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ABSTRACT

METABOLIC MODELING OF
MULTISPECIES MICROBIAL BIOFILMS

FEBRUARY, 2020

POONAM PHALAK

B.Chem.Engg., INSTITUTE OF CHEMICAL TECHNOLOGY, MUMBAI

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Michael A. Henson

Biofilms are ubiquitous in medical, environmental, and engineered microbial sys-

tems. The majority of naturally occurring microbes grow as mixed species biofilms.

These complicated biofilm consortia are comprised of many cell phenotypes with

complex interactions and self-organized into three-dimensional structures. Approxi-

mately 2% of the US population suffers from non-healing chronic wounds infected by

a combination of commensal and pathogenic bacteria whereas about 500,000 cases

of Clostridium difficile infections (CDI) are reported annually. These polymicrobial

infections are often resilient to antibiotic treatment due to the nutrient-rich environ-

ments within the biofilms and species interactions that promote community stability

and robustness. This thesis focuses on developing metabolic modeling framework to

study the interactions and the spatial/temporal organizations in the biofilms. The

modeling framework is based on solving genome scale metabolic reconstructions of

considered species to predict species abundances, growth rates and byproduct secre-

tions.
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The spatiotemporal modeling framework accounts for the nutrient concentration

gradients in the biofilm system. Spatiotemporal biofilm metabolic models were for-

mulated by combining genome scale metabolic reconstructions of considered species

with uptake kinetics for available nutrients and reaction-diffusion type equations for

species biomass, supplied substrates and synthesized metabolic byproducts. The re-

sulting partial differential equations embedded with linear programs were discretized

in the space and integrated using a dynamic flux balance method. This framework

was used to calculate the spatial and temporal variations in the species, nutrient and

byproduct concentrations in biofilms. This framework was applied to analyze the

biofilms associated with chronic wound infections, CDI and environmental biofilms.

The chronic wound biofilm model was comprising of two most dominant species,

Pseudomonas aeruginosa and Staphylococcus aureus. The model predicted partition-

ing of species based on their nutritional niches consistent with in vitro experiments.

The CDI biofilm model was comprising of representative species from three most

common phyla in gut Bacteroidetes thetaiotaomicron, Faecalibacterium prausnitzii,

Escherichia coli and pathogen C. difficile. The simulation results were used to study

the interspecies interactions, the spatial partitioning in the biofilms and important

crossfeeding relationships within the community. These predictions would be useful

in devising effective antibiotic treatment strategies to cure the biofilm infections as-

sociated with chronic wounds and C. difficile. The environmental biofilm model for

cyanobacteria and heterotrophs was developed and validated with the experimental

results, this model was used to evaluate the community dynamics under extreme

environmental conditions.

The steady state community modeling framework considered biofilm as a well-

mixed homogeneous system at steady state. This framework can be used when

the community is large and can not be easily solved as a spatiotemporal biofilm.

Steady state in silico community models were formulated by combining genome scale
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metabolic reconstructions of the considered species. The community models were

solved using SteadyCom method. This method uses community flux balance analysis

to calculate the relative abundance of each species with an objective of maximiz-

ing the community growth rate. A 12 species chronic wound community metabolic

model covering 74% of 16S rDNA pyrosequencing reads of dominant genera from

2,963 chronic wound patients was developed. The community model was used to

predict species abundances averaged across this large patient population. The simu-

lation results from this study were used to identify putative mutualistic interactions

between bacteria that could be targeted to enhance treatment efficacy. The frame-

works developed in this thesis would be useful in developing patient/disease specific

therapeutic treatments.
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CHAPTER 1

INTRODUCTION

1.1 Microbial communities and biofilms
Biofilms are thin slimy layers of bacteria growing on either living or non living

surfaces. Bacteria produce slimy extracellular polymeric substances and form a three

dimensional robust structure around them. The bacteria living inside the biofilms

interact with each other using mutualistic, syntrophic, commensal or antagonistic

strategies to compete for and efficiently utilize available nutrients [2–5]. Microbes

residing in biofilms exhibit phenotypes distinct from planktonic growth. For in-

stance, bacteria in biofilms can tolerate antimicrobial agent concentrations 10,000

times higher than the same microbes grown planktonically [6, 7].

Microbial biofilms are critically important in medical, environmental and engi-

neered biological systems. For example, the human gut microbiome has emerged as a

major focus for biomedical research with mounting evidence suggesting unhealthy gut

flora biofilms are associated with illnesses including autoimmune diseases, colorectal

cancer and inflammatory bowel disease [8–13]. Environmental microbial biofilm con-

sortia form the basis of global nutrient cycles from nitrogen fixation to carbon fluxes

[14, 15]. Additionally, the study of natural biofilms has recently gained in popular-

ity due to their efficient organization and ability, through synergistic interactions, to

optimize multiple tasks simultaneously like the deconstruction of complex, recalci-

trant plant materials into simple sugars. A major goal of current biofuels research

is to engineer synthetic microbial communities that mimic these naturally occurring

biofilms for biomass conversion to renewable liquid fuels [16]. While foundational to
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the vast majority of microbial life on the planet, the basic design principles of con-

sortial biofilms are still poorly understood due largely to the complexity of naturally

occurring systems [4, 5].

1.2 Microbial communities in human health and diseases
The microbial communities in the biofilms play both positive and negative roles

in human health. For example, the gut microbiota comprise a complex ecological

system that maintains a critical symbiotic relationship with the human host [17, 18].

The microbiota provide essential nutrients such as short-chain fatty acids (SCFAs;

acetate, butyrate and propionate), support colonization resistance to pathogens, par-

ticipate in the degradation of toxic compounds and regulate the immune responses

[19–23]. Bacteroidetes and Firmicutes are the two dominant phyla in the healthy gut,

comprising approximately 90% of the community. Other important but less abun-

dant phyla are Proteobacteria, Actinobacteria, Euryarchaeota and Verrucomicrobia

as well as Eukaryota such as fungi [24, 25]. The gut microbiota composition can be

altered by numerous factors including diet, antibiotic treatment, stress and lifestyle

[26, 27]. Dietary components including carbohydrates, protein, fat and host secretions

such as primary bile acids and nitrate play a particularly important role in shaping

microbiota abundances [28–33].

Unhealthy alterations of the gut microbiota are termed as dysbiosis and represent

imbalances in species abundances associated with diseases such as inflammatory bowel

diseases, Crohn’s disease, obesity and diabetes [34–36]. The anaerobic bacterium

Clostridium difficile is an opportunistic human pathogen responsible for infections

in the colon of the human gastrointestinal tract [37]. Various studies have reported

that 3%–15% of healthy adults are asymptomatically colonized with C. difficile [38–

44]. Commensal species in healthy gut usually provide resistance against C. difficile

pathogenic colonization. C. difficile infection (CDI) is most common in patients previ-
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ously treated with broad spectrum antibiotics that disrupt the healthy gut microbiota

and reduce competition for available nutrients [45], resulting in dysbiosis conducive

to C. difficile propagation [46–49]. CDI symptoms can range from mild diarrhea to

severe and life threatening colitis [37, 50]. C. difficile virulence is attributable to the

secretion of the high molecular weight toxins A and B that promote epithelial tissue

damage and rapid fluid loss. Some C. difficile strains have developed resistance to

common antibiotics while also exhibiting more severe pathogenicity [51]. CDI has

become particularly common in hospital settings due to the ability of C. difficile to

form spores that adhere to surfaces and resist common disinfectant protocols. Studies

estimate that almost 500,000 CDI cases occur within the U.S. annually [52], resulting

in 29,000 deaths and over $4.8 billion in associated costs in acute care facilities alone

[53].

The other example of negative bacterial biofilm colonization is non healing chronic

wound. Chronic wounds are defined as a host-pathogen environment that has failed

to proceed through a timely healing process. Chronic wounds are often colonized by

microorganisms growing as biofilms on a complex mixture of wound exudate [54–61].

An estimated 2% of the U.S. population (6 million people) have a non-healing chronic

wound with treatment costing more than $25 billion per year [62–64]. Chronic wounds

are typically colonized by consortia comprised of different microbial species [55, 54,

56, 65, 66]. Polymicrobial infections have been reported to have elevated mortality

rates relative to monocultures [67], and in vivo rabbit model systems demonstrated

that consortia prevented wound healing compared to their respective monocultures

[61, 68].

1.3 Metabolic modeling of microbial communities
Multispecies biofilms are sufficiently complex to preclude detailed understanding

through traditional experimental techniques developed for planktonic cultures. A
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primary challenge is to understand the complex interactions between the species and

the extracellular environment [69]. In silico metabolic models are powerful tools for

the analysis of how host environment impacts species interactions and community

stability, composition and robustness [70–73]. These modeling frameworks need prior

knowledge of the types of interspecies interactions such as mutualism, commensalism

or competition and they can be extended to study interactions between maximum

five species.

To better understand the metabolic interactions between the species and the en-

vironment, we have developed two modeling frameworks based on homogeneity and

heterogeneity in the biofilm system considered. The first approach is community

modeling framework based on SteadyCom method [74] for efficiently simulating large

community models to predict the growth rate, species abundances and metabolite

crossfeeding rates between species. This in silico computational method is used for

efficiently simulating complex and realistic host-associated bacterial communities,

connecting host environment and community metabolism, exploring growth-diversity

tradeoffs, quantifying metabolite crossfeeding relationships, relating metabolism and

disease states, and rationalizing patient-to-patient variability [75, 76]. Our model-

ing framework exploits the availability of 16S rDNA sequencing data to identify the

dominant genera present in the host-associated infection, the AGORA database [77]

to select a genome-scale metabolic reconstruction for a representative species from

each genera, and the SteadyCom method is used to simulate the community. We

have applied the in silico methods to a 20 species model of commensal species in

the human gut [75] and to a 17 species model including dominant pathogens of the

adult cystic fibrosis lung [76]. We have used this framework to study the interspecies

interactions between chronic wound microbiota comprising of 12 species.

Most naturally occurring microbial consortia exist in spatially heterogeneous en-

vironments that also exhibit temporal variations. The presence of spatial hetero-
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geneity plays an essential role in the evolution and function of microbial species

[78–82] and has profound effects on biofilm formation and development [4, 69, 83, 84].

Concentration gradients in key nutrients due to limited diffusion establish metabolic

niches within the biofilm that can produce spatial variations in biomass density [85]

and additionally spatial partitioning of species in the case of multispecies biofilms

[84, 86]. Quantitative understanding of the relationships between spatial and tempo-

ral variations in the extracellular environment and community metabolism is critical

to systematically analyze and rationally manipulate biofilm consortia. While spa-

tiotemporal metabolic models that account for both spatial and temporal variations

in the extracellular environment have been constructed, these models rely on table

lookups of precomputed flux balance solutions [87–89] or lattice based descriptions of

nutrient diffusion [90, 91].

The second approach considers heterogeneity in the system based on spatial and

temporal variations in the available nutrients. This methodology is based on combin-

ing genome-scale reconstructions with fundamental transport equations that capture

the relevant convective [92] and/or diffusional [93] processes. We applied this method-

ology to develop biofilm metabolic models that predict the complex spatiotemporal

behavior of multispecies systems associated with chronic wounds, hot lake microbial

mats and Clostridium difficile infections. The modeling framework helped to under-

stand the spatial arrangements of the species in the biofilm based on nutrient niches.

1.4 Thesis organization
The modeling frameworks developed in this thesis have been used in following

studies:

1. Chen, Jin, Jose A. Gomez, Kai Höffner, Poonam Phalak, Paul I. Barton, and

Michael A. Henson. “Spatiotemporal modeling of microbial metabolism.” BMC

systems biology 10, no. 1 (2016): 21.
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2. Phalak, Poonam, Jin Chen, Ross P. Carlson, and Michael A. Henson. “Metabolic

modeling of a chronic wound biofilm consortium predicts spatial partitioning of

bacterial species.” BMC systems biology 10, no. 1 (2016): 90.

3. Henson, Michael, and Poonam Phalak. “Byproduct cross feeding and com-

munity stability in an in silico biofilm model of the gut microbiome.” Processes

5, no. 1 (2017): 13.

4. Henson, Michael A., and Poonam Phalak. "Microbiota dysbiosis in inflam-

matory bowel diseases: in silico investigation of the oxygen hypothesis." BMC

systems biology 11, no. 1 (2017): 145.

5. Carlson, Ross P., Ashley E. Beck, Poonam Phalak, Matthew W. Fields,

Tomas Gedeon, Luke Hanley, William R. Harcombe, Michael A. Henson, and

Jeffrey J. Heys. “Competitive resource allocation to metabolic pathways con-

tributes to overflow metabolisms and emergent properties in cross-feeding mi-

crobial consortia.” Biochemical Society Transactions 46, no. 2 (2018): 269-284.

6. Henson, Michael A., and Poonam Phalak. “Suboptimal community growth

mediated through metabolite crossfeeding promotes species diversity in the gut

microbiota.” PLoS computational biology 14, no. 10 (2018): e1006558.

7. Phalak, Poonam, and Michael A. Henson. “Metabolic Modeling of Clostrid-

ium difficile Associated Dysbiosis of the Gut Microbiota.” Processes 7, no. 2

(2019): 97.

8. Henson, Michael A., Giulia Orazi, Poonam Phalak, and George O’Toole.

“Metabolic Modeling of Cystic Fibrosis Airway Communities Predicts Mecha-

nisms of Pathogen Dominance.” mSystems 4:e00026 (2019)-19.
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9. Phalak, Poonam, and Michael A. Henson. “Metabolic Modeling of Chronic

Wound Microbiota Predicts Mutualistic Interactions that Drive Community

Composition.” submitted.

10. Phalak, Poonam, Hans C. Bernstein, Stephen R. Lindemann, Ryan S. Renslow,

Dennis G. Thomas, Michael A. Henson and Hyun-Seob Song. “Modeling of

Spatiotemporal Metabolic Interactions in Autotroph-Heterotroph Consortia.”

in preparation.

This thesis comprises of detailed description of the biofilm metabolic modeling

of chronic wounds, C. difficile infections and environmental biofilms. In chapter 2,

the general biofilm modeling framework is described and it is applied to study two

species biofilms associated with chronic wounds. Various interactions between the

considered species are modeled. The model predicted the spatial partitioning and

maximum possible biofilm thicknesses based on these interactions. In chapter 3,

the developed biofilm framework is extended to study the interspecies interactions

between a photoautotroph and heterotroph community. The core metabolic models

for considered autotrophs and pan-genome model for heterotrophs are developed using

KBase. The biofilm model is validated by using experimental data. This model is used

to study interspecies interactions under extreme environmental conditions. In chapter

4, the biofilm modeling framework is extended to study the biofilms associated with

C. difficile infections. The biofilm model consisted of 3 species representing three

most common phyla and the pathogen C. difficile. This model is used to analyze

the healthy vs dysbiosis gut conditions during C. difficile infections. In chapter 5,

chronic wound community comprising of 12 most abundant species is studied. This

modeling framework is used to find out mutualistic relationships within the pathogens

and between pathogen and commensal species.
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CHAPTER 2

METABOLIC MODELING OF A CHRONIC WOUND
BIOFILM CONSORTIUM PREDICTS SPATIAL
PARTITIONING OF BACTERIAL SPECIES

2.1 Introduction
The aerobe Pseudomonas aeruginosa and the facultative anaerobe Staphylococ-

cus aureus are two bacteria commonly isolated from chronic wound biofilm infections

[56, 60, 65]. The same two bacteria are often key contributors to multispecies infec-

tions that occur in the lung mucous of cystic fibrosis patients [94]. P. aeruginosa

is known to exhibit much lower growth rates than S. aureus and other facultative

anaerobes in anaerobic environments common in chronic wound and mucoid biofilms

[95, 96]. Perhaps partially in response to this metabolic disadvantage, P. aeruginosa

has evolved a number of mechanisms to enhance its competitiveness in multispecies

biofilm communities.

The most widely studied mechanism is growth inhibition and lysis of competing

bacteria through the secretion of an arsenal of small molecule (e.g. pyocyanin [97])

and protein (e.g. bacteriocins [98]) toxins. The consumption of metabolic byproducts

secreted by other bacteria through cross feeding mechanisms also has been proposed

to enhance P. aeruginosa competitiveness [99]. Another putative mechanism is P.

aeruginosa chemotaxis towards high oxygen niches (i.e. aerotaxis [100]) where it is

metabolically competitive.

This work is published as: Phalak, Poonam, Jin Chen, Ross P. Carlson, and Michael A. Henson.
“Metabolic modeling of a chronic wound biofilm consortium predicts spatial partitioning of bacterial
species.” BMC systems biology 10, no. 1 (2016): 90.
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The biofilm models were formulated for P. aeruginosa and/or S. aureus metabolism.

We developed an effective computational method for solving the biofilm models, which

consisted of a set of partial differential equations with mixed boundary conditions

constrained by embedded linear programs. The models were used to analyze the

metabolic differences between single species and two species chronic wound biofilms

and to investigate putative factors that could impact the physiology of the two species

biofilm, including nutrient diffusion, metabolite cross-feeding, P. aeruginosa motility

and P. aeruginosa mediated lysis of S. aureus.

2.2 Multispecies biofilm model
2.2.1 Model formulation

Biofilm models were formulated by combining genome-scale reconstructions of P.

aeruginosa and/or S. aureus metabolism with uptake kinetics for available nutrients

and reaction-diffusion type equations for species biomass, supplied substrates and

synthesized metabolic byproducts. Single species biofilm models were formulated

with either the P. aeruginosa or S. aureus reconstruction, while the two species model

used both reconstructions. Diffusion was assumed to occur only in the axial direction

of the biofilm such that spatial variations could be captured with a single variable z

(Figure 2.1 A). For simplicity, the biofilm was assumed to have a fixed thickness W

over which the nutrients diffused and cell growth occurred. Therefore, the models were

most appropriate for predicting the metabolism of biofilms of a specified thickness.

Both strains were assumed to consume glucose as the primary carbon source [101].

Glucose was supplied at the tissue-biofilm interface at the assumed concentration

of the wound exudate, while oxygen was supplied at the biofilm-air interface at a

concentration for an aqueous solution in equilibrium with atmospheric oxygen.

The P. aeruginosa PA01 iMO1056 reconstruction accounts for 1,056 genes, 1,030

enzymes, 833 intracellular reactions and 277 exchange reactions [102]. This recon-
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Figure 2.1: Formulation and solution of the multispecies biofilm metabolic model. (A)
Schematic representation of the chronic wound biofilm model of constant thickness
W with glucose provided at the tissue-biofilm interface (z = 0), oxygen supplied at
the biofilm-air interface (z = W ) and the metabolic byproducts acetate, succinate
and lactate removed at the tissue-biofilm interface. (B) Schematic representation of
the biofilm metabolic model solution procedure.
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struction has been shown to provide good agreement with experimentally determined

biomass yields for aerobic growth on glucose and anaerobic growth on glucose with

nitrate as an electron acceptor. The preliminary flux balance calculations with a

maximum growth objective showed the primary metabolic byproducts to be acetate

and L-alanine. The secretion fluxes of other minor byproducts were approximately

an order of magnitude less than for acetate and L-alanine. P. aeruginosa is known to

secrete acetate, lactate and succinate [103], while the secretion of L-alanine has not

been reported. To obtain byproduct distributions in better agreement with reference

[103], we constrained the L-alanine secretion flux to zero. This modification resulted

in a redirection of flux from L-alanine to succinate with little effect on the secretion

fluxes of acetate and minor byproducts. Furthermore, we enforced a minimal non-

growth associated ATP maintenance flux of 5 mmol/gDW/h, the same value as in

the S. aureus reconstruction, to reduce the P. aeruginosa anaerobic growth rate for

consistency with experimental studies [95]. The iMO1056 reconstruction contained

succinate, lactate and acetate uptake fluxes that allowed the investigation of putative

cross feeding of metabolic byproducts. Secretion of the small molecule inhibitor py-

coyanin was included by adding an exchange flux with an adjustable lower bound that

forced pycoyanin synthesis, which was in opposition to growth rate maximization.

