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ABSTRACT

BAYESIAN METHODS FOR THE ASSESSMENT OF REPORTING 
ERRORS FOR DATA-SPARSE POPULATION-PERIODS WITH 

APPLICATIONS TO ESTIMATING MORTALITY

FEBRUARY 2020

EMILY N PETERSON

B.S., DAVIDSON COLLEGE

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Leontine Alkema

Population level mortality data is often subject to substantial reporting errors due to 

misclassification of cause of death, misclassification of death status, or age reporting er-

rors. Accuracy of error-prone data sources can be assessed by comparing such data to gold 

standard data for the same population-period. We present Bayesian methods for assessing 

the extent of reporting errors across different population-periods and generalizing those to 

settings where gold-standard data are lacking. Firstly, we investigate misclassification 

errors of maternal cause of death reporting in civil registration vital statistics data. We use a 

Bayesian hierarchical bivariate random-walk model to estimate country-year specific 

sensitivity and specificity in countries with at least one period where vital registration data 

overlaps with gold standard data. For countries without gold standard data, we developed a 

sequential approach, in which fixed global estimates of sensitivity and specificity are used. 

Additionally, we propose a new approach to incorporate temporal structure of misclassi-

fication parameters. Secondly, we investigate misreporting of adult mortality in sibling
vi



survival history data. Sibling survival histories data suffers from reporting errors due to re-

spondent misreporting of birth year and age at death of their maternal siblings. We perform

an exploratory analysis of data collected in Malawi and propose a candidate parametriza-

tion for reporting errors in cohort survival probabilities by 5-year age groups. We introduce

parameters to capture age-group specific age-at-death errors and birth year reporting errors

and define the data generating processes that relate sibling survival data to true survival

probabilities while accounting for reporting errors. This framework allows for the estima-

tion of age-group specific survival probabilities in settings where only error-prone sibling

survival history data is available.
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INTRODUCTION

Population level mortality data is often subject to substantial reporting errors. To address

this concern, we developed a Bayesian misreporting model framework for the assessment

of the extent of reporting errors across different population-periods, using gold standard

data to inform estimates of misreporting. However, in the case of national and global mor-

tality estimation, gold standard data is limited and sparse, therefore, the challenge is to

estimate the true outcome of interest given the observed error-prone data available. In the

absence of better quality data, and limited gold-standard data, we developed a new ap-

proach that allows us to extrapolate misreporting estimates to population-periods lacking

gold-standard data. This approach is a 2-step process in which we aimed to estimate global

levels of misreporting parameters using all country-periods with available information on

misreporting. Subsequently, we used a sequential modeling approach, to extrapolate global

estimates of reporting errors for country-periods without gold standard data into a larger

mortality estimation model. This improves upon a more common and simpler approach in

which, in the absence of a modeling different reporting error processes, ratios of mortality

rates are used to assess differences between the true and biased rates. We applied our pro-

posed Bayesian mispreporting framework in the context of maternal mortality estimation

and adult cohort specific survival probability estimation.

In the estimation of national trends of maternal mortality, estimates are constructed using

a Bayesian hierarchical time series regression model, referred to as BMat (UN MMEIG

2019), which uses civil registration vital statistics (CRVS) data to inform model based

estimates. However, CRVS data is prone to substantial reporting errors. Specifically, re-

porting errors are introduced in the misclassification of cause of death. A main concern
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is accounting for bias introduced in the misclassification of maternal deaths. Based on a

systematic review of studies, which report information on levels of misclassification within

countries, we developed a Bayesian bivarirate random walk model to assess misclassifi-

cation errors across different population-periods. We model misclassification of maternal

deaths using country-year estimates of sensitivity and specificity. Our aim is to generalize

these results to population-periods without available data on misclassification. To do so, we

use a sequential approach in which we apply global estimates of sensitivity and specificity

for countries without information given by misclassification studies. Therefore, within the

larger BMat model, we estimate the true proportion of maternal deaths given error-prone

CRVS maternal mortality data, and fixed global estimates of misclassification.

Sibling survival history surveys (SSH) is an indirect method used to estimate age-group

cohort specific adult mortality rates for countries with limited CRVS data. SSH data con-

sists of respondent reported information on the vital status, current age, and age at death of

all their maternal siblings. However, reporting errors occur when a respondent misreports

the vital status and/or ages of their siblings, which are broken down into different reporting

error processes. Reporting errors due to age at death misreporting results in vital status

errors (misreporting of death status) or siblings that are omitted/added to the population.

Age misreporting, referred to as birth year misreporting, results in siblings being classified

into incorrect age cohorts, which will inflate the false age-cohort mortality rate and con-

versely deflate the true age-cohort mortality rate. We extend upon the approach used for

maternal mortality estimation to incorporate misreporting parameters related to both age at

death misclassification, and birth year misreporting. We propose parametrization to assess

the extent of both age at death and birth year reporting errors, based on limited preliminary

data.

The Bayesian misreporting framework we propose is applicable in multiple settings, which

assess mortality trends. Namely, the Institute of Health Metrics publishes the Global Bur-
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den of Disease Study (IHME 2014), which describes mortality from major diseases at

global and national levels. In this application, assessment of global trends in cause-specific

mortality rates may be improved by a Bayesian misclassification model that incorporates

global and country level estimates of misclassification as with maternal mortality estima-

tion. Additionally, Masquelier et al. (2018), assessed mortality of children under 5 years

of age for years 1990-2016. This estimation was based on surveys, vital statistics, and

census data, which suffer from the same reporting errors as both CRVS data and sibling

survival histories. Therefore, this framework provides a new approach to account for re-

porting errors in applications that assess cause or age-group specific mortality rates in many

applications.

The paper is organized as follows: 1) In Chapter I, we first introduce the Bayesian mis-

classification model used to estimate global and country levels of misreporting in maternal

mortality, 2) In Chapter II, we describe the sequential approach taken to incorporate re-

sults from Chapter I into a larger estimation model. Lastly, in Chapter III, we propose a

preliminary parametrization to assess misreporting of age-group cohort specific survival

probabilities, which is an extension of both Chapters I and II.
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CHAPTER 1

A BAYESIAN HIERARCHICAL BIVARIATE RANDOM WALK
MODEL TO ESTIMATE SENSITIVITY AND SPECIFICITY OF

REPORTING OF MATERNAL CAUSE OF DEATH IN NATIONAL
CIVIL REGISTRATION VITAL STATISTICS SYSTEMS

1.1 Introduction

A maternal death is “the death of a woman whilst pregnant or within 42 days of termi-

nation of pregnancy, irrespective of the duration and site of the pregnancy, from any cause

related to or aggravated by the pregnancy or its management but not from accidental or inci-

dental causes” as defined in International Statistical Classification of Diseases and Related

Health Problems, Tenth Revision (ICD-10) (World Health Organization, 2010). National

civil vital registration (CRVS) systems record the number of deaths to women of reproduc-

tive ages, as well as the cause associated with each death using ICD coding. Based on the

number of all-cause and maternal deaths, the proportion of deaths that are of a maternal

cause, referred to as the proportion maternal (PM), can be constructed.

Under ideal circumstances, when all deaths are captured and all causes are accurately

classified, CRVS systems provide perfect information on the number of maternal deaths

within the country. However, even if routine registration of deaths is in place, maternal

deaths may be reported incorrectly if deaths are unregistered or misclassified, where mis-

classification of deaths refers to incorrect coding in vital registration systems, due either

to error in the medical certification of cause of death or error in applying the correct ICD

code. The accuracy of CRVS systems can be assessed by comparing CRVS-based observed

PMs to those obtained from specialized studies, which are rigorous assessments of mater-

nal mortality for a given country-period. Prior work comparing the ratio of study-based
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PMs to CRVS-based PMs, referred to as CRVS adjustment factors, found that these ratios

are around 150%, thus suggesting that PMs obtained from CRVS do not adequately capture

all maternal deaths (Wilmoth et al., 2012).

The United Nations Maternal Mortality Estimation Inter-agency group (UN MMEIG) is re-

sponsible for publishing internationally comparable estimates of maternal mortality for UN

reporting. Since 2015, UN MMEIG estimates have been produced using a Bayesian hierar-

chical time series regression model, referred to as BMat (UN MMEIG 2015, Alkema et al

2017, UN MMEIG 2019). BMat uses an input database which is based upon nationally rep-

resentative data available from Civil Registration Vital Statistics (CRVS), population-based

surveys such as DHS and MICS, censuses, and specialized surveillance. A more general

explanation of these data sources and their limitations is included in the UN MMEIG 2019

report (UN MMEIG 2019). In BMat, estimates of the PM are produced based on the avail-

able input data for the respective country-period, taking account of data quality issues in

reporting. Based on the Wilmoth et al. analyses, the UN MMEIG has applied adjustments

to CRVS data, to reduce bias in CRVS-based derived data in settings where CRVS systems

are subject to error (UN MMEIG 2015, Alkema et al. 2017). The approach was subject to

limitations (Alkema et al. 2017).

In this paper, we develop a new approach to estimate reporting errors associated with mis-

classification in maternal death reporting in CRVS data that improves upon limitations of

the UN MMEIG 2015 approach. The next section introduces terminology and the frame-

work used to describe errors in reporting of maternal mortality in CRVS systems. Section

1.3 provides information on the data available to inform estimation of the extent of incorrect

reporting. Section 3.4 introduces a Bayesian model to estimate the extend of misclassifi-

cation in the reporting of maternal deaths in CRVS systems. The estimation is based on

summarizing misclassification in terms of sensitivity and specificity, and modeling these

two indicators for all country-years with CRVS data using a bivariate hierarchical random

walk model. Finally, we present findings and the results of validation exercises.
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This work provides a new approach to modeling misclassification errors that quantifies

dependence between sensitivity and specificity of reporting and allows for extrapolation

to country-periods without validation data. Previous work on Bayesian estimation mod-

els of the extent of cause of death misclassification include work by Paulino et al. (2004)

and Stamey et al. (2008). Paulino et al. (2004) used a Bayesian approach to account for

misclassification of binomial data in a logistic regression model. In their approach, inde-

pendent Beta priors were assigned to sensitivity and specificity. Similarly, Stamey et al.

(2008) proposed a Bayesian approach to adjust for misclassification in death count data

using Poisson regression model. They used informative Beta priors to account for lack of

observed information on sensitivity and specificity. These existing approaches do not allow

for extrapolation to country-periods without validation data, taking account of correlation

between sensitivity and specificity.

1.2 Reporting errors in CRVS systems

The diagram in Figure 1.1 illustrates the breakdown of total deaths to women of re-

productive age by CRVS-reporting status (columns) and true maternal cause (rows). In a

complete-CRVS setting, meaning that all deaths are registered, the number of missed deaths

(3rd column) is equal to zero, such that reporting errors are solely due to misclassification

of deaths. Inaccurate attribution of cause of death is either due to error in the medical cer-

tification of cause of death, and/or error in applying the correct code, which results in two

misclassification biases regarding maternal deaths. Firstly, error occurs when a maternal

death is misclassified as non-maternal, referred to as a false negative (F−) maternal death.

Secondly, if a non-maternal death is misclassified as maternal, the death is labeled as a

false positive maternal death (F+). Correctly classified maternal and non-maternal deaths

are indicated by true positive (T+) and true negative (T−) maternal deaths, respectively.

From the individual categories in Figure 1.1, cumulative totals are calculated summing
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across rows and columns, i.e. CRVS reported maternal deaths is the sum of T (+) and F (+),

whereas, the true number of maternal deaths within the CRVS is the sum of T (+) and F (-).

In incomplete CRVS systems, missed deaths include unregistered maternal deaths, referred

to as U (+) deaths, and unregistered non-maternal deaths U (-).

Figure 1.1: Diagram of breakdown of total deaths to women of reproductive age for a country-year,
by CRVS-reporting status (columns) and true maternal cause (rows). T (+) and F (-) deaths refer
to maternal deaths that are correctly registered as maternal deaths, and incorrectly registered as
non-maternal deaths, respectively. Similarly, F (+) and T (-) maternal deaths refers to non-maternal
deaths that are incorrectly registered as maternal deaths, and correctly registered as non-maternal
deaths, respectively. U (+) refers to unregistered maternal deaths, and U (-) refers to unregistered
non-maternal deaths.

1.3 Data

Information on CRVS misclassification errors and unregistered deaths was obtained from

comparing information from specialized studies to CRVS reported deaths. This section

discusses both types of data.

1.3.1 CRVS data and completeness assessment

The WHO Mortality Database maintains data from CRVS systems. Using this database,

we obtained information on the number of maternal deaths reported in the CRVS and the

number of deaths to women aged 15-49 reported in the CRVS (CRVS envelope).

Completeness of the reporting of deaths into the CRVS system was assessed by comparing

CRVS reported deaths to WHO estimates of deaths to women of reproductive age, obtained

from life tables for WHO Member States. We first calculated the annual ratio of female

deaths reported in the CRVS over deaths estimated by the WHO for all years with CRVS
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data, based on a moving window of 5-year periods (five-year periods were used to obtain

less variable ratios for countries with smaller populations). If the ratios, more specifically,

the upper bounds of 95% confidence intervals when accounting for stochastic uncertainty

in the ratio, are greater than 0.95 for all years with CRVS data, we assumed that the CRVS

was complete in the country during the entire period. Otherwise, CRVS completeness was

given by the ratio for each individual year (UN MMEIG 2019).

1.3.2 Specialized studies

A specialized study is defined as the assessment of maternal mortality for a country-period,

either independent of CRVS reported data or based on the checking of CRVS reported

deaths. These studies provided counts of the number of true maternal deaths (first row in

Figure 1.1) or possibly individual categories, i.e. the number of false negative maternal

deaths. We assumed that the study envelope was equal to the envelope reported by the

CRVS system, unless specified otherwise in the study. Specialized studies were obtained

through (1) a literature review, (2) the UN MMEIG 2015 maternal mortality data base (UN

MMEIG 2015), and (3) information provided by countries based on a follow-up survey,

sent to countries in response to discussions with the Pan-American Health Organization

(PAHO), and during country consultation. Detailed information on the compilation of spe-

cialized studies data is given in Appendix Section A.0.2.

1.3.3 Data availability

A total of 50 study documents contributed data to inform the CRVS adjustment model,

referring to 33 unique countries and 221 unique country-periods (observations). The ma-

jority of included study documents were obtained through the systematic search (n = 22).

In addition, 18 study documents were obtained from the UN MMEIG 2015 database (UN

MMEIG 2015). Additional information from follow-up surveys and communication with

countries during country consultation yielded 10 additional study documents (Appendix
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Section A.0.2).

Reported information varied greatly across observations. While some studies reported a

detailed breakdown of false positive and/or false negative maternal deaths, the majority of

studies reported only the confirmed total number of maternal deaths for a given country-

period, see Table 1.1. The majority of studies reported on the true number of maternal

deaths within the CRVS (184 observations, 30 countries). Information on both false neg-

ative and false positive breakdowns was available for 18 observations (4 countries). Most

studies with breakdown information solely reported on false negative breakdowns, 38 ob-

servations from 4 countries. Data regarding the relative difference between the proportion

of maternal deaths among CRVS-reported deaths and the proportion of maternal deaths

among unregistered deaths was very limited: only 13 observations reported information

that included U+.

Reported counts # of observations # of countries
True maternal in CRVS only 162 27
True maternal in CRVS and U+ 2 1
F- and F+ and U+ 10 2
F- and F+ only 8 2
F- and U+ only 1 1
F- only 38 4
Total 221 33

Table 1.1: Overview of data available from specialized studies.

1.4 Methods

1.4.1 Summary of modeling approach

Based on the 6-box model, refer to Figure 1.1, for each country c and year t, we assumed a

multinomial data generating distribution as follows:

yc,t |y(tot)
c,t ,ρc,t ∼Multinom

(
y(tot)

c,t ,ρc,t

)
, (1.1)
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where (leaving out subscripts (c, t) for improve readability):

y =
(

y(U-),y(U+),y(T-),y(T+),y(F-),y(F+)
)
,

ρ=
(

ρ
(U-),ρ(U+),ρ (T-),ρ (T+),ρ (F-),ρ (F+)

)
,

with y(b) the number of deaths reported for category b in B = {T+,T−,F+,F−,U+,U−}

and y(tot) = ∑b∈B y(b). Similarly, ρ (b) denotes the probability of a death in category b and

∑b∈B ρ (b) = 1. Lastly, observed proportions are denoted with p(b) = y(b)/y(tot). Focusing

on deaths captured in the CRVS data only, hence categories B(CRVS) = {T+,T−,F+,F−},

we define the total number of deaths in the CRVS as y(CRVS) = ∑b∈B(CRVS) y(b), CRVS-based

probabilities γ (b) = γ (b)/∑b∈B(CRVS) ρ (b), and CRVS-based proportions q(b) = p(b)/∑b∈B(CRV S) p(b).

