service (it could be sharing data or acting upon a

remote command) in return of provable promises:

� Buyer of service: In order to receive a unit of service, the TV of the buyer

node forms a promise consisting of the cumulative amount of money for the
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past services and the unit being bought. The TV then increments the sequence

number from the last promise, packs that with the cumulative amount, and

signs the package using the secret key initially provided by the CM. The signed

package is then sent to the service provider node to pay for the service being

bought.

� Seller of service: A provable promise is received from the sender. Upon receiving

a promise, the TV checks if the amount of money is what was promised and if

the sequence number has been incremented from the last received promise. If

the promise passes those two checks, the service can be provided to the partner

device in return.

The above steps can be repeated many times. When the two IoT devices are done

with data and money exchange, on the provider side, the TV passes the latest promise

to the CM. The CM then submits that promise to the smart contract to claim its

money. On the buyer side however, there is nothing that the CM should do unless

it does not want to wait for the provider’s CM to close the contract. In this case,

the CM of the buyer can go ahead and submit a request to the contract to close it.

In this case, the buyer’s CM, which is watching the contract on the blockchain, will

have to submit the latest promise it has received in order to claim its share of money.

Tasks performed by the CM are inherently heavy in terms of processing and net-

work traffic consumption as they require constant interaction with the blockchain.

One important observation about these tasks, however, is that they are only used

rarely, which is the key design point of the TBVP. In the TBVP, we define two

separate entities: Gateway and Things. The main responsibility of the Gateway is

to run an instance of CM, whereas Things only need to run a TV instance. In or-

der to participate in horizontal integration, every administrative domain only needs

to have one logically centralized Gateway to support multiple IoT devices acting as

Things. Since CM and TV are not co-located on the same device, local communica-
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Figure 4.4. Blockchain transaction details for experiment 1.

tion mechanisms are used to coordinate. In our approach, communication between

these entities is done using Tickets. Figure 4.3(b) shows the separation of CM and

TV in our approach. Ticket Manager (TM) is a new functionality added to the

gateway in addition to CM. On Things, Transaction Verified has been extended to

Transaction/Ticket Verifier (TTV) to verify the tickets issued by the TM.

4.4.3 Transactions using Tickets in TBVP

Tickets in TBVP are very similar to those in Kerberos [51]. In TBVP, tickets

are used to authenticate legitimate service buyers in a horizontally integrated IoT

setup. Let us assume that there are two IoT devices, i1 and i2, within two different

administrative domains, A1 and A2, respectively. When i1 wants to access a service

provided by i2, it has to send a ticket request for that service to A1’s gateway, g1.

Receiving that service request, g1 tries to establish a payment channel (or in more

complex scenarios, a path of payment channels) between itself and A2’s gateway, g2.

After having a payment channel formed between g1 and g2, the gateways agree on

the price of each unit of service being requested.

Next, g1 notifies the g2 about the maximum number of service units needed. Upon

receiving this request, g2 makes sure that there is enough money available in the joint

account for that number of service units at the negotiated price. Gateway g2 then is-
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sues a ticket, which consists of the following fields: buyer’s address, buyer’s blockchain

account, i2’s ID (assigned uniquely within A2), expiration date, total number of service

units i2 is allowed to provide, price per service unit, and starting sequence number.

The ticket is then signed with the secret key of g2 and sent back to g1. Upon

receiving the ticket, g1 passes the ticket to i1. In addition to the ticket, i1 also needs

the secret key of the blockchain account through which the promised money should

be spent. From this point on, i1 and i2 can directly communicate with each other

without going through the gateways. In order to initiate a connection, i1 sends the

ticket to i2 whose service is desired. Upon receiving the ticket, i2 recognizes i1 as a

legitimate client and can serve it in return for verifiable promises spending from the

account address set in the ticket.

4.5 Implementation and Evaluation

In this section, we describe the implementation of a prototype system implement-

ing our Ticket-Based Verification Protocol to exchange IoT data in return for money.

Our results show that the system works effectively and efficiently, even when using

low-performance embedded system, such as those commonly used in IoT.

4.5.1 Experiment 1: Sharing Sensor Data

In order to show the applicability of our design approach to a real world scenario,

we implemented two IoT administrative domains, called A1 and A2 here. Each of

these administrative domains has a Raspberry Pi 3 acting as Gateway, and a TI

CC3200SF LaunchPad Kit acting as Thing. We refer to the gateway and the thing

of each administrative domains as gx and ix respectively where the index represents

the corresponding administrative domains.

In this scenario, i1 and i2, each reads its temperature sensor. i1 is programmed to

buy i2’s data and compare it against its own reading, for 1,000 samples. Whenever
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the difference between those values is greater than 1° F, i1 turns one of its LEDs on

alarming the discrepancy.

In this experiment, there is a payment channel formed between A1 and A2, into

which, each of them initially deposits 5 Ether. The price for each piece of temperature

data is set to 0.001 Ether which means that A1 should eventually pay 1 Ether to A2

for 1,000 units of data.

Figure 4.4 shows the details of transactions on the blockchain. A2 (address

0xc8cc...) initially creates a smart contract and deposits 5 Ethers into it (steps 1

and 2). A1 (address 0xf454...) then joins the contract by depositing 5 Ethers into it

(step 3). After that, all the communications are done off the blockchain. When done

with the 1,000 transactions, A2 submits the last promise it has received from A1 to

the blockchain (step 4) and requests to close the contract (step 5). A2 then triggers

the contract to close (step 6). Finally, the contract terminates and distributes its 10

Ethers (step 7) according to the commit message it has received in step 4 and sends

6 Ethers to A2 and 4 Ethers to A1.

4.5.2 Experiment 2: Performance Evaluation

After ensuring the correct behavior of our approach, we evaluated the performance

of the Raspberry Pi 3 and the CC3220SF acting as an IoT device in two different

setups: (a) µRaiden [74] (i.e., the traditional block-chain-based approach described

in Section 4.3) and (b) our new TBVP. In order to isolate the performance of each

device under test from the outside impacts, each device has been tested in a separate

experimental setup where all other functionalities within the network have been run-

ning on a desktop computer with Intel Core i7 4770K CPU and 16 GB of RAM. The

network connectivity between the desktop computer and the device under test was

through a local network switch with the desktop computer connected to the switch

through Ethernet and the device under test through WiFi.
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Table 4.1. Number of Operations per Second Performed by Each Device in Different
Roles in µRaiden versus TBVP.