The S. aureus N315 iMH551 reconstruction accounts for 551 genes, 604 enzymes,

682 intracellular reactions and 92 exchange reactions [104]. This model correctly

reproduces byproduct secretion patterns under aerobic conditions with glucose limi-

tation and under anaerobic conditions with glucose excess [105–109]. The flux calcu-

lations showed that the primary byproducts were acetate and lactate. The iMH551

reconstruction contained lactate and acetate uptake fluxes that allowed reassimilation

of secreted metabolic byproducts. To explore the possibility of succinate cross feed-

ing, the S. aureus model was modified to allow succinate uptake through a putative

proton dependent symport mechanism.
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Uptake kinetics were specified for the supplied substrates glucose and oxygen as

well as for the possible cross-fed metabolites lactate, succinate and acetate. Although

both P. aeruginosa and S. aureus are well known for their ability to perform anaerobic

respiration using nitrate as an electron acceptor in place of oxygen, we have neglected

the possible role of denitrification in this study. Uptake kinetics were assumed to

follow standard Monod expressions of the form,

vi = vmax,iSi

Km,i + Si

(2.1)

where vi is the uptake rate (mmol/gDW/h) of the i-th substrate, Si is the extra-

cellular concentration (mmol/SL) of the i-th substrate, vmax,i is the maximum uptake

rate and Km,i is the half saturation constant. Equation (2.1) was used to establish

transport bounds on the uptake rates with the actual uptake rates being determined

by solution of the intracellular flux balance problem. Both vmax,i and Km,i were im-

portant parameters due to the large nutrient spatial gradients induced by diffusion

through the biofilm.

Mass balances on the two species have the form,

∂X(z, t)
∂t

= µXX
(

1− Z

Zmax

)
− kdXX + kA

(
1− Z

Zmax

)
∂

∂t
(X∂O

∂z
) (2.2)

∂X(0, t)
∂z

= 0 , ∂X(W, t)
∂z

= 0

∂Y (z, t)
∂t

= µY Y
(

1− Z

Zmax

)
− kdY Y − kLPY (2.3)

∂Y (0, t)
∂z

= 0 , ∂Y (W, t)
∂z

= 0

where X and Y are the biomass concentrations (g/L) of P. aeruginosa and S.

aureus, respectively, Z = X+Y is the total biomass concentration, and µX and µY are
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the corresponding growth rates (h−1) obtained from the flux balance calculations. If

local nutrient concentrations became too small to meet the ATP maintenance demand

of a species, then the flux balance problem for the species became infeasible at that

location. Once an infeasibility was detected, the death rate constant kdX or kdY

was exponentially increased from zero to a fixed, non-zero value to simulate that the

species would begin to die at that location. This approach ensured that the model

equations remained smooth and could be integrated. P. aeruginosa has flagella for

motility and can aerotaxis towards higher oxygen levels [100]. This capability was

captured in the model by including a typical chemotaxis term [110] where O is the

oxygen concentration (mmol/L) and kA is the aerotaxis rate constant. Cell growth

was restricted to a maximum cell concentration Zmax to account for cell crowding

effects within the biofilm. No flux boundary conditions were imposed at the tissue-

biofilm (z = 0) and biofilm-air (z = W ) interfaces under the assumption that cells

could not leave the biofilm via mechanisms such as dispersal.

P. aeruginosa secretes pyocyanin and other small molecules that are known to

inhibit and lyse of competing bacteria such as S. aureus [111]. This lysis mechanism

was included in the model through a pyocyanin concentration (P , mmol/L) dependent

death term with rate constant kL in the S. aureus mass balance in Equation (2.3).

Pyocyanin synthesis by P. aeruginosa and diffusion through the biofilm was captured

with the mass balance,

∂P (z, t)
∂t

= vPX +DP
∂2P

∂z2 (2.4)

Di
∂P (0, t)
∂z

= km,P [Pb − P (0, t)] , ∂P (W, t)
∂z

= 0

where vP is the specific pyocyanin synthesis rate obtained from the flux balance

calculation and DP is the pyocyanin diffusion coefficient. A no flux boundary condi-

tion was imposed at the biofilm-air interface assuming that the pyocyanin was non-

volatile. By contrast, a Robin boundary condition was imposed at the tissue-biofilm
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interface to describe possibly mass transfer limited removal of pyocyanin, where km,P

is pyocyanin mass transfer coefficient and Pb is the bulk pyocyanin concentration in

the tissue.

The glucose and oxygen mass balances were formulated under the assumptions

that oxygen gas-liquid mass transfer was fast compared to oxygen uptake and that

metabolites had negligible volatilities:

∂G(z, t)
∂t

= vGXX + vGY Y +DG
∂2G

∂z2 (2.5)

−DG
∂G(0, t)
∂z

= kmG[Gb −G(0, t)] , ∂G(W, t)
∂z

= 0

∂O(z, t)
∂t

= vOXX + vOY Y +DO
∂2O

∂z2 (2.6)

∂O(0, t)
∂z

= 0 , DO
∂O(W, t)

∂z
= kmO[Ob −O(W, t)]

where G is the glucose concentration (mmol/L), the P. aeruginosa uptake fluxes

vGX and vOX and the S. aureus uptake fluxes vGY and vOY were obtained from

the flux balance calculations, and DG and DO are the glucose and oxygen diffusion

coefficients. For glucose, a no flux boundary condition was imposed at the biofilm-air

interface assuming glucose was not volatile and a Robin type boundary condition

was imposed at the tissue-biofilm interface to model possibly mass transfer limited

transport of glucose into the biofilm. Here kmG is the glucose mass transfer coefficient

and Gb is the bulk glucose concentration in the wound exudate. For oxygen, Robin

type boundary conditions were imposed at both interfaces with oxygen mass transfer

coefficient kmO, oxygen concentration Ob at the tissue-biofilm interface and oxygen

concentration Oa at the biofilm-air interface.

Mass balances on the three primary metabolic byproducts had the form,
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∂Mj(z, t)
∂t

= vMjXX + vMjY Y +DMj

∂2Mj

∂z2 (2.7)

−Di
∂Mj(0, t)

∂z
= km,j[Mb,j −Mj(0, t)] ,

∂Mj(W, t)
∂z

= 0 ,

where Mj is concentration (mmol/L) of the j-th byproduct (A = acetate, S =

succinate, L = lactate), the secretion/consumption fluxes vMJ X and vMJ Y were ob-

tained from the flux balance calculations and DMj
is the diffusion coefficient. No

flux boundary conditions were imposed at the biofilm-air interface, while Robin type

boundary conditions were imposed at the tissue-biofilm interface to allow removal of

the byproducts. All biofilm diffusion coefficients were assumed to depend on the total

biomass concentration Z such that diffusion was reduced in more dense regions of the

biofilm [112].

2.2.2 Model parameters

We found a dearth of literature for determining species specific values for the 20

parameters needed to calculate uptake rates with respect to the five possible nutrients

(glucose, oxygen, succinate, lactate, acetate). Consequently, the two species were

assumed to have the same uptake parameter values. We used representative glucose

[113, 114] and oxygen [114, 115] uptake parameter values reported for the model

bacterium Escherichia coli under the assumption that P. aeruginosa and S. aureus

should have similar values. Because we were not able to find reliable uptake parameter

values for succinate, lactate and acetate, the associated vmax and Km values were

assumed to be equal to those for glucose (Table 2.1). Therefore, results focused on

differences in metabolic network structure of the two species and not on differences

in uptake properties.

Other parameter values for the biofilm model were obtained from the literature

to the extent possible (Table 2.2). We utilized a typical biofilm thickness W=80µm

and assumed wound exudate concentrations consistent with published values. The
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Table 2.1: Nominal nutrient uptake parameters

Nutrient vmax km

Glucose 10 mmol/gDW/h 0.5 mmol/L
Oxygen 20 mmol/gDW/h 0.003 mmol/L
Succinate 10 mmol/gDW/h 0.5 mmol/L
Lactate 10 mmol/gDW/h 0.5 mmol/L
Acetate 10 mmol/gDW/h 0.5 mmol/L

air oxygen concentration Oa was derived from the oxygen content of atmospheric air.

P. aeruginosa and S. aureus cell death were implemented by exponentially increasing

the death rate constants from zero to the values listed in Table 2.2 when local

nutrient concentrations were not sufficient to meet ATP maintenance demands. The

lower bound on the P. aeruginosa pyocyanin synthesis flux vP,min was tuned such

that the average pyocyanin concentration within the biofilm was the same order of

magnitude as that observed experimentally in [116]. The S. aureus inhibitor-mediated

death constant kL was tuned to achieve reasonable spatial distributions of the two

species, which included P. aeruginosa dominance in the aerobic region of the biofilm,

S. aureus dominance in the anaerobic region and a sharp spatial division between the

two species [86, 117–119].

The maximum achievable biomass concentration Zmax was chosen to be within the

large range of published values [85]. We established reasonable metabolite concen-

trations within the biofilm by adjusting a single mass transfer coefficient for glucose,

acetate, succinate, lactate and pyocyanin such that their average concentrations were

the same order of magnitude as those observed experimentally in [116] and [120] .

The P. aeruginosa aerotaxis rate constant kA was chosen such that P. aeruginosa

was dominant in the aerobic region of the biofilm and a sharp spatial division be-

tween the two species was established as the biofilm matured towards a steady-state

condition [82, 86, 124]. Initial conditions for each simulation were generated by first

running a simulation with each species biomass concentration constrained to be 1 g/L
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Table 2.2: Nominal model parameter values

Parameter Description Value Reference
W Biofilm thickness 80 µm Specified
Gb Bulk glucose concentration 7.5 mmol/L [120]
Oa O2 conc. at the biofilm-air inter-

face
0.21 mmol/L [121]

Ob O2 conc. at the tissue-biofilm in-
terface

0 mmol/L Specified

Sb Bulk succinate concentration 0 mmol/L Specified
Ab Bulk acetate concentration 0 mmol/L Specified
Lb Bulk lactate concentration 1 mmol/L [120]
Pb Bulk pyocyanin concentration 0 mmol/L Specified

kdX , kdY Death rate constants 0-0.01 h−1 Calculated
kL Pyocyanin-associated death rate

constant
0.4 mmol/gDW/h Specified

kdP Pyocyanin flux bound 0.1 L/mmol/h Specified
Zmax Maximum biomass concentration 200 g/L [85]
X0, Y0 Initial biomass concentrations 1 g/L Specified
kA Aerotaxis rate constant 5 x10−8 cm2. L/mmol. s Specified
DG Aq. diffusion coefficient for glu-

cose
9.4x10−6 cm2/s [122]

DO Aq. diffusion coefficient for oxy-
gen

26.8x10−6 cm2/s [122]

DA Aq. diffusion coefficient for ac-
etate

16.2x10−6 cm2/s [122]

DS Aq. diffusion coefficient for succi-
nate

12.6x10−6 cm2/s [122]

DL Aq. diffusion coefficient for lac-
tate

12.1x10−6 cm2/s [123]

DP Aq. diffusion coefficient for py-
ocyanin

7.2x10−6 cm2/s Specified

km,i Mass transfer coefficient 2x10−4 cm/s Specified
km,O Oxygen mass transfer coefficient 2x10−2 cm/s Specified

and capturing the resulting steady-state solution. These initial conditions reflected a

newly developed, nearly spatially homogeneous biofilm with small cell densities, high

nutrient levels and low byproduct concentrations.
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2.2.3 Model solution

The two species biofilm model consisted of a set of partial differential equations

(PDEs) with mixed boundary conditions and embedded linear programs (LPs). The

efficient and stable solution of such models is a challenging problem at the forefront

of microbial metabolic modeling [125]. As described in our previous publications

[92, 93], we pursued a spatial discretization approach based on converting the PDEs

into a large set of ordinary differential equations (ODEs) in time with embedded LPs

(Figure 2.1 B). The spatial domain [0, W ] was discretized using N = 50 node points

at which the diffusion terms in Equations (2) - (7) were discretized using central

difference approximations with second-order accuracy. The specified boundary con-

ditions were incorporated into the central difference approximations at the boundary

node points. This procedure yielded a set of 8 ODEs at each node point for the lo-

cal concentrations of P. aeruginosa and S. aureus biomass, glucose, oxygen, acetate,

succinate, lactate and pyocyanin.

This ODE system was solved using DFBAlab [126], a MATLAB tool that explicitly

addresses problems associated with LP alternative optima and possible infeasibilities

[127]. DFBAlab employs a lexicographic optimization strategy in which a series of

LP problems are sequentially solved to ensure the determination of unique exchange

fluxes necessary for a well-defined dynamic system. Each LP is solved subject to

constraints that the previous objectives are equal to their optimal values, with the

required number of LPs equal to the number of exchange fluxes. We specified the

lexicographic optimization objectives to reflect known or anticipated physiology of the

two species biofilm community (Table 2.3). We found that reordering these objectives

had no noticeable effect on simulation results. Each node point was represented by 8

ODEs for the local species and metabolite concentrations and 12 LPs for lexicographic

optimization. We employed 50 node points such that the discretized biofilm model

consisted of 400 ODEs and 600 LPs.
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Table 2.3: Lexicographic optimization.

Species Number Direction Objective
P. aeruginosa 1 Maximize Growth rate
P. aeruginosa 2 Minimize Acetate secretion
P. aeruginosa 3 Minimize Succinate secretion
P. aeruginosa 4 Maximize Glucose uptake
P. aeruginosa 5 Maximize Oxygen uptake
P. aeruginosa 6 Maximize Lactate uptake
S. aureus 1 Maximize Growth rate
S. aureus 2 Minimize Acetate secretion
S. aureus 3 Minimize Lactate secretion
S. aureus 4 Maximize Glucose uptake
S. aureus 5 Maximize Oxygen uptake
S. aureus 6 Maximize Succinate uptake

All simulations were performed with MATLAB 8.5 (R2015a) using DFBAlab,

the stiff MATLAB integrator ode15s for dynamic flux balance model solution and

Gurobi 6.0 for linear program solution. A typical 1000-hour dynamic simulation

for determining a steady-state solution required about 25 minutes running on an

ASUS computer with Intel Core i7-960 processor and 24 GB RAM. As compared to

alternative computational methods for spatiotemporal metabolic modeling based on

table lookups of precomputed FBA solutions combined with integration of the PDEs

on a coarse spatial grid [87–89] and real-time FBA solution combined with lattice-

based descriptions of metabolite diffusion [90, 91], we believe our approach offers

several important advantages including the use of DFBAlab, the ability to directly

embed LPs within the discretized ODEs, and the flexibility to solve the ODE-LP

system using stiff integrators with variable step size and error control.
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2.3 Results and discussion
2.3.1 Metabolism of single species and multispecies biofilms

We first performed simulations for single species biofilms consisting of only P.

aeruginosa or S. aureus. Initial conditions were chosen to reflect a nearly spatially

homogeneous biofilm with low cell densities X(z, 0) = 1 g/L or Y (z, 0) = 1 g/L.

For each species, biofilms of different thicknesses were simulated to determine the

maximum thickness Wmax that could be sustained according to the model. If the

biomass concentration was below 10 g/L (5% of the maximum value Zmax = 200 g/L)

anywhere in the mature biofilm obtained after 1000 hours of simulation, the thickness

was deemed too large and reduced. These simulations revealed that S. aureus could

grow much thicker biofilms with Wmax = 90 µm compared to P. aeruginosa with

Wmax = 30 µm, mainly due to superior S. aureus anaerobic growth rates.

Dynamic simulations were performed for two species biofilms consisting of P.

aeruginosa and S. aureus using eight different hypothetical scenarios. Scenario 1 was

the base case where the two bacteria competed for glucose and oxygen in the absence

of byproduct crossfeeding, P. aeruginosa aerotaxis or pyocyanin-mediated lysis of S.

aureus. We found the two species Wmax = 80 µm, which was slightly less that the

S. aureus Wmax = 90 µm but substantially larger than the P. aeruginosa Wmax = 30

µm. The two speciesWmax was a linear combination of the single speciesWmax values

weighted by the average biomass concentrations in the two species biofilm.

When the two species biofilm thickness was set equal to Wmax = 80 µm, pseudo

steady-state solutions were obtained after only 50 hours of simulation (Figure 2.2A).

These results are in-line with many experimental studies [128, 129]. Oxygen was

quickly depleted throughout most of the biofilm, except near the biofilm-air interface

where an aerobic region was established as observed experimentally [130]. Similarly,

glucose was rapidly depleted in all regions except near the tissue-biofilm interface

where a glucose rich region was maintained. S. aureus was predicted to quickly estab-
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Figure 2.2: Predictions for a two species biofilm of thickness W = 80 µm (Base case
scenario). (a) Time resolved predictions over the first 50 hours at the bottom, middle
and top of the biofilm. (b) Spatially resolved biomass and metabolite concentration
predictions after 1000 hours. (c) Spatially resolved effective growth and uptake rate
predictions after 10 hours.
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lish dominance throughout the biofilm due to its higher local growth rates, especially

in the anaerobic region. Initially acetate and succinate levels increased but there-

after they were predicted to decrease due to metabolite removal at the tissue-biofilm

boundary. Lactate levels were predicted to remain high throughout the biofilm due to

S. aureus synthesis in the anaerobic region and diffusion into the aerobic region. Mul-

tispecies biofilm spatial profiles obtained after 1000 hours of simulation (Figure 2.2)

were characterized by the presence of a glucose rich, anaerobic region near the tissue-

biofilm interface and a glucose depleted, aerobic region near the biofilm-air interface.

S. aureus was predicted to be dominant throughout the biofilm, especially in the

anaerobic region, while P. aeruginosa was predicted to be present only in the aerobic

region. Byproduct profiles were similar to those obtained for the S. aureus single

species biofilm (not shown here) with high lactate levels, low acetate levels and no

succinate production. We attributed this behavior to partitioning of P. aeruginosa to

the aerobic region where the synthesis of byproducts was substantially reduced. These

model predictions could be experimentally tested by measuring metabolite concen-

tration profiles using spatially resolved metabolomics [131–133] and gene expression

profiles using spatially revolved transcriptomics [134, 135].

To further analyze how multispecies metabolism depended on position in the

biofilm, local effective growth rates and nutrient uptake rates were determined from

the base case (BC) simulation data. For species i, the local effective growth rate was

calculated as the difference between the biomass restricted growth rate µi(1−Zi/Zmax)

and the energy associated death rate kdi at a given position z. Consequently, the ef-

fective growth rate could be negative in nutrient lean regions. The calculations were

performed using data collected at t = 10 hours because these initial rates offered in-

sights into biofilm physiology. S. aureus growth rates exceeded P. aeruginosa growth

rates at all positions, especially in the anaerobic region near the bottom of the biofilm

where P. aeruginosa death was predicted (Figure 2.2C). Both species were predicted
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to have constant growth rates in the upper aerobic region. The P. aeruginosa growth

rate decreased rapidly in the lower half due to decreasing oxygen availability such that

death occurred in the first 35 µm. By contrast, the S. aureus growth rate increased

rapidly in this region due to the increasing availability of glucose to support anaerobic

growth. As time progressed, these local growth rates resulted in S. aureus dominance

throughout the biofilm and P. aeruginosa presence only in the aerobic region (Fig-

ure 2.2B). The glucose uptake rate increased monotonically from bottom to top of the

biofilm, while the oxygen uptake rate was predicted to exhibit a maximum near the

center because that location offered the optimal combined availability of glucose and

oxygen to support consortium growth. The experimental determination of spatially

resolved biomass concentrations [136] would be beneficial in this context.