The proportion of CRVS-based deaths that is reported as being maternal (the CRVS-based

observed PM) is given by q(matCRVS) =
(
y(T+) + y(F+))/y(CRVS).

The question of interest is how to estimate the true probability of a maternal death, ρ (truemat) =

ρ (T+)+ρ (F-)+ρ(U+), based on the CRVS-reported maternal deaths y(matCRVS), total CRVS-

reported deaths y(CRVS), and total deaths y(tot). Based on Eq. 1.1 we find

y(matCRVS)|y(CRVS),γ (matCRVS) ∼ Bin
(

y(CRVS),γ (matCRVS)
)
, (1.2)

γ
(matCRVS) =

(
ρ

(T+) +ρ
(F+)
)
/ρ

(CRVS),

where γ (matCRVS) refers to the probability of reporting a death as being maternal in CRVS.

For country-years with complete CRVS, this probability γ (matCRVS) can be expressed as a

function of the true probability ρ (truemat), and misclassification parameters sensitivity λ (+)

and specificity λ (-) as follows:

γ
(matCRVS) = λ

(+)
ρ

(truemat) +
(

1−λ
(-)
)(

1−ρ
(truemat)

)
(1.3)
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with sensitivity λ (+) = γ (T+)

γ (T+)+γ (F-) , the probability of correctly identifying a maternal death

reported in the CRVS as such, and specificity λ (-) = γ (T-)

γ (T-)+γ (F+) , the probability of correctly

identifying a non-maternal death reported in the CRVS as such.

For countries with incomplete CRVS systems, we define ω (truematUNREG) to be the proba-

bility of a maternal death among unregistered deaths, and γ (truematCRVS) = γ (T+) + γ (F-) to

be the probability of a maternal death among CRVS-registered deaths. For these coun-

tries, Eq. 1.2 still holds true but the relation between γ (matCRVS) and ρ (truemat) changes if

ω (truematUNREG) differs from γ (truematCRVS). In such settings, the relation between γ (matCRVS)

and ρ (truemat) can be written as follows:

γ
(matCRVS) =

λ (+) ·ρ (truemat)

ρ (CRVS) +(1−ρ (CRVS)) ·κ
+(1−λ

(-)) ·
(

1− ρ (truemat)

ρ (CRVS) +(1−ρ (CRVS)) ·κ

)
,

(1.4)

where κ refers to the ratio of probabilities of a maternal death outside versus inside the

CRVS:

κ =
ω (truematUNREG)

γ (truematCRVS) .

We aimed to estimate sensitivity, specificity, and κ (or a related parameter to summarize

the relative difference between the probability of a maternal death outside versus inside

the CRVS) for all country-years with CRVS data, such that CRVS data can be used to

inform the estimation of maternal mortality among all deaths while accounting for CRVS

misclassification errors and underregistration. However, given that data on the relative

difference in maternal risk among CRVS-registered and unregistered deaths was so limited

(see Table 1), we were unable to estimate this relative difference. Instead, we focused on

the estimation of sensitivity and specificity using CRVS-based data only (221 observations,

see Table 1). We developed a bivariate hierarchical random walk model for estimating

sensitivity and specificity for all country-years, as explained in Section 1.4.2. We used all

available CRVS-based data for model fitting, including data on the total number of maternal

deaths only, as explained in Section 1.4.3.
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1.4.2 Bivariate hierarchical random walk model for sensitivity and specificity

We developed a bivariate hierarchical random walk model to estimate sensitivity λ
(+)
c,t and

specificity λ
(-)
c,t for all countries c with CRVS data for some year(s) t. We constrained

sensitivity (se) to be within 0.1 and 1, and specificity (sp) to be within 0.95 and 1 using

transformations:

η
(+)
c,t = log

(
λ

(+)
c,t −0.1

1−λ
(+)
c,t

)
,

η
(-)
c,t = log

(
λ

(-)
c,t −0.95

1−λ
(-)
c,t

)
.

Sensitivity and specificity (after transformation) were modeled using bivariate distributions

to account for possible correlation between the two misclassification parameters. Account-

ing for this correlation is important for estimating misclassification parameters, i.e. see

Chu et al. 2006. The model set-up used is a hierarchical random walk process. In reference

year tc, here chosen as the midyear of the country-specific observation period, we assume

a hierarchical distribution for transformed sensitivity and specificity:

η
(+)
c,tc

η
(-)
c,tc

∼ N2


η

(+)
global

η
(-)
global

 ,
 σ (+)2

φ ·σ (+) ·σ (-)

φ ·σ (+) ·σ (-) σ (−)2


 (1.5)

For years prior to the country-specific reference year, i.e. t < tc:

η
(+)
c,t

η
(-)
c,t

∼ N2


η

(+)
c,t+1

η
(-)
c,t+1

 ,
 δ (+)2

φ ·δ (+) ·δ (-)

φ ·δ (+) ·δ (-) δ (−)2


 . (1.6)
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For years after the country-specific reference year, i.e. t > tc:

η
(+)
c,t

η
(-)
c,t

∼ N2


η

(+)
c,t−1

η
(-)
c,t−1

 ,
 δ (+)2

φ ·δ (+) ·δ (-)

φ ·δ (+) ·δ (-) δ (−)2


 .

The following prior distributions were assigned to the global mean parameters:

λ
(+)
global ∼Uni f (0.1,1),

λ
(-)
global ∼Uni f (0.995,1),

η
(+)
global = log

((
λ

(+)
global−0.1)/(1−λ

(+)
global

))
,

η
(-)
global = log

((
λ

(-)
global−0.1)/(1−λ

(-)
global

))
,

Prior distributions for the correlation and standard deviations of the random walk were as

follows:

φ ∼Uni f (−0.95,0.95), (1.7)

σ
() ∼ NT (0,∞)(0,1), (1.8)

δ
() ∼ NT (0,∞)(0,1), (1.9)

where NT (0,∞)(0,1) denotes a half-normal distribution (a truncated normal distribution with

lower bound at 0).

We explored the use of indicators gross domestic product (GDP), the general fertility rate

(GFR), the proportion of ill-defined causes, CRVS completeness, and ICD coding (ICD10

or earlier) as possible covariates to inform estimates of sensitivity and specificity. However,

exploratory analyses suggested no substantially meaningful relations and were excluded

from the final model. Illustrative plots are included in Appendix Section A.0.3.
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1.4.3 Model fitting

Our goal is to estimate sensitivity and specificity using data from all country-years with

CRVS-based specialized study data. Based on the assumption of a multinomial data gen-

erating process from Eq.1.1, we assumed the following data generating process for study

counts from the ith study in country c[i] in reference year t[i]:

zi|z(CRVS)
i ,γc[i],t[i] ∼Multinom

(
z(CRVS)

i ,γc[i],t[i]

)
, (1.10)

with study counts zi =
(

z(T-)
i ,z(T+)

i ,z(F-)
i ,z(F+)

i

)
, z(CRVS)

i =∑b∈B(CRVS) z(b)
i , and unknown prob-

ability vector γc,t =
(

γ
(T-)
c,t ,γ (T+)

c,t ,γ (F-)
c,t ,γ (F+)

c,t

)
. For studies that refer to one calendar year, the

study counts corresponds to the counts for that specific year, z(b)
i = y(b)

c[i],t[i], while for stud-

ies that refer to multiple years, study counts are aggregates over the observation period,

i.e., z(b)
i = ∑

t2[i]
t=t1[i] y

(b)
c,t where t1[i] and t2[i] refer to the start and end years of the ith study,

respectively. The 4 CRVS-based probabilities γ
(b)
c,t can be written in terms of the two mis-

classification parameters λ
(+)
c,t and λ

(-)
c,t , and the true CRVS-based probability of a maternal

death as follows:

γ
(T+)
c,t = λ

(+)
c,t · γ

(truematCRVS)
c,t ,

γ
(F-)
c,t = γ

(truematCRVS)
c,t −ρ

(T+)
c,t ,

γ
(T-)
c,t = λ

(-)
c,t ·
(

1− γ
(truematCRVS)
c,t

)
,

γ
(F+)
c,t =

(
1− γ

(truematCRVS)
c,t

)
−ρ

(T-)
c,t .

Country-year model parameters are defined through the bivariate hierarchical random model

on λ
(+)
c,t and λ

(-)
c,t , and vague independent priors on γ

(truematCRVS)
c,t :

γ
(truematCRVS)
c,t ∼U(0,1).
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For studies that report on a specific set of non-overlapping categories, i.e. the number of

false positive maternal deaths and/or the number of true positive maternal deaths, the corre-

sponding likelihood function was obtained directly using the multinomial data generating

process in Eq. 1.10.

However, the majority of studies only reported information on the number of true maternal

deaths within the CRVS (see table 1.1). For each study that reported true maternal deaths

within the CRVS, the study reported count of maternal deaths, z(truematCRVS)
i = z(T+)

i +

z(F-)
i , overlaps with the CRVS-reported maternal deaths for the corresponding country-

period, z(matCRVS)
i = ∑

t2[i]
t=t1[i] y

(T+)
c[i],t[i] + y(F+)

c[i],t[i]. For each study period with information on

overlapping categories, we obtained the exact likelihood function for the available death

counts by summing over multinomial densities evaluated at each unique combination z̃i =(
z̃(T-)

i , z̃(T+)
i , z̃(F-)

i , z̃(F+)
i

)
that satisfied the observed set of counts. Specifically, for studies

with information on the true number of maternal deaths
(

z(truematCRVS)
i

)
, and the num-

ber of maternal deaths observed in the CRVS
(

z(matCRVS)
i

)
, the likelihood function fi =

f
(

z(matCRVS)
i ,z(truematCRVS)

i |z(CRV S)
i ,γc[i],t[i]

)
is written as follows

fi =
z(matCRVS)

i

∑
z̃(T+)

i =0

pz

(
z̃|z(CRV S)

i ,γc[i],t[i]

)
·1
(

z̃(T+)
i + z̃(F-)

i = z(truematCRVS)
i

)
· ki

where pz

(
z̃|z(CRVS)

i ,γc[i],t[i]

)
refers to the multinomial density function for the 4 CRVS-

based categories from Eq. 1.10. Additionally, to improve computational efficiency and re-

move combinations that result in values of sensitivity and specificity with negligible prob-

abilities, we added additional constraints to possible combinations of z̃i, reflected in ki

with

ki = 1
(

z̃(T+)
i ≥ Bin2.5%

(
z(truematCRVS)

i ,0.1
))
·1
(

z̃(T-)
i ≥ Bin2.5%

(
z(CRVS)

i − z(truematCRVS)
i ,0.97

))
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where Bin2.5%(n, p) refers to the 2.5th percentiles of a Binomial distribution with sample

size n and probability p, 0.1 is a lower bound for sensitivity, and 0.97 is a lower bound for

specificity.

1.4.4 Computation

A Markov Chain Monte Carlo (MCMC) algorithm was employed to sample from the poste-

rior distribution of the parameters with the use of the software JAGS (Plummer 2003). Ten

parallel chains were run with a total of 40,000 iterations in each chain. Of these, the first

of 10,000 iterations in each chain were discarded as burn-in and every 20th iteration after

was retained. The resulting chains contained 1,500 samples each, with a total of 15,000

posterior samples. Standard diagnostic checks (using trace plots and Gelman and Rubin

diagnostics (Gelman and Rubin 1992)) were used to check convergence.

1.4.5 CRVS adjustment factor

Based on estimates of sensitivity and specificity, for countries with complete CRVS sys-

tems, we defined the associated CRVS adjustment factor for country c in year t as follows:

CRVSadjc,t =
p(truemat)

c,t

λ
(+)
c,t · p

(truemat)
c,t +

(
1−λ

(-)
c,t

)
·
(

1− p(truemat)
c,t

) , (1.11)

which varies with the true PM p(truemat)
c,t . For country-years without specialized studies,

CRVS-adjustment factors follow from estimates of sensitivity and specificity, and the true

PM.

1.4.6 Comparison to UN MMEIG 2015 approach

In the UN MMEIG 2015 approach, CRVS adjustment factors were obtained for all country-

years with CRVS data and used directly in model fitting (Alkema et al. 2017). For coun-

tries with specialized studies, the CRVS adjustment in the UN MMEIG 2015 approach
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was calculated for country-periods with studies by taking the ratio of the study-based ob-

served proportion of maternal deaths to the observed CRVS-based proportion (Alkema et

al. 2017). Linear interpolation was used to obtain adjustments in years in between ob-

served adjustments. For forward extrapolation, the CRVS adjustment was kept constant at

the level of the most recent observed CRVS adjustment. Backward extrapolations are ex-

plained below. The uncertainty of the adjustment was set equal to the variability associated

with g, defined as follows:

log(g)|G∼ N
(
log(G),0.252) ,

where G refers to the point estimate of the adjustment factor. For countries with CRVS data

but no specialized studies, the UN MMEIG used a constant global adjustment factor of 1.5

for all country-years (Wilmoth et al. 2012, Alkema et al. 2017). For backward extrapola-

tions in countries with studies, the CRVS adjustment was assumed to increase or decrease

linearly to the same global adjustment factor of 1.5 in 5 years. The approach to obtaining

CRVS adjustment with the CRVS-model differs from the UN MMEIG 2015 approach; the

CRVS adjustment factor is obtained from estimates of sensitivity and specificity, and varies

with the true PM, see Section 1.4.5.

1.4.7 Model validation

Model performance was assessed through two out-of-sample validation exercises. In the

first exercise, 20% of the observations were left out at random to form a training data set.

The process was repeated 20 times, i.e. 20 training sets were constructed with different

samples left out in each set. In the second exercise, we left out the observation correspond-

ing to the most recent study period in each country. In removing either 20% at random

or the last observation, we assess how well the CRVS adjustment model performs in ex-

trapolation of estimates within a given country. The CRVS adjustment model was fitted to

each training set, and we obtained posterior samples for sensitivity and specificity in the
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country-years with left-out specialized studies.

To validate model performance, we combined samples of sensitivity and specificity with in-

formation on study-based observed PMs to obtain samples of predicted CRVS-based PMs.

We summarized the difference in terms of error, i.e., the difference between the observed

CRVS-based PM and its point estimate, and coverage of 80% prediction intervals. We first

summarize errors within countries, and the average across country specific measures to get

overall predictive performance. The procedure is described in detail in Box 1.2.

Calculation of outcome measures in the validation exercise

1. Fit the CRVS adjustment model to the training data and obtain posterior samples
se(s)c,t and sp(s)c,t for posterior samples s = 1,2, . . . ,S for country-years with left-out
data in the test set.

2. Sample the CRVS-based reported number of maternal deaths using samples for
sensitivity and specificity:

z(matCRVS)(s)
i = z(truematCRVS)

i · se(s)c[i],t[i]+
(

1− z(truematCRVS)
i

)
·
(

1− sp(s)c[i],t[i]

)
3. Calculate the difference between observed and estimated CRVS-based PM:

errormatCRV S(s)
i =

(
z(matCRVS)

i − z(matCRVS)(s)
i

)
/z(CRV S)

i

The median of the sampled errors is reported.

4. Calculate the proportion of CRVS-based PMs z(matCRVS)
i /z(CRV S)

i above and below
their respective 80% prediction interval.

Figure 1.2: Overview of calculation of errors and coverage of prediction intervals in out-of-sample
validation exercises.

1.5 Results

1.5.1 Validation Results

The CRVS adjustment model performs well in out-of-sample validation exercises, see Ta-

ble 1.2. Median and relative errors are small in both exercises, and absolute errors are

around 10% in predicting the CRVS-based PM. The model is well calibrated, the coverage
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of the 80% prediction intervals is around 80%, with around 10% falling below (above) the

lower (upper) bounds. Compared to the current UN-MMEIG approach, the CRVS adjust-

ment model, median absolute error (MAE) showed improvement from 0.0009 to 0.0006,

and 0.0010 to 0.0006, respectively.

Error in CRVS-PM
Validation Model # left-out

obs
Median Errors Relative Error (%) outside 80% PI

ME MAE MRE MARE % Be-
low

%
Above

Leave-out
20% at random

CRVSadj 43 0.00001 0.0006 0.5 9.9 0.11 0.11
UN MMEIG
2015

43 -0.00010 0.0009 -1.8 15.9 0.08 0.05

Leave-out
last observation

CRVSadj 20 0.0003 0.0006 2.0 10.8 0.10 0.10
UN MMEIG
2015

20 -0.0003 0.0010 -4.0 14.4 0.10 0.10

Table 1.2: Validation results. The outcome measures are: median error (ME), median absolute
error (MAE), relative error (MRE), absolute relative error (MARE), as well as the % of left-out
observations below and above their respective 80% prediction intervals (PI) based on the training
set.

1.5.2 Global findings

Table 1.3 lists the posterior estimates of the hyperparameters of the CRVS adjustment

model. In the reference year, sensitivity is estimated at 0.586, 80% credible interval (CI)

given by (0.511, 0.656), and specificity is 0.9993 (0.9990, 0.9996). The correlation between

sensitivity and specificity was not significantly different from 0 (-0.095 [−0.362,0.183]).

