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ABSTRACT

LEARNING LATENT CHARACTERISTICS OF DATA
AND MODELS USING ITEM RESPONSE THEORY

FEBRUARY 2020

JOHN P. LALOR

B.B.A., UNIVERSITY OF NOTRE DAME

M.Sc., DEPAUL UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Hong Yu

A supervised machine learning model is trained with a large set of labeled training

data, and evaluated on a smaller but still large set of test data. Especially with deep

neural networks (DNNs), the complexity of the model requires that an extremely large

data set is collected to prevent overfitting. It is often the case that these models do

not take into account specific attributes of the training set examples, but instead treat

each equally in the process of model training. This is due to the fact that it is difficult

to model latent traits of individual examples at the scale of hundreds of thousands

or millions of data points. However, there exist a set of psychometric methods that

can model attributes of specific examples and can greatly improve model training and

evaluation in the supervised learning process.

Item Response Theory (IRT) is a well-studied psychometric methodology for scale

construction and evaluation. IRT jointly models human ability and example character-

istics such as difficulty based on human response data. We introduce new evaluation

viii



metrics for both humans and machine learning models build using IRT, and propose

new methods for applying IRT to machine learning-scale data.

We use IRT to make contributions to the machine learning community in the

following areas: (i) new test sets for evaluating machine learning models with respect

to a human population, (ii) new insights about how deep-learning models learn by

tracking example difficulty and training conditions, and (iii) new methods for data

selection and curriculum building to improve model training efficiency, (iv) a new test

of electronic health literacy built with questions extracted from de-identified patient

Electronic Health Records (EHRs).

We first introduce two new evaluation sets built and validated using IRT. These

tests are the first IRT test sets to be applied to natural language processing tasks.

Using IRT test sets allows for more comprehensive comparison of NLP models. Second,

by modeling the difficulty of test set examples, we identify patterns that emerge when

training deep neural network models that are consistent with human learning patterns.

Specifically, as models are trained with larger training sets, they learn easy test set

examples more quickly than hard examples. Third, we present a method for using

soft labels on a subset of training data to improve deep learning model generalization.

We show that fine-tuning a trained deep neural network with as little as 0.1% of the

training data can improve model generalization in terms of test set accuracy. Fourth,

we propose a new method for estimating IRT example and model parameters that

allows for learning parameters at a much larger scale than previously available to

accommodate the large data sets required for deep learning. This allows for learning

IRT models at machine learning scale, with hundreds of thousands of examples and

large ensembles of machine learning models. The response patterns of machine learning

models can be used to learn IRT example characteristics instead of human response

patterns. Fifth, we introduce a dynamic curriculum learning process that estimates

model competency during training to adaptively select training data that is appropriate

ix



for learning at the given epoch. Finally, we introduce the ComprehENotes test, the

first test of EHR comprehension for humans. The test is an accurate measure for

identifying individuals with low EHR note comprehension ability, and validates the

effectiveness of previously self-reported patient comprehension evaluations.

x
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INTRODUCTION

A typical supervised learning setup in machine learning involves using a large

annotated training data set to fit a model capable of learning patterns in the training

data in such a way that the model can generalize to an unseen test data set. Learning

involves updating the model parameters according to differences between the model

output and a single true, gold-standard label. The input data, which interacts with the

model weights to provide the model output, is often taken as given. The output also

is relatively static when compared to the work on model tuning. The gold-standard is

the gold-standard, and we want our model to fit well to the data while also being able

to generalize well. These gold-standard examples are fixed, and specific characteristics

of the examples do not affect evaluation.

Once trained, model performance is evaluated by labeling a previously unseen

data set and comparing the output labels to the known, gold-standard labels for that

data set. Accuracy, recall, precision and F1 scores are commonly used to evaluate

NLP applications. These metrics assume that each point in the data set has equal

weight for evaluating performance. However examples are different. Some may be so

hard that most/all NLP systems answer incorrectly; others may be so easy that every

NLP system answers correctly. Neither example type provides meaningful information

about the performance of an NLP system. Examples that are answered incorrectly by

some systems and correctly by others are useful for differentiating systems according

to their individual characteristics.

We propose an integration of psychometrics and machine learning to better model

the supervised learning task. This integration allows for the modeling of input data

latent traits as well as model latent traits to both inform the model-training procedure
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and provide more insight into model generalization performance. The psychometric

methodologies used here are known as Item Response Theory (IRT) [Baker, 2001,Baker

and Kim, 2004].

IRT is one of the most widely used methodologies in psychometrics for scale con-

struction and evaluation. It is typically used to analyze human responses (graded as

right or wrong) to a set of questions (called “items” in the psychometric literature and

examples here). With IRT, individual ability and example characteristics are jointly

modeled to predict performance [Baker and Kim, 2004]. This statistical model assumes

the following: (a) Individuals differ from each other on an unobserved latent trait

dimension (called “ability” or “factor”); (b) The probability of correctly answering an

example is a function of the person’s ability and of the example’s latent parameters.

This function is called item characteristic curve (ICC) and involves example charac-

teristics as parameters; (c) Responses to different examples are independent of each

other for a given ability level of the person (“local independence assumption”); (d)

Responses from different individuals are independent of each other.

First, we introduce two new test sets for natural language inference and sentiment

analysis built using IRT that measure the latent ability of a natural language processing

model as opposed to raw accuracy, and show that these tests provide more insight into

model performance than traditional evaluation such as accuracy or F1. By using IRT,

the latent characteristics of specific test set examples affect a model’s score. At the

same time, the latent ability parameter of a model places the model on a continuum

of ability with other test-takers, which allows for comparison between models more

informative than a simple accuracy score. With IRT, we show that high accuracy is

not necessarily indicative of high performance if a test data set is very easy.