2.3.2 Byproduct cross feeding

Cross feeding of secreted metabolic byproducts is common in bacterial commu-

nities [137, 138] and multispecies biofilms [139, 140]. For example, a cross feeding

mechanism has been proposed for a polymicrobial infection system consisting of the

two facultative anaerobes Aggregatibacter actinomycetemcomitans and Streptococcus

gordonii [139]. We hypothesized that cross feeding of secreted metabolic byproducts

(lactate, succinate, acetate) would enhance the competitiveness of P. aeruginosa in

the aerobic portion of the biofilm. Except for the inability of S. aureus to consume

acetate, experimental studies as well as our previously reported FBA results [141]

show that the two species are capable of metabolizing these byproducts in the pres-

ence of sufficient oxygen. Therefore, we investigated the impact of putative cross

feeding by allowing each species to enhance its growth through uptake of the three

byproducts (C-f scenario). The two species were assumed to uptake each byproduct

with the same kinetics (see Table 2.2) due to lack of data on species and substrate

specific uptake parameters.
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Figure 2.3: Predictions after 1000 hours for two species biofilms of thickness W =
80 µm with different species interaction mechanisms. (a)(A-D) Spatially resolved
biomass concentrations and (E) P. aeruginosa (Pa), S. aureus (Sa), total biomass
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The cross-feed scenario model predicted thatWmax remained 80 µm when byprod-

uct cross feeding was incorporated. Because glucose was the more energetically favor-

able carbon source, most of the available oxygen was used for glucose oxidation and

little oxygen remained for lactate oxidation. Contrary to our hypothesis, cross-feeding

reduced the region where P. aeruginosa was present and did not substantially increase

the P. aeruginosa biomass concentration within this region (Figure 2.3, panel A). To

succinctly quantify this behavior, the P. aeruginosa and S. aureus biomass concen-

trations were averaged across the biofilm and compared to average concentrations

obtained for the base case scenario without cross feeding. While the total biomass

concentration was not affected, cross-feeding increased the fraction of S. aureus rela-

tive to P. aeruginosa (Figure 2.3E). Since lactate was the primary byproduct of the

two species biofilm, we attributed this behavior to S. aureus having more efficient

lactate metabolism. Previously reported single species FBA results showed that S.

aureus had higher growth rates on lactate under oxygen sufficient and oxygen lim-

ited conditions [141]. Because similar behavior was observed for glucose metabolism

in single species biofilms, the addition of lactate consumption was predicted to fur-

ther increased S. aureus dominance in the aerobic region where sufficient oxygen was

available for lactate oxidation.

Byproduct cross feeding in P. aeruginosa/S. aureus chronic wound biofilms has

not been experimentally studied to our knowledge and represents a promising area

of research. Experimental studies with P. aeruginosa biofilms in the cystic fibrosis

lung show that lactate actually can be a preferred carbon source to glucose [142,

143], suggesting enhanced lactate uptake capabilities. This environmental dependence

emphasizes the importance of conducting uptake experiments and studying cross

feeding under chronic wound relevant conditions. Well controlled planktonic growth

experiments are needed to accurately estimate ATP maintenance demands of the two
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species, since lactate oxidation might confer a growth advantage to P. aeruginosa if

the energetics are more favorable than those modeled.

2.3.3 P. aeruginosa inhibition of S. aureus

P. aeruginosa secretes a wide variety of inhibitory compounds that have been

shown to enhance its competitiveness against competing bacteria in multispecies

biofilm communities [144–146]. P. aeruginosa is known to secrete pyocyanin which

inhibit and lyse competing bacteria such as S. aureus. Additional simulations were

performed to explore the impact of a putative pyocyanin-mediated lysis mechanism

on the two species biofilm. When this mechanism was combined with nutrient compe-

tition (Ly scenario), the model predicted that Wmax was slightly increased to 90 µm.

Reduction of S. aureus biomass in the anaerobic region resulted in slightly higher

glucose levels throughout the biofilm, allowing increased P. aeruginosa growth in the

upper aerobic region and a greater biofilm thickness.

To allow direct comparison with the other species interaction scenarios, simula-

tions also were performed for an 80 µm thick biofilm. Spatial profiles showed sharp

partitioning of the two species with P. aeruginosa dominant in the upper aerobic

region of the biofilm (Figure 2.3, panel C). This effect was achieved at the expense

of the S. aureus biomass concentration, which was substantially reduced in the lower

anaerobic region and dropped to zero at 40 µm.

The metabolic burden of synthesizing pyocyanin was predicted to have a minimal

effect on P. aeruginosa growth due to the small enforced bound of 0.1 mmol/gDW/h.

At a maximum glucose uptake rate of 10 mmol/gDW/h, only 2.2% of available carbon

was used for pyocyanin synthesis. While we tuned our model to obtain reasonable

extracellular pyocyanin concentrations [117], key parameters (i.e. synthesis rate, dif-

fusion coefficient, killing rate) associated with the mechanism are unknown and need
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to be experimentally determined to accurately quantify the effect in chronic wound

environments.

Combining byproduct cross feeding and the lysis mechanism (Ly+C-f scenario) did

not changeWmax from the pyocyanin-free case (C-f scenario) but did increase S. aureus

competitiveness by shifting the location where the species partitioned approximately

15 µm towards the biofilm-air interface (Figure 2.3, panel B). The addition of cross

feeding resulted in average biomass concentrations that were roughly equal, while total

biomass was reduced (Figure 2.3E). We hypothesized that this unexpected effect was

due to increased oxygen utilization by S. aureus for lactate oxidation. Although S.

aureus biomass was simultaneously reduced by pyocyanin- mediated lysis, the oxygen

used for S. aureus growth was not available for P. aeruginosa oxidative growth and

total biomass decreased. Therefore, the pyocyanin mechanism was interpreted as an

antagonistic mechanism by which P. aeruginosa increased its own competitiveness.

2.3.4 P. aeruginosa aerotaxis

P. aeruginosa has a single flagellum that may allow motility in complex, hetero-

geneous environments such as biofilms [147] while S. aureus is generally viewed as

non-motile [148]. More specifically, P. aeruginosa has been observed to chemotax

towards higher oxygen environments, a process known as aerotaxis, which offer more

favorable growth conditions [100]. To explore the impact of this putative aerotaxis

mechanism on two species biofilm metabolism, the P. aeruginosa biomass equation

included a chemotaxis term (see Equation 2.2) and simulations were performed with

both nutrient competition and aerotaxis (AT scenario). The energy requirements for

chemotaxis were assumed negligible compared to growth. When aerotaxis was com-

bined with nutrient competition, the model predicted thatWmax was increased to 120

µm and nearly complete species partitioning as observed experimentally [86, 149],

with P. aeruginosa dominant in the upper aerobic half and only S. aureus present
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in the lower anaerobic region. Aerotaxis increased spatial partitioning of the two

species (see Figure 2.3, panel C) such that P. aeruginosa had access to more oxygen

for lactate respiration, resulting in a thicker biofilm.

Spatial profiles generated for an 80 µm biofilm show almost complete partition-

ing of the two species, with P. aeruginosa dominating in the upper aerobic half,

only S. aureus present in the lower anaerobic region, and the two species coexist-

ing for about 10 µm near the middle of the biofilm (Figure 2.3, panel C). Aerotaxis

allowed P. aeruginosa to substantially improve its competitiveness by increasing its

concentration in the upper portion of the biofilm rather than by moving the tran-

sition region between the two species (see Figure 2.2B). When averaged across the

biofilm, the biomass concentrations of the two species were approximately equal while

total biomass was unaffected compared to the aerotaxis-free case (Figure 2.3E). Un-

like pyocyanin-mediated lysis, aerotaxis can be viewed as an antagonistic mechanism

by which P. aeruginosa increased its own competitiveness without reducing total

cell densities. Biofilm reactor experiments aimed at demonstrating and quantifying

the aerotactic response would be highly beneficial. Experimental testing could be

achieved through a combination of traditional and spatially resolved omics technolo-

gies [133, 134, 150].

When byproduct cross feeding was added to P. aeruginosa aerotaxis and nutri-

ent competition (AT+C-f scenario), the model predicted Wmax = 120 µm, the same

value obtained in the absence of cross feeding. When simulations were performed

for an 80 µm thick biofilm, the addition of cross feeding substantially increased S.

aureus biomass in the biofilm while having a small negative impact on total biomass

(Figure 2.3E). Of the eight scenarios investigated, a maximum Wmax = 130 µm was

predicted when nutrient competition and aerotaxis were combined with pyocyanin-

mediated lysis of S. aureus (AT+Ly scenario). In this case, P. aeruginosa had access

to increased glucose due to S. aureus death in the anaerobic region and increased lac-
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tate due to the absence of S. aureus in the aerobic region, which combined to enhance

P. aeruginosa growth and allow a thicker biofilm. For a nominal biofilm thickness of

80 µm, only P. aeruginosa was present in the upper 50 µm of the biofilm and the

amount of S. aureus was relatively small in the lower anaerobic region (Figure 2.3,

panel D). The further addition of byproduct cross feeding did not affect Wmax but

did increase S. aureus competitiveness (AT+Ly+C-f scenario) (Figure 2.3E). Collec-

tively, these predictions suggest that both pyocyanin-mediated lysis and aerotaxis are

potentially powerful mechanisms for P. aeruginosa to enhance its competitiveness in

multispecies biofilms with the faster growing facultative anaerobe S. aureus.

2.4 Conclusions
Chronic wounds are often colonized by bacteria consortia growing as biofilms on

a complex mixture of wound exudate. Improved understanding of these complex

multispecies systems is required to develop more rational and effective antibiotic

therapies for biofilm eradication. We developed genome-scale spatiotemporal models

of a two species consortium comprised of the chronic wound isolates Pseudomonas

aeruginosa and Staphylococcus aureus to investigate the impact of putative species

interaction mechanisms on biofilm physiology. The models were used to analyze the

metabolic differences between single species and two species biofilms and to investigate

the impact of nutrient competition, byproduct cross feeding, P. aeruginosa inhibition

of S. aureus growth and P. aeruginosa aerotaxis on the relative abundance and spatial

distribution of each species. The key predictions of the computational modeling study

were:

• The two species system was predicted to support a maximum biofilm thickness

much greater than P. aeruginosa alone but slightly less than S. aureus alone,

suggesting an antagonistic metabolic effect of P. aeruginosa on S. aureus.
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• Nutrient gradients imposed by supplying glucose at the bottom and oxygen

at the top of the biofilm induced spatial partitioning of the two species, with

S. aureus most concentrated in the lower anaerobic region and P. aeruginosa

present only in the upper aerobic region.

• When each species was allowed to enhance its growth through consumption of

secreted metabolic byproducts assuming identical uptake kinetics, the compet-

itiveness of S. aureus was further enhanced due to its more efficient lactate

oxidative metabolism.

• Lysis of S. aureus by the small molecule inhibitor pyocyanin secreted from P.

aeruginosa and/or P. aeruginosa aerotaxis towards high oxygen levels were

predicted to enhance spatial portioning of the two species and to increase P.

aeruginosa competitiveness in the aerobic region.

These model predictions require further validation through the execution of tar-

geted experiments that augment existing results in the literature that support our

conclusions. P. aeruginosa lysis of S. aureus combined with nutrient competition is

a particularly relevant scenario for which model predictions could be tested experi-

mentally.

30



CHAPTER 3

MODELING OF SPATIOTEMPORAL METABOLIC
INTERACTIONS IN AUTOTROPH-HETEROTROPH

CONSORTIA

3.1 Introduction
The environmental communities play an important role in production and utiliza-

tion of organic matter, degradation of toxic compounds and the cycling of nitrogen,

sulfur and other metals [151, 152]. The interactions between the species in commu-

nity through exchanges of metabolites, scavenging of toxins shape the community

structure and abundances. It is very important to understand the interspecies inter-

actions to analyze and interpret the dynamics of community formation, the functional

relationships between these species and the complex metabolic processes within the

community. As a typical example, cyanobacteria and heterotrophic species in nature

form stable microbial mats or biofilms by developing synergistic relationships. The

cyanobacteria are photoautotrophs that convert inorganic matter with the help of

light energy into useful organic compounds and oxygen, which are then consumed by

the heterotrophic species in the vicinity [153]. Cyanobacteria also benefit from the

presence of their partners because heterotrophs produce carbon dioxide - a major car-

bon source for cyanobacteria - and remove the toxins that otherwise may inhibit the

growth of cyanobacteria. For controlling the dynamics of these communities, it is crit-

ical to understand how metabolic interactions between autotrophs and heterotrophs

occur and, how they are constrained in space and time, and how those constraints af-

fect community dynamics and biochemical function. Predictive mathematical models

such as community metabolic networks can serve as a useful tool for this purpose.
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Here, We would be using mathematical models to analyze and interpret the inter-

actions within this community. Mathematical simulation is a useful tool to evaluate

the growth and abundances of species in 3D biofilm spatial structures. The main

objective of this study is to develop a mathematical model to analyze the autotrophic

and heterotrophic growth, to account for interspecies interactions through metabolite

exchanges and to predict spatial arrangements of the species in the biofilm. The mul-

tispecies biofilm model will be validated by using experimental data available from

the study on photoautotroph-heterotroph biofilms [154]. The validated model will

be used to predict the important interactions for the community stability and devel-

opment of metabolic niche in the environment. The model will be a useful tool to

study various autotrophic-heterotrophic interactions. It will help to engineer the spe-

cific communities like biofuel producing communities, to analyze the biogeochemical

cycles in the nature and to understand the role of autotroph-heterotrophs in ecology.

3.2 Material and methods
3.2.1 System description

For model development, we chose microbial-mat-derived unicyanobacterial consor-

tia previously studied by [154]. in which the biofilms were grown in the tissue culture

flasks, the metabolomics, dry weight, composition, total protein and cell counts were

measured. This study concluded that two consortia had distinct species of cyanobac-

teria which were primary producers along with nearly identical heterotrophs present

in both the systems. The metabolomic study detected glucose in all the samples.

Inorganic carbon was the sole carbon source supplied to the consortia. The biofilms

were grown for 28 days under continuous photon flux of 35 µE/m2/s. The autotroph

and heterotroph biomass obtained from the published study are shown in Figure 3.1B

(UCCA) and Figure 3.1C (UCCO). The study concluded that UCCA produced higher

autotroph biomass as compared to UCCO.
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Figure 3.1: Formulation of the multispecies biofilm metabolic model. (A) Schematic
representation of the autotroph-heterotroph biofilm model of constant thickness L
with CO2, photon, O2, nitrate and phosphate provided at the L = 0 µm. (B) Exper-
imental UCC-A autotroph and heterotroph biomass concentration (g/L) plotted at
various locations in the biofilm at different time points. (C) Experimental UCC-O au-
totroph and heterotroph biomass concentration (g/L) plotted at various locations in
the biofilm at different time points. (D) Number of reactions, metabolites and genes
present in core metabolic network model of considered autotrophs and heterotroph.
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3.2.2 Model formulation

The multispecies biofilm model was constructed for autotroph and heterotroph

community in microbial mat derived unicyanobacterial consortia. The biofilm was

assumed to be formed on the flask surface as described in previous publication [154],

this interface was termed as bottom of the biofilm (L = 30µm) (Figure 3.1A). The

metabolites such as inorganic carbon in the form of CO2, O2, nitrate and phosphate

were supplied at the top of the biofilm (L = 0µm). The biofilm was assumed to be

growing under constant photon incidence rate supplied at top of the biofilm. The

autotrophs in the community were assumed to convert CO2 in presence of photon

energy to organic carbon (glucose) and oxygen which were consumed by heterotrophs

in the community. Heterotrophs generated CO2 as a metabolic byproduct which was

consumed by autotrophs in the community. Diffusion was assumed to occur only

in the axial direction of the biofilm such that spatial variations could be captured

with a single variable z (Figure 3.1A). For simplicity, the biofilm was assumed to

have a fixed thickness L over which the nutrients diffused, and cell growth occurred.

Therefore, the models were most appropriate for predicting the metabolism of biofilms

of a specified thickness.

The spatiotemporal models for photoautotroph-heterotroph consortia were con-

structed by combining core metabolic network models with nutrient uptake kinetics

and reaction-diffusion equations for species biomass, supplied substrates and synthe-

sizes metabolic byproducts.

The species biomass was calculated by using,

∂Xi(z, t)
∂t

= µiXi +DXi

∂2Xi

∂z2 (3.1)

−Di
∂Xi(0, t)

∂z
= kXi,0[Xi,b −Xi(0, t)] , −Di

∂Xi(L, t)
∂z

= kXi,L[0−Xi(L, t)]

where Xi was the biomass concentration (g/L) of i-th species. µi is the growth

rate (h−1) of the i-th species. The biomass was assumed to be diffused with diffusion
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coefficient (DXi
) and removed from the both ends of the biofilm at the mass transfer

rates (kXi,0 and kXi,L
).

The metabolite concentrations (CO2, phosphate, nitrate, glucose and oxygen)

were calculated by using,

∂Mj(z, t)
∂t

= vMjXi
Xi +DMj

∂2Mj

∂z2 (3.2)

−DMj

∂Mj(0, t)
∂z

= kmMj
[Mj,b −Mj(0, t)] , −DMj

∂Mj(L, t)
∂z

= kmMj
[0−Mj(L, t)]

where Mj was the concentration (mmol/L) of j-th metabolite (CO2, phosphate, ni-

trate, glucose, O2). The uptake fluxes vMjXi
of j-th metabolite for i-th species was

calculated from flux balance calculations. The metabolites were assumed to be dif-

fused at the rate of DMj
and removed from the bottom of the biofilm at the mass

transfer rate, km,Mj
. Mj,b was bulk concentration of the metabolite at the air-biofilm

interface. We supplied CO2, phosphate, nitrate and O2 at the top of the biofilm and

the accumulated metabolites were removed from the bottom of the biofilm.

Uptake kinetics were specified for the four primary metabolites: CO2, photon,

glucose and oxygen. The uptake kinetics for each metabolite were assumed to follow

Michaelis-Menten expressions.

vi = vmax,iSi

Km,i + Si

(3.3)

where vi is the uptake rate (mmol/gDW/h) of the i-th substrate, Si is the extra-

cellular concentration (mmol/SL) of the i-th substrate, vmax,i is the maximum uptake

rate and Km,i is the half saturation constant. Equation (2.1) was used to establish

transport bounds on the uptake rates with the actual uptake rates being determined

by solution of the intracellular flux balance problem. Both vmax,i and Km,i were im-

portant parameters due to the large nutrient spatial gradients induced by diffusion

through the biofilm.
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The uptake kinetics of phosphate and nitrate had the form,

vp = αP
vmax,pP

Km,p + P
(3.4)

vn = αn
vmax,nN

Km,n +N
(3.5)

where vp and vn are the uptake rates (mmol/gDW/h), P and N are the extra-

cellular concentrations (mmol/L), vmax,p and vmax,n are the maximum uptake rates

and Km,p and Km,n are the half saturation constants of the phosphate and nitrate

respectively. Equations (3.4 and 3.5) were used to establish transport bounds on

the uptake rates with the actual uptake rates being determined by solution of the

intracellular flux balance problem. The parameters αp and αn were added to evaluate

the effect of restricted phosphate and nitrate uptakes on biomass concentration and

species interactions.

The photon incidence rate was calculated by using Beer-Lambert law,

I = Iine
−(ktot(L−z)) (3.6)

Where Iin is the initial photon incident rate (µE/m2s). The attenuation coefficient,

ktot was adjusted to achieve enough penetration of light into the biofilm. The photon

incidence rate obtained from this equation was used to calculate the lower bound on

photon uptake rate by using nutrient uptake kinetics. The lower bound of photon

uptake rate along with other nutrient bounds were used for solving core metabolic

model and the corresponding growth rates of autotrophs were obtained.

The core metabolic network models were obtained by supplying genomes of the

considered species to Kbase. Kbase platform was used to gapfill the core metabolic

network models. The autotrophic cyanobacterium Phormidesmis priestleyi ANA and

cyanobacterium Phormidium sp. OSCR core metabolic models were gapfilled us-

ing Kbase tool Gapfill Metabolic Model. The heterotroph model was generated by
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combining genomes of most abundant species in consortia Bin 01 (Bacteriodetes),

Bin18 (Rhodo), Bin10 (HL-49), Bin 04 (Plasmid), Bin 02 (HL-53) and Bin 05 (HL-

91) [155]. The autotroph-1 model accounts for 140 genes, 125 metabolites and 134

reactions whereas autotroph-2 model accounts for 124 genes, 137 metabolites and

139 reactions. The core scale metabolic networks for autotrophs have been shown

to provide good agreement with experimentally obtained biomass growth rates on

photon and CO2. Our preliminary flux balance calculations with maximum growth

objective showed that the autotroph produced glucose and oxygen as byproducts.