There is substantial uncertainty associated with sensitivity and specificity in the reference

year.

Figure 1.3 shows the relationship between true PM and the estimated CRVS adjustment

factors, for specific values of specificity to illustrate their effect on the CRVS adjustment

factor. When specificity equals one, the CRVS adjustment factor equals one over sensi-

tivity, hence lower sensitivity results in a higher adjustment; conversely higher sensitivity

results in a lower adjustment. When specificity is less than one, while keeping sensitivity

fixed, the adjustment factor decreases with decreasing true PM. This effect is due to an in-
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10% 50% 90%
global sensitivityλ

(+)
global 0.511 0.586 0.656

global specificityλ
(-)
global 0.9990 0.9993 0.9996

correlation φ -0.362 -0.095 0.183
sd sensitivity in tc σ

(+)
tre f 0.915 1.161 1.490

sd specificity in tc σ
(-)
tre f 0.871 1.293 1.842

sd sensitivity in RW δ (+) 0.161 0.201 0.255
sd specificity in RW δ (-) 0.508 0.673 0.857

Table 1.3: Posterior estimates of global parameters; median estimate (50%) and lower (10%) and
upper (90%) bounds of 80% credible intervals.

creasing share of false positive maternal deaths among all deaths, and a decreasing share of

false negative deaths, or, in other words, as the true PM decreases, the proportion of non-

maternal deaths reported as maternal increases while the proportion of maternal deaths

reported as non-maternal decreases. This relationship implies that keeping specificity and

sensitivity constant in extrapolations will result in changing adjustment factors as the true

PM changes. Specifically, the adjustment factor will decrease if the true PM decreases in

forward projections. Similarly, when using a fixed value of sensitivity and specificity, the

adjustment factor associated with these values will depend on the value of the true PM.

Moreover, small changes to values of specificity, with a given value of sensitivity, result in

notable differences in CRVS adjustment factor. Shown in Figure 1.3, there are markable

differences in resulting CRVS adjustment factor between specificity of 0.999 and 0.9999.

This is due to small values of the proportion of maternal deaths.
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Figure 1.3: CRVS adjustment for different values of specificity, calculated at different levels of true
PM when sensitivity is fixed at the global estimate of 0.586.

1.5.3 Country estimates

Sensitivity, specificity and CRVS adjustment estimates are shown for selected countries in

Figure 1.4. Posterior estimates (blue) are shown with observed data (red) during the estima-

tion period. Figure 1.4 illustrates how uncertainty in estimates of sensitivity and specificity

depends on (i) what information is available, (ii) the number of deaths in the country, and

(iii) the observation years. Most countries only have available data on true PM and CRVS-

based PM across one or more periods. This is the case, for example, in Australia and

the United Kingdom, in which we have observed true PM for multiple time periods. In

these cases, sensitivity and specificity are unobserved, but are informed by observed data

on true PM and CRVS-based PM. This results in larger uncertainty bounds for sensitivity

and specificity estimates as compared to the same setting but with available information

on breakdowns. An example country with breakdown information is Brazil, where sen-

sitivity and specificity are recorded for recent years, and estimated with less uncertainty.

In addition to availability of data, the number of deaths in the country also determines the
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uncertainty in estimated sensitivity and specificity. For example, data in New Zealand is

very uncertain due to the extremely small number of maternal deaths and total number of

deaths to women of reproductive age. Uncertainty in sensitivity and specificity increases

in years further away from years with data. This is illustrated in New Zealand, where data

are available for recent years only; the uncertainty in sensitivity and specificity increases

during periods without data.

Figure 1.5 shows 2017 estimates of sensitivity and specificity and associated uncertainty

for all countries. In countries such as Austria, Denmark, New Zealand and Sweden, there is

large uncertainty in sensitivity due to a very small number of maternal deaths. In contrast,

in countries such as Brazil and Chile, there is an abundance of information on true maternal

deaths and the breakdown of true maternal deaths, and therefore, uncertainty surrounding

their estimates is reduced. Similarly, in the 2017 estimates of specificity, countries with

information on the breakdown of maternal deaths show reduced levels of uncertainty sur-

rounding their estimates. The United States and Thailand show much lower estimates of

specificity when compared to other countries.
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Figure 1.5: Ranked 2017 estimates of sensitivity and specificity across all countries with at least
one specialized study.

1.6 Summary

In this paper, we presented a Bayesian hierarchical random walk model to assess maternal

mortality misclassification errors in the CRVS with uncertainty. The model is based on

the assessment of sensitivity and specificity of maternal mortality reporting, and captures

differences therein between countries and within countries over time. Validation exercises
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suggest that the model performs well in terms of predicting CRVS-based PM for country-

periods without specialized studies.

The new model improves upon limitations of the 2015 UN MMEIG approach. In the UN

MMEIG 2015 round of estimation, for countries with specialized studies that overlapped

with CRVS data, adjustments were calculated directly from available data (i.e. the study’s

reported PM to CRVS-based PM) and kept constant in extrapolations. The rationale for

keeping adjustments constant in the 2015 approach for countries with studies was to imple-

ment “no change in quality of reporting”. However, when measuring quality of reporting

in terms of sensitivity and specificity, the adjustment is not constant but varies with the true

PM when keeping quality metrics constant, as illustrated in Figure 1.3. The CRVS model-

based approach to obtaining adjustment factors improves upon this limitation of the UN

MMEIG 2015 approach because its projections, which are based on constant sensitivity

and specificity, are aligned with the assumption of constant quality of reporting. Finally,

uncertainty assessments differ between the old and new approach. In the old approach, un-

certainty in adjustments was assumed to be around 50% for all country-periods. In the new

approach, uncertainty in the adjustment factor follows from the uncertainty in the estimates

for sensitivity and specificity and resulting adjustments are more certain in settings with

recent information about quality of reporting.
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CHAPTER 2

ESTIMATING MATERNAL MORTALITY USING DATA FROM
NATIONAL CIVIL REGISTRATION VITAL STATISTICS

SYSTEMS: PRODUCING ESTIMATES OF SENSITIVITY AND
SPECIFICITY FOR COUNTRY-YEARS WITHOUT VALIDATION

DATA

2.1 Introduction

In Chapter I, we proposed a new modeling approach to estimate the extent of misclassi-

fication in the reporting of maternal mortality in civil registration vital statistics systems

(CRVS). The indicator of interest is the proportion of all deaths to women of reproductive

age that is maternal (PM). The CRVS misclassification model is a bivariate random walk

process for sensitivity and specificity in reporting.

The CRVS model and its findings formed the direct basis for estimating the true propor-

tion maternal deaths (true PM) from CRVS data in UN MMEIG estimates of maternal

mortality (Peterson et al. 2019, UN MMEIG 2019). This chapter describes the additional

steps needed to incorporate CRVS-model-based output into the UN MMEIG estimation

approach. After review of the CRVS model in Section 2.2, we discuss how we incorpo-

rate CRVS model output in UN MMEIG estimation approach. Specifically, we discuss

how to obtain point estimates and associated (co)-variances of sensitivity and specificity

for countries with at least one country-period in which CRVS and validation data are avail-

able, and for countries with CRVS data and no validation studies. The main contribution

of this chapter is the proposal of a new approach to obtain point estimates and associated

(co)-variances of sensitivity and specificity for countries without validation studies. We

introduce the approach in Section 2.3.
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2.2 CRVS misclassification error model

We developed a bivariate hierarchical random walk model for estimating sensitivity and

specificity for all country-years, described in detail in Peterson et al. (2019), see Chapter I.

In summary, the random walk model is a non-stationary distribution that results in constant

point estimates in backward and forward extrapolation.

Sensitivity and specificity (after transformation) were modeled using bivariate distributions

to account for possible correlation between the two misclassification parameters.

The model set-up used is a hierarchical random walk process. In a reference year tc, we

assume a hierarchical distribution for transformed sensitivity and specificity:

η
(+)
c,tc

η
(-)
c,tc

∼ N2


η

(+)
global

η
(-)
global

 ,
 σ (+)2

φ ·σ (+) ·σ (-)

φ ·σ (+) ·σ (-) σ (−)2


 (2.1)

For years prior to the country-specific reference year , ie t < tc:

η
(+)
c,t

η
(-)
c,t

∼ N2


η

(+)
c,t+1

η
(-)
c,t+1

 ,
 δ (+)2

φ ·δ (+) ·δ (-)

φ ·δ (+) ·δ (-) δ (−)2


 (2.2)

For years after the country-specific reference year , ie t > tc:

η
(+)
c,t

η
(-)
c,t

∼ N2


η

(+)
c,t−1

η
(-)
c,t−1

 ,
 δ (+)2

φ ·δ (+) ·δ (-)

φ ·δ (+) ·δ (-) δ (−)2


 (2.3)

For forward extrapolation of estimates, after the country-specific reference period i.e, t > tc,

the random walk is a bivariate normal centered around the estimates of the preceding year.
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Similarly, for backward extrapolation of estimates, before the country-specific reference

period t < tc, the estimates are modeled bivariate normal centered around the estimates of

the proceeding year.

2.3 UN MMEIG 2019 approach to estimating maternal mortality from

CRVS data

UN MMEIG uses a Bayesian model, referred to as BMat, to estimate the proportion of ma-

ternal deaths for all countries (Alkema et al. 2017). BMat combines a process model for the

risk of a maternal death with data models that account for bias and uncertainty associated

with available data. In summary (ignoring model specifications for handling HIV/AIDS

maternal deaths), the process model for the log-transformed PM, log(γ (truemat)
c,t ), combines

a country specific intercept, a function of covariates, and an ARIMA(1,1,1) process. The

BMat 2019 data model for CRVS data is given in Appendix A.0.4.1. In summary, we

assumed that for country c and year t, the expected value of number of CRVS reported

maternal deaths, Ec,t = E(y(matCRVS)
c,t |γ (truematCRVS)

c,t ,y(CRVS)
c,t ), is given by

Ec,t = y(CRVS)
c,t ·

(
λ

(+)
c,t γ

(truematCRVS)
c,t +

(
1−λ

(-)
c,t

)(
1− γ

(truematCRVS)
c,t

))
, (2.4)

where, following notation from Chapter I, y(matCRVS)
c,t refers to the number of maternal death

as observed in CRVS in country c in year t, γ
(truematCRVS)
c,t is the true probability of a mater-

nal death among all registered deaths, and y(CRVS)
c,t is the total number of deaths registered

in CRVS.

To incorporate CRVS misclassification parameters λ
(+)
c,t and λ

(-)
c,t into the estimation of ma-

ternal mortality in BMat, two approaches can be used. The first approach is jointly mod-

eling misclassification parameters and parameters for the outcome of interest, i.e. incorpo-

rating the CRVS model into BMat to jointly estimate the true PM as well as sensitivity and
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specificity of reporting using all available data. The second approach is to implement a se-

quential set-up, in which there is a stand alone model for misclassification parameters λ
(+)
c,t

and λ
(-)
c,t , which yields parameter estimates λ̂

(+)
c,t and λ̂

(-)
c,t that are used as fixed inputs into

the larger model (Plummer, 2014). The Bayesian joint modeling approach correctly ac-

counts for uncertainties in the data and allows simultaneous estimation of misclassification

and outcome of interest. However, a disadvantage of this approach is that in settings with

sparse data and potential model miss-specification, both misclassification and outcome of

interest parameters may be poorly estimated (Bennett and Wakefield, 2001). In BMat 2019,

the choice was made to use the sequential approach to avoid the updating of misclassifica-

tion information in countries without information on data quality directly. This decision is

outside the scope of this paper.

We implemented a sequential approach to estimating maternal mortality from CRVS data

as follows: we first obtained point estimates as well as associated uncertainty of country-

specific sensitivity and specificity using the CRVS model, as explained in the next section.

Model fitting in BMat used this information in the form of point estimates λ̂
(+)
c,t and λ̂

(-)
c,t

for country-year sensitivity and specificity, estimated variances v̂(+)
c,t and v̂(-)

c,t , and ûc,t , the

estimated covariance between sensitivity and specificity in the same country-year (see Ap-

pendix A.0.4.1). Covariances across time in sensitivity and specificity were not incorpo-

rated, which is a model limitation.

2.3.1 Construction of estimates of misclassification parameters for countries with at

least one specialized study

The estimates for sensitivity and specificity and associated outcomes need to be informed

by all information available regarding misclassification in a country. For the (global) CRVS

model as discussed in Chapter I, studies were used only if they provided exact information

on death counts among deaths that were registered in the CRVS. Studies that reported only

on the total number true maternal deaths in country-periods with incomplete CRVS sys-
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tems, inclusive of missed maternal (U+) deaths, were excluded in the global assessment

of misclassification because of lack of information on the relative difference between the

true probability of a maternal death among registered versus unregistered deaths. In addi-

tion, studies that reported on partial calendar years were excluded. The exclusion decisions

were made for the global model to avoid having to make additional assumptions that may

affect the global estimates of misclassification. However, for constructing country-specific

estimates, we aimed to include all available information, including data points that were

excluded from the global model, if inclusion was possible based on reasonable assump-

tions.

To produce country-specific estimates, using all available data, we obtained country-specific

fits of the CRVS model while keeping global parameters fixed at the estimates from the

global CRVS model, referred to as a one-country model fit. For each country, all available

studies were used, including studies that only provide information that includes missed ma-

ternal deaths (explained in Section 2.3.1.1), as well as studies that have partial overlap only

with CRVS data. In the one-country model, all model parameters that do not vary across

countries or by time are fixed at point estimates from the global CRVS model fit. The pro-

cess model used for sensitivity and specificity equals the global process model otherwise.

In summary, estimates of misclassification parameters for countries with at least one spe-

cialized study are obtained as follows:

1. Fit CRVS model to global data base to obtain estimates of hyperparameters based on

Eq. 2.1.

2. Fit CRVS model, described in Eqs. 2.1-2.3, to all data from country only, using

estimates of hyperparameters, η̂
(+)
global, η̂

(-)
global,σ

(+),σ (-) and φ from the global model

fit in step 1.
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2.3.1.1 Likelihood function for studies counting all maternal deaths in country-periods

with incomplete CRVS

For a study that reported the total number of true maternal deaths, i.e. those within CRVS

plus unregistered maternal deaths, the study-reported count of maternal deaths z(truemat)
i =

z(T+)
i + z(F-)

i + z(U+)
i overlaps with CRVS-reported maternal deaths for the corresponding

period. Similarly to studies that reported true maternal deaths inside CRVS, we obtain the

exact likelihood function for available death counts by summing over multinomial densi-

ties evaluated at each combination z̃i =
(

z̃(T+)
i , z̃(T-)

i , z̃(F+)
i , z̃(F-)

i , z̃(U+)
i , z̃(U-)

i

)
that satisfied the

observed counts. The likelihood function for ith study ( fi) is written as follows:

fi =
z(UNREG)
i

∑
z̃(U+)

i =0

z(matCRVS)
i

∑
z̃(T+)

i =0

pz

(
z̃[1:4]|z

(CRV S)
i ,γc[i],t[i]

)
·1
(

z̃(U+)
i + z̃(T+)

i + z̃(F-)
i = z(truemat)

i

)
· ki ·hi,

(2.5)

where z(UNREG)
i refers to the number of unregistered deaths and pz

(
z̃[1:4]|z

(CRVS)
i ,γc[i],t[i]

)
refers to the multinomial density function for the 4 CRVS-based categories from Eq. 1.10.

To improve computational efficiency and remove combinations that result in values of sen-

sitivity and specificity with negligible probabilities, we added constraints to possible com-

binations of z̃i, reflected in ki with

ki = 1
(

z̃(T+)
i ≥ Bin2.5%(z̃

(truematCRVS)
i ,0.1)

)
·1
(

z̃(T-)
i ≥ Bin2.5%(z

(CRV S)
i − z̃(truematCRVS)

i ,0.97
)

where Bin2.5%(n, p) refers to the 2.5th percentile of a Binomial distribution with sample

size n and probability p, 0.1 is a lower bound for sensitivity, and 0.97 is a lower bound

for specificity. Lastly, we included combinations with expected ratios of the proportion

maternal inside and outside the CRVS that vary between 0.5 and 2, reflected in hi with
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hi = 1

(
z̃(U+)

i ≥ Bin2.5%

(
z(UNREG)

i , p = 0.5 ·
z̃(truematCRVS)

i

z(CRVS)
i

))

·1

(
z̃(U+)

i ≤ Bin97.5%

(
z(UNREG)

i , p = 2 ·
z̃(truematCRVS)

i

z(CRVS)
i

))
.

2.3.2 Construction of estimates of misclassification parameters for countries without

specialized studies

We used global estimates of sensitivity, specificity and associated outcomes for all countries

without specialized studies, obtained directly from fit of the CRVS model to the global

data base, in the BMat data model in Eq A.1. Given the hierarchical set-up of the CRVS

model (Eq. 2.1), the model can be used directly to produce a predictive distribution of

sensitivity and specificity for countries without specialized study data in a reference year.