Second, we show that by modeling the difficulty of test set examples, patterns

emerge when training deep neural network models that are consistent with human

learning patterns, specifically, that as models are trained with larger training sets,
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they learn easy test set examples more quickly than hard items. We find that there

is a relationship between example difficulty and model performance, not only for

fully trained models but also as a function of the training set size used to train the

model. This allows for new insights into how models behave under different training

circumstances, and quantitatively confirms insights about learning that have been

used in methods such as curriculum learning.

Third, we propose a soft-label memorization-generalization training sequence for

deep neural networks that leverages human uncertainty about data to fine-tune deep

learning models. Soft labels for a small sample of data points are estimated by

calculating the distribution over potential labels gathered from Amazon Mechanical

Turk workers. By fine-tuning three representative deep learning architectures with

soft labels we are able to improve test set performance.

Fourth, we propose a new method for modeling latent example and model charac-

teristics using IRT at a large scale. At present there has not been work done to build

very large scale IRT models because the models are typically used to evaluate humans.

We use variational inference methods to estimate the latent parameters that allow for

much larger scale modeling of the data than previously done.

Fifth, we propose a dynamic data selection strategy for curriculum learning that

estimates model competency during training in order to select training data examples

that are most appropriate for a learner at a point in time. This allows for selecting

training examples based on model competency and not a rigid learning schedule.

Dynamic data selection leads to more efficient and effective models.

Finally, we introduce a new test for measuring human Electronic Health Record

(EHR) note comprehension and conduct experiments that demonstrate the ability of

active educational interventions to improve note comprehension in patients. In the

past patient understanding of their EHR notes has only been measured by self-reported

patient data. We have developed a test using IRT to evaluate patient latent ability
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for EHR note comprehension. This test is the first of its kind, and all questions in the

test were automatically identified and extracted from de-identified patient EHR notes.

The test demonstrates a real-world use case for the IRT test construction methods in

the important area of patient health literacy, specifically with regards to EHRs and

EHR notes.

In this dissertation we introduce new methods for test set construction and model

evaluation for the machine learning and natural language processing community. In

addition, we introduce a new way to learn IRT latent parameters for data sets at

machine learning scale that tightly integrates input data information and parameter

updating for improved generalization. We demonstrate that the integration of psy-

chometrics into machine learning model training allows for more information about

a data set to be used when training a model, leading to more efficient and effective

learning. Finally, we present a new test for patient health literacy that will hopefully

contribute to future research on measuring and improving patient health literacy. It

is our hope that the methods proposed here provide researchers with new methods for

training and evaluating models that do more than just use data but take properties of

the data and models into account.
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CHAPTER 1

BACKGROUND, FOUNDATIONS, AND NOTATION

Our goal is to bring psychometrics to machine learning by demonstrating the

usefulness of psychometric methods, specifically Item Response Theory (IRT), on

machine learning model training and evaluation. In this chapter we will provide

an introduction to IRT for machine learning researchers, and an overview of the

machine learning models and training methods that will be used to demonstrate the

effectiveness of IRT for the benefit of psychometricians.

In typical machine learning evaluation, aggregate scores such as accuracy are

calculated on a held-out test set. The characteristics of individual test set examples such

as difficulty are not taken into consideration. Often times, the difficulty of a data set

is determined after the fact, once it has been shown that certain baseline models do

not do particularly well on the task. There is a need to model the intrinsic difficulty

of the data sets used in machine learning to help guide progress in the field and to

help place the progress of new models into context. For example, if a new machine

learning model outperforms the state-of-the-art for a particular task by 0.01%, what

does that really tell us about the new model? It could be that this new model labeled

all but 3 test examples the exact same way as the previous state-of-the-art model.

But for those 3, if the new model labels the easiest one incorrectly and the two harder

examples correctly, while the prior model labeled the easiest example correctly but

labeled the the two harder examples incorrectly, what does that mean in terms of

which model should be used moving forward? Or, what does that tell us about the

data set in question? Even if the new model achieves state-of-the-art performance, is
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it acceptable that the model labels the easiest example incorrectly? In order to even

know which example is the easiest, there needs to be a way to estimate the difficulty

of each example.

Psychometrics is a field in psychology concerned with the evaluation of humans

and the design of tests to evaluate those humans. IRT models are psychometric models

that estimate the latent ability of humans in certain areas based on their responses

to a carefully selected set of examples. These examples also have latent parameters

such as difficulty that are learned by gathering a large number of response patterns

from individuals. To date, there has been very little work on applying IRT methods

in the machine learning community. We propose applying IRT methods to model

latent characteristics of supervised learning models and of the data used to train and

evaluate them. Specifically, we propose and evaluate the following thesis:

Estimating the characteristics of individual data points such as difficulty and latent

model ability using psychometric methods can be done at a large scale, can improve

model performance, and can allow for more thorough model evaluation.

1.1 Foundations

The methods described in this thesis apply to supervised machine learning models.

For consistency we now define terms that will be used in the subsequent chapters.

When there is inconsistency between the IRT and machine learning terminology it

will be explicitly mentioned below, and the machine learning terminology will be used

moving forward.

Definition 1.1.1 (Example). An example d is a tuple d = (x, y), where x is a set of

features associated with the example, and y is the gold-standard label for the example.

Each y comes from a set of labels Y ∗ = {y0, y1, . . . , yn−1}, where n is the number of

possible class labels for the task. Y ∗ is task-specific. For example, for the task of
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sentiment analysis n = 2 and Y ∗ = {positive, negative}. Examples are referred to as

items in the IRT literature.