The heterotroph core metabolic model was examined for various glucose and oxygen

uptake rates and found to be in good agreement with experimental growth rates. The

major byproduct of heterotroph metabolism was CO2.

3.2.3 Solving model equations

The biofilm model was consisting of a set of partial differential equations (PDEs)

with mixed boundary conditions and embedded LPs. We converted those PDEs to or-

dinary differential equations (ODEs) by discretizing in space. The algebraic equation

(AE) for photon balance equation combined with the ODEs led to system of dif-

ferential algebraic equations (DAEs). The DAE system was solved using DFBAlab,

a MATLAB tool that explicitly addresses problems associated with LP alternative

optima and possible infeasibilities. DFBAlab employs a lexicographic optimization

strategy in which a series of LP problems are sequentially solved to ensure the de-

termination of unique exchange fluxes necessary for a well-defined dynamic system.

We specified the lexicographic optimization objectives to reflect the anticipated phys-

iology of the autotroph-heterotroph biofilm (Table 3.1. We used 30 spatial node

points to achieve fast and accurate solutions. We solved 210 ODEs, one 1 algebraic

equation for photon balance and 390 LPs in MATLAB 2017b using DFBAlab, stiff

ode integrator ode15s and Gurobi 7.5.2 as a LP solver [93, 141].
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Table 3.1: Lexicographic objective functions

Species Number Direction Objective
Autotroph 1 Maximize Growth rate
Autotroph 2 Minimize Glucose secretion
Autotroph 3 Minimize Oxygen secretion
Autotroph 4 Maximize CO2 uptake
Autotroph 5 Maximize Photon uptake
Autotroph 6 Maximize Nitrate uptake
Autotroph 7 Maximize Phosphate uptake
Heterotroph 1 Maximize Growth rate
Heterotroph 2 Maximize CO2 secretion
Heterotroph 3 Minimize Glucose uptake
Heterotroph 4 Maximize Oxygen uptake
Heterotroph 5 Maximize Phosphate uptake

3.2.4 Model parameters

For determining parameter values, we used the species abundance data available

at various depths in the biofilms of UCC-A and UCC-O at different times (see Figure

3.1B and 3.1C). The spatial data available for the fraction of biomass was converted

to the biomass concentration at various locations by using biofilm density. The con-

centration of autotrophs and heterotrophs vary in space and time. We used day 7

spatial data as an initial condition for the model and validated the model for day 14,

day 21 and day 28. We used least square curve (lscurvefit) fitting technique in MAT-

LAB to fit the experimental data and validate the biofilm model. The lower bound

and upper bounds on the parameters were chosen based on the available literature

values. The global optima were ensured by using multistart option in MATLAB.

This approach chose various starting points in from the lower and upper bounds.

The parameters used in the biofilm model are shown in Table 1. The kinetic pa-

rameters (vmax and Km) for the metabolites were obtained from model fitting. We

have used the values obtained from literature as the initial guesses for vmax and Km

[114, 156, 157]. The aqueous diffusion coefficients for substrates and byproducts were

converted to the biofilm diffusion coefficients using appropriate coefficients [122]. The
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diffusion coefficients and the mass transfer rate constant for biomass were obtained

from the validation of the biofilm experimental data.

Table 3.2: Nominal model parameter values

L Biofilm thickness 30 µm [154]
Cb Bulk CO2 concentration 10 mmol/L Specified
Iin Initial photon incidence rate 35 µE/m2s [154]
Nb Nitrate bulk concentration 17.6 mmol/L [158]
Pb Bulk phosphate concentration 1 mmol/L Specified
Gb Bulk glucose concentration 0 mmol/L Specified
Ob Bulk O2 concentration 0.21 mmol/L Specified
DCO2 Diffusion coefficient for CO2 7.9x10−6 cm2/s [122]
DG Diffusion coefficient for glucose 1.8x10−6 cm2/s [122]
DO Diffusion coefficient for oxygen 1.8x10−5 cm2/s [122]
km,co2 CO2 mass transfer coefficient 1x10−4 cm/s Specified
km,i Mass transfer coefficient for glucose and O2 2x10−4 cm/s Specified

vmax,co2 Maximum CO2 uptake rate (mmol/gDW/h) 5 (UCC-A), 5 (UCC-O) Fitted
km,co2 CO2 half saturation constant (mmol/L) 0.5 (UCC-A), 0.5 (UCC-O) Fitted

vmax,photon Maximum Photon uptake rate (mmol/gDW/h) 1.16 (UCC-A), 1.1 (UCC-O) Fitted
km,photon Photon half saturation constant (mmol/L) 0.29 (UCC-A), 0.45 (UCC-O) Fitted
vmax,N Maximum Nitrate uptake rate (mmol/gDW/h) 0.3 (UCC-A), 0.027 (UCC-O) Fitted
km,N Nitrate half saturation constant (mmol/L) 2.7 (UCC-A), 0.001 (UCC-O) Fitted
vmax,P Maximum Phosphate uptake rate (mmol/gDW/h) 0.25 (UCC-A), 0.24 (UCC-O) Fitted
km,P Phosphate half saturation constant (mmol/L) 2 (UCC-A), 10 (UCC-O) Fitted
vmax,G Maximum Glucose uptake rate (mmol/gDW/h) 2.42 (UCC-A), 6.64 (UCC-O) Fitted
km,G Glucose half saturation constant (mmol/L) 1 (UCC-A), 0.5 (UCC-O) Fitted
vmax,O2 Maximum O2 uptake rate (mmol/gDW/h) 20 Fitted
km,O2 O2 half saturation constant (mmol/L) 0.003 Fitted
vmaxh,P Maximum CO2 uptake rate (mmol/gDW/h) 0.25 (UCC-A), 0.42 (UCC-O) Fitted
kmh,P Phosphate half saturation constant (mmol/L) 2 (UCC-A), 0.72 (UCC-O) Fitted
Da Diffusion coefficient for Autotroph (µm2/s) 0.021 (UCC-A), 0.013 (UCC-O) Fitted
Dh Diffusion coefficient for Heterotroph (µm2/s) 0.031 (UCC-A), 0.023 (UCC-O) Fitted
ka,0 Autotroph mass transfer coefficient at L = 0 (µm/s) 0.25 (UCC-A), 0.01 (UCC-O) Fitted
ka,L Autotroph mass transfer coefficient at L = 30 (µm/s) 1 (UCC-A), 0.01 (UCC-O) Fitted
kh,0 Heterotroph mass transfer coefficient at L = 0 (µm/s) 0.6 (UCC-A), 0.053 (UCC-O) Fitted
kh,L Heterotroph mass transfer coefficient at L = 30 (µm/s) 0.98 (UCC-A), 0.42 (UCC-O) Fitted
ktot Photon attenuation coefficient (µ−1) 1x10−3 Fitted

3.3 Results
3.3.1 Biofilm model validation

The autotrophs were able to convert inorganic carbon into glucose and oxygen

in presence of light energy. The glucose and oxygen diffused in the biofilm and

heterotrophs used these as the substrates for their growth and increased their abun-

dances. The phosphate uptake limitations in UCC-A model were added by choosing

αp value (equation 3.4, Model formulation) . The model fittings with and without
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Figure 3.2: Spatially resolved model fitting for UCC-A autotroph-heterotroph biofilms
with (red solid lines) and without (blue lines) nitrate and phosphate limitations. (A)
Autotroph biomass (g/L) at day 14, 21 and 28 for biofilm of thickness L = 30 µm.
(B) Heterotroph biomass (g/L) at day 14, 21 and 28 for biofilm of thickness L = 30
µm.

phosphate uptake limitation were compared. The model predicted that with phos-

phate limitations for day 14 and day 21, the biomass concentrations were higher than

those without phosphate limitations. The day 28 predictions with and without phos-

phate were qualitatively similar. The model fittings were compared at αp = 0.75 and

the fitting parameters were calculated.

Our biofilm model qualitatively captured the experimental behavior of the photoautotroph-

heterotroph biofilms from hot lake (Figure 2 and Figure 3 ). The UCC-A model de-

picted the qualitative peak locations for the day 14 (Figure 3.2A and Figure 3.2B,

top panels) and day 28 (Figure 3.2A and Figure 3.2B, bottom panels) for autotrophs

and heterotrophs. The model also captured the shifting of temporal peak locations

for autotrophs and heterotrophs. The model could not successfully fit the heterotroph

data for day 21 (Figure 3.2B, middle panel). The possible reasons for this data would

be an error in experimental behavior or the lack of details in the modeling framework.
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Figure 3.3: Spatially resolved model fitting for UCC-O autotroph-heterotroph biofilms
with (red solid lines) and without (blue lines) nitrate and phosphate limitations. (A)
Autotroph biomass (g/L) at day 14, 21 and 28 for biofilm of thickness L = 30 µm.
(B) Heterotroph biomass (g/L) at day 14, 21 and 28 for biofilm of thickness L = 30
µm.

The UCC-O model predictions for autotroph and heterotrophs biomass were plot-

ted with and without nitrate and phosphate limitations. The nitrate limitations for

UCC-O was added to incorporate the ability of UCC-O to secrete extracellular poly-

meric substances which puts additional burden on UCC-O metabolism. We chose

αp =0.75 and αn =0.75 to compare the model fittings with and without phosphate

and nitrate uptake limitations. The autotroph biomass concentrations with nitrate

and phosphate limitations were higher as compared with those without nitrate and

phosphate limitations. The heterotroph concentrations without nitrate and phosphate

limitations were higher than those with nitrate and phosphate limitations. The model

fittings improved in presence of nitrate and phosphate limitations as this incorporates

important metabolite exchanges in the system.

The UCC-O model captured the qualitative peak locations for autotrophs and

heterotrophs for day 14 (Figure 3.3A and Figure 3.3B, top panels) and day 28

(Figure 3.3A and Figure 3.3B, bottom panels). The UCC-O model predicted lower
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heterotroph biomass concentrations for day 14, day 21 and day 28 as compared to the

experimental observation. Like UCC-A model, the UCC-O model also successfully

captured the temporal shifts of peak locations for autotrophs and heterotrophs

The models predicted the concentration profiles for the metabolites. We did not

have the experimental data for the metabolites, the metabolite profiles were in line

with previous studies [159–161]. We would be using the fitted the parameters (Table

3.2) to predict the interspecies interactions, species organization, rate of byproduct

formation at various CO2 and photon concentrations.

3.3.2 Effect of CO2

The validated model was used to predict the interactions between autotrophs and

heterotrophs at various CO2 concentrations under restricted phosphate and nitrate

uptakes by autotrophs. Reduced nitrate and phosphate uptakes are observed during

succession for UCC-O and reduced phosphate uptakes were observed for UCC-A [155].

This effect was incorporated by adding parameters for phosphate (αp) and nitrate (αn)

in calculation of uptakes for autotrophs. We chose various values of αp between 0 and

1 and the respective community biomass were calculated. For UCC-A, the biomass

concentration was constant for αp=1, 0.75, 0.5 but it decreased at αp=0.25. In case of

UCC-O the biomass concentration was very sensitive to αp, the concentration dropped

with decrease in αp. Cyanobacterium Phormidium sp. OSCR is known to produce

more extracellular polymeric substances (EPS) than cyanobacterium Phormidesmis

priestleyi ANA. The core metabolic model lacked the fluxes for EPS secretions hence

we have accounted for this behavior by restricting nitrate uptake for autotrophs in

UCC-O by setting αn =0.75. We have considered αp=0.25 for UCC-A and UCC-O and

evaluated the effect of CO2 concentration on community abundances. We varied the

concentration of CO2 supplied at the top of the biofilm (L=0) from 0.1 mmol/L to 10

mmol/L under the photon incidence rate of 35 µE/m2s. We have plotted the average
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Figure 3.4: Predictions after 14, 21 and 28 days for UCC-A and UCC-O biofilms of
thickness L = 30 µm at various C2 concentration and constant photon incidence (35
µE/m2s). 0.1: CO2 concentration 0.1 mmol/L. 0.5: C2 concentration 0.5 mmol/L.
10: C2 concentration 10 mmol/L. (A) UCC-A: Autotroph biomass concentrations av-
eraged across the biofilm. (B) UCC-A: Heterotroph biomass concentrations averaged
across the biofilm. (C) UCC-A: Glucose concentrations averaged across the biofilm.
(D) UCC-A: Oxygen concentrations averaged across the biofilm. (E) UCC-O: Au-
totroph biomass concentrations averaged across the biofilm. (F) UCC-O: Heterotroph
biomass concentrations averaged across the biofilm. (G) UCC-O: Glucose concentra-
tions averaged across the biofilm. (H) UCC-O: Oxygen concentrations averaged across
the biofilm.

biomass concentrations and average metabolite (glucose and O2) concentrations at

the end of day 14, day 21 and day 28 for UCC-A and UCC-O biofilms.

The average autotroph biomass concentrations for UCC-A increased from day 14

to day 28 for various CO2 concentrations whereas that of heterotrophs decreased

for 0.1 mM of CO2 and increased for all other CO2 concentrations (Figure 3.4A

and 3.4B). The highest autotroph biomass concentration (222.8 g/L at 28 days)

and heterotroph biomass concentration (21.7 g/L at 28 days) were obtained for CO2

concentration 10 mM. This suggests that the CO2 concentration played an important
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role in autotroph growth and biomass accumulation. Autotrophs secreted less amount

of glucose for CO2 level 0.1 mM as compared to CO2 levels 0.5 mM and 10 mM. The

accumulation of glucose at 0.1 mM of CO2 was the least due to its faster consumption

by heterotrophs. O2 secretion increased with increase in supplied CO2. Heterotroph

growth was mainly limited by glucose secretion than that of O2.

For UCC-O, autotroph biomass concentration increased from 79.5 g/L (at day

14) to 93 g/L (at day 28) for all CO2 concentrations considered here (Figure 3.4E).

This indicated that the CO2 was not a limiting substrate for autotroph growth. Exact

opposite trend was observed for heterotroph biomass concentration, it decreased from

20.7 g/L (at day 14) to 17.4 g/L (at day 28) (Figure 3.4F). The accumulation of

glucose increased from day 14 to day 28 whereas that of O2 was constant for all CO2

levels. The model predicted that CO2 concentration doesn’t change the community

composition in UCC-O.

3.3.3 Effect of light incidence rate

The model was further used to predict the impact of photon incidence on the

community stability and dynamics. We evaluated three different photon incidence

rates (10 µE/m2s, 35 µE/m2s and 50 µE/m2s) at constant CO2 concentration (10

mmol/L). The averaged species and metabolite concentrations were plotted at the

end of 14, 21 and 28 days for UCC-A and UCC-O biofilms.

The autotroph concentration in case of UCC-A biofilms increased from day 14 to

day 28 with increase in photon incidence rate from 10 µE/m2s to 50 µE/m2s (Figure

3.5A) with the highest concentration of 282.5 g/L was obtained at day 28 for photon

incidence rate of 50 µE/m2s. The amount of glucose secreted by autotrophs increased

for photon incidence rate of 10 µE/m2s and 35 µE/m2s but it decreased for photon

incidence rate 50 µE/m2s (Figure 3.5C). The amount of O2 secreted by autotrophs

increased for all photon incidence rates (Figure 3.5D). Heterotrophs utilized the
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Figure 3.5: Predictions after 14, 21 and 28 days for UCC-A and UCC-O biofilms of
thickness L = 30 µm at various photon incidence rates and constant C2 concentration
(10 mmol/L). 10: photon incidence rate 10 µE/m2s. 35: photon incidence rate 35
µE/m2s. 50: photon incidence rate 50 µE/m2s. (A) UCC-A: Autotroph biomass
concentrations averaged across the biofilm. (B) UCC-A: Heterotroph biomass con-
centrations averaged across the biofilm. (C) UCC-A: Glucose concentrations aver-
aged across the biofilm. (D) UCC-A: Oxygen concentrations averaged across the
biofilm. (E) UCC-O: Autotroph biomass concentrations averaged across the biofilm.
(F) UCC-O: Heterotroph biomass concentrations averaged across the biofilm. (G)
UCC-O: Glucose concentrations averaged across the biofilm. (H) UCC-O: Oxygen
concentrations averaged across the biofilm.

glucose and oxygen efficiently and increased their abundances from 14 g/L (at day

28) to 21.7 g/L (at day 28) for the case of 10 µE/m2s and 35 µE/m2s respectively but

later the abundance decreased to 20.3 g/L (at day 28) for incidence rate 50 µE/m2s

(Figure 3.5B). This suggested that the heterotroph concentration directly depended

on autotroph concentration until photon incidence rate of 35 µE/m2s but later it

decreased for 50 µE/m2s. The autotroph concentration increased with increase in

photon incidence rate.
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The autotroph concentration in case of UCC-O biofilms increased from day 14 to

day 28 with increase in photon incidence rate from 10 µE/m2s to 50 µE/m2s (Figure

3.5E) with the highest concentration of 93.1 g/L was obtained at day 28 for photon

incidence rate of 35 and 50 µE/m2s. The amount of glucose accumulated decreased

for photon incidence rates of 35 µE/m2s and 50 µE/m2s but it increased for photon

incidence rate 10 µE/m2s (Figure 3.5G). The amount of O2 accumulated in biofilm

was constant for all photon incidence rates (Figure 3.5H). Heterotrophs utilized the

glucose and oxygen increased their abundances initially for day 14 but it decreased

due to low glucose availability. Time averaged heterotroph concentration dropped

from 22.4 g/L to 18.7 g/L with increase in photon incidence rate. This suggested

that the photon incidence rate positively affected the autotroph concentrations but

negatively impacted the heterotroph abundances.

3.3.4 Species coexistence

The species coexistence was predicted based on available CO2 and photon inci-

dence rate. We varied supplied CO2 concentration within the range 0.01 mmol/L

and 1 mmol/L. The photon incidence rate was varied from 10 µE/m2s to 50 µE/m2s.

We ran 81 simulations each for UCC-O and UCC-A and plotted the results at the

end of 28 days to find out the conditions feasible for coexistence of autotrophs and

heterotrophs in the community. We concluded that species coexisted if the average

concentration of autotroph was more than 70 g/L and that of heterotroph was at

least 15 g/L.

For UCC-A biofilms, at the lowest photon incidence rate (10 µE/m2s) and at

the lowest CO2 concentration (0.01 mM), the autotroph biomass concentrations were

less than 70 g/L (Figure 3.6A) and that of heterotrophs were less than 15 g/L

(Figure 3.6B). Hence at lowest photon incidence rate (10 µE/m2s) and at lowest

CO2 concentration (0.01 mM), the species could not coexist. At photon incidence
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rate of 15 µE/m2s, the species coexist if CO2 concentration was above 0.05 mM.

The species could coexist for CO2 level 0.075 until the photon incidence rate reached

to 25 µE/m2s. The autotroph biomass increased with increase in photon incidence

rate and increase in CO2 levels. However, the heterotroph biomass concentrations

largely depended on the photon incidence rate, as photon concentration impacts the

secretion of glucose by autotrophs (see Supplementary figure 2). The glucose secretion

increased with increase in CO2 concentrations. The secretion of glucose increased

initially with increase in photon incidence rate, but it decreased later with increase

in incidence rates. This behavior is in line with the typical cyanobacteria metabolism

(Clark et al., 2018). The higher photon incidence rates required high CO2 levels for

species coexistence. The highest autotroph biomass (282.5 g/L) was obtained when

the photon incidence rate was 50 µE/m2s and CO2 concentration was greater than

0.5 mM. The highest heterotroph biomass concentration (22 g/L) was obtained for

photon incidence rate 40 µE/m2s and CO2 concentration greater than 0.5 mM. The

model predicted that the UCC-A community stability will be governed by carbon

availability than the photon incidence rate.