The random walk model (Eqs. 2.2) is used for forward and backward extrapolations, and

results in constant point estimates of sensitivity and specificity. Specifically, for a country

c∗ without specialized studies, we set point estimates for sensitivity and specificity equal to

their respective global estimates from the global CRVS model fit, λ̂
()
c∗,t = λ̂

()
global .

However, in the bivariate random walk set-up, uncertainty in sensitivity and specificity is

increasing as the time lag between the year of interest and the reference year increases, i.e.

Var(λc∗,tre f+l) > Var(λc∗,tre f ) for reference year tre f and time lag l > 0. Lacking a natural

choice of a reference year for countries without studies, we used constant estimates for the

variance, and covariance terms, i.e. we set v̂()c∗,t = v̂()c∗,tre f+l , ûc∗,t = ûc∗,tre f+l for all years

t, fixed lag l and tre f referring to the year where the hierarchical distribution of Eq. 2.1

applies. We used a validation exercise to determine the optimal value of time lag l, which

resulted in the choice to use the uncertainty associated with the distribution of sensitivity

and specificity in the reference year (Eq. 2.1).
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2.4 Improving the estimation of (co-)variance terms for sensitivity and

specificity for countries without validation studies: approximating

the bivariate random walk with a vector autoregressive process

There are a number of limitations associated with the BMat 2019 approach in producing

estimates of (co-)variance terms for sensitivity and specificity for countries without any

validation data. Firstly, options considered were constrained to be based on the distribution

associated with sensitivity and specificity in a year that is lag l away from the reference

year. Secondly, temporal correlation is not assessed.

To overcome limitations of the BMat 2019 approach, we developed a new approach to

incorporate results from the CRVS misclassification model into BMat for countries with-

out misclassification data. In summary, we approximated the non-stationary random walk

model, using fixed global mean estimates of sensitivity and specificity, with a stationary

vector autoregressive process of order 1. The approximation approach for is summarized

in Figure 2.1.

Sequential process to obtain global parameters related temporal correlation

1. Fit the global CRVS adjustment model to the global dataset of misclassification
data and obtain posterior global estimates of transformed sensitivity and speci-
ficity η̂global = (η̂ (+)

global, η̂
(-)
global).

2. Use global estimates from step 1 as fixed inputs in a bivariate vector autoregressive
VAR(1) set-up for log-transformed sensitivity and specificity. We approximate the
non-stationary process in Step (1) with a stationary VAR(1) process.

3. Use global estimates of sensitivity, specificity and VAR(1) associated variance,
covariance, and correlations in the larger BMat model.

Figure 2.1: Overview of sequential methods to obtain global estimates of sensitivity, specificity and
related temporal variance and covariance parameters.
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2.4.0.1 A vector autoregressive model for bivariate misclassification time series pa-

rameters

The vector autoregression (VAR) model is a flexible and natural extension of the univariate

autoregressive model, which captures linear interdependencies among multiple time series

(Lütkepohl, 2005). Each variable is written as a function based on its own lagged values,

and lagged values of other model variables plus an error term.

The following section describes the analysis of the nonstationary time series of trans-

formed sensitivity and specificity using a stationary VAR(1) framework that incorporates

co-integration of relationships.

Following notation from Section 1.4.2, ηc,t denotes the (2×1) vector of time series trans-

formed sensitivity and specificity. Let ξc,t denote a zero-mean bivariate vector autoregres-

sive (VAR) process of lag 1. This is an autoregressive structure in which an estimate at

time t is solely dependent on the previous values at time t−1. The transformed sensitivity

and specificity at time t is deterministically related to the sum of the fixed estimate of the

global mean and a zero-mean VAR(1) process.

η
(+)
c,t = η̂

(+)
global +ξ

(+)
c,t

η
(-)
c,t = η̂

(-)
global +ξ

(-)
c,t

The zero-mean bivariate VAR(1) stochastic process is given by

ξt = Aξt−1 +ut (2.6)
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in which A =

a11 a12

a21 a22

 is a 2× 2 coefficient matrix representing the correlation be-

tween ξt and ξt−1, and ut is a 2× 1 unobservable zero-mean innovation process (serially

uncorrelated, ie. with time invariant covariance matrix Σu, and E(utu
′
s) = 0 for s 6= t.

Written more simply, we have

ξ
(+)
t = a11ξ

(+)
t−1 +a12ξ

(-)
t−1 +u(+)

t

ξ
(-)
t = a21ξ

(+)
t−1 +a22ξ

(-)
t−1 +u(-)

t

Σu =

 δ (+)2
ψ ·δ (+) ·δ (-)

ψ ·δ (+) ·δ (-) δ (−)2



in which ξ
(+)
t and ξ

(-)
t denote the zero-mean stochastic process for transformed sensitivity

and specificity at time t, respectively. Based on derivations shown in Appendix B, vectors

ξ1, ...,ξt are uniquely determined by ξ0,u1, ...,ut .

Vague prior distributions were assigned to the variance-covariance and correlation param-

eters for Σu. Autoregressive parameters a11 and a22 were given uniform(0,1) priors to en-

force positive correlation across time specific estimates. The cross-correlation parameters

a12 and a21 were set to zero such that we assume only the errors are correlated.

δ
(+) ∼ NT [0,](0,1)

δ
(-) ∼ NT [0,](0,1)

ψ ∼Uni f (−1,1)

a11 ∼Uni f (0,1)

a22 ∼Uni f (0,1)

a11 = 0

a22 = 0
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Appendix B shows the calculation of the unconditional expectation and variance. As such,

the complete distribution of ξ1, ...,ξt can be written as the conditional distribution applied

to the stationary time series for t = 2, ...,T , and the unconditional expectation and covari-

ance at time t = 1.

ξt |ξt−1 ∼ N2(Aξt−1,Σu), for t = 2, ...,T

ξ1 ∼ N2(µ,Γξ (0))

In the zero-mean VAR(1) process, the unconditional expectation µ = 0, and the uncondi-

tional variance-covariance Γξ (0) = AΓξ (0)A
′
+Σu. Note that the unconditional variance

Γξ (0) is written as a function of the coefficient matrix A and the global variance-covariance

parameters in Σu. Refer to Appendix B for derivation of the unconditional mean and

variance-covariance structure in detail.

Based on the bivariate VAR(1) framework, we obtain global variance-covariance estimates

that incorporate temporal structure. Specifically, we obtain global estimates for; (1) au-

toregressive parameters for transformed sensitivity and specificity (a11,a22), (2) variance

parameters δ (+),δ (-), and (3) global covariance-correlation between sensitivity and speci-

ficity δ (+−) = ψ ·δ (+) ·δ (-),ψ .

2.5 Model validation

Model predictive performance is compared between the current approach of incorporating

variance-covariance estimates from the random-walk reference year distribution versus the

proposed VAR(1) approach, which accounts for temporal correlation. For each country in

the global data set, we predicted country-year specific CRVS-based PMs using the random-

walk reference year distribution, and using a VAR(1) process. We first summarize errors

within countries to calculate country-specific mean errors, and then avaerage errors across
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countries to report summary measures. As such countries are treated as independent units.

The validation process is described in Box 2.2.
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Calculation of outcome measures in the validation exercise
For each observation in the global data set:

1. Sample CRVS-based PMs using samples of sensitivity and specificity and ob-
served true PM. Let i denote country-year with observed true PM for country c.

• Transformed se(s)c[i],t[i] and sp(s)c[i],t[i] are drawn from unconditional stationary
distributions from the reference year of the random-walk model in the first
setting.

η
(s)
c[i],t[i] ∼ N2(η̂global,Σglobal)

• Transform se(s)c[i],t[i] and sp(s)c[i],t[i] are drawn from stationary VAR(1) distribu-
tion in VAR(1) model in the second setting.

ξ
(s)
c[i],t[i] ∼ N2(Aξ̂t[i]−1,Σu)

• Calculate samples of CRVS-based PM using estimates of sensitivity and
specificity.

z(matCRVS)(s)
i = p(truematCRVS)

i · se(s)c[i],t[i]+(1− sp(s)c[i],t[i]) · (1− p(truematCRVS)
i )

2. Calculate the mean error of CRVS-based PM for observation i, Erri =

∑
S
1 p(matCRVS)

i − z(matCRVS)(s)
i /S.

3. Calculate the proportion of CRVS-based PMs above and below their respective
80% prediction interval.

4. Calculate the mean error of CRVS-based PM rate of change for observations i−1
to i.

Erri =
S

∑
1

r(truematCRVS)
i −q(truematCRVS)s

i /S

r(matCRVS)
i = p(matCRVS)

i − p(matCRVS)
i−1

q(matCRVS)s

i = z(matCRVS)s

i − z(matCRVS)s

i−1

5. Calculate the proportion of true PM rate of change above and below their respec-
tive 80% prediction interval.

6. Calculate the mean error and coverage across countries.
Figure 2.2: Overview of calculation of errors and coverage of prediction intervals in out-of-sample
validation exercises.
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2.5.1 Computation

A Markov Chain Monte Carlo (MCMC) algorithm was employed to sample from the poste-

rior distribution of the parameters with the use of the software JAGS (Plummer 2003). Ten

parallel chains were run with a total of 40,000 iterations in each chain. Of these, the first

of 10,000 iterations in each chain were discarded as burn-in and every 20th iteration after

was retained. The resulting chains contained 1,500 samples each, with a total of 15,000

posterior samples. Standard diagnostic checks (using trace plots and Gelman and Rubin

diagnostics (Gelman and Rubin 1992)) were used to check convergence.

2.6 Results

2.6.1 Validation Results

Table 2.1 shows summary measure of bias across all countries. We compare the predictive

performance of CRVS-based PM and the CRVS-based PM rate of change for both meth-

ods. In the case of predictive estimates of CRVS-based PM, the mean bias is comparable

between the random-walk reference year and the VAR(1).

When we predict the difference in CRVS-based PM from observation i−1 to i, we account

for temporal correlation by assessing the rate of change across observations. In this vali-

dation exercise, mean bias was slightly lower for the VAR(1) model, but differences were

extremely small between methods. Coverage of 80% PIs was lower than the nominal 80%

for the VAR(1) approach and higher for the RW reference year set-up.

Model N ME SD Error MAE SD Absolute Error % Below 80% PI % Above 80% PI
CRVS-based PM

RW in reference year 37 -0.0001 0.0077 0.0014 0.0065 0.0601 0.1616
VAR(1) 37 -0.0004 0.0077 0.0013 0.0066 0.0096 0.1144

CRVS-based PM Rate of Change
RW in reference year 28 2.73 x 10−5 0.0082 0.0004 0.0080 0.0273 0.0395

VAR(1) 28 1.56 x 10−5 0.0083 0.0004 0.0081 0.1340 0.1842
Table 2.1: Summary measures of Mean Error, SD Error, Proportion below 80% PI, Proportion
above 80% PI across countries. Measured for both true PM and the true PM rate of change between
observations, summarized by the RW reference year and VAR(1) model set-ups.
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2.6.2 Summary of global parameters

Table 2.2 lists the posterior estimates of the variance-covariance parameters for both RW

and VAR(1) approaches. The correlation between sensitivity and specificity greatly differs

between the two approaches, -0.15 and -0.09, respectively. There is substantial autoregres-

sion within sensitivity and specificity, a11 = 0.985 and a22 = 0.911, respectively. Lastly,

uncertainty associated with sensitivity and specificity is larger in the VAR(1) framework.

VAR(1) RW reference year
Parameter 10% 50% 90% 10% 50% 90%

correlation -0.437 -0.15 0.13 -0.36 -0.09 0.18
autoregressive correlation (se) a11 0.977 0.985 0.989
autoregressive correlation (sp) a22 0.85 0.911 0.950

stationary sd sensitivity 0.211 0.258 0.310 0.16 0.20 0.25
stationary sd specificity 0.688 0.857 1.06 0.51 0.67 0.86

Table 2.2: Posterior estimates of global variance-covariance parameters; median estimate (50%)
and lower (10%) and upper (90%) bounds of 80% credible intervals.

2.6.3 Assessment of bivariate distributional properties

Figure 2.3 shows the bivariate density distributions for transformed specificity against

transformed specificity. At top the figure shows the bivariate normal distribution of trans-

formed sensitivity and specificity, based on variance-covariance estimates of the reference

year. At bottom the figure shows the bivariate normal distribution based on variance-

covariance estimates obtained from the VAR(1) method. We see that the estimated cor-

relation between sensitivity and specificity is more negative in the VAR(1) model fit. Ad-

ditionally, Figure 2.4 illustrates bivariate normal distribution plots of sensitivity at time

t +1 against sensitivity at time t (Left), and similarly specificity at time t +1 against speci-

ficity at time t (Right). Based on the VAR(1) model fits, we see there is high estimated

autocorrelation within sensitivity and specificity.
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Figure 2.3: Bivariate density distribution plots. (Left) Bivariate normal distribution of transformed
specificity and sensitivity, using uncertainties in the reference year, based on the RW method.
(Right) Bivariate normal distribution of transformed specificity and sensitivity based on uncertainty
estimates from the VAR(1) method.

Figure 2.4: (A) Bivariate density distribution plot of set+1 ∼ set , (B) Bivariate density distribution
plot of spt+1 ∼ spt .
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2.7 Summary

In this chapter, we discussed how to use the CRVS adjustment model set-up and find-

ings from chapter 1 to estimate maternal mortality in population-periods without validation

studies in BMat, the model used for estimating maternal mortality by the UN MMEIG. We

used a sequential set-up, in which point estimates and associated (co)variances of sensitiv-

ity and specificity of maternal mortality reporting are obtained first from the CRVS model,

and then used as fixed inputs in BMat. Firstly, we developed an approach to obtain these

estimates for countries with at least one specialized study, that may include maternal deaths

not captured in the CRVS. Secondly, we developed two approaches to obtaining estimates

of sensitivity and specificity for countries without validation data. The first approach is

based directly on the random walk model. In the second approach, we approximated the

bivariate random walk model with a vector autoregressive process. We summarized model

performance using validation results of predicted CRVS-based PM and CRVS-based PM

rate of change.
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CHAPTER 3

A NEW PARAMETRIZATION OF REPORTING ERRORS IN
SIBLING’S SURVIVAL HISTORIES FOR THE ESTIMATION OF

AGE-GROUP SPECIFIC SURVIVAL PROBABILITIES

3.1 Introduction

Sibling survival history (SSH) data is a commonly used indirect method to obtain de-

mographic information in countries with limited civil registration vital statistics (CRVS)

systems (Graham et al. 1989). In countries with limited civil registration vital statistics

(CRVS) systems, national estimates of adult mortality, for age groups 15-49 by sex, are

derived from information obtained by respondents on the vital status, current age or age at

death of their maternal siblings. Age-cohort specific adult mortality and survival rates are

estimated directly using information on date of birth and date of death as reported by the

respondents (Helleringer et al. 2014). However, due to respondent reporting errors, adult

deaths may be incorrectly reported , i.e. a respondent may report the incorrect age of their

sibling or incorrect age at death.

Reporting errors have potentially complex effects on SSH estimates of survival probabil-

ities. Helleringer et al. (2014) classify reporting errors into four distinct types; 1) List

errors: Respondents do not report a sibling, or respondents include non-maternal siblings,

2) Vital status errors: A respondent reports that one of her live siblings is dead or that a

deceased sibling is alive, 3) Age errors: Inaccurate reporting of the current age or age at

death, and 4) Date errors: Inaccurate reporting of year in which sibling(s) died. Addition-

ally, in their assessment of the extent of reporting errors, they found there was substantial

reporting errors in regards to misreporting of age and date errors, but less so in regards to
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misreporting of vital status.

Health and demographic surveillance (HDSS) systems can be used to assess accuracy of

SSH data by comparing reported age-cohort specific survival probabilities to those obtained

from HDSS data. HDSS systems consist of monitoring over time an entire population lo-

cated in a small geographic area (Pison 2005). By comparing SSH data to HDSS data, we

identify reporting errors on an individual level to obtain information on siblings that have

been misreported.

In this paper, we extend on the work presented by Helleringer et al. (2104), we present

a new parametrization approach, which should be taken as an exploratory analysis in the

absence of sufficient data to implement and validate. Vital status errors, as described by

Helleringer, are reparametrized into misclassification metrics of sensitivity (true positive

rate) and specificity (true negative rate) based on the parametrization used by Peterson et

al. 2019, which accounts for misclassification of maternal deaths across country-periods

without information on misclassification directly. Age at death errors that occur before

the start of the reference period are parametrized into the probability of an omitted, and

conversely, an added sibling, which is discussed further in Section 3.3. Birth year errors are

parametrized into transition probabilities, which refer to the probability of a sibling being

reported in age group j, given they are in age group i (Asmussen, 2003, Caswell, 2001,

Leslie, 1945). Our final objective, in estimation of age at death and birth year reporting

errors, is to propose a data generating mechanism to relate the true probability of survival

related to female sibling survival history data, while accounting for misreporting bias. The

objective in defining a data generating mechanism is to relate SSH error-prone data to the

true probabilities given we have fixed estimates of misreporting parameters.