Serving Thing Requesting Thing
µRaiden TBVP speedup µRaiden TBVP speedup

PI 3 7 43 6.14x 5 65 13.0x
CC3220 unavail. 3 new unavail. 4 new

Table 4.1 shows the number of transactions per second performed by different

devices (contract creation time not considered). As summarized in the Table, the

Raspberry Pi is able to serve 43 requests per seconds in TBVP while this number

is 7 while implementing µRaiden which shows 6.14x better performance by TBVP

over µRaiden. On the requesting side however, Raspberry Pi 3 is able to form and

send 65 request packets per second while implementing TBVP. This number is 5 for

the same device performing similar functionality while implementing µRaiden, which

shows 13.0x improvement in performance by TBVP over µRaiden.

Finally, Table 4.1 shows 3 and 4 operations per second for CC3220SF for serving

requests and generating requests while implementing TBVP. On µRaiden, none of

these operations can be implemented on the low-end CC3220SF device. Thus, these

results show that our TBVP enables a new class of devices to engages in economic

transactions in IoT.

4.6 Summary and Conclusion

The cost of deployment and operation of IoT devices is the main impediment

to widespread use of IoT-based solutions in different societal problems. Horizontal

integration of IoT devices is a promising approach to overcoming the cost barrier of

such solutions. Having a proper financial mechanism is the crucial first step in the

horizontal integration of IoT devices. In this chapter, we proposed a Ticket-Based

Verification Protocol which is an extension of the current blockchain-based finan-

cial mechanisms for IoT devices. Unlike the current blockchain-based mechanisms,
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it does not require all the IoT devices to participate in complex interactions with

the blockchain itself and therefore this protocol can be used in various IoT setups,

including those with low-end IoT devices.
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CHAPTER 5

SECURING THE EXCHANGE OF DATA AND
MONETARY VALUES ON MODERN IOT DEVICES: A

MULTI-LAYER APPROACH

Embedded systems are at the core of the Internet of Things. As Moore’s law pro-

gresses, these embedded systems have moved from simple microcontrollers to full-scale

embedded computing systems with multiple processor cores and operating systems

support. Given the fast-paced nature of the IoT industry, the software applications

for these devices are mostly developed with one major goal in mind: delivering the

promised functionality in the shortest possible time. This mindset results in the

security of such applications being usually overlooked.

Recent attacks carried out by IoT devices including the DDoS attack by a Mirai

botnet [3] exploiting CCTV cameras show how vulnerable IoT devices can be. On

the other hand, the large-scale deployment of such IoT devices all over the world

makes the collective power of such botnets very destructive [24,38]. Security of such

devices, like any other network-connected devices, can be discussed on two different

levels: protocol and execution integrity.

In Chapter 4 we described a secure protocol that can be used by a variety of

IoT systems to securely exchange data for cryptocurrencies. However, the use of this

protocol, like any other protocol, can be effective only if the IoT devices follow the

steps dictated by the protocol. Runtime attacks which cause the embedded processor

to deviate from its intended behavior, are one of the main threats to proper execution

of secure protocols.
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In the first two chapters of this work, we described how the current hardware

monitoring solutions are based on the assumption of having an embedded system with

bare-metal execution of a single application. We further explained our approach to

expand the capabilities of hardware monitors to consider multi-application workloads

as well as the presence of an operating system.

Despite this progress in hardware monitor design, the most general case of a

multi-application workload on a multi-core system that is controlled and scheduled

by an operating system has not been successfully tackled. This scenario is particularly

challenging due to the dynamism that is introduced by arbitrary starting and stopping

of processes, interrupts, and scheduling and migration of processes across cores.

In this chapter, we address the challenges of adding a hardware monitoring system

to modern IoT devices running a full-scale Linux kernel on a multi-core processor.

We also show how the Ticket-Based Verification Protocol we proposed in Chapter 5,

can still be vulnerable against runtime attacks despite being secure at the protocol

level.

The rest of this chapter is organized as follows: In Section 5.2, we described the

implementation of the TBVP protocol on a LEON3 processor. We also evaluate the

performance and correctness of the protocol in this section. In Section 5.3, we initially

described how this protocol can be implemented in a way that is vulnerable against

runtime attacks and how those vulnerabilities can be exploited to hijack the system

and cause financial losses. In the second part of the chapter, we describe our hardware

monitor solution to protect this implemenation against those runtime attacks.

In Section 5.4 we extend our hardware platform to utilize a multi-core implemen-

tation of LEON3 soft processor. In this section, we show how the hardware monitor

can seamlessly follow the execution of the TBVP applications on each core of the

system. We then show how the monitor detects and defeat the attack that we intro-

duced earlier in Section 5.3. We also show the seamless monitoring operation during
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a task migration scenario in which the process starts on one core and then migrates

to another and finishes its execution on the new core.

5.1 Related Work

Hardware monitoring has been proposed in the form of monitoring control-flow

integrity [1]. Such an approach does not require additional hardware, but may slow

down program execution and may make program execution non-deterministic, which

is a problem for embedded real-time applications. Hardware monitoring at the level of

basic blocs was proposed by Arora et al. [6]. This approach was improved by Mao et al.

to monitor application execution at the level of individual processor instructions [41].

The need for multiple programs executing on multiple processors was first intro-

duced by Hu et al. [32], albeit in the context of monolithic applications running on

bare metal processor cores. In Chapter 2, we introduced the ability to track multiple

processes managed by an operating system, but with no ability for migration [73].

We further expanded our work in Chapter 3 by introducing the ability to monitor a

simplistic operating system [57]. In the same chapter, we further referenced the first

hardware monitoring system that used a conventional operating system [58]. Due

to the size of the operating system, this work only monitors a limited set of system

calls. In this chapter, we also do not monitor the execution of the operating system,

but focus on monitoring all applications. However, the previous techniques are also

applicable here if necessary. The main aspect of our work that advances related work

is the support for multiple processor cores and the ability to monitor under the dy-

namics that are introduced by an operating system. The aspects of the various prior

works are summarized in Table 5.1.
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Table 5.1. Related Work on Hardware Monitoring.
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verification control flow operations all processor instructions

granularity basic block single processor instruction

target application / OS monolithic application simplistic OS Linux OS

coverage application / OS entire application applications entire OS system calls applications

overhead software high hardware cost low hardware cost

processor single-core multi-core single-core multi-core

5.2 Implementation of the Ticket-Based Verification Proto-

col on LEON3

The essence of TBVP is to remove the burden of communicating with a blockchain,

which is the basis for economic value, from regular IoT devices (defined as things). In

this protocol, designated gateways are the only devices within an administrative do-

main that need to be connected to the blockchain. This blockchain isolation technique

enables a low-end IoT device (in terms of processing power and network bandwidth)

to participate in data and economic values exchanges. Specifically, the space-time

diagram of a TBVP transaction shown in Figure 5.1 shows that interactions between

things do not involve direct communication with the blockchain.