The UCC-O biofilm coexistence map showed that the species cannot coexist at the

lowest CO2 concentration 0.01 mM (Figure 3.6C and 3.6D). At the CO2 concentra-

tion the autotroph biomass was 66.3 g/L and that of heterotroph was 17.2 g/L. Once

the CO2 concentration reaches 0.025 mM, the species coexistence was observed for all

photon incidence rates. The highest autotroph biomass concentration was observed

when photon incidence rate was greater than 20 µE/m2s and CO2 concentration

was higher than 0.05 mM. However, the highest heterotroph biomass was observed

when photon incidence rate was 20 µE/m2s and CO2 concentration was greater than

0.05 mM. Higher concentrations of photon helped autotrophs to increase their abun-

dances, but the heterotroph concentration increased initially with increase in photon

incidence but decreased for higher values of incidence rates. The model predicted
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Figure 3.6: Model predictions for coexistence of autotrophs and heterotrophs for
UCC-A and UCC-O (A) UCC-A: Autotroph biomass concentration (g/L) at various
C2 and photon incidence rates for biofilm of thickness L= 30m. (B) UCC-A: Het-
erotroph biomass concentration (g/L) at various C2 and photon incidence rates for
biofilm of thickness L= 30m. (C) UCC-O: Autotroph biomass concentration (g/L) at
various C2 and photon incidence rates for biofilm of thickness L= 30m. (D) UCC-O:
Heterotroph biomass concentration (g/L) at various C2 and photon incidence rates
for biofilm of thickness L= 30m.
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that the UCC-O community stability will be governed by the photon incidence rate

than the carbon availability.

3.4 Discussion
The cyanobacteria present in the hot lake microbial mat use sunlight and CO2

and produce valuable organic compounds such as glycerol, glucose, ethanol and oxy-

gen. These valuable compounds are further utilized by heterotrophs in the vicinity

and heterotrophs generate CO2 and scavenge toxic compounds. These mutualistic

relationship benefits both the members in the community [162, 163, 15].

We have developed a biofilm model to study the interactions within the autotroph-

heterotroph community found in unicyanobacterial consortia in microbial mat. The

model was developed using core metabolic constructions of UCC-A/UCC-O and a

mixed bag model of 5 dominant heterotrophs. The models were generated in Kbase

database by using the respective genomes of the species. The Kbase database was

further used to gapfill the models and to analyse the growth conditions of the models.

The metabolic models combined with reaction diffusion equations were solved to get

species abundances. We validated the models by using an experimental data available

for photoautotroph-heterotroph community found in microbial mat. The autotrophs

interacted with heterotrophs through metabolite exchanges (glucose and oxygen).

These metabolites were secreted by autotrophs in presence of CO2 and photon.

The models were used to predict the effect of CO2 and photon on interactions

within the community and the species coexistence. UCC-A model predicted that the

autotroph biomass increased by 35%, and the heterotroph biomass by 43% when CO2

concentration increased from 0.1 mM to 10 mM at constant photon rate (35). This

suggested that the CO2 concentration significantly impacted the community biomass

and the species interactions. In case of UCC-O community, CO2 concentration did

not change the individual biomass concentrations, suggesting that the community
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is robust to the change in the concentration of available carbon at constant photon

rate. When we varied the photon rates at constant CO2 concentration (10 mM), we

found that for UCC-A and UCC-O, autotroph biomass increased monotonically. The

heterotroph biomass in UCC-A increased with increase in photon (10 µE/m2s to 35

µE/m2s) but decreased at higher incidence rate (35 µE/m2s). This effect is more

pronounced for heterotrophic community in UCC-O.

The model used for prediction of the species interactions at various depths in

the hot lake environment. The high photon incidence rate would be present at the

lower depths, the photon penetration decreased at higher depths in the lake [164,

165]. Our models captured the species interactions at various depths in hot lake and

predicted the species abundances and coexistence. This will help to further analyse

the species behaviour in the community and role of species in ecology. The complexity

of the models can be further increased by adding more specific interactions such as

chemotaxis. The cyanobacteria are known to secret biofuels and chemicals efficiently

with the help of CO2 and light energy [166–169]. Our models can be used to predict

and evaluate conditions favourable for the higher production of these chemicals and

biofuels by helping in designing of community with maximum interactions.
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CHAPTER 4

METABOLIC MODELING OF CLOSTRIDIUM
DIFFICILE ASSOCIATED DYSBIOSIS OF THE GUT

MICROBIOTA

4.1 Introduction
Numerous experimental studies have demonstrated that C. difficile [170–173] can

form biofilms in vitro. The other commensal bacteria [8, 174] can form biofilms

in vivo which are well known to exhibit phenotypes distinct from planktonic cul-

tures. Mechanistic understanding of the relationships between biofilm spatial vari-

ations, species-species interactions and host-species interactions remains inadequate

to systematically analyze and rationally treat CDI [175]. To address these chal-

lenges, we added C. difficile to our previous multispecies biofilm model [176, 177]

consisting of three representative species from the phyla Bacteroidetes (Bacteroides

thetaiotaomicron), Firmicutes (Faecalibacterium prausnitzii) and Proteobacteria (Es-

cherichia coli). Model simulations were performed to connect host induced nutrient

changes in the gut environment with observed alternations of species abundances and

SCFA levels [178–180] to unravel the metabolic determinants of CDI.

This work is published as: Phalak, Poonam, and Michael A. Henson. “Metabolic Modeling of
Clostridium difficile Associated Dysbiosis of the Gut Microbiota.” Processes 7, no. 2 (2019): 97.

51



4.2 Materials and methods
4.2.1 Biofilm model formulation and solution

The multispecies biofilm model was constructed by combining genome-scale metabolic

reconstructions of C. difficile (strain 630∆erm) [181] and three commensal gut species:

B. thetaiotaomicron [182], F. prausnitzii (strain A2-165) [183] and E. coli (strain K-

12 MG1655) [184]. The biofilm was considered to be attached to the colon lining

defined as top of the biofilm (Figure 4.1A). A minimal defined media (MDM) con-

taining glucose, cysteine, isoleucine, leucine, methionine, proline, serine, tryptophan

and valine along with essential vitamins and minerals was used for all simulations.

The amino acids cysteine, isoleucine, leucine, proline, serine and tryptophan are es-

sential for in vivo C. difficile growth [185, 186], while the amino acids methionine,

tryptophan and serine are essential for in vivo F. prausnitzii growth [187]. To simu-

late various host-microbiota perturbations, the primary bile acid taurocholate and/or

the electron acceptor nitrate were added to the media. The diffusion of nutrients,

byproducts and species biomass was assumed to occur only in the axial direction z.

Therefore, each variable was considered to be changing with respect to space z and

time t over a fixed biofilm thickness L.

The nutrients were supplied at the top of the biofilm (Figure 4.1A). SCFAs,

ethanol, organic acids and CO2 produced by the four species were allowed to diffuse

and be removed from both ends of the biofilm. Biomass was assumed to slowly move

through the biofilm by a diffusion and be removed from the biofilm-stool interface

according to a continuous erosion mechanism, as described in our previous publica-

tions [176, 177, 188]. This assumption provided a reasonable mechanism to ensure

that biomass generation would be balanced by biomass loss such that steady-state

solution could be obtained. The multispecies biofilm model was tuned with nominal

glucose and amino acid concentrations to reproduce species abundances and SCFA

levels consistent with experimental studies on healthy individuals [189, 190]. This
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Figure 4.1: Schematic representation of the in silico gut community. (A) The model
assumed biofilm attachment to the intestinal wall and described diffusion of glucose,
amino acids, short-chain fatty acids, organic acids, ethanol, CO2 and species biomass
in and/or out of the biofilm along the axial direction z. (B) Host-microbiota pertur-
bations were modeled through changes in the bulk concentrations of glucose, amino
acids, primary bile acids and nitrate at the biofilm-stool interface to predict species
abundances in healthy and C. difficile infected guts.

53



tuned model was referred to as the “healthy case”. Host-microbiota perturbations

were simulated by altering glucose/amino acid concentrations, and/or by introducing

primary bile acids and nitrate as nutrients to predict the resulting species abundances

(Figure 4.1B). These models were collectively referred to as the “dysbiosis case.” In

vivo concentrations of glucose and AA in the guts of healthy and C. difficile infected

patients are not commonly available. We have specified the glucose and AA concentra-

tions for the healthy case based on limited experimental data [28, 191–194] and have

reduced the glucose concentration and increased AA concentrations for the dysbiosis

case consistent with experimental observation [49, 195]. We performed a sensitivity

analysis of these concentrations to show that similar behavior (i.e. healthy state) as

that reported for the nominal values occurs if the glucose to AA ratio was sufficiently

large (not shown here). By contrast, a CDI dysbiosis-like state was obtained when

the glucose to AA ratio was sufficiently small.

Uptake rates of nutrients and byproducts were assumed to followMichaelis-Menten

kinetics. Due to lack of available data, maximum uptake rates and Michaelis-Menten

constants were assumed to be independent of species and metabolite. Calculated

uptake rates were imposed as lower bounds of the exchange fluxes in the species

metabolic reconstructions. The calculated growth rate, uptake fluxes and secretion

fluxes from each reconstruction served as inputs to reaction-diffusion type equations

for the biomass concentration of each species and the molar concentration of each

nutrient and byproduct. This formulation yielded a set of 23 partial differential equa-

tions (PDEs) in time and the axial direction z with embedded linear programs (LPs)

for species metabolism. Following on our previous methodology [176, 177], lexico-

graphic optimization with growth rate maximization as the primary objective was

used to avoid alternative optima that would render the biofilm model non-smooth.

This approach yielded a total of 71 LPs.
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The biofilm model equations were solved by spatially discretizing the PDEs into a

large set of ordinary differential equations (ODEs) [93, 141]. We used 25 spatial node

points to achieve a suitable compromise between solution accuracy and computational

efficiency, which produce a discretized model with 575 ODES and 1,775 LPs that

was solved with the MATLAB code DFBAlab [126]. We used Gurobi 6.5.2 for LP

solution, the stiff MATLAB solver ode15s for ODE integration and DFBAlab running

in MATLAB 9.0 (R2016a).

4.2.2 Biofilm model parameterization and tuning

Nominal parameter values used in the multispecies biofilm model are shown in

Table 4.1. The parameters were obtained from the experimental literature to extent

possible and from our previous modeling studies [176, 177] as necessary. The bulk

glucose and amino acid concentrations at the biofilm-stool interface were specified

to reflect healthy gut conditions. Due to lack of species-specific uptake data, we

used published kinetic parameters reported for E. coli [114]. Due to lack of data, all

eight byproducts were assumed to have the same uptake parameters as glucose. For

simplicity, all eight amino acids were assumed to have the same uptake parameters

obtained as the average of amino acid dependent values reported for E. coli [114].

With all other parameter values fixed, the biofilm model was qualitatively tuned

to achieve biomass and SCFA fractions within experimental ranges for a healthy

patient. The species abundances were tuned by adjusting the non-growth associated

ATP maintenance (ATPM) values of the four metabolic reconstructions following our

previous studies [176, 177]. Our justification for tuning these values was the simple

nature of the biofilm model, which neglected other phyla (e.g. Actinobacteria), other

nutrients (e.g. oligosaccharides, fats), other species interactions (e.g. Actinobacteria

cross feeding of SCFAs and organic acids) as well as host metabolism present in

the actual gut environment. These ATPM values listed in Table 4.1 produced B.

55



thetaiotaomicron:F. prausnitzii:E. coli:C. difficile abundances of 71%:21%:7%:1%,

which were deemed reasonable based on published data [189, 190]. We found that

coexistence of the four species was achieved over a range of ATPM values (not shown

here).

We adjusted the SCFA mass transfer coefficients controlling metabolite removal

from the biofilm to tune the acetate, butyrate and propionate concentrations for the

healthy case. Starting with a value of 5x10−6 cm/s, the butyrate and propionate

values were decreased until approximate fractions of 60%:20%:20% consistent with

published data [21, 196] was obtained. We justified the use of SCFA-dependent val-

ues by noting that our model neglected host-microbiota interactions which would be

expected to strongly affect SCFA levels in vivo. Biofilm simulations were performed

for four combinations of bulk glucose, amino acid, nitrate and taurocholate concen-

trations chosen to mimic a healthy gut environment and three unhealthy nutrient

environments (high amino acids, high primary bile acids, high nitrate) experimen-

tally correlated to C. difficile associated dysbiosis (Table 4.2). We deemed the actual

concentrations used to be less important than the concentration trends (e.g. decreas-

ing glucose and increasing amino acids in the high amino acids case) since our goal

was to qualitatively assess the effects of nutrient levels on community behavior.

4.3 Results
4.3.1 Discovery of putative byproduct crossfeeding relationships

Our previous modeling study [176] without C. difficile generated three byproduct

crossfeeding relationships that were predicted to be necessary and sufficient for coexis-

tence of the three species: B. thetaiotaomicron consumption of ethanol secreted by E.

coli and F. prausnitzii consumption of acetate and succinate secreted by B. thetaio-

taomicron and E. coli. Preliminary flux balance analysis (FBA) with the C. difficile

reconstruction showed acetate, butyrate and propionate were the major byproducts
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Table 4.1: Nominal parameter values for the multispecies biofilm model.

Symbol Parameter Value Source
L Biofilm thickness(µm) 40 [85]
Xb Biomass bulk concentrations (g/L) 0 [176]
Pb Byproduct bulk concentrations (mmol/L) 0 [176]
Di Diffusion coefficient (cm2/s)
DX Biomass 2x10−10 [176]
DN Glucose 2.01x10−6 [122]

Cysteine 2.45x10−6 [122]
Isoleucine 2.19x10−6 [122]
Leucine 2.19x10−6 [122]

Methionine 2.21x10−6 [122]
Proline 2.51x10−6 [122]
Serine 2.64x10−6 [122]

Tryptophan 1.89x10−6 [122]
Valine 2.49x10−6 [122]

DP Acetate 3.03x10−6 [122]
Butyrate 1.74x10−6 [122]
CO2 1.15x10−5 [122]

Ethanol 3.97x10−6 [122]
Formate 4.23x10−6 [122]
Lactate 3.1x10−6 [122]

Propionate 4.03x10−6 [122]
Succinate 2.82x10−6 [122]
Nitrate 1.29x10−5 [122]

Taurocholate 7.29x10−7 [122]
Mass transfer coefficient (cm/s)

kX Biomass 6x10−7 [176]
kN Glucose 2x10−4 [176]

Amino acid 2x10−4 [176]
kP Byproduct 5x10−6 [176]

Butyrate 8.5x10−5 Tuned
Propionate 1.35x10−5 Tuned
Nitrate 1.5x10−5 Tuned

Taurocholate 2x10−3 Tuned
vmax Maximum uptake rate (mmol/gDW/h)

Glucose 10 [114]
Amino acid 1 [114]
Byproduct 10 [176]

Km Michaelis-Menten constant (mmol/L)
Glucose 0.5 [114]

Amino acids 0.1 [114]
Byproduct 0.5 [176]

ATPM ATP maintenance (mmol/gDW/h)
B. thetaiotaomicron 4.25 Tuned

F. prausnitzii 3.4 Tuned
E. coli 2.75 Tuned

C. difficile 8.43 Tuned
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Table 4.2: Nutrient concentrations used for healthy and three dysbiosis simulation
cases in mmol/L.

Nutrient Healthy High amino
acids, low
glucose

High primary bile
acids

High nitrate

Glucose 8.0 4.0 8.0 4.0
Cysteine 0.5 1.0 0.5 1.0
Isoleucine 0.5 1.0 0.5 1.0
Leucine 0.5 1.0 0.5 1.0
Methionine 0.5 1.0 0.5 1.0
Proline 0.5 1.0 0.5 1.0
Serine 0.5 1.0 0.5 1.0
Tryptophan 0.5 1.0 0.5 1.0
Valine 0.5 1.0 0.5 1.0
Nitrate 0 0 0 0.4
Taurocholate 0 0 1.5 1.5

and succinate and formate could be uptaken as carbon sources in the presence of

glucose. With this knowledge, the four-species biofilm model was analyzed to dis-

cover additional crossfeeding relationships that support C. difficile coexistence with

the three commensal species. Each species was allowed to consume glucose, the eight

amino acids and any available byproduct (acetate, CO2, ethanol, formate, lactate and

succinate) assuming no differences in uptake kinetics across species and byproducts

(see Materials and Methods). Simulations with a biofilm thickness of 40 microns and

bulk concentrations of 8 mmol/L glucose and 0.5 mmol/L each amino acid at the

biofilm-stool interface corresponding to the healthy case (Table 4.2) were run for 300

hours to ensure a steady-state solution consistent with a mature biofilm was obtained.

A particular crossfeeding relationship was deemed significant if at least one uptake

or secretion flux exceeded 1 mmol/gDW·h.

The biofilm model predicted significant crossfeeding of acetate, ethanol, formate

and succinate between the four species (Figure 4.2A). Lactate and CO2 crossfeeding

were insignificant. Importantly for this study, C. difficile was predicted to: (1) con-
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sume formate secreted by F. prausnitzii and E. coli; (2) compete with F. prausnitzii

for succinate secreted by B. thetaiotaomicron; and (3) synthesize acetate for consump-

tion by F. prausnitzii (Figure 4.2B). Experimentally, C. difficile has been shown to

uptake succinate and produce butyrate [197] and to produce acetate by consuming

formate directly or indirectly by uptaking CO2 and H2 [198]. Consequently, we hy-

pothesized that formate and succinate crossfeeding could play a role in C. difficile

propagation in vivo.

To test community stability and robustness in the absence of C. difficile, the

same simulation was performed with the initial C. difficile biomass concentration set

to zero. The resulting three-species community remained stable with B. thetaiotaomi-

cron:F. prausnitzii:E. coli abundances of 66%:27%:7% consistent with a healthy gut

community. These predictions were aligned with our previous study [176].

4.3.2 Characterization of healthy gut microbiota

With the putative crossfeeding relationships (Figure 4.2B) included, the multi-

species biofilm model was simulated for a biofilm thickness of 40 microns and the

healthy nutrient levels (Table 4.2). The model was tuned such that the mature biofilm

obtained after 300 hours of simulation produced B. thetaiotaomicron:F. prausnitzii:E.

coli:C. difficile abundances of 71%:21%:7%:1% when averaged across the biofilm (see

Materials and Methods). These abundances were consistent with data from in vivo

studies [189, 190].

We analyzed species biomass concentrations (Figure 4.3A) and local growth rates

(Figure 4.3B) with respect to location in the biofilm with nutrients supplied at the

biofilm-stool interface (z = 0). C. difficile was predicted to have the highest growth

rates in the nutrient-rich bottom half of the biofilm but the lowest growth rates in the

nutrient-lean top half. The local growth rates of the three commensal bacteria were

comparable across the biofilm, with B. thetaiotaomicron having the highest growth
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Figure 4.2: Predicted cross feeding of byproducts between the four species. (A)
Species exchange rates specified in mmol/gDW/h. Secretion rates are positive and
uptake rates are negative. (B) Byproduct cross-feeding patterns identified from the
species uptake and secretion fluxes in Figure 4.2 A.
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Figure 4.3: Predicted multispecies biofilm behavior in the absence of host-microbiota
perturbations. (A) Species biomass concentrations across the thickness of the biofilm
with nutrients supplied and biomass removed at z = 0 microns. (B) Local species
growth rates across the thickness of the biofilm. (C) Acetate, butyrate, propionate
and total SCFA concentrations averaged across the biofilm. (D) Ethanol, succinate,
formate and total OA levels averaged across the biofilm.

rates in the bottom half and F. prausnitzii having a slight advantage in the top

half. Due to its growth advantage in the nutrient-rich bottom half and slow cellular

diffusion, B. thetaiotaomicron produced much higher biomass concentrations across

the entire biofilm. F. prausnitzii and E. coli established lower biomass concentrations,

while C. difficile was present at small concentrations due to its very small growth rate

in the nutrient-lean top half. The spatial distributions of supplied nutrients, species

biomass and secreted byproducts were similar to those reported in our previous studies

[176, 177] and are omitted here. This simulation suggests that the commensal bacteria

can sublimate C. difficile propagation through nutrient competition and may help

explain how healthy individuals can be asymptomatically colonized.

The biofilm model also was tuned for healthy nutrient levels to produce ac-

etate:propionate:butyrate fractions of 60%:20%:20% when averaged across the biofilm

to be consistent with in vivo studies [21, 196] (See Materials and Methods). The model
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predicted the total SCFA concentration to be 32.5 mmol/L (Figure 4.3C), which was

in reasonable agreement with an in vivo study with control diet that yielded 41.1

mmol/L of total SCFAs [199]. One possible explanation for the lower SCFA levels

predicted by our model is the simplified diet (glucose, eight amino acids) compared

to the control diet used experimentally.