Definition 1.1.2 (Data set). A data set is a collection of examplesD = {d0, d1, . . . , dn−1},

where n is the number of examples in the data set. XD is the set of features associated

with the examples in D, where XD
0 refers to the features of the first example in D.

Y D is the set of gold-standard labels associated with the examples in D, where Y D
0

refers to the gold-standard label of the first example in D. Data sets may be used for

model training or evaluation. Data sets used for training are training sets. Data sets

used for evaluation are test sets (typically referred to as evaluation scales in the IRT

literature).

Definition 1.1.3 (Model). A model provides label predictions for a test set. More

formally, for some test set Dtest, a model M generates label predictions Ŷ Dtest based

on the features of Dtest, X
Dtest : Ŷ Dtest = M(XDtest), which are compared to the

gold-standard labels Y Dtest . A model is analogous to a subject in the IRT literature.

In this work model will refer to a machine learning model, and if humans are involved

they will be referred to as subjects.

Definition 1.1.4 (Response Pattern). A response pattern is a binary vector that

compares a model’s label predictions for a test set with the gold-standard labels. For

any model M and data set D, M ’s response pattern is defined as:

ZM,D = [I[ŷ0 = y0], . . . , I[ŷn = yn]] (1.1)

where I[A] is the indicator function, which evaluates to 1 when the expression A is

true and 0 when the expression is false.
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1.2 Supervised Learning Evaluation

The goal of this thesis is to demonstrate the usefulness of psychometric methods,

specifically IRT, for training and evaluating supervised machine learning models. In a

typical supervised learning setup, a model is trained on some labeled data set which

consists of features and labels. Each example is defined by the features associated

with it and each example has a corresponding gold-standard label.

Current gold-standard data set generation methods include web crawling [Guo et al.,

2013], automatic and semi-automatic generation [An et al., 2003], and expert [Roller

and Stevenson, 2015] and non-expert human annotation [Bowman et al., 2015,Wiebe

et al., 1999]. In each case validation is required to ensure that the data collected is

appropriate and usable for the required task. Automatically generated data can be

refined with visual inspection or post-collection processing. Human annotated data

usually involves more than one annotator, so that comparison metrics such as Cohen’s

or Fleiss’ κ can be used to determine how much they agree. Disagreements between

annotators are resolved by researcher intervention or by majority vote.

Evaluating these models requires a set of labeled data that was previously unseen

by the model, to determine how well the model can generalize outside of the data

the model was trained on. This held out test set is typically drawn from the same

distribution as the training data. Model evaluation therefore consists of having

the trained model generate labels for the test set and comparing these with the

gold-standard labels.

There are many methods for how the test sets are obtained. For large data sets,

there is typically a pre-defined held out test set to facilitate direct comparison between

models. For smaller data sets, methods such as cross-validation are used, where the

full data set is split into folds, and copies of the models are trained on all folds but

one, which is held out for testing. Evaluation statistics across models are aggregated.

We focus on model evaluation via a standard, held-out test set. This is the norm for
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evaluating deep learning models on large benchmark data sets, as they are typically

released with a pre-defined test set for model comparisons.

To evaluate model training, one typically considers accuracy on the training set.

Continual improvement in training set accuracy indicates that the model is “learning”

by being better able to classify the instances to which it has been exposed. Most

common in machine learning experiments is the arithmetic mean:

Definition 1.2.1 (Training error). The training error of a model M refers to the

percentage of examples in a training set Dtrain that the model labels incorrectly:

etrain = 1− 1

N

N∑
n=1

zMi,Dtrain (1.2)

Once a model has been trained, generalization performance is measured by the

arithmetic mean on the held-out test set.

Definition 1.2.2 (Test error). The test error of a model M refers to the percentage

of examples in a test set Dtest that the model labels incorrectly:

etest = 1− 1

N

N∑
n=1

zMi,Dtest (1.3)

Other performance metrics exist but are less common in the ML literature. For

example, the geometric mean uses the product of responses instead of the sum. This

more strictly penalizes incorrect answers.

Definition 1.2.3 (Geometric mean). For some response pattern Z the geometric

mean is:

(
N∏
i=1

zMi )
1
N (1.4)
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1.3 Item Response Theory

IRT is a methodology of evaluation for characterizing test examples and estimating

subject ability from their performance on such tests. IRT assumes that individual

test questions (referred to as “items” in IRT and “examples” here) have unique

characteristics such as difficulty and discriminating power. These characteristics can

be identified by fitting a joint model of human ability and examples characteristics to

human response patterns to the test examples. Examples that do not fit the model

can be removed and the remaining examples can be considered a scale to evaluate

performance. IRT assumes that the probability of a correct answer is associated

with both example characteristics and individual ability, and therefore a collection of

examples of varying characteristics can determine an individual’s ability overall.

IRT accounts for differences among examples when estimating a subject’s ability.

In addition, ability estimates from IRT are on the ability scale of the population used

to estimate example parameters. For example, an estimated ability of 1.2 can be

interpreted as 1.2 standard deviations above the average ability in this population. The

traditional total number of correct responses generally does not have such quantitative

meaning.

IRT has been widely used in educational testing. For example, it plays an instru-

mental role in the construction, evaluation or scoring of standardized tests such as

Test of English as a Foreign Language (TOEFL), Graduate Record Examinations

(GRE) and SAT.