We implemented the TBVP as three separate applications: gateway, seller, and

buyer. We defined two separate administrative domains (we call them AD1 and

AD2 here). In AD1, all functionalities were implemented on a desktop computer

with an Intel Core i7-8700k CPU and 32GB of RAM. AD2 which implemented the

system under test consisted of a desktop computer running gateway plus the LEON3-

based embedded system running an instance of buyer and seller each in a different

experimental setup. The desktop computer used in AD2 had an Intel Core i7-7700k

CPU plus 16GB of RAM. We also used Ropsten (Ethereum testnet) as our blockchain

platform [21].
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Figure 5.1. Space-Time diagram showing contract setup, data/economic-value ex-
change, and contract closure phases.

In our implementations, we emulated the data sources with files. We generated dif-

ferent files on the seller with random values in them. We also assumed that the Unique

Resource Identifier (URI) used between the seller and buyer is a null-terminated string

holding the name of the file on the seller.

To evaluate the correctness of our implementations, we ran two experiments. In

the first experiment, we instantiated an instance of seller on AD1, selling 200 samples

of data, each for 0.01 Ether. The initial contract set up between AD1 and AD2 had

20 Ether in it with the initial contribution of 10 Ether by each AD. The course of

actions taken by the gateways of those two ADs, on the blockchain, is depicted in

Figure 5.2.

In the first step, AD2 (with blockchain address starting with 0xc8) sets up a

contract on the blockchain. The contract is funded later in steps two and three with

10 Ether from each AD. After having those two balance transfers validated by the

blockchain, the systems can start sending each other signed promises spending from
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Figure 5.2. Blockchain transactions for selling 200 data samples.

that balance locked on the contract. All those transactions are exchanged off the

blockchain. Finally, after sending 200 pieces of data from AD1 to AD2, AD1 will

have a signed promise from AD2 transferring the accumulated amount 2 Ether to

AD1’s account.

By sending this signed promise to the contract on the blockchain, AD1 updates

the bookkeeping data structure of the contract on step 4. In step 5, assuming that

there are no more exchanges between these two ADs, AD1 sends a close request to

the contract. This transaction is a notice to AD2 to send a more up-to-date version

of the promise between them in case the one submitted in step 4 was not the most

recent. Finally, in step 6, AD1 sends a poke command to the contract, finalizing the

closure. The closure of the contract results in a self-destruct operation and splitting

the balance held by the contract according to the internal balance sheet maintained

by the contract.

We can see that out of 20 Ether held by the contract, 12 Ether go to AD1 and 8

Ether to AD2 which in turn means that AD2 has paid 2 Ether to AD1. At the end

of the experiment, we also checked the content of the data file retrieved by the buyer

and made sure it was identical to the file originally stored on the seller. The total
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amount of time taken to exchange 200 pieces of data/signed-promises was 2 minutes

and 33.64 seconds.

We also ran the same experiment but with switched roles between AD1 and AD2.

In this new setup, AD1 was the seller and the embedded system in AD2 was the

buyer. In this experiment, the embedded system was able to retrieve the file from

the seller successfully and in return 2 Ether were transferred from AD2 to AD1. The

time it took the systems to exchange data and signed promises was 2 minutes and

25.5 seconds.

5.3 Monitoring the TBVP on a Single-core Processor Run-

ning Linux

Being a part of the data/economic-value exchange makes these IoT devices more

attractive to hackers. Being connected to the Internet also makes these devices very

accessible to a wide range bad actors all around the world. Hacking such a device,

now, can result in leakage of private information that has economic value.

5.3.1 Attacks on Economic Transaction Protocols

When analyzing the TBVP protocol, we can see possible scenarios in which these

devices can be attacked. For example, each device that acts as a buyer needs to

store a copy of the private key of the blockchain account used to set up the contract

between the two administrative domains (contract setup phase in Figure 5.1). By

gaining access to that private key, an attacker will have full access to the Ethereum

account used by that administrative domain.

On the other side of the protocol, we have the seller things. These entities receive

promises from the buyer things, validate those promises, and provide the buyers with

the requested data or access to IoT components. To avoid incurring fees associated

with publishing a transaction on the blockchain, the seller stores the most up-to-date
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promise (which has the accumulated value of all the data provided to the buyer)

locally until the end of the data/economic-value exchange session. At the end of the

session, the seller sends the final promise to the gateway of its administrative domain.

Receiving the promise, the gateway has the option to either close the contract between

the administrative domains and cash out the balance promised to it or just update its

records on the balance between the two administrative domains and keep the contract

open for future exchanges.

In this scenario, if the seller device crashes or loses the promise received from

the buyer, there will be no way for its administrative domain to claim the money it

was promised from the buyer. Thus, the buyer acquired all the data for free. One

possible attack scenario is that the buyer sending promises for the data it requests

until just before the end of the exchange session. Then, the buyer can exploit a

potential vulnerability in the seller’s system to crash the seller (e.g., with a stack

smashing attack) and therefore get away with the data it has received without paying

for it.

5.3.2 Attacks on Embedded Systems and Hardware Monitoring

5.3.2.1 Security Vulnerabilities in Embedded Systems

As discussed in the first chapters, there are a large number of possible attacks on

embedded processors [53]. In this work, we focus on attacks that aim to change the

processing behavior of the embedded system. This category of attacks is very broad

and encompasses several specific attacks (e.g., attacks that use buffer overflows to

smash the processing stack to redirect control-flow to malicious code). This class of

attack not only applies to von-Neumann-architectures with shared instruction and

data memory but also to Harvard architectures that separate these memories and are

commonly used in embedded systems (e.g., “return-to-libc” attacks [12,23]).
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We assume that an attacker uses the I/O functionality of the embedded system

to cause the embedded processor to misbehave. The attack could be based on an

intentional modification of the processor stack (e.g., stack smashing). A controlled

change in the stack makes it possible for an attacker to change the control flow such

that malicious code (e.g., contained in the input if using a von-Neumann architec-

ture) is executed (e.g., processing malicious application code). This type of attack

is frequently used on the Internet to gain access to end-systems via vulnerable soft-

ware. As discussed in Section 5.3.1, a cleverly timed attack of such a type can lead

to insecurities when using IoT protocols that exchange economic value.

5.3.3 Hardware Monitor for IoT Protocols

In this section, we describe the design of our hardware monitor that can ensure

the secure execution of IoT applications running on an embedded processor.