Ethanol was present at a very low level (Figure 4.3D) due to limited synthesis by

the small E. coli population and high consumption by the large B. thetaiotaomicron

population. Of the two organic acids (OAs) produced, formate was predicted to be

present at a high level because synthesis by F. prausnitzii and E. coli substantially

exceeded consumption by C. difficile. Succinate was present at a moderate level since

it was consumed by both C. difficile and F. prausnitzii. These predictions suggest that

plentiful formate and succinate could be available to promote C. difficile propagation

under in vivo perturbations.

4.3.3 Glucose and amino acid perturbations

Various in vivo studies have shown that glucose concentration decreases and amino

acid concentrations increase in the gut during C. difficile and other types of dysbio-

sis [28, 191–194]. To investigate the effects of altered nutrient levels associated with

host-microbiota perturbations, we performed simulations for a 40 micron biofilm with

elevated amino acid and reduced glucose bulk concentrations (Table 4.2) under the

assumption that C. difficile expansion is driven by these experimentally-observed nu-

trient changes. While in vivo nutrient levels are impacted by diet, host metabolism

and microbiota, this assumption was deemed reasonable given the simplified nature

of our model. Given the uncertainty associated with the bulk nutrient concentra-

tions, we performed a sensitivity analysis to explore their effects .with respect to the

species abundances (not shown here). This analysis was consistent with the model

predictions reported below as long as the glucose to amino acid ratio was sufficiently
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Figure 4.4: Predicted multispecies biofilm dysbiosis resulting from host-microbiota
perturbations in glucose and amino acid concentrations. (A) Change in species growth
rates across the biofilm plotted as the difference between the growth rates for the
healthy and dysbiosis cases. (B) Biomass concentrations (bar graphs) and species
abundances (pie chart) averaged across the biofilm for healthy and dysbiosis case.
(C) Acetate, butyrate, propionate and total SCFA concentrations averaged across
the biofilm. (D) Succinate, formate and total OA concentrations averaged across the
biofilm.

large. Compared to the healthy case, the local C. difficile growth rate decreased in

the bottom half of the biofilm but increased in the top half (Figure 4.4A). Similar

trends were predicted for the three commensal species, which we attributed to re-

duced glucose but increased amino acid penetration into the biofilm. C. difficile is

known to grow efficiently on amino acids due to its ability to use amino acid pairs

such as leucine and proline to generate ATP via Stickland metabolism [200, 185, 186].

As a result of its enhanced growth in the top half of the biofilm compared to the

commensal species, C. difficile increased its average biomass concentration ten-fold

and species abundance from 1% to 22% compared to the healthy case (Figure 4.4A).

The biomass concentration of each commensal species dropped due to reduced glucose

availability. A substantial effect was predicted for F. prausnitzii with its species

abundance decreasing from 21% to 12%, partially due to increased competition for

succinate with C. difficile. These predictions are in agreement with in vivo studies
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[45, 201–203], with the exception that dysbiosis during CDI should be accompanied

by an increase in E. coli abundance [29, 31, 204–206]. The model predicted reduced

total biomass production due to reduced growth of the three commensal species.

Dysbiosis was predicted to result in increased acetate, decreased butyrate and pro-

pionate, and lower total SCFA levels compared to the healthy case (Figure 4.4C). We

attributed reduced total SCFA synthesis to lower glucose availability and increased

acetate and decreased butyrate levels to a change in the balance of acetate-producing

C. difficile and acetate-to-butyrate converting F. prausnitzii. Experimental stud-

ies have shown that dysbiosis is associated with reduced butyrate concentrations in

the gut [202, 207]. The model predicted large changes in organic acid levels, with

succinate, formate and total OA concentrations dropping due to reduced glucose fer-

mentation. These predictions suggest that the combination of decreased carbohydrate

and increased amino acid levels could play a role in C. difficile associated dysbiosis.

4.3.4 Primary bile acid perturbations

Primary bile acids such as taurocholate are secreted by the liver and transported

into the intestines where anaerobic bacteria degrade them into secondary bile acids

[208–210]. Broad spectrum antibiotics are known to reduce gut microbiota diver-

sity [46–49, 211], including the possible loss of bacterial species from families Lach-

nospiraceae and Ruminococcaceae responsible for conversion of primary bile acids.

Various in vitro [212, 210, 213] and in vivo [32, 214] studies have shown that C.

difficile spores can use primary bile acids for germination. Sodium taurocholate is

the typical reagent used to grow C. difficile in vitro [215, 216]. We investigated the

impact of such perturbations with the multispecies biofilm model by adding tauro-

cholate as a representative primary bile acid (Table 4.2). While primary bile acids are

known to promote C. difficile transition from spores to a vegetative state [212, 217],

we assumed that C. difficile was already vegetative and investigated the effect of
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taurocholate on C. difficile growth. Preliminary FBA calculations with the C. diffi-

cile metabolic reconstruction showed that taurocholate uptake increased the growth

rate, while taurocholate uptake was not possible with the three commensal species

reconstructions.

Compared to the healthy case, the introduction of taurocholate was predicted

to increase the local C. difficile growth rate across the biofilm (Figure 4.5A). B.

thetaiotaomicron and E. coli growth were largely unaffected, while the F. prausnitzii

growth rate decreased due to increased competition for succinate from C. difficile. As

a result, the C. difficile abundance increased from 1% to 18%, while the F. prausnitzii

abundance decreased by 38% (Figure 4.5B). The B. thetaiotaomicron and E. coli

abundances exhibited relatively small decreases, although experimental studies show

that E. coli abundance should increase during dysbiosis [204, 206]. The total biomass

concentration was predicted to remain almost constant, showing that taurocholate

was responsible for changing the species distribution of the biomass.

The predicted trends for SCFA and OA levels were similar to those observed for

the combined glucose/amino acid perturbation. Acetate and total SCFA concentra-

tions increased compared to the healthy case due to increased acetate synthesis by

C. difficile and decreased acetate consumption by F. prausnitzii (Figure 4.5C). The

formate concentration decreased because of the same mechanism, while we attributed

the reduced succinate concentration to increased succinate consumption by C. difficile

(Figure 4.5D). Butyrate (produced by F. prausnitzii and C. difficile) and propionate

(produced by B. thetaiotaomicron and C. difficile) concentrations remained almost

constant as C. difficile compensated for reduced SCFA synthesis by the two com-

mensal species. We also simulated a host-microbiota perturbation with decreased

glucose/increased amino acids and increased taurocholate to examine the combined

effects of these nutrient changes. Compared to either perturbation alone, the model

predicted a further increase in C. difficile abundance and decrease in F. prausnitzii
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Figure 4.5: Predicted multispecies biofilm dysbiosis resulting from host-microbiota
perturbations in the concentration of the primary bile acid taurocholate. (A) Change
in species growth rates across the biofilm plotted as the difference between the growth
rates for the healthy and dysbiosis case. (B) Biomass concentrations (bar graphs) and
species abundances (pie charts) averaged across the biofilm for healthy and dysbiosis
case. (C) Acetate, butyrate, propionate and total SCFA concentrations averaged
across the biofilm. (D) Succinate, formate and total OA concentrations averaged
across the biofilm.

abundance (not shown here). Overall, these results support the hypothesis that in-

creased primary bile acid levels could contribute to C. difficile propagation in vivo.

4.3.5 Host-derived nitrate perturbations

The human host is known to secrete nitrate in response to inflammation in the

gut [33]. Preliminary FBA calculations showed that nitrate uptake increased the

E. coli growth rate, while the other three community members were unable to use

nitrate as an electron acceptor. Therefore, we hypothesized that host-derived nitrate

would increase E. coli abundance during simulated C. difficile associated dysbiosis

and yield better agreement with experimental studies [204, 206]. To quantify the

effects of nitrate availability, biofilm simulations were performed with and without

nitrate for a dysbiosis case with reduced glucose, increased amino acids and available

taurocholate (Table 4.2).
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Figure 4.6: Predicted multispecies biofilm dysbiosis with and without host-derived
nitrate. (A) Biomass concentrations (bar graphs) and species abundances (pie charts)
averaged across the biofilm for healthy and dysbiosis case. (C) Acetate, butyrate,
propionate and total SCFA concentrations [mmol/L]averaged across the biofilm. (D)
Succinate, formate and total OA concentrations averaged across the biofilm.

As hypothesized, the main impact of host-derived nitrate was to substantially

increase E. coli abundance from 4% without nitrate to 20% with nitrate (Figure 4.6A).

The F. prausnitzii abundance decreased from 7% to 2%, while the abundances of B.

thetaiotaomicron and C. difficile decreased modestly to accommodate the increased

E. coli. The species abundances predicted with nitrate are in good agreement with

experimental studies for C. difficile associated dysbiosis showing large increases in

C. difficile and E. coli, large decreases in F. prausnitzii and modest changes in B.

thetaiotaomicron [218–220].

Nitrate availability was predicted to substantially increase the acetate and total

SCFA concentrations due to large changes in E. coli and F. prausnitzii abundances

(Figure 4.6B). Decreased succinate consumption by F. prausnitzii and increase for-

mate synthesis by E. coli results in increase levels of individual and total OAs (Figure

4.6C). These predictions implicate a role for host-derived nitrate in C. difficile asso-

ciated dysbiosis.
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4.4 Discussion
The gut microbiota serve a broad array of important functions for the human

host, including providing colonization resistance to opportunistic pathogens. Un-

healthy changes in the microbiota composition, commonly termed dysbiosis, have

been correlated to a wide variety of gut and metabolic diseases including inflamma-

tory bowel disease, Crohn’s disease, obesity, diabetes and chronic gut infections. The

opportunistic gut pathogen Clostridium difficile has been estimated to asymptomat-

ically colonize 3%–15% of healthy adults [44]. A common cause of symptomatic C.

difficile infection (CDI) is the use of broad spectrum antibiotics, which induce dys-

biosis by reducing the diversity and density of gut commensal bacteria that provide

resistance to C. difficile expansion [46–49, 211]. Improved understanding of the com-

plex interactions between commensal species, C. difficile, the gut environment and

the human host are needed to more rationally treat CDI.

To help unravel the metabolic determinants of C. difficile associated dysbiosis,

we developed a multispecies biofilm model by combining genome-scale metabolic re-

construction of C. difficile [181] and commensal species representing the three domi-

nant phyla in the gut: Bacteroides thetaiotaomicron (Bacteroidetes) [182], Faecalibac-

terium prausnitzii (Firmicutes) [183] and Escherichia coli (Proteobacteria) [184]. The

chosen species are well-studied representatives of the most dominant phyla in human

gut microbiome and curated metabolic reconstructions of these species are available.

While specific spatial organization of gut microbes is currently unknown, the structure

likely includes biofilm growth associated with host mucosa and epithelial tissue [221].

The literature provides significant evidence to support the hypothesis that some gut

microbes develops spatially structured multispecies biofilms [174, 172]. We sought

to understand how the commensal species could sublimate C. difficile expansion and

under what gut conditions colonization resistance could become compromised. The

biofilm model was tuned to represent a healthy state with species abundances and
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concentrations of short-chain fatty acids (SCFAs; acetate, butyrate, propionate) con-

sistent with experimental studies for healthy individuals [21, 196, 189] Because our

model lacked an explicit description of the human host, we mimicked host-microbiota

perturbations associated with CDI by varying nutrient levels guided by experimental

observations. More specifically, dysbiosis states were modeled through changes in

the concentrations of available glucose, amino acids [28, 191–194], primary bile acids

[32, 214, 210] and nitrate [33].

Our model predicted that crossfeeding of secreted byproducts plays an important

role in C. difficile sublimation and expansion. C. difficile consumed formate synthe-

sized by F. prausnitzii and E. coli and succinate synthesized by B. thetaiotaomicron

and F. prausnitzii. The existence of both crossfeeding relationships is supported by

the experimental literature [197, 198]. In silico removal of either crossfeeding rela-

tionship was predicted to provide C. difficile colonization resistance, demonstrating

the complexity and importance of crossfeeding networks even in this simplified four-

species community. More importantly, these results suggest therapeutic strategies

that target species-species interactions could be promising alternatives to conven-

tional antibiotics that target C. difficile directly.

Host-microbiota perturbations modeled as increases in glucose and decreases in

amino acid concentrations reproduced several feature of C. difficile associated dysbio-

sis including substantially reduced F. prausnitzii and increased C. difficile abundances

and an imbalance in SCFA synthesis characterized by increased acetate and reduced

butyrate levels [222]. The predicted decrease in anti-inflammatory butyrate would be

expected to exasperate dysbiosis and accelerate disease progression [202, 207]. Sim-

ilar predictions were obtained when glucose and amino acid changes were replaced

by increases in the primary bile acid taurocholate, which can be used as an electron

acceptor by C. difficile in vivo to provide a growth advantage in the absence of com-

mensal bacteria that degrade primary bile acids to secondary bile acids [191, 223, 224].
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Taurocholate availability was predicted to have less effect on butyrate and propionate

synthesis, but the SCFA imbalance remained due to high acetate synthesis. Our

model predicted that dysbiosis could be induced with moderate changes in nutrient

concentrations, suggesting the possible promise of therapeutic strategies that aim to

alter the gut nutritional environment.

Despite their many consistencies with experimental studies [28, 225, 226], our sim-

ulations with glucose, amino acids and taurocholate changes were unable to reproduce

the large increase in E. coli abundance observed during CDI [204, 206]. The addition

of host-derived nitrate [33, 227] to the other nutrient changes rectified this inconsis-

tency and reproduced the key microbiota signatures of C. difficile associated dysbiosis

during CDI: large increases in C. difficile and E. coli abundances, large decreases in

health-promoting F. prausnitzii abundance and moderate changes in B. thetaiotaomi-

cron abundance. We believe further development of our multispecies biofilm model

could yield a general computational platform for in silico investigation of CDI, other

gut infections and chronic inflammation disorders such as inflammatory bowel and

Crohn’s diseases. Some possibilities include the modeling of C. difficile spore forma-

tion/germination, the inclusion of more commensal gut species (e.g. [228]) including

those from other phyla [229–231], the addition of a broader array of gut nutrients in-

cluding fibers, oligosaccharides and fats resulting from realistic diets [28–31, 232], and

modeling of the human host through incorporation of available metabolic reconstruc-

tions such as Recon 2 or Recon 3D [233–235]. A possible drawback of our modeling

approach is the lack of species-specific parameters for nutrient uptake kinetics and

metabolite-dependent mass transfer coefficients.

4.5 Conclusions
Clostridium difficile infection (CDI) is a common problem in hospital settings,

with almost 500,000 CDI cases diagnosed within the U.S. annually in acute care facil-
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ities alone. CDI involves dysbiosis of the commensal gut microbiota characterized by

a significant reduction of butyrate producing species e.g. Faecalibacterium prausnitzii

and a large increase in Proteobacteria e.g. Escherichia coli along with uncontrolled

propagation of C. difficile. Motivated by recent experimental studies demonstrating

the ability of C. difficile and commensal gut bacteria to form biofilms, we developed

a multispecies biofilm model with a minimal representation of the gut microbiota

containing C. difficile and one species each from the three dominant phyla (F. praus-

nitzii, E. coli, Bacteroides thetaiotaomicron). The model was used to investigate

possible metabolic determinants of CDI mediated through host-microbiota perturba-

tions, modeled as decreased carbohydrate levels and increased amino acid, primary

bile acid and nitrate levels compared to the healthy gut. These nutrient perturba-

tions were shown to mimic microbiota changes characteristic of CDI, namely marked

increases in C. difficile and E. coli, abundances and a sharp decrease in F. praus-

nitzii abundance. C. difficile propagation was strongly dependent on crossfeeding of

formate and succinate secreted by the commensal species, a prediction in agreement

with experimental studies and that provides possible targets for the development of

novel therapeutic strategies. While our model is a simplified representation of a com-

plex disease process, the results presented emphasized the importance of metabolic

interactions between C. difficile and commensal species in CDI progression.
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CHAPTER 5

METABOLIC MODELING OF CHRONIC WOUND
MICROBIOTA PREDICTS MUTUALISTIC

INTERACTIONS THAT DRIVE COMMUNITY
COMPOSITION

5.1 Introduction
Chronic wounds are usually colonized by microbial communities rather than single

bacterial species [54–56, 65, 66]. Polymicrobial infections often require about 12+

months to clear, have recurrence frequencies of 60 to 70% [236, 237] and have elevated

mortality rates as compared to single-species infections [67]. In vivo rabbit models

have demonstrated that polymicrobial infections slow wound healing compared to

their respective monoculture infections [61, 68].

Culture- and molecular-based methods have been used to analyze chronic wound

communities [62, 238, 239]. The most common genera represented in chronic wound

infections are Staphylococcus, Corynebacterium, Pseudomonas, Streptococcus, Ente-

rococcus, Enterobacter, Finegoldia and Serratia [54, 55, 65, 240–243]. Staphylococcus

aureus and Pseudomonas aeruginosa are the two most common bacterial pathogens

observed in chronic wound infections. These two pathogens have been shown to es-

tablish mutualistic interactions including metabolite crossfeeding that allows them

to resist antibiotic treatment in multiple types of infection environments including

chronic wounds and the cystic fibrosis lung [244, 118, 245, 246]. Mutualistic rela-

tionships between pathogens reduce competition for available nutrients and result in

robust communities associated with prolonged infections and poor clinical outcomes

[247]. Chronic wound pathogens also form mutualistic relationships with skin com-
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mensal species that impact their virulence [248, 139, 249]. These interactions allow

pathogens to survive at infection sites, enhance antibiotic resistance and increase dis-

ease severity [57, 250, 149, 251]. More detailed knowledge about the mechanisms

underlying these interspecies relationships offers the potential for developing novel

treatment strategies based on disrupting specific mutualistic interactions rather than

just targeting specific pathogens.

In this study, We have used our in silico computational methods and 16S rDNA

pyrosequencing data collected from 2,963 chronic wound patients [1] to develop a

bacterial community model for investigation of pathogen-pathogen and pathogen-

commensal interactions. The dataset contained abundances (i.e. the relative amount

of the genera averaged across samples) of the 20 most abundant genera for each

type of chronic wound, diabetic foot ulcers, venous leg ulcers, pressure ulcers and

non-healing surgical wounds, as well as prevalences (i.e. the fraction of samples

containing the genus). Because the original study [1] concluded that the average

bacterial community present at each wound location were not significantly different,

the average abundance data for each wound type was assimilated into a combined

dataset and used to construct a single 12 species community model representing the

most abundant pathogenic and commensal genera. Simulation results were performed

and analyzed to identify putative mutualistic interactions that could drive community

composition and negatively impact the effectiveness of antibiotic treatments.

5.2 Materials and methods
5.2.1 Community metabolic model

16S rDNA pyrosequencing data was obtained from a published study which an-

alyzed chronic wound samples from 2,963 patients treated for decubitus ulcers (767

samples), diabetic foot ulcers (910 samples), venous leg ulcers (916 samples) and

non-healing surgical wounds (370 samples) [1]. The publication provided relative
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Table 5.1: The 12 species included in the chronic wound community model along with
the prevalences and normalized average abundances of the associated genera from [1].