Section 3.2 briefly summarizes the preliminary data used in our exploratory analysis of

reporting errors. Section 3.3 describes the different reporting error processes. Section 3.4

44



outlines our proposed parametrization to model misreporting errors by age at death and

birth year, which is followed by Section 3.5 where we show preliminary graphical analysis

based on the current limited data.

3.2 Data

Information on SSH misreporting errors was obtained from comparing information from

health demographic surveillance systems to sibling survival history data. This section dis-

cusses both types of data.

3.2.1 Sibling survival histories

In countries with limited civil vital registration data, national estimates of adult mortal-

ity use information on a respondent’s close relatives collected during census or surveys,

referred to as the sibling survivorship method or sibling survival histories (SSH), and is

considered an indirect estimation method for non-cause-specific mortality (Graham et al.

1989). SSH data include questions on the survival of a respondent’s maternal siblings, i.e.

siblings born to their biological mother, which include questions on each sibling’s sex, sur-

vival status, and current age or age at death, as well as time elapsed since death if sibling

is deceased (Helleringer et al., 2014). The current SSH survey sample consists of informa-

tion reported on 1016 unique siblings via 410 respondents for one population in Malawi,

extracted in 2018. These are a subset of siblings that have been linked to HDSS data using

unique sibling identifiers.

3.2.2 Health and demographic surveillance data

Health and demographic surveillance systems (HDSS) consist of monitoring over time an

entire population located in a small geographic area (Pison 2005). They include a baseline

census, followed by continuous registration of demographic events (i.e. births, deaths,
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marriages, migrations) affecting this population. Event registration happens yearly or more

frequently, in which interviewers visit every household and ask for information on recent

demographic events among household members (Helleringer et al, 2014). To link SSH

reported siblings to HDSS records, HDSS information including names, sex, and resident

of each sibling were used. We use HDSS data as gold standard data to assess the extent of

misreporting of vital status errors and birth year errors among SSH data.

Table 1 gives information on the number of living siblings in the current 2018 Malawi

SSH survey, broken down by those siblings alive at start of reference period (2013), and

at time of survey (2018). Sibling information is given by data source, ie. HDSS and

SSH reported information. Additionally, our outcome of interest is survival probabilities

by age-cohort across different populations. Figure 3.1, illustrates the observed survival

probabilities based on data from Malawi obtained in a SSH survey 2018 (red) versus the

true survival probabilities (blue).
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SSH HDSS
Number alive at start of survey period (No.) (No.)

15-19 66 65
20-24 84 85
25-29 95 93
30-34 119 111
35-39 132 122
40-44 133 124
45-49 76 69

Number alive at end of survey period (No.) (No.)
15-19 46 47
20-24 75 77
25-29 80 78
30-34 93 90
35-39 107 100
40-44 104 103
45-49 59 56

Number Deceased Siblings 208 205

Table 3.1: Characteristics of study respondents by HDSS and SSH reporting status. Number alive
at start of survey period, is defined as total number of living siblings in 2013. Number alive at end
of survey period, is defined as total number of living siblings at time of survey, 2018.
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Figure 3.1: Observed survival probabilities by age cohort, comparing across data sources, for
Malawi 2018 survey. (Red) indicates SSH reported survival probabilities, and (blue) indicates
HDSS reported survival probabilities.

3.3 Reporting Errors

In Figure 3.1 we see a difference between SSH and HDSS age-cohort specific survival

probabilities. The main objective is to parametrize reporting errors that result in these

differences, such that we can relate SSH reported mortality data to true age-group specific

survival probabilities. In doing so, we are able to learn information on the true survival

probabilities given we only have error-prone SSH data across different population and age-

groups.

Lexis diagrams (Figure 3.2) are commonly used devices to clarify relations between even-

t/exposure segments for cohorts and event/exposure segments for periods. It is a two-

dimensional figure in which age is one dimension and calendar year the other. (Preston

2001, Leslie 1945). We visualize cohort age-group specific mortality events using a Lexis

diagram, in which diagonal lines display life lines of individual siblings. The reference
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period is defined to be the respondent’s interview date minus five years (t-5,t). Within this

reference period, we calculate age group specific rates by 5-year age intervals from ages

15-49. Therefore, using the Lexis diagram, we can summarize the mortality experience of

each female sibling, as well as the misreporting of age at death and birth year, within the

given reference period, and by age-group. Figure 3.2, shown below, has illustrative exam-

ples of two siblings. Sibling (A) is in the 20-25 year age-group, and is a deceased sibling

in the reference period. Sibling (B) is a sibling in the 25-30 year age-group, and is a living

sibling at the end of the reference period.

Figure 3.2: Illustrative Lexis diagram with reference period on the x-axis, and 5-year age groups
on the y-axis. Sibling (A) is an example of deceased sibling in age group 20-25. Sibling (B) is an
example of living sibling in age group 25-30.

3.3.1 Age at death errors

If the age at death is misreported, this changes the length of life lines, but does not influence

the siblings reported age-group cohort. Therefore, the length of sibling life lines changes

horizontally, but there is not adjustment vertically. Age at death reporting errors are broken

down into two types of errors; (1) Age at death errors that occur before the start of the

reference period, i.e. < t-5, and (2) Age at death errors that occur during the reference

period (t-5,t), which have been referred to as vital status errors previously by Helleringer

et al. (2014).
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(A) Errors after t-5 :

If a sibling is correctly identified as alive at the start of the reference period, (t-5), then

age at death reporting errors occur during the reference period alone, ie (t-5,t). These

errors can be broken down into false positive (F+) and false negative (F−) cases. In

Figure 3.3 (A) we illustrate how false positive and false negative errors occur during the

reference period. Sibling (A) was reported deceased within (t-5,t), but was classified alive

at the end of the reference period t, which we label as a false positive, ie false death (F+).

Sibling (B) was reported alive at time t, but had died during the reference period (t-5,t),

i.e. false living sibling (F−). Lastly, sibling (C) died during the reference period, and was

reported deceased, but age at death was misreported. However, if the sibling dies within the

reference period, and is also reported deceased within the reference period, then no error

occurs.

Figure 3.3: (A) Lexis diagram of vital status reporting error after t-5. (B) Lexis diagram of vital
status reporting errors before t-5. Individual siblings are identified as (A),(B),(C),(D).

(B) Errors before t-5 :

At the start of the reference period, t-5, there are two misreporting errors that can occur; (1)

A respondent incorrectly reports that a female sibling dies before the start of the reference

period, which we refer to as an omitted sibling, and (2) A respondent incorrectly reports

that a female sibling is alive at t-5 when the sibling is classified as deceased, which we

refer to as an added sibling. In Figure 3.3 (B) we illustrate how the additions and omissions

of siblings occur at t-5. Sibling (A) is an example of a sibling who was reported dead
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before t-5, but was alive up to time t, labelled as omitted negative (O−). Sibling (B) died

before t-5, but was reported alive at time t, labelled as added negative (A−). Sibling (C)

was reported to have died past t-5, but had died before t-5, labelled as an added positive

(A+). Lastly, Sibling (D) was reported dead before t-5, but had died past t-5, labelled as

omitted positive (O+). To note, that the above definitions of omitted and added siblings are

different from those used in previous work. Contrary to previous definitions used, we do

not define omitted and added siblings to be those that are unmatched between HDSS and

SSH data.

3.3.2 Birth Year

If the birth year is misreported, ie the sibling is moved to another age group, but vital status

is correct, this changes the life line vertically, as shown in Figure 3.4 (A). For example,

sibling (A) is a living sibling in the age group 20-25, but was reported to be in age group

25-30. Conversely, sibling (B) is a deceased sibling in age group 35-40, but was reported

to be in age group 30-35.

To model birth year reporting errors, we account for the rate at which siblings have birth

year misreported based on the degree of difference between SSH birth year and true birth

year at time t-5, i.e. it is more common for a sibling to be reported in an age group directly

above or below the true age compared to an age group with a large degree of difference.

Figure 3.4 (B) shows a breakdown of siblings by true age group and SSH reported age

group in a simplified example for 2 age groups a = (1,2). There are siblings correctly

classified in age group 1 (top left), and siblings in age group 1, incorrectly reported in age

group 2 (top right). The sum of these boxes gives the total number of siblings that are

truly in age group 1. Conversely, the total number of SSH reported siblings in age group

1 is obtained by summing those correctly classified (top left) and those in age-group 2, but

reported in age group 1 (bottom left).
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Figure 3.4: (A) Lexis diagram of birth year reporting errors. Siblings are moved vertically based
on changes to their reported birth year, with vital status unchanged. (B) Illustrative example of
breakdown of female siblings by true age group and SSH reported age group.

To capture the different rates at which siblings are transitioned, for each true age-group a,

we estimate a vector of transition probabilities of SSH birth year reporting. The stochastic

(transition) vector is defined by the probability of moving from position i to j, i.e pr( j|i) =

pi, j (Asmussen, 2003). By definition, the sum of transition probabilities is equal to 1,

∑
J
j=1 pi, j = 1. Let δa,ã denote the probability of a female sibling being reported in age

group ã, given the sibling is in true age-group a at time t-5. Given the simplified 2 age

group example, let ya,ã,t−5 refer to the total counts of living siblings corresponding to each

cell, i.e. y1,2,t−5 denotes the number of women reported in age group 2, in true age-group

1, at time t-5. The associated probability δ1,2 refers to the probability of being reported in

age group 2, given the true age group is 1.

In summary, we parametrize birth year reporting errors using transition probabilities that

relate the degree to which SSH reported age group is different from true age group at time

t-5. We expect higher probabilities associated with lower degrees of difference between the

true and SSH reported age-groups.

3.4 Methods

Our objective is to parametrize reporting errors related to SSH data and specify data gen-

erating mechanisms such that we relate the true cohort-specific probability of survival
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for a given age-group a, denoted ρ
(true)
a , to SSH reported total number of living siblings

at times t-5 and t, denoted S(ssh)
a,t−5,S

(ssh)
a+1,t , respectively. In the case where there is no re-

porting error, we can assume the data generating mechanism to be S(ssh)
a+1,t |ρ

(true)
a ,S(ssh)

a,t−5 ∼

Binom(S(ssh)
a,t−5,ρ

(true)
a ), in which the SSH reported living siblings accurately captures the

true cohort survival probability ρ
(true)
a . However, in the case where there is reporting errors,

we parametrize the SSH associated survival probability π
(ssh)
a taking into account reporting

errors related to age at death and birth year misreporting.

In Section 3.4.1 we first describe how we estimate age at death misreporting parameters

(sea,spa) absent of birth year reporting errors, and secondly, how we estimate birth year

reporting errors, absent of age at death errors. Lastly, we account for the interaction be-

tween age at death and birth year reporting errors. We define the data generating process

mechanism that accounts for these errors and the function in which we relate the SSH

associated survival probability π
(ssh)
a to true survival probability ρ

(true)
a and misreporting

errors.

3.4.1 Breakdown of misreporting parameters for age at death

First, if we ignore birth year misreporting momentarily, we parametrize age at death errors.

We first parametrize errors related to misclassification, sensitivity and specificity, among

siblings reported by both HDSS and SSH data, i.e. Siblings that are correctly reported alive

at the start of the reference period t-5. Subsequently, we extend to parametrize probabilities

related to omitted siblings, and lastly to added siblings, i.e. Siblings that are misreported at

time t-5. This is characterized in a 3 step process described below.

Step 1: We consider vital status reporting errors within women reported living at t-5 in

both SSH and HDSS data. Specifically, we define vital status reporting errors across a

4-box model shown in Figure 3.5. Let τ
(c)
a denote the probability of a female sibling in

category c given the sibling has been reported alive at t-5 by both sources, i.e. τ
(F+)
a denotes

the probability of a false positive death out of the 4 boxes. We assume a multinomial data
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generating model for the 4-box model given the siblings are reported living at t-5 by both

sources. As such τ
(T+)
a + τ

(T−)
a + τ

(F+)
a + τ

(F−)
a = 1. Misclassification metrics, sensitivity

(sea) and specificity (spa), for given age group a, are defined as:

Figure 3.5: Diagram of age-group specific 4-box
breakdown of female siblings reported alive at t−
5 in both HDSS and SSH data.

sea =
τ
(T+)
a

τ
(T+)
a + τ

(F−)
a

(3.1)

sea =
τ
(T−)
a

τ
(T−)
a + τ

(F+)
a

Given definitions sensitivity and specificity

in Eq. 3.1, we can derive the SSH-

associated survival probability, for age-

group a, among reported siblings, τ
(ssh)
a = τ

(T-)
a + τ

(F-)
a . We write the SSH-associated sur-

vival probability as a function of sensitivity, specificity, and the true survival probability

for age group a among siblings living at t-5 in both sources, τ
(true)
a = τ

(T−)
a + τ

(F+)
a .

τ
(ssh)
a = spa · τ (true)

a +(1− sea) ·
(

1− τ
(true)
a

)
(3.2)

Based on the 4 box model, we are able to estimate the true survival probability within

women reported living at t-5 in both SSH and HDSS data, ie within the 4 boxes, using a

binomial data generating assumption. Let s∗(ssh)
a,t−5 refer to SSH reported total number of

livings siblings among the 4 boxes alone, for age group a at time t-5.

s∗(ssh)
a+1,t |τ

(ssh)
a ,s∗(ssh)

a,t−5 ∼ Binom(s∗(ssh)
a,t−5,τ

(true)
a ) (3.3)

s∗(ssh)
a,t−5 = y(T-)

a,t−5 + y(F-)
a,t−5 (3.4)

Step 2: In Eq. 3.2, we derive the SSH-associated survival probability, for age group a, as a

function of the true survival probability, among those siblings reported in the 4 box figure.
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However, to derive the true survival probability, for age group a, we extend the 4-box model

to 6-boxes in Figure 3.6, which includes omitted female siblings, i.e. living siblings that

have been reported to have died at time t-5. The total number of true living siblings at time

t-5 is given by the sum of the 6 boxes. We assume a multinomial data generating process

for the individual counts,

ya,t−5|ρa,S
(true)
a,t−5 ∼Multinom(S(true)

a,t−5,ρa) (3.5)

ya,t−5 = (y(T+)
a,t−5,y

(T-)
a,t−5,y

(F+)
a,t−5,y

(F-)
a,t−5,y

(O+)
a,t−5,y

(O−)
a,t−5)

ρa = (ρ (T+)
a ,ρ (T-)

a ,ρ (F+)
a ,ρ (F-)

a ,ρ
(O+)
a ,ρ

(O−)
a )

S(true)
a,t−5 = y(T+)

a,t−5 + y(T-)
a,t−5 + y(F+)

a,t−5 + y(F-)
a,t−5 + y(O+)

a,t−5 + y(O−)a,t−5

∑
c∈C

ρ
(c)
a = 1, for C = {T+,T−,F+,F−,O+,O−}

The associated box probabilities ρ
(c)
a , for category c, refer to the probability of a sibling

in category c out of S(true)
a,t−5 (the sum of the 6 boxes). The true survival probability, for age

group a, is given by Eq. 3.6.

ρ
(true)
a = ρ

(T-)
a +ρ

(F+)
a +ρ

(O−)
a (3.6)

Figure 3.6: Diagram of 6-box multinomial breakdown of vital status error and omitted siblings for
true living siblings at time t−5 in age-group a.
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To relate the true probability of survival, for age group a, to Eq. 3.2, we introduce parame-

ters related to the probability of omitted siblings. Specifically, let ρ
(omit)
a = ρ

(O+)
a +ρ(O−)

refer to the probability of an omitted sibling. Additionally, let κ
(O−)
a = ρ

(O−)
a

ρ
(O−)
a +ρ

(O+)
a

refer to

the probability of being an omitted living sibling out of all omitted siblings.

ρ
(true)
a = τ

(true)
a · (1−ρ

(omit)
a )+ρ

(omit)
a ·κ(O−)

a (3.7)

Conversely, using Eq.3.7, we write the true survival probability among siblings living at t-5

in both sources, τ
(true)
a , in terms of ρ

(true)
a , and probabilities associated with omitted siblings,

ρ
(omit)
a ,κ

(O−)
a , to be used in step 3.

τ
(true)
a =

ρ
(true)
a −ρ

(omit)
a κ

(O−)
a

1−ρ
(omit)
a

(3.8)

Step 3: In Steps 1 and 2 we parametrized vital status reporting errors in terms of sensi-

tivity and specificity, among siblings reported living at t-5 by both SSH and HDSS, and

then extended the model to account for omitted living siblings in the true probability of

survival. The last step is to relate the true probability of survival, for age group a, to the

SSH-associated probability of survival by accounting for added living siblings in the SSH-

reported survival probabilities.