5.3.3.1 System Architecture

The overall architecture of the embedded system augmented with the hardware

monitor is shown in Figure 5.3. In the figure, we can see the embedded processor

(CPU), hardware monitor, and the secure graph loading unit. The role of the secure

graph loading unit is to securely load the content of those graph memories from an

outside source as the CPU starts a new application [34].

There are three main components to the hardware monitor: instruction validation

and sequencing logic (IVSL), switch fabric, and graph memories. The IVSL unit

needs to have access to two pieces of information directly from the CPU: the program

counter (PC) holding the address of the current instruction being executed on the

CPU, and the instruction associated with that address. As shown in the figure, the

datapath of the CPU is tapped to extract that information. Since those two values

are tapped from the datapath, they are always available to the hardware monitor

without needing the CPU to explicitly communicate them to the hardware monitor.
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Figure 5.3. Proposed IoT system architecture with the monitoring system.

The hardware monitor is also connected to the shared bus of the CPU as a pe-

ripheral. That communication channel is used to synchronize the hardware monitor

with the CPU when it comes to context-related operations (initiating a new process,

switching between a process and the kernel, and terminating a process). The shared

bus is also used to trigger a recovery procedure by the hardware monitor in case of de-

tecting an attack on the CPU. The ideal behavioral model of applications is extracted

in the form of monitoring graphs. The second component of the hardware monitor is

an array of graph memories. Each of those memories holds the graph representation

of an application that has to be monitored. Finally, to provide connectivity between

the IVSL and the graph memories, we need a switch fabric which lies between those

two entities.

5.3.3.2 Hardware Monitor Operation

During the course of its operation, the hardware monitor can be in three different

states: active, stopped, and paused. The monitor transitions between these three

states based on the execution information it receives from the CPU. It should be
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noted that the actual state machine implementing the functionality has 12 states.

Those 12 states, however, can be categorized under these three main categories.

Active is the state of the system in which it actively inspects every instruction

executed by the CPU. In this state, the hardware monitor retrieves the graph node

associated with each CPU instruction. The monitor then compares the hash value of

the instruction with the permissible hash values encoded in the graph entry. In case

of a match, it updates the pointer to the next graph entry based on the information

available in the current graph entry and the hash value of the instruction being

executed. In case of detecting a mismatch, the monitor triggers a recovery procedure

on the CPU. The recovery measure can vary from one system to another based on

the requirements of that particular system.

The hardware monitor is in the stopped state when the CPU is executing a task

which does not need to be monitored. This includes the operating system itself and

the tasks that are trusted or have a lower risk of being exploited. It is up to the

system administrator to make that decision and mark the tasks accordingly.

Finally, the hardware monitor may need to hold off following the instructions

from time to time. In such cases, the monitor enters the paused state. In this state,

the monitor does not advance in traversing the monitoring graph as the instructions

are being ignored by the CPU. One example of such cases is when the outcome of

a prior control flow instruction is determined in a pipeline micro-architecture and

the following instructions have been fetched from the wrong execution path. In such

scenarios, all the following instructions have to be flushed out. (They pass through

the pipeline without affecting the state of the system.) When in the paused state, the

hardware monitor has to be ready to re-enter the active state as the CPU resumes

executing the instructions from the right execution path. Different events can trigger

a transition to the paused state. In our work, we call those events pause triggers.
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Pause triggers vary from one CPU architecture to another and need to be chosen and

treated carefully with the knowledge of the target CPU architecture.

5.3.4 Hardware Monitor Data Structure and State Transition

The monitoring lifecycle of an application starts with the operating system (OS)

initiating a new process based on an executable file. If the executable is marked by

the system administrator to be monitored, the OS sends the task init command to

the hardware monitor. This command includes two essential pieces of information:

process ID (PID) of the newly initiated process and the unique graph ID (GID) of the

executable. Assigning a unique identifier (PID) to each process is a common practice

among the modern operating systems that implement the concept of processes.

Graph ID, however, is something new which we introduce to the operating sys-

tem. Each application that has been analyzed and its corresponding graph has been

extracted should also be assigned a unique identifier. At runtime, this identifier is

used by the hardware monitor to choose the right graph memory to retrieve the

application’s monitoring information. There are different ways to implement this

new concept in the operating system. Possible implementations include providing

a one-to-one mapping between executable file names and unique GIDs as a file to

the operating system. At runtime, the OS can read the file and determine the GID

associated with each executable. This mapping can also be hard-coded in the source

code of the operating system when compiling it from its source code. The second

approach offers more security at the expense of less flexibility.

The association between PIDs and GIDs should be recorded in the hardware

monitor. The hardware monitor records those associations in a table where each

entry represents an active task being monitored. For now, each entry needs to have

a field for both PID and GID. Throughout this section, we incrementally add more
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information to this table as we discuss the role of each piece and how it is used by

the hardware monitor.

Every time the OS schedules a new task, it sends a context switch command

along with the PID of the newly scheduled task to the hardware monitor. Using

the PID to GID mapping, the hardware monitor determines which graph memory

to use and sends a request for that graph memory to the switch fabric control unit.

After acquiring access to the right graph memory, the hardware monitor has to load

its internal registers. These internal registers include the 16 registers holding the

starting addresses of the 16 groups of graph nodes within the graph memory. Those

16 addresses are embedded in the monitoring graph of each application.

In addition to those 16 registers, the monitoring graph also has the program

counter (PC) associated with the first instruction of the application embedded in the

graph. The hardware monitor uses that stored PC as a trigger to start monitoring the

application. After initializing those internal registers, the hardware monitor enters

the paused state. In this state, the monitor is waiting for the instruction address

matching the triggering PC register to make the transition to the active state and

start the monitoring operation.

Different states of the hardware monitor and the transitions between them are

depicted in Figure 5.4. An important piece of information which is essential to a

successful transition from the paused state to the active state is the program counter

of the next instruction on the legitimate execution path. That PC can be calculated

differently based on the pause trigger causing that state transition. For example, in

case of interrupts, the PC is the current PC plus 4 (assuming that the CPU is of RISC

architecture with 32-bit wide instructions). To keep track of the resuming program

counter, we need to add another field to our data structure which we call it resume

PC here.
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Figure 5.4. Different states of the hardware monitor and transitions between them.

The final piece of information we need to add to the data structure in the hardware

monitor is a pointer to the graph memory. While in the active state, that pointer is

calculated using the information stored in the graph memory, the hash value of the

current instruction being executed, and the content of the appropriate group address

register. When the CPU switches from one task to another, the state of the hardware

monitor should be saved so when the CPU switches back to the current task later

in the future, the hardware monitor can pick up monitoring from where it left off.