1.3.1 IRT Models

The simplest IRT model assumes a single latent parameter for each example, bi,

corresponding to the example’s difficulty, as well as a latent ability parameter for each

model, θj. This is known as the one parameter logistic (1PL) model or the Rasch

model.
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The probability that model (or subject) j will answer example i correctly is:

p(yij = 1|θj, bi) =
1

1 + e−(θj−bi)
(1.5)

The probability that model j will answer example i incorrectly is:

p(yij = 0|θj, bi) = 1− p(yij = 1|θj, bi) (1.6)

With a 1PL model, there is an intuitive relationship between difficulty and ability.

An example’s difficulty value b can be thought of as the point on the ability scale

where an individual (or model) has a 50% chance of answering correctly. Put another

way, a model has a 50% chance of answering an example correctly when model ability

is equal to example difficulty (if θj = bi in Equation 1.5).

Another common model is the three parameter logistic model (3PL):

pij(θj) = ci +
1− ci

1 + e−ai(θj−bi)
(1.7)

where ai, bi, and ci are example parameters: the slope or discrimination parameter

ai is related to the steepness of the curve, the difficulty parameter bi is the level of

ability that produces a chance of correct response equal to the average of the upper

and lower asymptotes, and the guessing parameter ci is the lower asymptote of the

ICC and the probability of guessing correctly. A two-parameter logistic (2PL) IRT

model assumes that the guessing parameters are 0.

1.3.2 Parameter Estimation

The likelihood of a data set of response patterns Z from multiple subjects to a set

of examples given the parameters Θ and B is:

p(Z|Θ, B) =
J∏
j=1

I∏
i=1

p(Zij = yij|θj, bi) (1.8)
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Figure 1.1: Example ICC for a “good” example, fit as part of a 3PL Model. For this
example, ai = 1, bi = 0, and ci = 0.25.

where zij = 1 if individual j answers example i correctly and zij = 0 if they do not.

The example parameters are typically estimated by marginal maximum likelihood

(MML) via an Expectation-Maximization (EM) algorithm [Bock and Aitkin, 1981], in

which subject parameters are considered random effects θi ∼ N(0, σ2
θ) and marginalized

out. Once example parameters are learned, subjects’ θ parameters are scored typically

with maximum a posteriori (MAP) estimation. IRT models are usually fitted to RPs of

hundreds or thousands of human subjects, who usually answer at most 100 questions.

Therefore the methods for fitting these models have not been scaled to huge data sets

and large numbers of subjects (e.g. tens of thousands of machine learning models).

Figures 1.1 and 1.2 show examples of Item Characteristic Curves (ICCs) of two

examples in a test set fit via a 3PL model. Figure 1.1 would be considered a “good”

example, as there is a relatively steep slope distinguishing individuals that have a

high probability of labeling the example correctly. Figure 1.2 would be considered a

“bad” example. The slow increase in probability as ability increases indicates that this

example is not useful for distinguishing between individuals. What’s more, the very

large guessing parameter indicates that even individuals with low latent ability have
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Figure 1.2: Example ICC for a “bad” example, fit as part of a 3PL Model. For this
example, ai = 0.5, bi = 0, and ci = 0.4.

a high probability of labeling the example correctly. The ICC plots the probability

of a model labeling an example correctly as a function of latent ability. A good

example should exhibit an ICC relatively steep slope increasing between ability levels

−3 and 3, where most people are located, in order to have appropriate power to

differentiate different levels of ability.

1.3.3 IRT with Variational Inference

Variation inference (VI) is a model fitting method that approximates an intractable

posterior distribution in Bayesian inference by a simpler variational distribution.

Prior work has compared VI methods with traditional IRT methods [Natesan et al.,

2016] and found it effective, but was primarily concerned with fitting IRT models for

human-scale data.

Bayesian methods in IRT assume that the individual θ and b parameters in Eq.

(2) both follow Gaussian prior distributions and make inference through the resultant

joint posterior distribution π(θ, b|Y ). As this posterior is usually intractable, VI

approximates it by the variational distribution:
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q(θ, b) =
J∏
j=1

πθj (θj)
I∏
i=1

πbi (bi) (1.9)

Where πθj () and πbi () denotes different Gaussian densities for different parameters

whose means and variances are determined by minimizing the KL-Divergence between

q(θ, b) and π(θ, b|Y ).

The choice of priors in Bayesian IRT can vary. Prior work has shown that vague

and hierarchical priors are both effective [Natesan et al., 2016]. We experiment with

both in this work. A vague prior assumes θj ∼ N(0, 1) and bi ∼ N(0, 103), where

the large variance indicates a lack of information on the difficulty parameters. A

hierarchical Bayesian model assumes

θj | mθ, uθ ∼ N(mθ, u
−1
θ )

bi | mb, ub ∼ N(mb, u
−1
b )

mθ,mb ∼ N(0, 106)

uθ, ub ∼ Γ(1, 1)

Our results for these two options were very similar, so we only report those for

hierarchical priors.

1.3.4 Building IRT Test Sets

To identify the number of factors in an IRT model, the polychoric correlation

matrix of the examples is calculated and its ordered eigenvalues are plotted. The

number of factors is suggested by the number of large eigenvalues. It can be further

established by fitting (see below) and comparing IRT models with different numbers

of factors. Such comparison may use model selection indices such as AIC and CBIC

and should also take into account the interpretablility of the loading pattern that links

examples to factors.
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An IRT model can be fit to data by marginal maximum likelihood method through

an EM algorithm [Bock and Aitkin, 1981]. The marginal likelihood function is the

probability to observe the current observed response patterns as a function of the

example parameters with the persons’ ability parameters integrated out as random

effects. This function is maximized to produce estimates of the example parameters.