Figure 3.7 shows the breakdown of living female siblings, at time t-5 based on SSH reported

vital status (left) and true vital status (right). The SSH-reported total of living female

siblings at t-5, S(ssh)
a,t−5, is the sum of the 2 columns shown on the left. The SSH reported

survival probability is given by π
(ssh)
a = π

(T-)
a + π

(F-)
a + π

(A−)
a , in which π

(c)
a refers to the

probability of a sibling being in category c out of S(ssh)
a,t−5 (the 6 boxes on left) . Conversely,

the true total of living siblings at t-5, S(true)
a,t−5 , is the sum of the 2 rows shown on the right.

The true survival probability is given by ρ
(true)
a = ρ

(T-)
a +ρ

(F+)
a +ρ

(O−)
a , in which ρ

(c)
a refers

to the probability of a sibling being in category c out of S(true)
a,t−5 .
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Figure 3.7: Diagram of true versus SSH multinomial breakdown of vital status error and omit-
ted/added siblings.

To relate the true survival probability to the SSH reported survival probability, we incorpo-

rate parameters related to added siblings as follows; let π(add) = π
(A+)
a +π

(A−)
a denote the

probability of being an added sibling among S(ssh)
a,t−5. Additionally, let κ(A−) = π

(A−)
a

π
(A+)
a +π

(A−)
a

denote the probability of added living siblings among all added siblings. Lastly, D(true)
a,t−5

denotes the true number of deceased siblings in age-group a at time t-5, and α
(add)
a refers

to the probability of an added sibling out of D(true)
a,t−5 . D(true)

a,t−5 is observed, given HDSS data

is available, in which the true number of deceased siblings is the total number of siblings

born in the original cohort minus those truly living at time t-5, D(true)
a,t−5 = B(true)

a,t−5 − S(true)
a,t−5 .

We reparametrize the probability of an added sibling using previously defined parameters

related to the omitted siblings ρ
(omit)
a .

π
(add)
a =

α
(add)
a ·D(true)

a,t−5

(1−ρ
(omit)
a )S(true)

a,t−5 +α
(add)
a ·D(true)

a,t−5

(3.9)

Our goal is to estimate the true survival probability, ρ
(true)
a based on S(ssh)

a,t−5 and S(ssh)
a+1,t ,

while accounting for reporting errors. Based on Eqs. 3.1 - 3.9, we relate the age-group

specific true survival probability ρ
(true)
a to the SSH associated survival probability π

(ssh)
a

using misclassification parameters (sea,spa), and parameters related to added and omitted

deaths ρ
(omit)
a ,κ

(O−)
a ,κ

(A−)
a , and α

(add)
a , shown in Eq. 3.10
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π
(ssh)
a =

 (1−ρ
(omit)
a ) ·S(true)

a,t−5

(1−ρ
(omit)
a ) ·S(true)

a,t−5 +α
(add)
a ·D(true)

a,t−5

 · (3.10)

(
ρ

(true)
a −ρ

(omit)
a κ

(O−)
a

(1−ρ
(omit)
a )

· spa +

(
1− ρ

(true)
a −ρ

(omit)
a κ

(O−)
a

(1−ρ
(omit)
a )

)
(1− sea)

)
+

α
(add)
a ·D(true)

a−1,t−5 ·κ
(A−)
a

(1−ρ
(omit)
a )S(true)

a,t−5 +α
(add)
a D(true)

a,t−5

In the following section, we parametrize birth year reporting errors, in the absence of age

at death errors, and subsequently propose a method to incorporate the combination of age

at death errors and birth year reporting errors together.

3.4.2 Breakdown of birth year misreporting

In Section 3.4.1, we parametrized age at death errors ignoring birth year reporting errors.

For the assessment of birth year reporting errors, we first parametrize these errors in the

absence of age at death errors. Birth year reporting errors are parametrized into transition

probabilities, defined as the probability of being reported in age-group ã given the sibling’s

true age group a. This parametrization captures the rate at which siblings are misreported

from one age-group to another. A simplified example was shown in Figure 3.4 for 2 age-

groups. We generalize to accommodate 5-year age groups between 15-49 years of age. Let

ya,t−5 = (ya,ãmin,t−5, ...,ya,ãmax,t−5) refer to the vector of counts of siblings that are reported

in age groups ã = (1,2, ...,7), given the true age group a, at time t-5. The corresponding

vector of transition probabilities δa = (δa,ãmin, ...,δa,ãmax), refers to the probabilities of a

sibling being reported in age group ã given the sibling is in true age group a at time t-5.

Based on this parametrization, we assume a multinomial data generating process for each

true age group, in which,
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ya,t−5|δa,S
(true)
a,t−5 ∼Multinom(S(true)

a,t−5 ,δa) (3.11)

ya,t−5 = (ya,ãmin,t−5, . . . ,ya,ãmax,t−5)

δa = (δa,ãmin, . . . ,δa,ãmax)

ya,ã,t−5|δa,ã,S
(true)
a,t−5 ∼ Binom(S(true)

a,t−5 ,δa,ã)

S(true)
a,t−5 = ∑

ã
ya,ã,t−5

S(ssh)
a,t−5 = ∑

a
ya,ã,t−5

S(ssh)
a+1,t = ∑

a
ya+1,ã+1,t

∑
ã

δa,ã = 1

(3.12)

3.4.3 Combining birth year and age at death errors

Figure 3.8: Illustrative example of the combina-
tion of age at death and birth year misreporting.
Age at death errors given birth year errors are
distinguished from previous age at death errors
alone, using notation Birth year F+, Birth year
O−.

In the previous sections, Section 3.4.1

and Section 3.4.2, we describe misreport-

ing parameters based on age at death and

birth year independently. However, we

must extend the above parametrizations to

account for the combination of birth year

and age at death reporting errors. Figure

3.8 demonstrates the case in which a sib-

ling can have a combination of birth year

and age at death error. For example, a sib-

ling in true age group a = 1, may be reported in age group ã = 2. Additionally, the sibling

may have their vital status reported as deceased, within the reference period, given they

are classified as a living sibling at time t, i.e. they are a true living sibling at the end of

the reference period. This results in being an omitted living sibling in age group a, and a
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false positive death in age group ã. However, these omitted and false positive siblings have

a different misreporting mechanism than those due to age at death errors alone. There-

fore, within each combination (a, ã), we have a multinomial breakdown of age at death

reporting, based on the 6 box model in Eq. 3.5, given birth year reporting error. Using

the simplistic example, if we look at true age-group a = 1, SSH age-group ã = 2, we have

multinomial counts

y1,2,t−5 = (y(T+)
1,2 ,y(T-)

1,2 ,y
(F+)
1,2 ,y(F-)

1,2 ,y
(O+)
1,2 ,y(O−)1,2 ,y(A+)

1,2 ,y(A−)1,2 )

More generally, to account for the interaction between birth year and age at death mis-

reporting, we assess the extent of age at death errors dependent on the size of birth year

errors.

ya,ã,t−5|ρa,ã,ya,ã,t−5 ∼Multinom(ya,ã,t−5,ρa,ã) (3.13)

ya,ã,t−5 = ∑
c∈C

y(c)a,ã, for C = (T+,T−,F+,F−,O+,O−)

∑
c∈C

ρ
(c)
a,ã = 1, for C = (T+,T−,F+,F−,O+,O−,A−,A+)

S(true)
a,t−5 = ∑

ã
∑
c∈C

y(c)a,ã

To obtain the SSH-associated survival probability corresponding to true age-group a and

SSH reported age-group ã, π
(ssh)
a,ã , we extend the parametrization given in Eq. 3.10 to incor-

porate misclassification parameters, and probabilities associated with added and omitted

siblings that are further broken down by true age group a and SSH reported age group ã.
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π
(ssh)
a,ã =

 (1−ρ
(omit)
a,ã ) ·S(true)

a,t−5

(1−ρ
(omit)
a,ã ) ·S(true)

a,t−5 +α
(add)
a,ã ·D(true)

a,t−5

 · (3.14)

 ρ̃
(true)
a −ρ

(omit)
a,ã κ

(O−)
a,ã

(1−ρ
(omit)
a,ã )

· spa,ã +

1−
ρ̃
(true)
a −ρ

(omit)
a,ã κ

(O−)
a,ã

(1−ρ
(omit)
a,ã )

(1− sea,ã)

+

α
(add)
a,ã ·D(true)

a,t−5 ·κ
(A−)
a,ã

(1−ρ
(omit)
a,ã )S(true)

a,t−5 +α
(add)
a,ã D(true)

a,t−5

in which ρ̃
(true)
a refers to the true survival probability of the true age group a, ie if there is

no error in birth year misreporting ρ̃
(true)
a = ρ

(true)
a . If a= 1 and ã= 2, then ρ̃

(true)
a = ρ

(true)
1 .

Based on Eqs. 3.13 and 3.14, we have expressions for the total number of SSH reported

living siblings in true age group a, SSH reported age group ã, at time t-5, ya,ã,t−5, and

the corresponding SSH associated survival probability π
(ssh)
a,ã . The SSH reported number

of living siblings for age group a+ 1, reported age group ã+ 1, at time t (the end of the

reference period), is given by the data generating process below.

y(ssh)
a+1,ã+1,t |y

(ssh)
a,ã,t−5,π

(ssh)
a,ã ∼ Binom(y(ssh)

a,ã,t−5,π
(ssh)
a,ã ) (3.15)

3.5 Exploratory Analysis

Due to limitations of the preliminary data, we use graphical exploratory analysis to assess

age at death and birth year misreporting trends in the current data.

3.5.1 Age at death errors

The extent of vital status errors and added/omission errors are shown in Figure 3.9, in which

proportions of added and omitted siblings, sensitivity and specificity are plotted with each

age group. Due to limited data, estimates of sensitivity were equal to 1 for all age-groups,

and specificity close to 1 for all age-groups. The proportion of added and omitted siblings
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is notable, indicating that age at death errors at t-5 are more prevalent compared to vital

status errors within the reference period, for this given population.

Figure 3.9: Probabilities of added and omitted siblings by age group. Proportion A− refers to
proportion of added negatives out of added siblings. Proportion O− refers to proportion of omitted
negatives out of omitted siblings. Proportion added refers to proportion added siblings out of SSH
reported siblings at t-5. Lastly, proportion omitted refers to proportion omitted out of true living
siblings at t-5.

3.5.2 Birth year errors

The extent of birth reporting errors, in absence of age at death errors, are shown in Figure

3.10. Based on the plot on the left, which shows SSH reported age against the true age-

group, there is no systematic trend of under/over reporting of sibling age. The plot on

the right shows for true age group a, the proportion of siblings reported in age group ã,

therefore, is a visualization of the observed δa,ã. The plot indicates that although a higher

proportion of siblings have correct age reporting, the proportion of siblings with birth year

reporting errors is substantial.
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Figure 3.10: Diagram of birth year reporting errors by age group. Figure (A) shows siblings’ SSH
reported age group against the true age group, with green lines indicating the correct interval. Figure
(B) shows a raster plot of the proportions of siblings by SSH reported age group against true age
group, i.e. observed transition proportions.

3.5.3 Combination age at death and birth year errors

Lastly, in Figure 3.11 we illustrate misreporting probabilities by breakdown of age-group

and a degree of difference between true age group a and reported age group ã. Therefore,

we visualize the combination of age at death and birth year reporting errors, for |a− ã|< 4,

for ease of readability. Figure 3.11 suggests that due to limitations of the preliminary

data, we cannot conclude the existence of an interaction between age at death and birth

year reporting errors, and as such more data is needed to explore the possible relationship

between the two reporting errors.
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Figure 3.11: Probabilities of added and omitted siblings by true age group , and the difference
between true age group a and SSH reported age-group ã. Proportion A− refers to proportion of
added negatives out of added siblings. Proportion O− refers to proportion of omitted negatives
out of omitted siblings. Proportion added refers to proportion added siblings out of SSH reported
siblings at t-5. Lastly, proportion omitted refers to proportion omitted out of true living siblings at
t-5.

3.6 Next Steps

In this paper, we proposed an extended parametrization of misreporting in SSH adult mor-

tality data. The model accounts for misreporting in vital status using misclassification

metrics of sensitivity and specificity, and age at death before t-5 using probabilities of
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added and omitted siblings. Additionally, we account for misreporting of birth year using

transition probabilities. The next steps in this process are to (1) Develop a model for es-

timating the reporting parameters for population-periods without validation data, and (2)

Use information on reporting errors when estimating adult mortality when only SSH data

is available. HDSS validation data sets, in a variety of settings, are being collected cur-

rently, and will be used to explore how errors vary across populations and age-groups. This

analysis will inform candidate models for reporting error parameters.

3.6.1 Incorporation of reporting errors into a larger model for adult mortality

In Eq. 3.15 we describe the data generating process to model age at death and birth year

misreporting parameters, given we have both HDSS and SSH data. However, in adult mor-

tality estimation, our aim is to estimate true adult mortality rates for populations without

information on age at death or birth year reporting errors. As such, we estimate ρ
(true)
a given

we only have SSH data available, and fixed misreporting parameter estimates. As stated

previously in Eq.3.13, the assumed data generating process is a multinomial distribution

for the breakdown of counts for each true age-group a, reported age-group ã combination.

ya,ã,t−5|ρa,ã,ya,ã,t−5 ∼Multinom(ya,ã,t−5,ρa,ã)

ya,ã,t−5 = ∑
c∈C

y(c)a,ã, for C = (T+,T−,F+,F−,O+,O−)

What is observed in SSH data is the reported total number of living siblings at time t-5

for age group ã, i.e. S(ssh)
ã,t−5 = ∑a ya,ã,t−5. Therefore, S(ssh)

ã,t−5 is derived as the sum of non-

identical binomial distributions, i.e. different populations and different probabilities, shown

in Eq. 3.16, and as such does not have a closed form solution. The exact likelihood, given

the sum of non-identical binomial distributions, is in Eq. 3.16.
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P(S(ssh)
a,t−5 = s) = P(∑

a
ya,ã,t−5 = s) (3.16)

=
s

∑
i=0

s−i

∑
j=0

...
s−i− j−...−k

∑
k=0

P(y1,ã,t−5 = i)P(y2,ã,t−5 = j)...P(y7,ã,t−5 = s− i− j− ...− k)

A saddlepoint approximation has been implemented previously in the case of sums of non-

identical binomial distributions (Eisinga et al. 2013, Liu et al. 2017). Computation of

the exact likelihood involves enumerating all possible combinations of each variable that

sums to a given value, i.e. the reported number of living siblings at time t-5. This becomes

computationally infeasible when the number of combinations becomes large. The saddle

point approximation is an accurate way to model the exact likelihood function without

computation inefficiency.

3.7 Summary

In this chapter, we proposed a new parametrization to capture reporting errors within SSH

data related to age at death and birth year reporting errors. To capture age at death errors,

we parametrized these errors into metrics of sensitivity, specificity, and probabilities re-

lated to added and omitted siblings. To capture birth year reporting errors, we parametrized

these errors into transition probabilities. Lastly, we propose a data-generating mechanism

to incorporate misreporting parameters into a larger model for adult mortality using the

sum of multinomial distributions, which does not have a closed form solution. To account

for misreporting in a larger adult mortality model, estimates of misreporting parameters

will be used as fixed inputs into a model for adult age-group specific mortality estima-

tion. Exploratory analysis of preliminary data suggest that age at death errors related to

added/omitted siblings are sizeable where vital status errors were minimal to none based

on this limited preliminary data. In addition, birth year misreporting is prevalent across all

age-groups.
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CONCLUSION

We presented a Bayesian misreporting model framework for the assessment of the extent

of reporting errors across different population-periods, using gold standard data to inform

estimates of misreporting. The approach taken is to estimate global levels of misreporting

parameters using all country-periods with gold standard data available, and to subsequently

extrapolate for all country-periods without gold standard data into a larger mortality esti-

mation model. We applied our proposed framework in the context of maternal mortality,

and presented a candidate parametrization for reporting errors of adult mortality within

sibling survival history data.

In Chapter I, to assess the extent of cause of death errors in civil registration vital statistics

(CRVS) systems, we compare CRVS-based observed proportion maternal (PM) to those

obtained from specialized studies. We developed a new approach to parametrize report-

ing errors in terms of sensitivity and specificity, which are data quality parameters that

are comparable across different population-periods. We modeled these indicators with a

bivariate hierarchical random walk model to obtain global parameter estimates. Country-

year specific CRVS adjustment factors were obtained using ratios of the CRVS-based PM

to the true PM for all countries with at least one specialized study. Country results showed

that for countries without breakdowns of false negative and false positive maternal deaths,

sensitivity and specificity were estimated to be subject to substantial uncertainty. Assess-

ment of the relationship between CRVS adjustment factor and true PM indicated that for a

country with a low true PM value, the previous United Nations Maternal Mortality Intera-

gency Group (UN MMEIG) approach would overestimate the respective CRVS adjustment

factor. Subsequently, for a country with a higher value of true PM, the UN MMEIG 2015
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approach would under estimate the respective CRVS adjustment factor. Lastly, validation

results confirmed that the CRVS adjustment model showed improved predictive perfor-

mance of CRVS-based PM when compared to the UN MMEIG 2015 approach.