That is why the data structure in the hardware monitor needs another field for the

current pointer to the monitoring graph. Table 5.2 shows the data structure used by

the hardware monitor to keep track of multiple applications.

5.3.4.1 Selective Monitoring

The main drawback of monitoring the applications running on an instruction-

by-instruction basis is its high memory overhead. This high overhead makes this

approach unsuitable for monitoring big applications. However, not all pieces of an

application are equally vulnerable. That is the basis of ARM TrustZone technology

[5]. In our approach, we narrow down the focus of the hardware monitoring to

applications and not the operating system. Other work has addressed the challenge

of monitoring the operating system [57,58].
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Table 5.2. Data structure used by hardware monitor

PID GID graph PTR resume PC

Within applications, we decide on instruction-by-instruction monitoring at the

granularity of functions. When extracting the monitoring graph of an application,

the system administrator can mark functions as trusted or untrusted. Calling a trusted

function from within an untrusted function will result in the hardware monitor making

a transition from the active state to the paused state. In this case, the previous

program counter plus 4 (the execution of the first instruction of the trusted function

is a pause trigger) is saved in the resume PC field of the table entry associated with

the current task. Upon returning from that trusted function to the untrusted calling

function, the hardware monitor is triggered by matching the program counter on

the CPU and the resume PC value and goes back to the active state and resumes

monitoring the task. When marking functions, a function can be marked as trusted

only if all the function calls inside it are to trusted functions. That is why the hardware

monitor does not have to deal with calls from trusted functions to untrusted ones.

5.3.5 Attack Scenario: Stack Smashing Attack

In the implementation of the TBVP, when requesting a piece data, the buyer

forms a packet including the URI of the resource it is interested in, the amount

of money it is promising to the seller, the sequence number of the promise, and a

signature. The signature is calculated based on secp256k1 [77] elliptic curve which

is the standard used by both Ethereum and Bitcoin. The input to the signaure is

a KECCAK-256 [8] hash of the promised amount and the sequence number packed

together. Upon receiving that packet, in the seller application, the packet is passed

to the parse packet function to be parsed. In parse packet, there is a local buffer for

the URI string which is 64 bytes long (assuming that the maximum length of URI is
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Figure 5.5. System console after being hijacked.

64 characters). parse packet then uses the strcpy function to copy the URI into its

local buffer. This is where the code is vulnerable. By sending a packet with a URI

longer than 64 bytes, the buyer can overrun the stack of the seller and potentially

override important information such as return address of the function.

In the source code of the seller, we have a function called dummy function which

is not called during the normal execution of the application. The sole function of

that subroutine is to print a message: “System hijacked!” and return to the OS.

By crafting a proper packet on the modified version of the buyer which is called

attackerBuyer here, we managed to overwrite the return address of parse packet and

redirect the execution flow of the seller from parse packet to dummy function and

therefore have the seller print the message. The system console after being hijacked

is shown in Figure 5.5.

In this attack scenario, the buyer initiates the attack after receiving 150 samples.

Normally, the seller should be able to send the signed promise it has received for

selling 150 samples, to AD2’s gateway which will then be used to earn AD2, 1.5

Ether. However, since the execution of the seller was derailed by the attack, that

promise never made it to the gateway. As a result, when AD1 closes the contract, we

observe that both ADs receive an equal amount of 10 Ether each.

5.3.6 Attack Detection and Recovery

In the next step, we added the hardware monitor to the embedded system. We

used Quartus SignalTap to extract the internal signals of the FPGA. We extracted
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Figure 5.6. (a) Signals extracted from the FPGA board showing the detection of
the attack. (b) Resulting blockchain transactions after detecting the attack.

the monitoring graphs of both seller and buyer applications and loaded them on the

hardware monitor. We ran both scenarios described in Section 5.2 and observed that

the hardware monitor does not raise any false positive flags.

In Section 5.3.1, we discussed how in the case of the seller application, closing the

application under attack is also beneficial to the attacker. To address that, we came

up with a novel approach to dealing with attacks. We added a recovery function to

the seller application. This recovery application is a signal handler registered with

the Linux kernel. Upon receiving an attack signal from the hardware monitor, the

kernel is interrupted. We developed an Interrupt Service Routine (ISR) to handle

the attack cases. This ISR receives the PID of the application under attack from

the hardware monitor and sends a recovery signal to that application invoking the

recovery function.
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Upon receiving the signal, the recovery function retrieves the last validated promise,

sends that validated promise to the gateway, and exits. This way, the gateway has

the chance to claim the amount of money the seller was promised before being at-

tacked. The gateway then submits the promise to the blockchain and follows the

appropriate steps to close the account and receive the funds. Figure 5.6(a) shows the

signals extracted from the FPGA. It shows how the hardware monitor detects the

attack once the CPU starts to execute instructions from the dummy function that

are not a legitimate sequence of instructions that can follow the last instruction of

parse packet. The blue box in the figure shows how the moment the first instruc-

tion in the dummy function (instruction binary value of 0x030000B4h) at the address

0x000281A0h is executed on the CPU, the discrepancy flag is raised in the hardware

monitor. Figure 5.6(b), subsequently, shows how the promise received by the gateway

of AD2 is used to claim the funds on the contract (step 4). It also shows how the 20

Ether on the contract is split between the two parties accordingly (step 7).

5.4 Monitoring the TBVP on a Multi-core Processor

In the previous section, we demonstrated how a vulnerable implementation of the

TBVP can be exploited in the absence of any protection mechanism. We showed

how such runtime attacks can be detected and defeated using our proposed hardware

monitoring solution. In this section, we expand that work to multi-core systems. We

go over the challenges we face when expanding the hardware monitoring approach

to a multi-core system and how we address those challenges. We describe the design

details of our hardware monitor and show how it can seamlessly integrate with a

multi-core LEON3 processor. Evaluating our prototype system, at the end of this

chapter, we show that the hardware monitor can follow the execution of an application

on different cores and follow them when migrating from one core to another with

minimum performance slowdown.
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Figure 5.7. Proposed system architecture for a multi-core LEON3 processor aug-
mented with a hardware monitor.

5.4.1 System Architecture

The proposed system architecture for a multi-core LEON3 processor, augmented

with a hardware monitor, is shown in Figure 5.7. This new architecture can be

seen as an extension to the architecture for a single-core system that we proposed

earlier in this chapter (shown in Figure 5.3). In the multi-core architecture, the

IVSL unit has been replicated to match the number of cores. These IVSL units are

no longer connected to the shared bus of the cores. There is a new intermediary

node, called coordinator, added between the CPU cores and the IVSLs. The role of

the coordinator is to coordinate between the OS running on the CPU cores and the

IVSLs. In Section 5.4.2 we describe the functionality of this module in more detail.