Number Strain References Prevalence (%) Relative abundance
1 Staphylococcus aureus subsp aureus USA300 FPR3757 [238, 239, 1] 63 0.42
2 Pseudomonas aeruginosa NCGM2 S1 [238, 239, 1] 25 0.13
3 Corynebacterium striatum ATCC 6940 [54, 238, 1] 36 0.11
4 Streptococcus agalactiae A909 [238, 1] 23 0.07
5 Enterococcus faecalis V583 [239, 252] 17 0.05
6 Finegoldia magna ATCC 29328 [54, 1] 25 0.05
7 Anaerococcus vaginalis ATCC 51170 [238, 253] 24 0.05
8 Stenotrophomonas maltophilia D457 [238, 1] 19 0.04
9 Prevotella bivia DSM 20514 [1, 253] 12 0.03
10 Acinetobacter baumannii AB0057 [238, 253] 9 0.02
11 Serratia liquefaciens ATCC 27592 [62, 254] 5 0.02
12 Bacteroides fragilis 3 1 12 [253, 255] 8 0.02

abundances of the top 20 bacterial genera for each wound types. Community com-

position was shown to be independent of the wound type and patient demographics

such as age, gender and race. Therefore, we assimilated the average abundance data

for each wound type into a single dataset and determined the most abundant genera

across all samples. To limit model complexity and focus on the most dominant genera,

the community model accounted for the 12 genera with highest average abundances

(Figure 5.1A). These 12 genera accounted for approximately 74% of the 16S read

data averaged across all 2,963 samples. To allow direct comparison with community

model predictions, the 16S data was normalized such that the abundances of these 12

genera summed to unity. A representative species for each genus was selected from

the AGORA database (www.vmh.life) [77] according to its documented presence in

chronic wound infections (Table 5.1). The genome-scale metabolic reconstructions

for the 12 species accounted for 16,133 reactions, 13,666 metabolites and 9,713 genes.

5.2.2 Model tuning and simulation

The nutrient environment in chronic wound is complex and expected to vary be-

tween patients and according to disease progression. A metabolomics study conducted

for four chronic pressure ulcer samples detected 122 metabolites with the quantified

metabolite concentrations spanning several orders of magnitude. Several studies have
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Figure 5.1: Overview of the community modeling framework. (A) Flow chart showing
steps in model development, simulation and analysis. (B) Average species abundances
obtained from the model ensemble. (C) r and p values obtained from correlation anal-
ysis of the model ensemble abundance data. (D) Significant crossfeeding relationships
between Staphylococcus and Pseudomonas predicted by model ensemble simulations.
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identified upregulated or downregulated metabolites in chronic wounds compared to

healing wounds, but absolute metabolite concentrations were not reported [256–258].

The in vitro Lubbock chronic wound biofilm model based on chopped meat-based

media (Bolton broth, MRS broth and BHI broth) has been shown to contain nutri-

ents present in chronic wound beds [259]. While these studies provided important

guidance on nutrient selection for the community model, they were not sufficient

to completely define a nutrient environment in which all 12 species were capable of

growth and the predicted species abundances were in approximate agreement with

the 16S data [1] used in this study.

Therefore, our approach previously used to specify nutrients for a community

model of the adult cystic fibrosis microbiota [76] was followed. First, all 21 amino acids

and 6 carbon sources (glucose, L-lactate, ribose, galactose, L-arabinose, fructose)

known to be available in chronic wound beds were added. Then 15 common metals

and ions and 30 metabolites that were required for each species to grow in simulated

monoculture were included. The metabolites guanosine, inosine, uracil and uridine

[256, 257] and the terminal electron acceptors O2 and NO3 were added because they

are known to be present in the chronic wound environment. Finally, three putative

metabolites were added to increase the growth rates of particular species such that

predicted species abundances were in approximate agreement with the 16S data:

starch 1 for Corynebacterium; kestose for Enterococcus and; glycerol-3-phosphate for

Prevotella.

The 81 metabolites contained in the simulated chronic wound environment were

partitioned into 19 groups for the purpose of model tuning: (1) 15 metals and ions;

(2) 30 essential growth metabolites; (3)-(6) each of the 4 chronic wound metabolites

guanosine, inosine, uracil and uridine: (7) 17 amino acids; (8) 4 amino acids isoleucine,

leucine, lysine and valine reported to be elevated in chronic wounds compared to the

other 17 amino acids [258]; (9)-(14) each of the 6 carbon sources; (15) O2; (16)
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NO3; (17) starch 1; (18) kestose; and (19) glycerol-3-phosphate. The community

uptake rates of metabolites in these 19 groups were tuned by trial-and-error to achieve

approximate agreement with the 16S data (see Figure 5.1C).

The SteadyCom method [74] was used to formulate and solve the chronic wound

community model as described in our previous studies on the human gut microbiota

[75] and cystic fibrosis [76]. The SteadyCom method uses a form of community

flux balance analysis to calculate the relative abundance of each species with an

objective of maximizing the community growth rate. The non-growth associated ATP

maintenance for each species was chosen to be 5 mmol/gDw/h, which is in reported

ranges for curated bacterial reconstructions [184]. Individual species simulations were

performed to ensure that each species was able to grow in monoculture on the in silico

media. In addition to providing the community growth rate and species abundances,

SteadyCom calculated species-dependent uptake and secretion rates of all supplied

and secreted metabolites.

The community model was further constrained with genus prevalence data (i.e.

the fraction of samples containing the genus) available in the original experimental

study [1]. To implement these constraints, the participating species of the community

were randomly chosen according to the prevalences using uniform random numbers

and then the model was solved. A large number of models were solved to adequately

sample the species participation space. A total of 5,250 model ensemble simulations

were performed with 250 cases discarded because the community growth rate was

zero or the SteadyCom tolerance on the sum of the species abundances was not

satisfied. The remaining 5,000 cases were treated as simulated patient samples and

their abundances were averaged (Figure 5.1B). The community uptake rates of the

81 supplied metabolites were further tuned to achieve quantitative agreement with

the 16S data (see Figure 5.1D).
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5.2.3 Analysis of simulation results

The difference (e) between the normalized 16S abundances (pid) and the model

predicted abundances (pim) was calculated as the angle between the two abundance

vectors [260],

e = sin

[
cos−1

(
pT

impid

‖pim‖‖pid‖

)]
(5.1)

where ‖ · ‖ denote the Euclidean norm and e ∈ [0, 1]. The two abundance vectors

were identical (i.e. parallel) if e = 0 and orthogonal if e = 1. The inverse Simpson

equitability index (Dcom) was used as a measure of community diversity [75],

Dcom = 1
N

1∑N
i=1 p

2
i

(5.2)

where N = 12 is the total number of species and pi is the 16S determined or model

predicted abundance of the species i. Significant crossfeeding relationships were iden-

tified based on the magnitudes of the secretion and uptake fluxes as detailed in our

previous study [75]. We typically reported the top six crossfeeding relationships be-

tween the participating species (Figure 5.1D).

Staphylococcus and Pseudomonas are the most common genera in chronic wound

infections [65, 61, 243, 261–263] and are known to exhibit strong interactions. Cor-

respondingly, we were interested in community behavior with the presence and ab-

sence of these two dominant pathogens. Therefore, the ensemble of 5,000 commu-

nity simulations was partitioned into four groups: both Staphylococcus and Pseu-

domonas present (SaPa); Pseudomonas not present (Sa∆Pa); Staphylococcus not

present (∆SaPa); and neither Staphylococcus or Pseudomonas present (∆Sa∆Pa).

For the entire ensemble and each of the four partitioned subsets, mutualistic in-

teractions between species were identified by performing correlation analysis on the

predicted abundance data (Figure 5.1C). An interaction was deemed significant if the

r-value was greater than 0 and p-value was less than 0.05.
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5.3 Results
5.3.1 Community composition is shaped by single-species metabolism

Monoculture simulations were performed with the in silico nutrients to access the

metabolic capabilities of the 12 species. Staphylococcus was predicted to have the

highest single-species growth rate (Figure 5.2A), consistent with its role as a dom-

inant chronic wound pathogen. Serratia, Stenotrophomonas and Pseudomonas had

growth rates greater than 0.3 h−1, suggesting that these species would be competitive

in community simulations. Of 9 metabolites commonly found in the chronic wound

environment [256], acetate, CO2 and formate were the primary secreted byproducts

predicted from monoculture simulations (Figure 5.2B). Interestingly neither L-lactate

or D-lactate secretion was predicted even though species from genera such as Strep-

tococcus are well known to secrete L-lactate as a primary byproduct [264, 265]. As

discussed in our study on cystic fibrosis communities [76], this model behavior was

attributable to alternative optima with respect to byproduct secretion patterns.

When the community model was simulated without prevalence constraints, 7 of

the 12 species were predicted to coexist (Figure 5.2C). Consistent with the normal-

ized 16S data, Staphylococcus was the dominant species and both Pseudomonas and

Corynebacterium) were present at abundances greater than 10%. However, the model

overpredicted the abundances of Acinetobacter, Serratia and Bacteroides and incor-

rectly predicted zero abundances for 5 other species. The difference e between the

predicted and 16S abundance vectors was 0.38, denoting a moderate prediction error.

This difference was not unexpected, as the 16S data was provided as the average

over a large number of patient samples while the simulation represented a single pre-

dicted sample [76]. As a result, the normalized 16S data exhibited a greater species

diversity (Dcom = 0.38) than the simulated sample (Dcom = 0.36). The predicted

species abundances were strongly correlated to the single-species growth rates (r =

0.72, p = 0.009; Figure 5.2D), as expected for a community modeling method such
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Figure 5.2: Model predictions for monoculture simulations and a 12 species commu-
nity simulation without prevalence constraints. (A) Single-species growth rates (h−1)
where the species are listed by their genera. (B) Single-species secretion rates pre-
dicted from monoculture simulations for the byproducts acetate (Ac), CO2, ethanol
(Eth), formate (For), H2S, D-lactate (D-Lac), L-lactate (L-lac), NH4 and succinate
(Succ). (C) Comparison of species abundances predicted from the 12 species commu-
nity model without prevalence constraints and obtained from normalized 16S patient
data. (D) Relationship between single-species growth rates and species abundances
predicted from the community simulation (r = 0.72, p = 0.009).
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as SteadyCom based on growth rate maximization. An sublinear correlation was

predicted because some species were more/less efficient at metabolite crossfeeding.

For example, Pseudomonas had the fourth highest monoculture growth rate but the

second highest abundance.

5.3.2 Incorporation of genera prevalence data improves prediction of

community composition

A single model simulation with all 12 species allowed to participate in the commu-

nity only provided qualitative agreement with normalized 16S data with respect to the

abundances of the dominant genera (Figure 5.2). We hypothesized that incorporation

of genera prevalence data as additional constraints would improve model predictions

with respect to the coexisting species and their abundances. Given that the 16S

abundances were obtained by averaging over 2,963 patient samples, we used preva-

lence data reported in the original study [1] to generate an ensemble of 5,000 in silico

communities by randomly generating the species allowed to participate (see Materi-

als and Methods). Then the predicted abundances were averaged over the ensemble

for comparison to 16S values. This approach was consistent with the constraints-

based philosophy of metabolic modeling based on the refinement of model predic-

tions through the imposition of additional data-based constraints [266, 267]. Even

if allowed to participate in a community, a particular species could be predicted to

have a zero abundance. Therefore, participation was a necessary but not sufficient

condition for a species to coexist in a simulated community. Below we used the terms

“prevalence” and “participation” interchangeably with respect to the model ensemble

simulations for simplicity.

A comparison of the genera prevalence data and the in silico prevalences of the

corresponding modeled species showed a slight bias even through the model ensemble

was generated with the intent of these prevalences being identical (Figure 5.3A). This
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Figure 5.3: Prevalence constrained model ensemble predictions. (A) Comparison of
genera prevalence data [1] and in silico prevalences of the corresponding modeled
species. (B) Comparison of species abundances predicted from the model ensemble
with species prevalence constraints and normalized 16S patient data.

disparity was caused by the need to discard 250 of 5,250 total simulation cases be-

cause the community growth rate was zero or the SteadyCom tolerance on the sum of

the species abundances was not satisfied. The removal of these 250 cases introduced

a small systematic bias into the in silico prevalences as most species were advantaged

by being allowed to participate more frequently than indicated by data. Despite

this small bias, the model ensemble generated substantially improved predictions of

the 16S-derived abundances (e = 0.12; Figure 5.3A) compared to the prevalence un-

constrained model (e = 0.38; Figure 5.2). As expected, the model prevalences and

abundances were strongly correlated (r = 0.91, p = 5x10−5). While the abundances

of some minor species were substantially underpredicted (e.g. Enterococcus) or over-

predicted (e.g. Bacteroides), we deemed these prediction to be sufficiently accurate

to utilize the model ensemble for further analysis of the chronic wound community.
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5.3.3 Analysis of community structure and composition

We defined the richness of the community as the number of species with abun-

dances exceeding 1%. To further investigate the effect of imposing prevalence con-

straints in the ensemble of 5,000 models, we calculated the number of species allowed

to participate in each community (Figure 5.4A) and the actual richness of each com-

munity (Figure 5.4B). Over 90% of the simulations allowed no more than 4 species,

with the most likely cases being 2 or 3 species. Because some species allowed to par-

ticipate were predicted to have zero abundances, the predicted richness was generally

less than the number of participating species. Over 90% of the simulated communities

had richnesses of no more than 3 species. Therefore, the model ensemble predicted

that most individual patient samples would have low diversity. The original study [1]

did not provide data on individual samples that would allow comparison with these

modeling results.

Because Staphylococcus and Pseudomonas are the two dominant pathogens in

chronic wound infections [65, 61, 243, 261–263], we partitioned the ensemble of 5,000

community models into four groups based on the allowed participation of these two

species (see Materials and Methods): both Staphylococcus and Pseudomonas present

(SaPa); Pseudomonas not present (Sa∆Pa); Staphylococcus not present (∆SaPa); and

neither Staphylococcus or Pseudomonas present (∆Sa∆Pa). Each group was popu-

lated by a sufficient number of models to allow statistical analysis of the impact of

each dominant pathogens on community structure and species interactions (Figure

5.4C). The SaPa group was predicted to have the highest average growth rate with

little variability except for some outliers (Figure 5.4D). The growth rate decreased

and variability increased as Pseudomonas (Sa∆Pa), Staphylococcus (∆SaPa) or both

species (∆Sa∆Pa) were removed from the communities. These predictions suggest

mutualistic interactions between the two pathogens and possibly with some commen-

sal species that enhance community fitness.
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Figure 5.4: Analysis of chronic wound community structure and growth rates. (A)
The number of species allowed to participate in each community simulation. (B)
The richness (number of species with calculated abundances exceeding 1%) of each
simulated community. (C) The percentages and numbers of the 5,000 simulated
models in which both Staphylococcus and Pseudomonas were allowed to participate
(SaPa),Pseudomonas was not allowed to participate (Sa∆Pa); Staphylococcus was
not allowed to participate (∆SaPa); and neither Staphylococcus or Pseudomonas were
allowed to participate (∆Sa∆Pa). (D) A box and whisker plot showing the community
growth rates for each of the four partitioned cases, where the red line corresponds
to the median, the black dotted lines (whiskers) indicate the variability outside the
lower upper quartiles, and the red circles represent outliers.

84



Interestingly, all outlier communities were characterized by high growth rates with

the exception of the ∆Sa∆Pa group. We analyzed the compositions of these outliers

for each group by comparing predicted abundances of the outlier communities to

those of communities with outliers removed (not shown here). This analysis revealed

several putative mutualistic relationships including: Serratia and/or Bacteroides with

Staphylococcus and/or Pseudomonas; and Streptococcus with Finegoldia. The outlier-

free cases for the ∆Sa∆Pa group were predicted to have much higher diversity than

the other groups, suggesting that the presence of Staphylococcus and/or Pseudomonas

increased community growth at the expense of diversity. These predictions were

consistent with our previously posited hypothesis that infectious disease progression

correlates to high growth and low diversity of the evolving community [75].

5.3.4 Staphylococcus and Pseudomonas form a mutualistic relationship

We used the ensemble of 820 community models in which both dominant pathogens

Staphylococcus and Pseudomonas could participate (SaPa) to identify putative mu-

tualistic interactions between the 12 modeled species. The only significant mutual-

istic relationship predicted was between the two pathogens themselves (Table 5.2),

suggesting that this interaction drove community growth and composition. We per-

formed additional analysis to test this hypothesis. Compared to the average species

abundances calculated from the entire 5,000 model ensemble, the 820 SaPa cases pro-

duced a much larger Pseudomonas abundance such that the abundances of the two

dominant pathogens averaged almost 90% (Figure 5.5A). The Pseudomonas abun-

dance was greater than the Staphylococcus abundance in 780 communities (Figure

5.5B), indicating that Pseudomonas was the primary beneficiary of the mutualistic

interaction.

The SaPa model ensemble predicted a significant positive correlation (r = 0.53,

p < 10−6) between community equitability and growth rate (Figure 5.5C). These
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Figure 5.5: Model ensemble predictions for SaPa simulations showing a mutualistic
relationship between Staphylococcus and Pseudomonas. (A) Average species abun-
dances for all 5,000 ensemble simulations and 820 SaPa simulations. (B) Staphylo-
coccus and Pseudomonas abundances for 820 simulated communities containing both
species where the colorbar indicates the number of simulations represented by each
circle. The two species show a mutualistic interaction (r = 0.69, p < 10−6). (C)
Community growth rates and equitability for 820 simulated communities containing
both species. (D) The six most significant crossfeeding relationships between the two
species.
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Table 5.2: Species abundance correlation analysis.

Group Positively correlated species r value p value Number of cases Analysis
SaPa Staphylococcus and Pseudomonas 0.69 <10e-6 820 Figure 5.5
Sa∆Pa Staphylococcus and Acinetobacter 0.57 <10e-6 235 Figure 5.6
Sa∆Pa Staphylococcus and Corynebacterium 0.22 <10e-6 895 Not shown
Pa∆Sa Pseudomonas and Serratia 0.88 <10e-6 18 Figure 5.7
Pa∆Sa Pseudomonas and Streptococcus 0.72 <10e-6 125 Not shown
Pa∆Sa Pseudomonas and Acinetobacter 0.41 <10e-2 42 Not shown
Pa∆Sa Pseudomonas and Bacteroides 0.4 <1e-2 39 Not shown

∆Sa∆Pa Corynebacterium and Stenotrophomonas 0.6 <10e-6 107 Not shown
∆Sa∆Pa Corynebacterium and Serratia 0.5 <1e-2 24 Not shown
∆Sa∆Pa Corynebacterium and Bacteroides 0.6 <10e-6 41 Not shown
∆Sa∆Pa Streptococcus and Enterococcus 0.53 <10e-6 51 Figure 5.8
∆Sa∆Pa Streptococcus and Acinetobacter 0.46 <10e-3 30 Not shown
∆Sa∆Pa Streptococcus and Serratia 0.61 <1e-1 12 Not shown
∆Sa∆Pa Streptococcus and Bacteroides 0.92 <10e-6 30 Not shown
∆Sa∆Pa Enterococcus and Finegoldia 0.78 <10e-6 66 Not shown
∆Sa∆Pa Enterococcus and Stenotrophomonas 0.3 <1e-2 63 Not shown
∆Sa∆Pa Enterococcus and Acinetobacter 0.91 <10e-6 25 Not shown
∆Sa∆Pa Enterococcus and Bacteroides 0.98 <10e-6 18 Not shown
∆Sa∆Pa Finegoldia and Anaerococcus 0.75 <10e-6 85 Not shown
∆Sa∆Pa Finegoldia and Acinetobacter 0.63 <10e-6 40 Not shown
∆Sa∆Pa Finegoldia and Serratia 0.86 <10e-6 17 Not shown
∆Sa∆Pa Finegoldia and Bacteroides 0.51 <1e-2 20 Not shown
∆Sa∆Pa Anaerococcus and Stenotrophomonas 0.49 <10e-6 73 Not shown
∆Sa∆Pa Anaerococcus and Acinetobacter 0.8 <10e-6 35 Not shown
∆Sa∆Pa Anaerococcus and Bacteroides 0.54 <10e-2 28 Not shown
∆Sa∆Pa Stenotrophomonas and Acinetobacter 0.5 <10e-2 29 Not shown
∆Sa∆Pa Stenotrophomonas and Bacteroides 1 <10e-6 20 Not shown
∆Sa∆Pa Prevotella and Bacteroides 0.7 <1e-2 12 Not shown
∆Sa∆Pa Serratia and Bacteroides 0.83 <1e-2 8 Not shown

results suggest that the incorporation of less abundant commensal species such as

Corynebacterium enhanced community growth. When combined with predictions

that the SaPa ensemble produced the highest growth rates with the lowest variability

(Figure 5.4D), these predictions indicate that the mutualistic interaction produced

resilient communities not negatively affected by the addition of commensal species.