In Chapter II, we developed a new approach to extrapolate estimates of sensitivity and

specificity to countries without specialized studies, and to incorporate CRVS-model-based

output into the larger Bayesian maternal mortality estimation model (BMat). We imple-

mented a sequential approach in which we first obtained point estimates as well as associ-

ated uncertainty of country specific sensitivity and specificity using the CRVS model, and

then constructed estimates of misclassification parameters, for countries without studies,

using an approximation method. We compared a vector autoregressive approximation to

the current 2019 approach. Validation results showed that improved coverage of predictive

estimates of CRVS-based PM for VAR(1) approach compared to the random walk reference

year.

In Chapter III, we proposed a new parametrization to capture reporting errors within sibling

survival history data related to age at death and birth year reporting errors. To capture age

at death errors, we parametrize these errors into sensitivity, specificity, and probabilities re-

lated to added and omitted siblings. To capture birth year reporting errors, we parametrize

these errors into transition probabilities to capture the rate at which birth year is misreport-

ing between age groups.

The question we address is how can we learn about true mortality when we only have error

prone data available? In our applications, we assessed reporting errors in civil registration

vital statistics maternal mortality data and sibling survival history mortality data. We pro-

posed a framework in which we parametrized the breakdown of reporting errors, estimate

reporting errors within populations with validation data, and then generalized to popula-

tions without validation data using a sequential approach. In the assessment of adult and

child mortality, estimation of cause-specific mortality rates may be improved by apply-
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ing this framework to account for the extent of misreporting across different population-

periods. Additionally, this framework is applicable to assess the extent of reporting errors

in multiple data settings.
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APPENDIX A

CRVS MISCLASSIFICATION

A.0.1 Definitions

Term Description
Maternal death The death of a woman whilst pregnant or within 42 days of termination of

pregnancy, irrespective of the duration and site of the pregnancy, from any
cause related to or aggravated by the pregnancy or its management but not
from accidental or incidental causes define with the International Statistical
Classification of Diseases and Related Health Problems 10th revision (ICD-
10)

CRVS Civil registration vital statistics, national death registration statistics
Specialized
Study

(1) A study conducted precisely for the purpose of assessing the extent of
misclassification within the CRVS and/or the extent of “missingness” of ma-
ternal deaths, (2) A study conducted to independently assess cause of death
classification among the true number of maternal deaths.

BMat Bayesian maternal mortality estimation model, used by the UN MMEIG.
BMat 2019 refers to the model used in the 2019 estimation round.

Sensitivity (1) True positive rate, (2) Proportion of correctly classified maternal deaths to
the true number of maternal deaths within CRVS systems.

Specificity (1) True negative rate, (2) Proportion of correctly classified non-maternal
deaths to the true number of non-maternal deaths within CRVS systems.

True positive ma-
ternal death

A maternal death correctly classified as maternal within CRVS.

True negative
maternal death

A non-maternal death correctly classified as non-maternal within CRVS.

False positive
maternal death

A non-maternal death misclassified as maternal within CRVS.

False negative
maternal death

A maternal death misclassified as non-maternal within CRVS.

Missed/unregistered
maternal death

A maternal death unregistered (missed) within CRVS, and therefore, unre-
ported.

PM The proportion of maternal deaths out of the total deaths to women of repro-
ductive age (15-49).

CRVS-based PM The proportion of CRVS reported maternal deaths out of the total deaths to
women of reproductive age within CRVS.

CRVS adjustment Relative adjustment needed to CRVS-based PM to obtain true PM.
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A.0.2 Compilation of specialized studies data

A.0.2.1 Summary of systematic review process

The objective of the review was to assess the level of misclassification reported by national

official agencies for all WHO Member States. In other words, what is the level of incorrect

reporting of maternal deaths in national official CRVS reporting, e.g. what is the difference

between official reported number of maternal deaths versus the number of maternal deaths

identified through special maternal mortality studies, confidential enquiries and surveil-

lance systems etc. And to what extent is the incorrect reporting of maternal death due to

misclassification versus missed or unregistered maternal deaths?

This review identified studies that fulfilled inclusion criteria as follows:

Inclusion Criteria
Population Women of reproductive age (15-49 years) who died during pregnancy or up to

one year after termination of pregnancy, irrespective of duration and the site
of the pregnancy, from any cause.

Concept Assessment of misclassification of maternal deaths by CRVS systems.
Study design Cross-sectional study and retrospective cohort
Context All WHO Member States reporting CRVS data

In addition, the following criteria has to be met for inclusion:

1. study is nationally representative;

2. mid-years of reported data are after 1990;

3. there is a matched comparison of CRVS data available in the study or in the WHO

Mortality Database.

A.0.2.1.1 Search Strategy The search strategy was conducted for all relevant existing

literature based on search terms relevant to the research questions restricted to the years

1990-2016, using the following online bibliographic databases: PubMed/MEDLINE, EM-

BASE, Global Index Medicus, EBSCO, Web of Science and Popline. The searches were
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conducted without any language restrictions. Search terms are included in Box at the end of

this document. A hand search was also conducted on all WHO Member States Ministries

of Health (MoH) websites to identify pertinent MoH maternal mortality and confidential

inquiries reports.

A.0.2.1.2 Data Extraction Data were extracted from full-text journal articles and re-

ports which met the inclusion criteria. Data were extracted using a Microsoft Excel database.

Information retrieved from the included studies included country, years assessed, study

objectives, methodology /study design, number of maternal deaths, information on mis-

classification and incompleteness when available. Specifically, extraction focused on the

assessment of the following:

1. The process by which the study retrieved and reviewed information on maternal

deaths, including data source descriptions, definitions used by study, and whether

the study reviewed all deaths to women of reproductive age or a description of the

subset of deaths collected.

2. The number of maternal deaths, any information pertaining to misclassification of

maternal cause of death by the CRVS system, any information regarding missed

deaths by maternal cause.

3. Breakdown of maternal deaths by maternal cause of death was extracted if reported.

A.0.2.2 Compilation of data

The PRISMA diagram in Figure A.1 provides information on the number of study doc-

uments and associated study observations both identified and included by (1) systematic

review, (2) WHO maternal mortality database, and (3) information obtained from follow-

up surveys and country consultation. Lastly, it reports the number of studies excluded and

72



reason for exclusion at each stage of the screening process. Studies were excluded in 3 sub-

sequent steps. Firstly, studies were excluded if they reported information that could not be

used, i.e. if no information on maternal death counts in the CRVS or associated envelopes

could be obtained (non-usable data). Secondly, a study was excluded if it was not nation-

ally representative. Lastly, a study was excluded if an alternate study with more up-to-date

or detailed information for the same country-period was available. The complete set of

references of the included study documents is given in Box 1 at the end of this document.

Figure A.1: PRISMA flow diagram of data compilation of specialized studies for inclusion in the
CRVS adjustment model. The numbers of studies mentioned refer to study documents.
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A.0.3 Covariate plots
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Figure A.2: Estimates of sensitivity (on logit-scale) plotted against covariates.
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Figure A.3: Estimates of specificity (on logit-scale) plotted against covariates.
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A.0.4 BMat 2019

The approach by which CRVS data are used to inform maternal mortality estimates in

BMat 2019 builds upon the model for sensitivity and specificity in CRVS reporting and

BMat 2015 assumptions. In summary, a two-step approach is taken:

1. We obtain point estimates of misclassification parameters from the CRVS model, as

explained in Section 2.3.1.

2. The estimated misclassification parameters are used in BMat for country-years with

CRVS data and without specialized studies, see Section A.0.4.1.

A.0.4.1 BMat 2019 data model for CRVS data

In BMat 2019, the data model for observed CRVS data is as follows:

y(matCRVS)
c,t |ρ(truemat)

c,t ,y(CRV S)
c,t ∼ NegBin(Ec,t ,Vc,t) , (A.1)

where (following notation from the main paper), y(matCRVS)
c,t refers to the number of maternal

deaths as observed in the CRVS in country c in year t, ρ
(truemat)
c,t is the true probability of a

maternal death among all deaths, and y(CRV S)
c,t is the total number of deaths registered in the

CRVS.

Ec,t and Vc,t are defined as follows:

Ec,t = y(CRV S)
c,t ·

(
λ̂

(+)
c,t ρ

(truemat)
c,t +

(
1− λ̂

(-)
c,t

)(
1−ρ

(truemat)
c,t

))
, (A.2)

Vc,t = Ec,t + y2(matCRVS)
c,t ·

(
Ṽ1,c,t +Ṽ2,c,t

)
, (A.3)

Ṽ1,c,t = v̂(+)
c,t ·ρ

2(truemat)
c,t + v̂(-)

c,t ·
(

1−ρ
(truemat)
c,t

)2
(A.4)

−2 ·ρ(truemat)
c,t ·

(
1−ρ

(truemat)
c,t

)
ûc,t , (A.5)

Ṽ2,c,t = m̂c,t ·ρ2(truemat)
c,t ·

(
ê(+)

c,t + ê(-)
c,t

)
, (A.6)
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where λ̂
(+)
c,t and λ̂

(-)
c,t refer to point estimates for sensitivity and specificity, v̂(+)

c,t and v̂(-)
c,t

to estimated variances for sensitivity and specificity, ûc,t to the estimated covariance be-

tween sensitivity and specificity, ê(+)
c,t to the estimated squared sensitivity and ê(-)

c,t to esti-

mated squared (1- specificity). Finally, m̂c,t = 0 for country-years with complete CRVS. In

country-years with incomplete CRVS, m̂c,t is the estimated variance of θc,t , with

θc,t = 1/
(

ρ
(CRVS)
c,t +

(
1−ρ

(CRVS)
c,t

)
κc,t

)
, (A.7)

due to uncertainty in the ratio of probabilities of a maternal death among unregistered

versus registered deaths κc,t (see Section 1.4.1). m̂c,t is approximated using a monte carlo

approximation; we set m̂c,t =Var(θ (h)
c,t ), where samples θ

(h)
c,t are constructed as follows:

log
(

κ
(h)
c,t

)
∼ N(0,1), (A.8)

θ
(h)
c,t = 1/

(
ρ

(CRVS)
c,t +

(
1−ρ

(CRVS)
c,t

)
κ
(h)
c,t

)
. (A.9)

In summary, the variance in θ is determined by the variability in the ratio of probabilities

κ . The lognormal distribution assigned to κ results in first and third quantiles of κ around

0.5 and 2, respectively, to reflect the uncertainty associated with this ratio.

The derivation of the data model for CRVS data in Eq. A.1 is based on the following

assumptions:

y(matCRVS)
c,t |γ (matCRVS)

c,t ∼ Poisson
(

γ
(matCRVS)
c,t · y(CRV S)

c,t

)
, (A.10)

γ
(matCRVS)
c,t |ρ (truemat) ∼ Gamma(g1,g2), (A.11)

with g1 and g2 such that E
(

γ
(matCRVS)
c,t |ρ (truemat)

)
=Ec,t/y(CRV S)

c,t and V
(

γ
(matCRVS)
c,t |ρ (truemat)

)
=

Ṽ1,c,t +Ṽ2,c,t .

The data model in Eq. A.1 specifies which estimates of misclassification parameters are

needed to include CRVS-based data into BMat: point estimates λ̂
(+)
c,t , λ̂

(-)
c,t , (co-)variance es-
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timates v̂(+)
c,t , v̂(-)

c,t and ûc,t , and estimated squared sensitivity ê(+)
c,t and squared (1- specificity)

ê(-)
c,t .

A.0.4.2 Data model for specialized studies in BMat 2019

Let specialized studies be indexed by i, with the ith study referring to country c[i],

observation period t1[i] to t2[i] and midpoint t[i]. Let ρ
(truemat)
c,t1,t2 refer to the true probability

of a maternal death in country c for the period from t1 to t2, obtained from the annual

probabilities weighted by the total deaths in each year:

ρ
(truemat)
c,t1,t2 =

∑
t2
t=t1 ρ

(truemat)
c,t y(tot)

c,t

∑
t2
t=t1 y(tot)

c,t

.

Data models are discussed separately for studies with complete envelopes z(env)
i = z(tot)

i ,

versus those with incomplete envelopes z(env)
i < z(tot)

i .

A.0.4.2.1 Studies with complete envelopes For specialized study i with envelope z(env)
i =

z(tot)
i , we assumed

z(truemat)
i |ρ(truemat)

c[i],t1[i],t2[i] ∼ Bin
(

z(tot)
i ,ρ

(truemat)
c[i],t1[i],t2[i]

)
,

where as before, z(truemat)
i refers to the number of maternal deaths as observed in the spe-

cialized study, and z(tot)
i to its respective envelope of all-cause deaths.

A.0.4.2.2 Studies with incomplete envelope For specialized study i with incomplete

envelope z(env)
i < z(tot)

i , we assumed (following assumptions and notation from the data

model for CRVS data Eq.A.1):

z(truemat)
i |ρ(truemat)

c[i],t1[i],t2[i] ∼ NegBin(Ei,Vi), (A.12)
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where, setting ρi = ρ
(truemat)
c[i],t1[i],t2[i] to improve readability,

Ei = z(env)
i ·

(
λ̂

(+)
c[i],t[i]ρi +(1− λ̂

(-)
c,t )(1−ρi)

)
, (A.13)

Vi = Ec,t + z2(env)
i · (Ṽ1,i +Ṽ2,i), (A.14)

Ṽ1,i = v̂(+)
c[i],t[i] ·ρ

2
i + v̂(-)

c[i],t[i] · (1−ρ
2
i ) (A.15)

−2 ·ρi · (1−ρi)ûc[i],t[i], (A.16)

Ṽ2,i = m̂i ·ρ2
i ·
(

ê(+)
c[i],t[i]+ ê(-)

c[i],t[i]

)
, (A.17)

where m̂i is the estimated variance of θi, with

θi =
1

z(env)
i /z(tot)

i +
(

1− z(env)
i /z(tot)

i

)
κi

, (A.18)

due to uncertainty in the ratio of probabilities of a maternal death among uncaptured versus

captured deaths κi. We set m̂i =Var(θ (h)
i ), where samples θ

(h)
i are constructed as follows:

log
(

κ
(h)
i

)
∼ N(0,1), (A.19)

θ
(h)
i =

1

z(env)
i /z(tot)

i +
(

1− z(env)
i /z(tot)

i

)
κ
(h)
i

. (A.20)
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Abalos E, Duhau M, Escobar P, Fasola ML, Finkelstein JZ, Golubicki JL et al. Omisión de 
registros de causas maternas de muerte en Argentina: estudio observacional de alcance nacional. 
Rev Panam Salud Publica 43. 2019 : 1-10. 
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Australia 
Slaytor EK, Sullivan EA, King JF. Maternal deaths in Australia 1997–1999. AIHW Cat. No. PER 
24. Sydney: AIHW National Perinatal Statistics Unit. (Maternal Deaths Series No.1); 2004.

Australia 
Australian Institute of Health and Welfare (AIHW): Humphrey MD, Bonello MR, Chughtai A, 
Macaldowie A, Harris K, Chambers GM. Maternal deaths in Australia 2008–2012. Maternal 
Deaths Series no. 5. CAT. No. PER 70. Canberra: AIHW; 2015. 

Australia 
Maternal deaths in Australia 2012–2014. Cat. No. PER 92. Canberra: Australian Institute of 
Health and Welfare (AIHW); 2017. 

Austria 
Beck A, Vutuc C. Die Entwicklung der mütterlichen Mortalität in Österreich. Frauenarzt. 
2008;49:21-6. 

Brazil 
Technical Note of the Ministry of Health of Brazil. Maternal mortality in Brazil: estimates versus 
reality. From country consultation in 2015. Ministry of Health, Secretariat of Health Surveillance 
[Brazil]; 2015.  

Brazil 
PAHO maternal mortality data set (reflecting communication on data requests collected via 
questionnaire). November–December 2018. 

Brazil 
Data received from country consultations. 2019 

Box 1: References for specialized studies included in the CRVS adjustment model.
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14. 

Ireland 
Confidential Maternal Death Enquiry in Ireland, Report for Triennium 2009–2011. Cork: Maternal 
Death Enquiry (MDE); 2012. 

Israel 
Data received for 2000-2016 during the country consultation 2019. 

82



 

Italy 
Data received for 2006-2014 during the country consultation 2019. 

Jamaica 
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End of Box 1. 
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Box 2: SEARCH TERMS 
  
EMBASEw 
http://www.embase.com  
No AGE, HUMAN 
YEAR limits applied : [1990-2050]/py 
Options Also search as free text was enabled. 
 