For IRT models with more than one factor, the slope parameters (i.e. loadings) that

relate examples and factors must be properly rotated [Browne, 2001] before they can

be interpreted. Given the estimated example parameters, Bayesian estimates of the

individual person’s ability parameters are obtained with the standard normal prior

distribution.

After determining the number of factors and fitting the model, the local inde-

pendence assumption can be checked using the residuals of marginal responses of

example pairs [Chen and Thissen, 1997] and the fit of the ICC for each example can

be checked with item fit statistics [Orlando and Thissen, 2000]. If both tests are

passed and all examples have proper discrimination power, then the set of examples is

considered a calibrated measurement scale and the estimated example parameters can

be further used to estimate an individual person’s ability level.

1.3.5 Exploratory Model Fitting

Once a set of response patterns is gathered, it is not enough to simply fit an IRT

model and use the result as your IRT test set. The first step is to identify a subset of

examples that meet the underlying assumptions of IRT:

1. People differ from each other on an unobserved latent dimension of interest

(usually called “ability”)

2. The probability of correctly answering a particular example is a function of the

latent ability dimension (the item characteristic curve, ICC)
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3. Responses to individual examples are independent of each other for a given

ability level of a person (the “local independence assumption”)

4. Responses from different individuals are independent of each other.

In this section we describe the process of fitting an exploratory model. A number

of software programs exist to automate portions of this process, in particular the mirt

R package.

The first step is to confirm that there is a single underlying factor in the response

pattern data set. If there are multiple latent factors, then a multi-factor model must

be used, or the data must be split according to the latent factors to create multiple

tests. To check the latent factors, you can plot the tetrachoric matrix to visualize the

eigenvalues of the response pattern data. If there is a single large latent factor then

you can proceed with a single factor model. This first step is crucial as it underlies

the rest of the reasoning for building an IRT model. The goal is to develop a test that

measures a latent ability parameter of some set of individuals for some task. If there

are multiple latent factors in the data, then trying to learn a single latent θ will not

accurately capture the data.

Once a single factor model has been confirmed as appropriate, the next step is

to determine the most appropriate model given the characteristics of the examples.

Is a 3 parameter logistic (3PL) model more appropriate than a 2 parameter logistic

(2PL) model? That is, do we need to account for the guessing parameters for the

examples in the data set? To do this one must first fit both 3PL and 2PL models

(Chapter 2) and compare the model fits using traditional model fit statistics such as

Akaike information criterion (AIC) [Akaike, 1974] or Bayesian Information Criterion

(BIC) [Schwarz et al., 1978]. If a 2PL model is a better fit, than you can continue

and not worry about the example guessing parameters. If the 3PL model is a better

fit, the next step is to determine if, for each example in the response pattern set, the

guessing parameter is significantly different from 0. For each example, if the guessing
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parameter is not significantly different than 0 then a 2PL model is used. Therefore it

is possible to construct a test model that is a combination of 2PL and 3PL models for

each of the examples.

To identify the number of latent factors, a plot of eigenvalues of the tetrachoric

correlation matrix can be inspected and a comparison between IRT models with

different number of factors can be conducted. A target rotation [Browne, 2001] can

be used to identify a meaningful loading pattern that associates factors and examples.

If there are multiple latent factors present, the target rotation can be used to align

the factors with specific sub-tasks. For example, in the case of NLI, if three latent

factors are present, each factor can be interpreted as the ability of a user to recognize

the correct relationship between the sentence pairs associated with that factor (e.g.

contradiction).

1.3.6 Confirmatory Model Fitting

Once a model has been fit that best represents the response pattern data, it

is important to confirm that the model did not overfit the data by conducting a

confirmatory analysis. To do this, a new set of response patterns for the same set

of examples are collected from a new population of test-takers. With the pre-fit

example parameters, a new IRT model is fit to estimate θ and the model fit statistics

are examined. If the fit statistics are reasonable, then the model is determined to be

appropriate for the task. Otherwise, a new model must be fit.

1.3.7 Scoring

Estimating the ability of a model at a point in time is done with a “scoring” function.

When example difficulties are known, model ability is estimated by maximizing the

likelihood of the data given the response patterns and the example difficulties to

obtain the ability estimate. All that is required is a single forward pass of the model

on the data, as is typically done with a test or validation set.
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Zj = ∀y∈Y I[yi = ŷi] (1.10)

L(θj|Zj) = p(Zj|θj) (1.11)

θ̂j = arg max
θj

I∏
i=1

p(zij = yij|θj) (1.12)

1.4 Related Work

1.4.1 Uncertainty in Machine Learning

There are several other areas of study regarding how best to use training data that

are related to this work. Re-weighting or re-ordering training examples is a well-studied

and related area of supervised learning. Often examples are re-weighted according to

some notion of difficulty, or model uncertainty [Bengio et al., 2009,Chang et al., 2017].

In particular, the internal uncertainty of the model is used as the basis for selecting

how training examples are weighted. For example, the history of model predictions

for an example up to time t − 1 can be used to estimate the model probability of

labeling the example correctly [Chang et al., 2017]. However, model uncertainty is

dependent upon the original data set the model was trained on, and is representative

of uncertainty with respect to this particular model. This can be considered a local

measure of uncertainty and may not be comparable across models.

This work is related to transfer learning and domain adaptation [Caruana, 1995,

Bengio et al., 2011,Bengio, 2012], but with an important distinction. Transfer learning

and domain adaptation repurpose representations learned for a source domain to

facilitate learning in a target domain. We want to improve performance in the source

domain by fine-tuning with data from the source domain with distributions over class

labels. This work differs from domain adaptation and transfer learning in that we are

not adding data from a different domain or applying a learned model to a new task.