The coordinator module is connected to IVSLs via an internal bus (it is not ac-

cessible to the CPU cores, both for security and performance considerations). The

bus is used for three different purposes: 1- to communicate both commands and

context-related information between the coordinator and the IVSLs when a new con-

text related event takes place on the CPU; 2- to notify the coordinator about an

attack being detected by the IVSLs; and 3- to transfer monitoring state between

IVSLs in case of task migration. The last modification to this model compared to the
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Table 5.3. Data structure used by the coordinator

PID GID CPU ID

singlecore system is the removal of the switch fabric control module. The scheduling

of the switch fabric is now done by the coordinator.

5.4.2 Hardware Monitor Operation and Data Structure

The hardware monitoring operation starts with a new task being executed by the

operating system. In the execve() system call, inside the kernel, the application name

is compared against a list of applications marked by the system administrator for

monitoring. In case the application being executed is in the list, the unique graph

identifier associated with that application (in that list) along with the PID of this new

process and the core ID of the core running it, is communicated to the coordinator in

the hardware monitor. As we have multiple cores, each one of the cores independently

can run execve() and therefore they will end up in a race condition.

To enforce mutual exclusion when communicating with the hardware monitor, we

restricted the communication with the hardware monitor to only take place through

the hardware monitor driver. In the driver, the mutual exclusion is enforced using

spin locks which implement busy waiting locking mechanism only appropriate for

multi-core systems [39].

5.4.2.1 Task Initiation

Receiving the task init command from the CPU, the coordinator makes a new

record in its bookkeeping table, shown in Table 5.3, associating the reported PID,

GID, and core ID. It then forwards that command to the appropriate IVSL via the

internal bus. From this point on, the monitoring takes place on that particular IVSL

without any interventions by the coordinator until the next-context related operation

takes place on the CPU or one of the IVSLs detects a deviation.
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5.4.2.2 Context Switch

Context switch is the second context-related operation on the OS that triggers

communication between the CPU and the monitor. Context switch happens in the

schedule() function inside the kernel. We modified this function to report the PID

of the process it is switching to along with the core ID on which it is scheduling

the process to the hardware monitor. Receiving the context switch command, the

coordinator first consults its table to see if the reported PID is a match for any of

the PIDs currently being monitored. If it is not a match, it means that the process

does not need to be monitored. However, if the reported PID matches one of the

PIDs in the table, the coordinator has to trigger the context switch procedure on the

appropriate IVSL.

In case of a match, the next step would be checking the core ID of this newly

scheduled process against the current IVSL responsible for monitoring that process.

If the process is resuming on the same core, then the associated IVSL is triggered to

perform the context switch and prepare for resuming the monitoring. Alternatively,

if the reported core ID does not match the recorded IVSL, it means that the process

has migrated to another core and a process migration procedure should be performed.

5.4.2.3 Process Migration

Process migration is triggered when the CPU schedules a process on a core dif-

ferent from the one it was running on before. In this case, the coordinator sends a

record retrieve command to the IVSL which was previously monitoring that process

to share the records of monitoring that process on the internal bus. This command

has 3 fields: source IVSL ID, destination IVSL ID, and PID of the migrating process.

After issuing the command, being the bus master, the coordinator grants bus ac-

cess to the source IVSL. Upon finding the communicated PID in its data structure,

the source IVSL puts the GID, graph PTR, and resume PC fields of the entry associ-
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ated with that PID on the internal bus and asserts its data ready signal. Seeing that

data ready signal, the destination IVSL picks up the data from the bus and updates

the entry it has already created (upon seeing its ID on the original command from

the coordinator) in its data structure for that PID. It then automatically triggers a

context switch operation locally. The source IVSL putting the record on the internal

bus also lets the coordinator know that the transfer was successful and it can update

its data structure as well and eventually signal the OS the end of its context switch

procedure.

5.4.3 Attack Detection and Recovery

An ongoing attack is detected when one of the IVSLs detects a deviation from the

ideal model in one of the processes on the system. The same mechanism proposed in

Section 5.3.6 can still be used here. However, since here we have multiple cores we

have to decide which core has to serve the interrupt. On the other had, one of the

promises of monitoring the applications on an instruction-by-instruction basis is to

detect and stop the attack, ideally, once the first attack instruction runs on the CPU.

To speed up the attack recovery in the kernel, instead of having one interrupt

signal going from the hardware monitor to the interrupt controller, we reserve multiple

interrupt lines for the hardware monitor. The coordinator uses each of those lines for

one of the IVSLs. On the other side, in the driver, each interrupt is masked by all

the cores but the one associated with that particular IVSL. By doing this only one

core will serve an interrupt and that core will be the one under attack. This approach

makes sure the core under attack is interrupted as soon as the deviation is detected

by the IVSL and it also does not interrupt the execution of other processes on the

other cores.
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Figure 5.8. Waveform extracted from the FPGA showing the Completion of a task
on core 1.

5.4.4 Implementation and Evaluation

To evaluate this new system, we again defined two separate administrative do-

mains, AD1 and AD2. In AD1, all functionalities were implemented on a desktop

computer with an Intel Core i7-8700k CPU and 32GB of RAM. AD2 which imple-

mented the system under test consisted of a desktop computer running gateway plus

the LEON3-based embedded system running our embedded applications. The desk-

top computer used in AD2 had an Intel Core i7-7700k CPU plus 16GB of RAM. For

the exchanged data, we similarly emulated the data sources with files.

5.4.4.1 Normal Execution on One Core

In the first step, we have to make sure that this new hardware monitor can be

properly integrated with the multi-core CPU. We ran the seller and buyer applications

multiple times to make sure the can run smoothly on the CPU without any false

alarms from the hardware monitor. Checking the behavior of the applications, we

observed that they run with no problem and perform their tasks resulting in the

transfer of funds on the blockchain.
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We also extracted the signals from the hardware monitor to make sure it is follow-

ing the execution of the tasks throughout their entire execution life-cycle. Figure 5.8

shows the completion of the monitoring task for the seller application. In this run,

the kernel scheduled the seller application on core1. As shown in the highlighted area

of the figure , once the CPU executes the instruction at address 0x000112c4, which

is the last instruction in that application, the monitor matches that instruction with

the graph of that application and raises the job done flag. This flag does not serve

any purpose in the internal structure of the IVSL and is only used for debugging

purposes.