# Searches Results 

1 'maternal mortality'/exp OR 'maternal mortality' OR 'maternal mortalities' 22,873 

2  
 'underreporting' OR 'under reporting' OR underreported OR 
'under reported' OR 'data quality' OR 'official figures' OR 'record 
linkage' OR 'quality of information' OR 'officially reported' OR 
'multiple sources' OR 'linkage' OR 'under registered' OR 'under 
registration' OR underregistered OR underregistration OR 'under 
registering' OR 'source of error' OR 'misclassification' OR 
'misclassified' OR (errors AND ('registration'/exp OR 
registration)) OR 'late maternal mortality' OR 'confidential 
enquiries' OR 'confidential enquiry' 

 
 

180888 

3 'data collection method'/exp OR 'health survey'/exp AND (standard* OR 
method*) 

558644 

4 #1 AND (#2 OR #3) 1760 

5 'pregnancy'/exp OR 'pregnancy complication'/exp OR 'pregnancy disorder'/exp 
OR 'abortion'/exp AND ('death'/exp OR deaths OR 'mortality'/exp OR fatal OR 
fatalities OR deceased) 

105286 

6 #2 AND #5 1143 

7 #4 OR #6 2440 

8 #4 OR #6 AND [1990-2016]/py 2335 

 
PubMed 
http://www.pubmed.gov  
Filters: Publication date from 1990/01/01 to 2050/12/31 
 

# Searches Results 

1 "underreporting"[tiab] OR “under reporting “[tiab] OR underreported [tiab]OR 
” under reported” [tiab]OR “data quality” [tiab] OR “official figures” [tiab] OR 
“record linkage” [tiab] OR “quality of information” [tiab] OR “officially 
reported “[tiab] OR “multiple sources” [tiab] OR” linkage” [tiab] OR “under 
registered” [tiab] OR” under registration” [tiab] OR “under registering” [tiab] 

209385 
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OR underregistered[tiab] OR underregistration[tiab] OR “under registering” 
[tiab] OR “source of error” [tiab] OR “misclassification” [tiab] OR 
“misclassified “[tiab] OR (errors[tiab] AND registration[tiab]) OR “late 
maternal mortality” [tiab] OR “confidential enquiries” [tiab] OR “confidential 
enquiry” [tiab] OR "Data Collection/methods"[Mesh] OR "Data 
Collection/standards"[Mesh] OR "Population Surveillance/methods"[Mesh] OR 
"Population Surveillance/standards"[Mesh]  

2  
 "Maternal Mortality"[Mesh] OR "maternal mortality" [Tw] OR 
"maternal mortalities" [Tw] OR ((Pregnancy[mesh] OR 
"pregnancy complications" [Mesh] or “pregnant women” or 
parturition[mesh] or mothers[mesh] or "maternal health 
services"[mesh] or pregnancy or pregnant or parturition or 
mother* or gestation or gestational or childbirth or childbirths or 
maternal or maternity ) AND (mortality OR mortalities OR 
Death OR deceased OR fatality OR fatalities)) 
 

 
 

116919 

3 #1 AND #2  
 
 

1977 

4 "mothers"[MeSH Terms] OR "mothers"[All Fields] OR "mother"[All Fields] 
OR "mothers"[MeSH Terms] OR "mothers"[All Fields] OR "maternal"[All 
Fields] OR "pregnancy"[MeSH Terms] OR "pregnancy"[All Fields] OR 
"parturition"[MeSH Terms] OR "parturition"[All Fields] OR "postpartum 
period"[MeSH Terms] OR "postpartum"[All Fields] AND "period"[All Fields] 
OR "postpartum period"[All Fields] OR "postpartum"[All Fields] OR 
antepartum[All Fields] OR intrapartum[All Fields] OR "parturition"[MeSH 
Terms] OR "parturition"[All Fields] OR "childbirth"[All Fields] OR "delivery, 
obstetric"[MeSH Terms] OR ("delivery"[All Fields] AND "obstetric"[All 
Fields]) OR "obstetric delivery"[All Fields] OR "parturition"[MeSH Terms] OR 
"parturition"[All Fields] OR "birth"[All Fields] OR termination[All Fields] OR 
"abortion, induced"[MeSH Terms] OR ( "abortion"[All Fields] AND 
"induced"[All Fields]) OR "induced abortion"[All Fields] OR "abortion"[All 
Fields] OR "abortion, spontaneous"[MeSH Terms] OR ("abortion"[All Fields] 
AND "spontaneous"[All Fields]) OR "spontaneous abortion"[All Fields] OR 
"miscarriage"[All Fields] 

566626 

5 "death"[MeSH Terms] OR "death"[All Fields] OR fatal[All Fields] OR 
fatality[All Fields] OR "mortality"[Subheading] OR "mortality"[All Fields] OR 
"mortality"[MeSH Terms] 

1543760 

6 #4 AND #5 AND #1 1715 

7 #6 OR #3 2516 

8  #6 OR #3Publication date from 1990/01/01 to 2050/12/31 2285 
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Global Index Medicus 
http://www.globalhealthlibrary.net  
No AGE, HUMAN or YEAR limits applied. 
Options : Regional Indexes searched 
 

# Searches (LILACS) Results 

1 ((underreporting) OR (under reporting ) OR underreported OR ( under reported) 
OR (data quality) OR (official figures) OR (record linkage) OR (quality of 
information) OR (officially reported ) OR (multiple sources) OR ( linkage) OR 
(under registered) OR ( under registration) OR (under registering) OR 
underregistered OR underregistration OR (under registering) OR (source of 
error) OR (misclassification) OR (misclassified ) OR (errors AND registration) 
OR (late maternal mortality) OR (confidential enquiries) OR (confidential 
enquiry)) AND ((MOTHERS AND Mortality) OR (Maternal Mortality) OR 
(Maternal Death) OR (maternal mortality) OR (maternal deaths) OR (pregnancy 
related deaths) OR (pregnancy related deaths))  

910 

 IMEMR (same as above)  163 

 WPRIM (same as above) 33 

 IMSEAR(same as above) 20 

 AIM(same as above)  16 

 
 
EBSCO  
http://www.ebsco.com  
No AGE, HUMAN or  
YEAR limits applied 1990 – 2013 
Searched in SUBJECTS, ABSTRACT and TITLE fields only across databases suite. 

# Searches Results 

1 (underreporting OR under reporting OR underreported OR under reported 
OR data quality OR official figures OR official national figures OR record 
linkage OR quality of information OR officially reported OR multiple 
sources OR linkage OR under registered OR under registration OR under 
registering OR underregistered OR underregistration OR under registering 
OR sources of error OR misclassification OR misclassified OR (errors AND 
registration) OR late maternal mortality OR confidential enquiries OR 
confidential enquiry OR (data collection AND (methods OR standards)) OR 
audit OR (population surveillance AND (methods OR standards))) AND 
(maternal mortality OR pregnancy related deaths OR maternal deaths) 

2831 

citations 

found. 

EBSCO 

system 

Duplicates 

removed 
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remaining : 

1019  

 

See below 

for results 

per 

database 

 Academic Search Complete 550 
 Academic Search Premier  535 

 CINAHL Complete  457 

 CINAHL Plus with Full Text  428 

 Health Source: Nursing/Academic Edition  121 

 Women's Studies International  117 

 Gender Studies Database  93 

 Consumer Health Complete - EBSCOhost  81 

 PsycINFO  80 

 Food Science Source  61 

 SocINDEX with Full Text  31 

 MasterFILE Premier  30 

 Business Source Complete  29 

 Public Affairs Index  27 

 Business Source Premier  26 

 Environment Complete  18 

 Psychology and Behavioral Sciences Collection  16 

 Vocational and Career Collection  12 

 MedicLatina  11 

 Middle Eastern & Central Asian Studies  11 

 Health Source - Consumer Edition  9 

 Education Research Complete  9 

 Agricola  8 
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 Peace Research Abstracts  8 

 Alt HealthWatch  7 

 Professional Development Collection  6 

 Education Full Text (H.W. Wilson)  6 

 International Security & Counter Terrorism Reference Center  5 

 SPORTDiscus with Full Text  5 

 Risk Management Reference Center  3 

 Historical Abstracts  3 

 Political Science Complete  3 

 ERIC  2 

 Computer Source  2 

 Communication & Mass Media Complete  2 

 Library, Information Science & Technology Abstracts with Full Text  2 

 Computers & Applied Sciences Complete  2 

 Associates Programs Source  2 

 Vocational Studies Premier  2 

 Caribbean Search  2 

 Criminal Justice Abstracts with Full Text  2 

 Biological & Agricultural Index Plus (H.W. Wilson)  2 

 Legal Collection  1 

 Bibliography of Native North Americans  1 

 National Criminal Justice Reference Service Abstracts  1 

 Central & Eastern European Academic Source  1 

 Humanities Abstracts (H.W. Wilson)  1 

 Humanities Full Text (H.W. Wilson)  1 

 

 Total of citations found after duplicates removed  1019 

 
 
Web of Science  
http://www.webofknowledge.com 
No AGE, HUMAN or YEAR limits applied. 
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# Searches (TOPIC FIELD ) Results 

1 (underreporting OR “under reporting” OR underreported OR “under reported” 
OR “data quality” OR “official figures” OR “official national figures” OR 
“record linkage” OR “quality of information” OR “officially reported “ OR 
“multiple sources” OR linkage OR “under registered” OR “under registration” 
OR “under registering” OR underregistered OR underregistration OR “under 
registering” OR “sources of error” OR misclassification OR misclassified OR 
(errors AND registration) OR “late maternal mortality” OR “confidential 
enquiries” OR “confidential enquiry” OR (“data collection” AND (methods OR 
standards)) OR audit OR (“population surveillance” AND (methods OR 
standards))) AND (“maternal mortality” OR “pregnancy related deaths” OR 
“maternal deaths”) 
 

688 

 
Popline 
http://www.popline.org 
. 
 

# Searches (TOPIC FIELD ) Results 

1 (underreporting OR “under reporting” OR underreported OR “under reported” 
OR “data quality” OR “official figures” OR “official national figures” OR 
“record linkage” OR “quality of information” OR “officially reported “ OR 
“multiple sources” OR linkage OR “under registered” OR “under registration” 
OR “under registering” OR underregistered OR underregistration OR “under 
registering” OR “sources of error” OR misclassification OR misclassified OR 
(errors AND registration) OR “late maternal mortality” OR “confidential 
enquiries” OR “confidential enquiry” OR (“data collection” AND (methods OR 
standards)) OR audit OR (“population surveillance” AND (methods OR 
standards))) AND (“maternal mortality” OR “pregnancy related deaths” OR 
“maternal deaths”) 
 

142 

 
 
Web of Science  
http://www.webofknowledge.com 
No AGE, HUMAN or YEAR limits applied. 
 

# Searches (Web of Science – Russian Index)  Results 

1 («недостаток информации» OR «утерянные данные» OR «дефекты сбора 
данных» “несообщение” OR «сокрытие» OR «несообщённый» OR 
«сокрытый» OR «несообщённая» OR «сокрытая» OR «скрытый» OR 
«скрытая» OR «сокрытые» OR «скрытые» OR «качество информации» OR 
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«качество данных» OR «официальные данные» OR «официальные цифры» 
OR «официальная статистика» OR «национальная статистика» OR 
«национальные данные» OR «многочисленные источники» OR 
«множественные источники» OR «сцепленные данные» OR «связанные 
данные» OR «незарегистрированные» OR «незарегистрированный» OR 
«незарегистрированная» OR «не зарегистрированный» OR «не 
зарегистрированная» OR «не зарегистрированные» OR  «отказ от 
регистрации» OR «регистрация не проводилась» OR «не 
регистрировалась» OR «не регистрировался» OR «не регистрировались» 
OR «причина ошибки» OR «источник ошибки» OR «причины ошибки» 
OR «источники ошибки» OR «причина ошибок» OR «источник ошибок» 
OR «причины ошибок» OR «источники ошибок» OR «ошибочная 
классификация» OR «ошибка классификации» OR «ошибка в 
классификации» OR «неправильная классификация» OR «неверная 
классификация» OR «неправильная группировка» OR «неверная 
группировка» OR «ошибка в группировке» OR «ошибочная 
группировка»  OR «поздняя материнская смертность» OR «поздней 
материнской смертности» OR «позднюю материнскую смертность» OR 
«конфиденциальный запрос» OR «конфиденциальное расследование» OR 
«закрытая информация» OR «закрытые сведения» OR «закрыть 
информацию» OR «утаить информацию» OR «утаённая информация» OR 
(«сбор информации» OR «сбора информации» AND («методы» OR 
«стандарты» OR «механизм» OR «техника» OR «алгоритм» OR 
«методика») OR «аудит» OR («надзор» OR «популяционный надзор» OR 
«здоровье населения» OR «состояние здоровья населения» OR «здоровье 
популяции»)) 

 
2  («материнская смертность» OR «акушерская смертность» OR 

«акушерско-гинекологическая смертность» OR «послеродовая 
смертность» OR «смерть в родах» OR «родовая смертность» OR «гибель 
рожениц» OR «гибель родильниц» OR «смертность рожениц» OR 
«смертность родильниц») 

 

 

 1 AND 2  18 

 
 
End of Box 2 
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APPENDIX B

BIVARIATE VECTOR AUTOREGRESSIVE PROCESS

A bivariate VAR process of lag 1, denoted VAR(1) is given by the following:

yt = c+Ayt−1 +ut (B.1)

in which A=

a11 a12

a21 a22

 is a 2×2 coefficient matrix representing the correlation between

yt and yt−1, and ut is a 2×1 unobservable zero-mean innovation process (serially uncor-

related, ie. with time invariance covariance matrix Σu. In a zero-mean VAR(1) process the

intercept terms are set to 0, ie c= (0,0)T .

Σu =

 σ2
1 φ ·σ1 ·σ2

φ ·σ1 ·σ2 σ2
2


Written more simply, we have

y1t = a11y1t−1 +a12y2t−1 +u1t

y2t = a21y1t−1 +a22y2t−1 +u2t

E(ut) = 0

E(utu
′
t) = Σu

E(utu
′
s) = 0 for s 6= t
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If this iterative process starts at some time , ie. t = 1, we get

y1 = c+Ay0 +u1

y2 = c+Ay1 +u2 = c+A(c+Ay0 +u1)+u2

= (I2 +A)c+A2y0 +Au1 +u2,

...

yt = (I2 +A+ . . .+A(t−1))c+Aty0 +
t−1

∑
i=0

Aiut−i

Hence the vectors y1, ...,yt are uniquely determined by y0,u1, ...,ut . The joint distribution

of y1, ...,yt is determined by the joint distribution of y0,u1, ...,ut .

B.0.0.1 Stationary Processes

The bivariate VAR(1) process is characterized as a stationary process, defined by time-

invariance of the first and second moments, ie a stochastic process yt is stationary if the

following conditions are met:

E(yt) = µ for all t, (B.2)

and

E[(yt−µ)(yt−h−µ)
′
] = Σy(h) = Σy(−h)

′
for all t and h = 0,1,2, ... (B.3)

Condition B.2 means that all yt have the same mean µ , and condition B.3 means that the

autocovariances of the process do not depend on t, but do depend on the time lag h. By this

definition, the innovation process ut is an example of a stationary process.
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B.0.0.2 Unconditional expectation and autocovariances

(1) The unconditional expectation of a zero-mean stationary bivariate VAR(1):

yt = Ayt−1 +ut

E(yt) = E(Ayt−1 +ut)

E(yt) = AE(yt−1)+E(ut)

E(yt) = AE(yt−1)+0 zero-mean innovation process

E(yt) = E(yt−1) = µ by defn of stationarity

µ = 0 by zero-mean VAR(1) definition

In more general form:

µ = (I−A)−1c

(2) The unconditional autocovariance of VAR(1) process:

Let yt = Ayt−1 +ut represent a stationary VAR(1) process for variable y with white noise

covariance matrix E(utu
′
t) = Σu. The unconditional autocovariance is derived as follows:

E[(yt−µ)(yt−h−µ)
′
] = AE[(yt−1−µ)(yt−h−µ)

′
]+E[ut(yt−h−µ)

′
] (B.4)

Γy(0) = AΓy(−1)+Σu = AΓy(1)
′
+Σu for h = 0 (B.5)

Γy(h) = AΓy(h−1) for h > 0 (B.6)

For h = 1, we get from B.4, Γy(1) = AΓy(0). Substitution AΓy(0) for Γy(1) gives:

Γy(0) = AΓy(0)A
′
+Σu (B.7)

Using the vector function, this can be written as

95



vecΓy(0) = vec(AΓy(0)A
′
)+ vecΣu (B.8)

= (A⊗A)vecΓy(0)+ vecΣu (B.9)

vecΓy(0) = (I−A⊗A)−1vecΣu (B.10)

The conditional distribution given by B.1 is applied to the stationary time series for t =

2, ...,T . However, at initial time t0, ie. t0 = 1, we use the unconditional expectation and

covariance to apply stochastic error.

yt |yt−1 ∼ N2(Ayt−1,Σu, for t = 2, ...,T

y1 ∼ N2(µ,Γy(0))

...
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