Instead, we are augmenting a single classification task by using a richer representation
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of where the data lies within the class labels to inform training. The goal is that by

fine tuning with a distribution over labels, a model will be less likely to overfit on a

training set.

Prior work has considered IRT in the context of evaluating ML models using

machine-generated [Martınez-Plumed et al., 2016] response patterns. In one study

the authors attempted to fit IRT models using machine generated response patterns

on small data sets (i.e. 200-300 examples), but obtained results that are difficult to

interpret using the existing IRT assumptions [Martınez-Plumed et al., 2016]. To the

best of our knowledge no one has attempted to fit IRT models using DNN-generated

response patterns on large data sets.

1.4.2 Latent Modeling for Crowds

Prior work has considered modeling latent characteristics of examples and/or

models. In particular, latent-variable models have been developed to identify low-

quality annotators (spammers) [Hovy et al., 2013]. The proposed model assumes that

an annotator either produces the correct label or guess randomly with a guessing

parameter varying only across annotators. Other work used the Dawid & Skene

model in which an annotator’s response depends on both the true label and the

annotator [Dawid and Skene, 1979,Passonneau and Carpenter, 2014]. In both models

an annotator’s response depends on an example only through its correct label. In

contrast, IRT assumes a more sophisticated response mechanism involving both

annotator qualities and example characteristics. To our knowledge we are the first to

introduce IRT to NLP and to create a gold standard with the intention of comparing

NLP applications to human intelligence.

The quality of crowdsourced data for linguistics research has been evaluated as

well [Munro et al., 2010]. In that work the authors recreate classic linguistic studies

and provide evaluation metrics for the obtained data. They compare crowd-generated
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data with controlled experiments, whereas we use the crowd to identify data set

examples for a discriminating test set for future evaluations. Identifying true labels

via latent-trait models in the past has relied on a small number of annotators [Bruce

and Wiebe, 1999]. That work uses 4 annotators at varying levels of expertise and does

not consider the discriminating power of data set examples.

1.4.3 Soft Labels

Other work on modeling uncertainty in labels is Knowledge Distillation [Hinton

et al., 2015]. In Knowledge Distillation, output probabilities of a complex expert model

are used as input to a simpler model so the simpler model can learn to generalize

based on the output weights of the expert model. The expectation is that how an

expert model assigns output weights can be used to reduce overfitting in the simpler

model. However with Knowledge Distillation, the expert model that is distilling its

knowledge was still trained with a single class label as the gold standard, and the

expert passes its uncertainty to the simpler model. In our work we capture uncertainty

at the original training data, in order to induce generalization as part of the original

training.

This work is also related to the idea of “crowd truth” and the CrowdTruth platform

for collecting and using annotations from the crowd [Kajino et al., 2012, Inel et al.,

2014]. The crowd truth assumption is that disagreement between annotators provides

signal about data ambiguity and should be used in the learning process. CrowdTruth

includes several metrics to calculate likelihoods of different events with regards to

particular examples and particular annotators. In those cases, particularly with regards

to annotators, the metrics are used to identify potential low-quality annotators for

removal. We have a large number of annotations for each example (1000 annotations

per example), and therefore we assume that any issues of annotator quality will be

“drowned out” by the large number of annotations. Therefore we do not need to
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identify and remove annotations, and instead can use raw annotation metrics instead

of the CrowdTruth metrics. In addition this work is closely related to the idea of Label

Distribution Learning (LDL) from Computer Vision (CV) [Geng, 2016]. For training

and testing, LDL assumes that y is a probability distribution over labels. With LDL,

the goal is to learn a distribution over labels. However in our case we would still like to

learn a classifier that outputs a single class, while using the distribution over training

labels as a measure of uncertainty in the data. We use the distribution over labels

to represent the uncertainty associated with different examples in order to improve

model training.

To the best of our knowledge this is the first work to use a subset of soft labeled

data for fine-tuning, whereas previous work used an all-or-none approach (all hard or

soft labels).

1.4.4 One-Shot Learning

One area of ML research in a similar category to the IRT work proposed here is one-

shot learning. One-shot learning is an attempt to build ML models that can generalize

after being trained on one or a few examples of a class as opposed to a large training

set [Lake et al., 2013]. One-shot learning attempts to mimic human learning behaviors

(i.e., generalization after being exposed to a small number of training examples) [Lake

et al., 2013]. Our work instead looks at comparisons to human performance, where

any learning (on the part of models) has been completed beforehand. Our goal is to

analyze DNN models and training set variations as they affect ability in the context

of IRT.

1.4.5 Curriculum Learning

Curriculum learning (CL) is a training procedure where models are trained to learn

simple concepts before more complex concepts are introduced [Bengio et al., 2009]. CL

training for neural networks can improve generalization and speed up convergence. In
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curriculum learning the difficulty of examples is typically assigned based on heuristics

of the data (e.g. the number of sides of a shape). IRT models directly estimate difficulty

from the responses of human or machine test-takers themselves instead of relying on

heuristics. Self-paced learning and the Leitner method use model performance to

estimate difficulties, but are restricted to a single model’s performance, not a more

global notion of difficulty [Kumar et al., 2010,Amiri et al., 2018].

Since its original proposal, curriculum learning has become a well-studied area of

machine learning [Bengio et al., 2009]. The primary focus has been on developing

new heuristics to identify easy and difficult examples in order to build a curriculum.

Originally, curriculum learning methods were evaluated on toy data sets with heuristic

measures of difficulty [Bengio et al., 2009]. For example, on a shapes data set, shapes

with more sides were considered more difficult than shapes with fewer sides. Similarly,

sentences with more words were considered more difficult than sentences with fewer

words.