5.4.4.2 Continuous Monitoring In Presence of Task Migration

In Section 5.4.2.3, we described how the hardware monitor can follow the task

migration procedure in the kernel without losing track of the application execution

on the CPU. To verify the correct behavior of the hardware monitor, we ran two

instances of the seller application on the FPGA board in AD2. As the application,

initially has to wait for an incoming connection, the application status changes from

ready to waiting right after it start. As a result of that status change, the kernel

removes the associated process from the kernel ready queue as the process invokes a

system call to listen for an incoming connection. We believe that to be the reason

why both instances of the application were originally scheduled on one core (in this

example, core 1) instead of being distributed over both of the cores.

Next, we ran two instances of the buyer application in AD1 and had them connect

to the waiting instances of the seller application in AD2. We noticed that once the

connections are established, the kernel re-balances the load on the cores by moving

one seller process to another core. We captured the operation of the hardware monitor

following a task migration in the kernel using SignalTap. The extracted waveform is

shown in Figure 5.9.
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Figure 5.9. Waveform extracted from the FPGA showing the successful transfer of
monitoring state across two IVSLs.

In the figure, we have highlighted four significant steps it takes for the monitor

to follow the task migration. In the first step, the coordinator puts the PID of the

process migrating along with the source core and the destination core on the moni-

tor internal bus; Bits 0 through 31 represent the PID; Bits 32 through 35 represent

the source core (and therefore the source IVSL) while bits 36 through 39 determine

the destination core of the migrating process. Upon seeing its ID on the moni-

tor internal bus, IVSL0 initializes an entry in its bookkeeping table with the PID of

the migrating task and waits for the source IVSL (in this case IVSL1) to provide the

rest of the monitoring state. In the figure, we can see that the PID of the migrating

task, 0x00000091h is being loaded into the first entry of the bookkeeping table on

IVSL0. IVSL0 PID[0] is the PID field of the first entry in the bookkeeping table and

it is loading the PID of the migrating process.

In step two, the source IVSL, in this case IVSL1, takes over the internal bus. After

acquiring the control of the bus it puts the resume pc of the migrating process on the

bus which is subsequently loaded in the resume field of the newly created entry in the

IVSL0’s bookkeeping table. We can see the value of 0x00010BC0h being transferred

on the bus and subsequently loaded into the IVSL0 resume pc[0].
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Step three shows the transfer of the last piece of information from IVSL1 to IVSL0,

resume graph addr. In the figure, we can see the transfer of the value 0x00000014h

from the IVSL1 to the internal bus and from the internal bus to IVSL0.

The process migration procedure is done in the hardware monitor as IVSL1 re-

moves the entry associated with the migrating task from its bookkeeping table. It is

done by changing the PID field of that entry from 0x00000091h to 0xffffffff which is

used to mark vacant entries.

5.4.4.3 Attack Detection and Recovery

To check the capability of the system to detect and defeat runtime attacks, we

implemented the attack scenario described in Section 5.3.5. We had the buyer ap-

plication send the signed promises to the seller for the first 150 samples. For the

151st sample, the buyer sends a message that causes a buffer overflow in the seller

application and subsequently redirects the exection flow of that application to the

dummy function.

Figure 5.10 shows how IVSL0 detects the attack once the CPU starts to execute

instructions inside the dummy function. In the highlighted part of the figure, we can

see that the IVSL0 raises its discrepancy flag once the CPU start the execute the

first instruction of the dummy function at address 0x000281A0h. After detecting the

attack by the hardware monitor, the recovery procedure is triggered in the kernel.

As a result of the recovery procedure, AD2 closes the blockchain contract and gets

compensated for the 150 samples of data it has sold. The blockchain transactions are

similar to the ones shown in Figure 5.6(b).

5.4.4.4 Resource Utilization and Hardware Overhead of the Proposed

Hardware Monitor

We implemented a prototype of our system on an Altera DE4 FPGA board. The

synthesis and fitting report of the system is summarized in Table 5.4. The amount of
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Figure 5.10. Waveform extracted from the FPGA showing the detection of an attack
on core 0.

combinational resources needed by the hardware monitor is about 7% of the resources

required to implement the multi-core LEON3-based system. The percentage is slightly

less than 12% when we look at the registers used to realize the sequential circuits of

the design. Both 7% and 12% hardware overhead are reasonable given the degree

of security this approach offers. When looking at the block memory bits (onchip

memory resources) used by the hardware monitor, we can see an overhead of 68%.

That is because in order to be able to keep up with the CPU, the hardware monitor

needs to have the graphs stored in very fast memories. In this implementation, the

same type of memory that is used for the cores’ L1 cache was used for graph memories

as well. The assumption here is that the graphs are located on the secondary storage

and can be loaded into those memories on demand. In this setup since we emulated

the secondary storage in the RAM, we could not extract any performance numbers

that can be close to what we should expect in a real-world setup with a flash-based

disk or a magnetic hard drive.
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Table 5.4. FPGA resources consumed by different entities.

entity submodule combinational ALUTs dedicated logic registers block memory bits

LEON3

core 0 7754 5585 364000
core 1 7802 5586 364000
IRQ controller 353 153 0
memory controller 161 162 0
ethernet mac 0 2841 1824 22055
ethernet mac 1 2762 1816 22055
DDR controller 2862 3795 110119
UART module 202 181 0
other 2160 1170 256
total 26897 20272 882485

hardware monitor

coordinator 173 272 0
IVSL 0 725 1126 320
IVSL 1 692 1034 264
crossbar 274 0 0
graph memory 0 0 0 303104
graph memory 1 0 0 303104
total 1864 2432 606792

debugging system
signal tap 1593 13934 145664
debug support unit 824 341 16384
total 2417 14275 162048

5.4.4.5 Performance Overhead

The key to successful integration of the hardware monitor and the embedded

system is the communication between the kernel and the coordinator module. That

communication requires the kernel to run extra lines of code. The kernel also has to

wait for the hardware monitor to catch up with the context-related operations from

time to time. To measure the overhead of the added communication, we ran our IoT

applications in different sets of experiments first with no hardware monitor added to

the system and another time with the hardware monitor present.

In one set of experiments, we ran seller to sell 10, 50, 100, and 500 samples. For

each number of samples, we ran the experiment 10 times. The average time it took for

the application to finish selling those number of samples is summarized in Table 5.5.

In another set of experiments, we ran buyer to buy 10, 50, 100, and 500 samples.