The mutualistic relationship between Pseudomonas and Staphylococcus was supported

by bi-directional metabolite crossfeeding, with ethanol, L-lactate and succinate being

the primary crossfed metabolites (Figure 5.5D). Interestingly, L-lactate and D-lactate

were not secreted by either species in monoculture (Figure 5.2B) due to alternative

optima with respect to byproducts. These predictions suggest that the exchange
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of these two byproducts was important for maintaining the interaction. In fact,

Staphylococcus is known to consume lactate in vivo to enhance its competitiveness

[268].

5.3.5 Staphylococcus and Acinetobacter form a mutualistic relationship

in the absence of Pseudomonas

Next we used the ensemble of 2,410 community models in which Pseudomonas was

absent (Sa∆Pa) to predict mutualistic interactions between Staphylococcus and the

10 remaining species. Compared to the entire 5,000 model ensemble (Figure 5.6A),

the 2,140 Sa∆Pa simulations produced a substantially higher average Staphylococ-

cus abundance and richer communities in which only Enterococcus and Finegoldia

failed to coexist (Figure 5.6A).Two mutualisms involving Staphylococcus were iden-

tified (Table 5.2); we focused on the Staphylococcus and Acinetobacter relationship

(Figure 5.6B) because the correlation was most positive (i.e. mutualistic) and ex-

perimental literature characterizing the interaction was available. Compared to the

SaPa cases (Figure 5.5A), the absence of Pseudomonas resulted in increased average

Acinetobacter abundance over the 235 cases in which Acinetobacter was allowed to

participate.

A significant positive correlation (r = 0.53, p < 10−6) between community equi-

tability and growth rate was predicted for the Sa∆Pa model ensemble (Figure 5.6C),

suggesting that commensals such as Streptococcus enhanced community growth. How-

ever, the Sa∆Pa ensemble produced lower growth rates than the SaPa ensemble

(Figure 5.4D) due to the absence of Pseudomonas. Therefore, increased richness of

the Sa∆Pa ensemble was accompanied by decreased growth. These predictions are

consistent our hypothesis that low abundance of dominant pathogens such as Pseu-

domonas corresponds to an earlier disease stage with relatively low growth and high

diversity [75]. Compared to the mutualistic interaction between Staphylococcus and
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Figure 5.6: Model ensemble predictions for Sa∆Pa simulations showing a mutualistic
relationship between Staphylococcus and Acinetobacter. (A) Average species abun-
dances for all 5,000 ensemble simulations and 2,410 Sa∆Pa simulations. (B) Staphy-
lococcus and Acinetobacter abundances for 235 simulated communities in which both
species could participate where the colorbar indicates the number of simulations rep-
resented by each circle. The two species showed a mutualistic interaction (r = 0.57,
p < 10−6). (C) Community growth rates and equitability for 235 simulated com-
munities with both species. (D) The five most significant crossfeeding relationships
between the two species.

89



Pseudomonas in the SaPa ensemble (Figure 5.6D), Pseudomonas and Acinetobac-

ter mutualism was supported by lower crossfeeding rates of amino acids rather than

organic acids and alcohols. Acinetobacter was predicted to be the primary benefi-

ciary of crossfeeding, explaining its ability to coexist with Pseudomonas absent. This

predicted mutualistic relationship has experimental support, as Staphylococcus and

Acinetobacter are major nosocomial pathogens involved in burn infections [269–271]

and both genera are known to develop antibiotic resistance [272]. These predictions

could yield new insights into the treatment of the so-called ESKAPE pathogens (En-

terococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter bau-

mannii, Pseudomonas aeruginosa, Enterobacter species) which are the leading cause

of nosocomial infections [272, 273].

5.3.6 Pseudomonas and Serratia form a mutualistic relationship in the

absence of Staphylococcus

The ensemble of 506 community models in which Staphylococcus was absent (∆SaPa)

was analyzed to predict mutualistic relationships between Pseudomonas and the 10

remaining species. The ∆SaPa simulations produced a high average Pseudomonas

abundance and a large increase in the average abundance of Anaerococcus (Figure

5.7A); only Finegoldia failed to appear in any community. Of the four significant

mutualistic relationships predicted (Table 5.2), we focused on Pseudomonas and Ser-

ratia even though the two species were both allowed to participate in only 18 ∆SaPa

communities (Figure 5.7B). Interestingly, the average Serratia abundance was almost

unchanged from the full model ensemble despite Serratia having a positive correlation

with Pseudomonas. Furthermore Anaerococcus did not have a significant correlation

with Pseudomonas despite Anaerococcus having a larger average abundance compared

to the full model ensemble. These results demonstrate that significant species inter-
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Figure 5.7: Model ensemble predictions for ∆SaPa simulations showing a mutualistic
relationship between Pseudomonas and Serratia. (A) Average species abundances
for all 5,000 ensemble simulations and 506 ∆SaPa simulations. (B) Pseudomonas
and Serratia abundances for 18 simulated communities in which both species could
participate where the colorbar indicates the number of simulations represented by
each circle. The two species showed a mutualistic interaction (r = 0.88, p < 10−6).
(C) Community growth rates and equitability for 18 simulated communities with
both species. (D) The six most significant crossfeeding relationships between the two
species.

actions cannot easily be discerned from abundance data averaged over heterogeneous

samples.

A significant positive correlation (r = 0.95, p < 10−6) between community equi-

tability and growth rate was predicted for the ∆SaPa model ensemble despite the

small number of samples (Figure 5.6C). The mutualistic relationship was primarily

supported by lactate crossfeeding, with Serratia having a large uptake rate of L-lactate

and Pseudomonas consuming D-lactate (Figure 5.6D). The ability of Serratia to en-

hance its competitiveness through L-lactate crossfeeding explains why Serratia was

predicted to be dominant in the 18 ∆SaPa communities in which it appeared (Figure

5.6B). Pseudomonas and Serratia are often found to coexist in infections associated
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with chronic wounds and corneal ulcers [54, 274]. Furthermore, the two genera are

known to secrete the quorum sensing molecule N-butanoyl l-homoserinelactone (C4

HSL) which might be used in interspecies communication [275].

5.3.7 Streptococcus and Enterococcus form a mutualistic relationship in

the absence of Pseudomonas and Staphylococcus

To identify putative mutualistic interactions between less abundant species, we

analyzed the ensemble of 1,264 community models in which both Staphylococcus and

Pseudomonas were absent (∆Sa∆Pa). This ensemble produced lower and more vari-

able growth rates than the other ensembles due to lack of the two dominant, growth-

promoting pathogens (Figure 5.4). This growth reduction was accompanied by an

increase in community richness as all 10 remaining species were able to coexist in

some communities and no species was predicted to have an average abundance less

than 3% (Figure 5.8A). This enhanced richness translated into higher equitabilities

than predicted for the other ensembles (Figure 5.8C), again supporting the hypothesis

that pathogen emergence results in resilient communities characterized by increased

growth and reduced diversity.

Rather than focus on mutualisms with respect to a single species, we used the

∆Sa∆Pa simulation results to identify mutualistic relationships between any pair of

the 10 remaining species (90 possible cases). The analysis produced 23 significant

interactions (Table 5.2), suggesting that mutualistic benefits could be spread across

more species in the absence of dominant pathogens. For example, the commensal

Corynebacterium positively interacted with less abundant pathogen Stenotrophomonas.

We focused on the mutualistic relationship between Streptococcus and Enterococcus

(Figure 5.8B) because these two genera are known to coexist in infections [276, 277].

As before, the community growth rate and equitability were positively correlated (r =

0.49, p = 10−5, Figure 5.8C) in the 51 communities in which both species could par-
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Figure 5.8: Model ensemble predictions for ∆Sa∆Pa simulations showing a mu-
tualistic relationship between Streptococcus and Enterococcus. (A) Average species
abundances for all 5,000 ensemble simulations and 1,264 ∆Sa∆Pa simulations. (B)
Streptococcus and Enterococcus abundances for 51 simulated communities in which
both species could participate where the colorbar indicates the number of simulations
represented by each circle. The two species showed a mutualistic interaction (r =
0.53, p < 10−6). (C) Community growth rates and equitability for 51 simulated com-
munities with both species. (D) The four most significant crossfeeding relationships
between the two species.
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ticipate. The two species interacted through the crossfeeding of multiple metabolites

(Figure 5.8D), with L-lactate consumption important for Enterococcus coexistence.

Streptococcus and Enterococcus are known to form thick and dense biofilms on root

canal dentin and glass slides [277]. Furthermore, Enterococcus has been shown to be

more resistant to starvation in coexistence with Streptococcus [277], an interaction

our model attributed to L-lactate crossfeeding.

5.4 Discussion
Polymicrobial infections in chronic wounds are responsible for poor clinical out-

comes and cause elevated mortality rates as compared to single-species infections

[252]. Colonizing species establish mutualistic relationship through multiple mecha-

nisms including metabolite crossfeeding to promote community stability and resilience

[137, 139, 278]. Robust community structures mitigate the effectiveness of antibiotic

treatments and promote the evolution of antibiotic resistance through mechanisms

such as horizontal gene transfer [279, 280]. The communities place an increasing

bioburden on the host and play a critical role in impaired/delayed wound healing

[281–283]. While recent studies based on 16S rRNA [284] and rDNA [285, 1] sequenc-

ing have revealed key bacterial taxa involved in chronic wound infections, knowledge

about the interspecies mechanisms that drive community structure and function have

remained elusive.

We developed a 12 species community metabolic model to identify putative in-

teractions that drive the composition of chronic wound communities. The 12 bac-

terial species covered 74% of 16S rDNA pyrosequencing reads of genera from 2,963

chronic wound patients [1]. We used the limited data available from chronic wound

metabolomics studies [256–258] as a starting point to define community uptake rates

as required in the SteadyCom modeling framework [74]. Model tuning was used to de-

fine 81 host-derived nutrients and their uptake rates such that each species was capa-
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ble of monoculture growth and predicted species abundances were in rough agreement

with normalized 16S values from the original study [1]. The tuning process required

the introduction of 30 metabolites to achieve monoculture growth and three putative

chronic wound metabolites to enhance the growth rates of particular species: starch

1 (Corynebacterium), kestose (Enterococcus) and glycerol-3-phosphate (Prevotella).

As discussed in our previous modeling study on cystic fibrosis communities [76], the

30 essential metabolites suggests limitations for the AGORA genome-scale metabolic

models [77] with respect to biosynthetic pathways leading to biomass formation. The

presence of the three growth-enhancing metabolites in chronic wound beds would

need to be tested through metabolomics.

The tuned single-species models offered a wide range of predicted metabolic capa-

bilities with respect to their growth rates and metabolite secretion patterns (Figure

2). As found in our previous modeling studies on gut [75] and cystic fibrosis [76]

communities, pathogens such as Staphylococcus, Pseudomonas and Stenotrophomonas

generally had higher growth rates than commensal species, suggesting that they are

more metabolically capable of dominating the community. When compared to nor-

malized 16S-derived abundances averaged across the 2,963 patients, the tuned com-

munity model predicted relatively high abundances for the most highly represented

genera (Staphylococcus, Pseudomonas, Corynebacterium) but underpredicted or over-

predicted abundances of the remaining genera and generated a relatively low diversity

community.

We sought to improve the prediction of community composition by imposing gen-

era prevalence data available from the original study [1] as additional in silico con-

straints. The prevalence data was used to generate an ensemble of 5,000 communities

in which the participating species of each community were randomly determined.

While the in silico prevalences averaged over the 5,000 simulations deviated slightly

from the 16S-derived values (see Materials and Methods), the average species abun-
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dances predicted by the prevalence-constrained model ensemble showed substantially

improved agreement (Figure 3). These results demonstrate the difficulties in predict-

ing 16S-derived abundances averaged over large numbers of patient samples with a

single community model that is best thought of as simulating a single patient sample.

Because Staphylococcus and Pseudomonas are the dominant pathogens observed

in most chronic wound infections [65, 263, 262, 61, 243, 261], we were interested in

community behavior in the presence and absence of these two pathogens. To over-

come the lack of individual patient sample data in the original study [1], the ensemble

of 5,000 community simulations was partitioned into four groups: both Staphylococ-

cus and Pseudomonas allowed to participate (SaPa, 820 cases); Pseudomonas not

allowed to participate (Sa∆Pa, 2,410 cases); Staphylococcus not allowed to partic-

ipate (∆SaPa, 506 cases); and neither Staphylococcus or Pseudomonas allowed to

participate (∆Sa∆Pa, 1,264 cases). We sought to computationally identify mutu-

alistic relationships between species for each of the four scenarios since mutualisms

reduce competition for available nutrients and result in robust communities associated

with prolonged infections and poor clinical outcomes [62]. These putative mutualis-

tic interactions were viewed as future targets for experimental testing and possible

therapeutic disruption to enhance treatment efficacy.

When the pathogens Staphylococcus and Pseudomonas were allowed to partici-

pate in communities, the only significant mutualistic relationship predicted was be-

tween the two pathogens themselves. These SaPa communities were characterized

by pathogen dominance, low diversity and high growth rates with little variability

(Figure 5), characteristics we previously attributed to resilient communities well pro-

gressed towards a fully developed disease state [75, 76]. Mutualism was supported

by bi-directional crossfeeding of organic acids, amino acids and ethanol between the

two species, making the identification of a single crossfeeding relationship for dis-

ruption a challenge. These predictions are supported by studies showing that the
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presence of Pseudomonas along with Staphylococcus generates larger chronic wounds

and delays/prevents the healing process [286, 287, 65, 288].

In the absence of Pseudomonas, Staphylococcus was predicted to form mutualis-

tic relationships with the less abundant pathogen Acinetobacter and the commensal

Corynebacterium. By spreading mutualism across two pairs of species, the Sa∆Pa

ensemble produced slightly more diverse communities at the expense of slower and

more variable growth (Figure 6). These results suggest that infections lacking Pseu-

domonas should be more easily treated, a hypothesis supported by the aforemen-

tioned studies [286, 287, 65, 288]. The Staphylococcus–Acinetobacter interaction was

driven by lower metabolite crossfeeding rates than those predicted for Staphylococcus

and Pseudomonas, another indication that Pseudomonas-free infections should be

more easily cleared. These predictions could yield new insights into the treatment of

the so-called ESKAPE pathogens (Enterococcus faecalis, Staphylococcus aureus, Kleb-

siella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter

species) which are the leading cause of nosocomial infections [272, 273].

When Staphylococcus was omitted from the simulated communities, Pseudomonas

was predicted to have mutualistic relationships with four other species: Serratia,

Streptococcus, Acinetobacter and Bacteroides. Consistent with the trends mentioned

above, this increase in the number of mutualistic interactions resulted in the ∆SaPa

ensemble producing more diverse communities which exhibited slower and more vari-

able growth (Figure 6). The effect of removing Staphylococcus in the Sa∆Pa communi-

ties was greater than the effect of removing Pseudomonas in the Sa∆Pa communities,

consistent with the role of Staphylococcus as the single dominant pathogen in chronic

wound infections whose absence correlates to better clinical outcomes [289, 61]. The

Pseudomonas-Serratia interaction was primarily driven by L-lactate and D-lactate

exchange between the two species, a prediction that could be tested through in vitro

experiments.
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Of the 90 pairwise interactions possible when both Staphylococcus and Pseu-

domonas were removed, 22 interactions were predicted to be significantly mutualistic.

The ∆Sa∆Pa ensemble exhibited substantially higher diversity and lower and more

variable growth than the other three ensembles, consistent with earlier stage infec-

tions that lack dominant pathogens. One particularly interesting mutualistic rela-

tionship involved the commensal Streptococcus and ESKAPE pathogen Enterococcus,

which has some experimental support [277]. Our model predicted that this inter-

action was driven largely by L-lactate consumption by Enterococcus, demonstrating

how pathogens may take advantage of metabolic byproducts secreted by commensals

to increase their abundance when more dominant pathogens are absent.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary
The metabolic modeling framework (Figure 6.1) was developed to study inter-

species interactions and to evaluate the impact of host environment on the interspecies

interactions in the multispecies biofilms. Steady state community metabolic models

were developed by identifying dominant genera from 16S patient data. These models

were solved using SteadyCom method where community growth rate is maximized

and the relative species abundances, cross feeding rates and byproduct secretion rates

were obtained. These models can be used to identify mutualistic interactions from

multispecies communities. The mutualistic interactions play important role in species

pathogenesis and disease progression. The developed metabolic modeling framework

is capable of mapping individual patient data for devising patient specific antibiotic

treatments.

To study the heterogeneity in the biofilm system caused by concentration gra-

dients, the spatiotemporal biofilm metabolic models were developed. These mod-

els were used to study spatial/temporal organization of the species and interspecies

interactions such as crossfeeding, species inhibition and nutrient competition. The

biofilm models were formulated by combining genome scale metabolic reconstructions

of considered species and transport equations for species biomass and nutrient con-

centrations. The models were solved by using dynamic flux balance approach. This

is a powerful tool as the concentration gradients in the biofilms drive the dynamics

of the interspecies interactions and spatial organization.
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Figure 6.1: Overview of multispecies biofilm metabolic modeling.

Taken together, the steady state models use 16S patient data to predict robust

mutualistic interactions which further can be studied with the help of spatiotemporal

models to analyze the underlying causes of treatment failures. These insights would

be helpful in designing better antibiotic treatments.

6.2 Future Work
Two species chronic wound biofilm model can be extended by developing a model

bacterial consortia system comprised of three clinical chronic wound isolates: aerobic

Pseudomonas aeruginosa, facultative anaerobe Staphylococcus aureus and obligate

anaerobe Clostridium perfringens [86]. This consortium would be ideal for developing

and validating the necessary computational and analytical methods for investigating

the recalcitrance of chronic wound biofilms. The existing chronic wound biofilm model

can be modified by adding genome scale metabolic reconstruction of a third species

Clostridium perfringens. The model can be further extended by adding reaction-

diffusion equation for supplied antibiotics. The model can be initially limited to a

single antibiotic at a time. The species biomass equations can be modified to include

growth inhibition and cell death terms mediated by the antibiotics. For simplicity,

the model can be initially limited to a single antibiotic at a time. The species biomass
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equations can be modified to include growth inhibition and cell death terms mediated

by the antibiotics. The antibiotic uptake kinetics, inhibited growth rate and death

rate will depend on the local antibiotic concentrations. The simulation results can be

validated with experimental observations.

Multispecies community models can be developed for studying interactions be-

tween gut microbiota and Clostridium difficile during CDI associated dysbiosis. The

relative abundance data obtained for healthy case and dysbiosis case along with mu-

tualistic relationships within the community would be useful in understanding the

CDI and develop antibiotic therapy. This community modeling framework would

also be useful in identifying the metabolic differences in gut microbiota of healthy

person and C. difficile infected patient.

The metabolic model predictions are dependent on the species uptake kinetics

(vmax and km). Due to lack of species specific nutrient uptake kinetics, we have

used parameters obtained from E. coli. The model predictions are also dependent

on diffusion and mass transfer coefficients of species, metabolites and byproducts.

Experiments can be performed to obtain the species specific nutrient uptake parame-

ters. The dissolved oxygen levels and the pH gradients in the biofilm will significantly

change the coexistence map of the species and hence experiments can be performed to

get these profiles. Further, the computational model can be extended to account the

changes in pH by fitting the profiles obtained from experiments and the predictions

of species concentrations can be improved.

The spatiotemporal model can be extended to account for spatial expansion or

contraction in case of biofilm development or treatment. Biofilm expansion can be

assumed to be driven by the relative rates of cell growth and death. Cell growth

increases the local biomass concentration and cell death leads to decrease in biomass

concentration. This extension would be useful in predicting the biofilm metabolism

over expanding/contracting thicknesses.
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The biofilm systems are assumed to be in laminar flow and model predictions

can be improved by adding an impact of shear force on the removal of biomass cells.

The mass transfer occurring at air-biofilm interface can be modeled as a two phase

mass transfer and the boundary conditions can be changed based on this correction.

The air-biofilm mass transfer coefficients can be calculated by developing a simple

computational fluid dynamic model for in vitro system of well plates. The results

from computational study can be validated from the in vitro experiments.
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