Recent work has shown that spaced repetition strategies (SR) can be effective

for improving model performance [Amiri et al., 2017,Amiri, 2019]. Instead of using

a traditional curriculum learning setup, spaced repetition bins examples based on

estimated difficulty. The bins are shown to the model at differing intervals so that more

difficult examples are seen more frequently than easier examples. This method has

been shown to be effective for human learning, and results demonstrate effectiveness

on NLP tasks as well. Similarly to traditional curriculum learning frameworks, SR

uses model-dependent heuristics for difficulty and rigid schedulers to determine when

training examples should be re-introduced to the learner.

Recent work has shown that measuring model competency during training to

determine which examples to include at a training epoch further improves performance

by matching data to model competency [Platanios et al., 2019]. However, in that work

the model of competency is based on a heuristic rate of knowledge acquisition, and
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does not actually measure model competency. To the best of our knowledge this is

the first work to match model ability at a point in training with appropriate training

data in a curriculum learning framework.

There has been recent work investigating the theory behind curriculum learning

[Weinshall et al., 2018,Hacohen and Weinshall, 2019], particularly around trying to

define an ideal curriculum. The authors explicitly identify the two key aspects of

curriculum learning, namely “sorting by difficulty” and “pacing.” curriculum learning

theoretically leads to a steeper optimization landscape (i.e. faster learning) while

keeping the same global minimum of the task without curriculum learning. In that

work there is still a reliance on “pacing functions” as opposed to an actual assessment

of model ability at a point in time.

Hacohen and Weinshall also demonstrated a key distinction between curriculum

learning and similar methods such as self-paced learning [Kumar et al., 2010], hard

example mining [Shrivastava et al., 2016], and boosting [Freund and Schapire, 1997]:

namely that the former considers difficulty with respect to the final hypothesis space

(i.e. a model trained on the full data set) while the later methods consider ranking

examples according to how difficult the current model determines them to be [Hacohen

and Weinshall, 2019]. In this work we bridge the gap between these methods by

probing model ability at the current point in training and using this estimated ability

to identify appropriate training examples in terms of global difficulty.
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CHAPTER 2

BUILDING NLP TEST SETS WITH ITEM RESPONSE
THEORY

In this chapter we will demonstrate the usefulness of using Item Response Theory

(IRT) for building test sets. IRT has been used to build test sets for many years and

in many contexts, and the methodology is well-established. Here, we apply these

methods to natural language processing for the first time with two representative

tasks: natural language inference (NLI) and sentiment analysis (SA).

The rest of this chapter is structured as follows: we first describe IRT and the

process of building a test set with IRT in detail. Then, we describes the data collection,

model fitting, and evaluation of the IRT NLP test sets. We then demonstrate the use

of the test sets on deep learning models for each NLP task.

2.1 Item Response Theory for Test Set Generation

The process of building an IRT test set can be broken down into three parts:

response pattern collection, exploratory model fitting, and confirmatory model fitting.

We will describe each of these steps generally here, with specifics in the followings

sections for the NLP and EHR comprehension tests, respectively. To begin one must

first have a pool of examples from which the test set will be obtained. This could

be a large pool of previously written questions, or a data set for a specific task in

the context of NLP. For this example pool, a large IRT model is fit and examples are

removed that do not fit, until you are left with a subset of examples that can estimate

the latent dimension well.
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Throughout this chapter the IRT model under consideration is the three parameter

logistic (3PL) model, which was introduced in Section 1.3. Recall that the 3PL model

estimates the probability that model j will answer example i correctly, given model j’s

latent ability θj and example i’s discriminatory parameter ai, difficulty bi, and guessing

parameter ci:

pij(θj) = ci +
1− ci

1 + e−ai(θj−bi)
(2.1)

2.1.1 Gathering Response Patterns

Before building an IRT test set, there must first be some example pool from which

a subset can be extracted as an IRT test. This pool of examples typically consists

of questions that seem appropriate for measuring the desired trait, but have not yet

been validated. For example, for the SAT there is a pool of examples that have been

written as candidates for inclusion for the test. These examples are included in the

test periodically and their latent characteristics are evaluated to determine if they

should be included in the test [Carlson and von Davier, 2013].

To learn latent example parameters for a test set, one requires data. Specifically,

it is necessary to first gather a large number of graded responses to the examples in

the example pool in order to fit the IRT model. Following §1.1, let Dpool be the set

of examples in the example pool under consideration for inclusion, where XDpool and

Y Dpool are the features and gold-standard labels associated with the examples in the

pool, respectively. For some set of models J , let ŷij be model j’s labeling of example i.

Model j’s response pattern Zj is defined as the sequence of model j’s provided labels,

graded correct or incorrect against the gold standard label:

Zj = {∀yi ∈ Y, I[yij = y∗i ]} (2.2)
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where I[] is the indicator function, which evaluates to 1 when the expression is true

and evaluates to 0 when the expression is false.

In a typical IRT testing scenario, response patterns are gathered from human

subjects for a specific task. For example, new questions on the SAT are added to

the test on a trial basis, and responses from students are gathered as they take the

full test, and new questions are evaluated with respect to the existing test [Carlson

and von Davier, 2013]. In other cases, a target population is identified and given the

preliminary test questions, from which the IRT test set is identified. For example,

a test of cancer patients was developed from response patterns taken from cancer

patients [Mazor et al., 2012b, Mazor et al., 2012a]. However in our work, response

patterns are gathered using crowdsourcing workers, specifically those on the Amazon

Mechanical Turk (AMT) crowdsourcing platform.