The average time it took the buyer application to buy those number of samples is

also reflected in Table 5.5. The percentage shown in parenthesis under the system

column reflects the time overhead added by the kernel compared to the application
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Table 5.5. Time spent in the user application versus the kernel when running dif-
ferent workloads for different system configurations. (values are in seconds)

buyer seller
samples config user system user system

10
w/ monitor 7.29 0.04 (0.54%) 7.67 0.04 (0.52%)
w/o monitor 7.26 0.03 (0.37%) 7.49 0.03 (0.36%)

50
w/ monitor 35.86 0.12 (0.33%) 38.21 0.07 (0.18%)
w/o monitor 36.18 0.11 (0.30%) 37.56 0.06 (0.16%)

100
w/ monitor 72.88 0.25 (0.34%) 76.37 0.14 (0.18%)
w/o monitor 72.35 0.19 (0.26%) 75.22 0.10 (0.13%)

500
w/ monitor 362.77 1.23 (0.33%) 375.43 0.50 (0.13%)
w/o monitor 362.02 1.07 (0.29%) 375.78 0.41 (0.11%)

itself. By adding the hardware monitor to the system, the time spent in the kernel

almost doubles for short runs of the applications (10 samples). As the number of

samples increases the effect of adding the hardware monitor diminishes. It can be

due to the high overhead of task initiation procedure in the hardware monitor. Since

task initiation happens only once and after that, the only context-related operation

in the OS is context switch, when running the application for long periods, that high

overhead is amortized over a longer time and therefore its effect diminishes.
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

The main focus of this work was on trustworthy IoT systems. We started this work

by focusing on the hardware platform of IoT devices. We believed that the fast-paced

nature of IoT market prevents application developers from spending enough time on

different aspects of their products. One important aspect of an IoT application which

is often overlooked is the security of that application. The numerous attacks on IoT

systems that we see regularly are strong evidence of that claim. At the time, the

idea of hardware monitoring of embedded systems was introduced in the literature

but the target devices were very limited in terms of resources and capabilities and by

no means were good representatives of the embedded devices used in commercial IoT

applications.

One aspect of our work was to bridge the gap between the commercial IoT devices

and the hardware monitoring solutions for embedded systems. In the work presented

in Chapter 2, we took the first step by introducing our novel hardware monitor that

was able to follow the execution of multiple applications running on a µC/OS-II

operating system. This work was the first work to integrate a hardware monitor with

a real-time operating system. We showed the effectiveness of our approach to detect

and defeat a runtime attack by prototyping the system on an FPGA board. We used

an Altera DE4 FPGA board implementing a NIOS II processor. The overhead of

our system was about 30% in terms of hardware resources and the performance slow

down was negligible.
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After successfully monitoring multiple application in an OS-based environment,

we expanded our work to address the potential vulnerabilities in the OS as well as in

the applications. The work presented in Chapter 3, expanded our previously proposed

hardware monitoring system to include monitoring the OS as well. In this work, we

addressed the challenges of seamless integration of the hardware monitor with the

embedded processor in the absence of explicit directions from the OS.

We showed the effectiveness of our system in detecting and defeating a format

string attack by prototyping it on an Altera DE4 FPGA board. We used a NIOS

II processor running a µC/OS-II operating system. The evaluation of the prototype

showed that this new hardware monitor adds 25% overhead to the NIOS II system

in terms of hardware resources and the performance slow down is still negligible. On

the other hand, as the code base of the OS is much bigger than a regular embedded

application, the memory overhead of the system starts to become an issue. That is

why we believe that monitoring the entire OS for more general OSes is not practi-

cal and the monitoring should be done more selectively on parts of the OS or the

applications that are deemed more vulnerable.

In Chapter 4, we shift our focus from the underlying hardware platform the pro-

tocols used in IoT applications. The use of blockchain had enabled IoT devices to

monetize their exchanges utilizing this technology. However, the processing and net-

work bandwidth overhead of running a blockchain client along with its heavy reliance

on the operating system and library support were the main barriers in expanding the

use of blockchain technology to low-end and mid-range IoT devices.

In that chapter, we proposed our Ticket-Based Verification Protocol which sepa-

rates the functionality of an IoT device into blockchain-based and blockchain-agnostic

operations. By introducing this separation, our TBVP enables the low-level and

mid-range IoT devices to also participate in the financial exchanges based on the

blockchain without the need to directly communicate with it and therefore avoid
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relying on a sophisticated OS or requiring a high network bandwidth. We then eval-

uated our proposed protocol by prototyping that using commercial IoT devices such

as Raspberry Pi and TI CC3200 Launchpad boards. Our evaluations showed that the

devices can successfully participate in financial transactions on Ethereum blockchain

and the performance shown by them was reasonable given the processing power of

them.

The last piece of work presented in this dissertation was on achieving a trustwor-

thy IoT system both on protocol and hardware levels. This piece which was presented

in Chapter 5 brought together the ideas of hardware monitoring and secure IoT pro-

tocols. In this chapter, we implemented the IoT protocol that we had proposed earlier

on an embedded system that was representative of modern IoT devices. Initially, we

explored the challenges of monitoring IoT applications running on a full-scale Linux

kernel managing a 7-stage pipeline LEON3 CPU. We further expanded that work to

monitor the applications running on a multi-core processor. We evaluated both the

effectiveness and performance of our proposed solution by prototyping it on an Altera

DE4 board.

Our evaluations showed that the system can successfully detect and defeat a real-

world stack smashing attack. The overhead imposed by this hardware monitoring

approach was about 7% for combinational resources it consumes and around 12% for

the sequential resources.

The main drawback of our proposed hardware monitoring approach is the big

memory footprint of the monitoring graphs. The number of graph entries in a mon-

itoring graph is proportional to the number of instruction in the application binary.

Storing the graph on on-chip memories is necessary if the hardware monitor is to keep

up with the execution of the application on the CPU. Having big on-chip memories

increases the cost of the embedded system which is highly undesirable.
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We believe the idea of the memory hierarchy is applicable in this context as well.

We can have secondary storage units holding the entire graph which a fast on-chip

memory caches a subset of graph entries that are going to be accessed in near future.

However, we cannot see the spatial locality and temporal locality in the pattern of

accesses to the graph memory. The lack of locality in the access pattern of graph

memories makes old caching approaches not helpful in speeding up these accesses.

We believe a deeper analysis of the access patterns can be a good research topic for

future projects.

In this work, we used selective monitoring approach which enabled us to only

monitor parts of the code that are more vulnerable and skip monitoring the less vul-

nerable parts. By employing this technique, we were able to monitor IoT applications

despite their big memory footprint and therefore big corresponding graphs. In this

work, we assumed that the system administrator can decide which functions to trust

and which ones to monitor. However, we did not talk about how these decisions

should be made. We believe a more methodical way to analyze application binaries

and mark the functions as trusted and not trusted can be another future direction to

pursue. The outcome of that project can be an automated or assisted analysis of the

application binary and generating the monitoring graph of that code.
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