AMT is an online microtask crowdsourcing platform where individuals (called

Turkers) perform Human Intelligence Tasks (HITs) in exchange for payment. HITs are

usually pieces of larger, more complex tasks that are have been broken up into multiple,

smaller subtasks. AMT and other crowdsourcing platforms are used to build large

corpora of human-labeled data at low cost compared to using expert annotators [Snow

et al., 2008,Sabou et al., 2012]. Researchers’ projects have used AMT to complete

a variety of tasks [Demartini et al., 2012, Zhai et al., 2013]. Recent research has

shown that AMT and other crowdsourcing platforms can be used to generate corpora

for clinical natural language processing and disease mention annotation [Zhai et al.,

2013,Good et al., 2015]. AMT was used to detect errors in a medical ontology and found

that the crowd was as effective as domain experts [Mortensen et al., 2015]. In addition,

AMT workers have been used to identify disease mentions in PubMed abstracts [Good

et al., 2015] and rank Adverse Drug Reactions in order of severity [Gottlieb et al.,

2015] with good results.
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In order to ensure that the data gathered from the AMT Turkers was reliable, we

included a number of quality control mechanisms in each of our tests:

1. AMT task access was restricted to individuals located in the United States, as a

proxy for requiring English speakers

2. Tasks were only available to Turkers who have a prior task approval rate of 97%

or higher

3. Within each task periodic attention-check questions were included, designed to

ensure that the Turkers were paying attention and answering the questions to

the best of their ability. Responses where the attention-check questions were

answered incorrectly were removed.

For each of our IRT tests, we gathered enough response patterns based on the

size of our example banks to ensure that the fit IRT models were reliable. While

there is no set standard for sample sizes in IRT models, this sample size satisfies the

standards based on the non-central χ2 distribution [MacCallum et al., 1996] used when

comparing two multidimensional IRT models. This sample size is also appropriate for

tests of example fit and local dependence that are based on small contingency tables.

To identify appropriate examples for the test sets we conducted both exploratory

(§1.3.5) and confirmatory (§1.3.6) analysis of the response pattern data.

We built a unidimensional IRT model for each set of examples associated with a

single factor. We fit and compared one- and two-factor 3PL models to confirm the

unidimensional structure underlying these examples, assuming the possible presence

of guessing in people’s responses. We further tested the guessing parameter of each

example in the one factor 3PL model. If it was not significantly different from 0, a

2PL ICC was used for that particular example.

Once an appropriate model structure was determined, individual examples were

evaluated for goodness of fit within the model. If an example was deemed to fit the
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ICC poorly or to give rise to local dependence, it was removed for violating model

assumptions. Furthermore, if the ICC of an example was too flat, it was removed

for low discriminating power between ability levels. The model was then refit with

the remaining examples. This iterative process continued until no example could be

removed (2 to 6 iterations depending on how many examples were removed from each

set).

2.2 Evaluating Natural Language Processing Models

Evaluation of NLP methods requires testing against a previously vetted gold-

standard test set and reporting standard metrics (accuracy/precision/recall/F1). The

current assumption is that all examples in the test set are equal with regards to

difficulty and discriminating power. However IRT can be used as an alternative means

for gold-standard test-set generation and NLP method evaluation. IRT is able to

describe characteristics of individual examples - their difficulty and discriminating

power - and is able to account for these characteristics in estimating latent ability for

an NLP task. We demonstrate IRT by generating a gold-standard test set for natural

language inference (NLI) and sentiment analysis (SA). By collecting a large number of

human responses and fitting our IRT model, we show that our IRT model compares

NLP systems with the performance in a population and is able to score differently

from the standard evaluation metrics. We show that a high accuracy score does not

always imply a high IRT score, which depends on the example characteristics and the

response pattern.

Our aim is to build an intelligent evaluation metric to measure performance for

NLP tasks. With IRT one can identify an appropriate set of examples to measure

ability in relation to the overall human population as scored by an IRT model. This

process serves two purposes: (i) to identify individual examples appropriate for a

test set that measures ability on a particular task, and (ii) to use the resulting set of

28



examples as an evaluation set in its own right, to measure the ability of future subjects

(or NLP models) for the same task. These evaluation sets can measure the ability of

an NLP system with a small number of examples, leaving a larger percentage of a

data set for training.

2.2.1 Tasks under Consideration

2.2.1.1 Natural Language Inference

NLI was introduced to standardize the challenge of accounting for semantic variation

when building models for a number of NLP applications [Dagan et al., 2006]. NLI

defines a directional relationship between a pair of sentences, the text (T) and the

hypothesis (H). T entails H if a human that has read T would infer that H is true.

If a human would infer that H is false, then H contradicts T. If the two sentences

are unrelated, then the pair are said to be neutral. Table 2.3 shows examples of

T-H pairs and their respective classifications. Recent state-of-the-art systems for

NLI require a large amount of feature engineering and specialization to achieve high

performance [Beltagy et al., 2016,Lai and Hockenmaier, 2014,Jimenez et al., 2014].

A number of gold-standard data sets are available for NLI [Marelli et al., 2014,Young

et al., 2014,Levy et al., 2014]. We consider the Stanford Natural Language Inference

(SNLI) data set [Bowman et al., 2015]. SNLI is an English-language natural language

inference (NLI) data set that consists of human-generated sentence pairs and NLI

labels (entailment, contradiction, or neutral). SNLI examples were generated using

only human-generated sentences to mitigate the problem of poor data that was being

used to build models for NLI. In addition, SNLI included a quality control assessment

of a sampled portion of the data set (about 10%, 56,951 sentence pairs). This data

was provided to 4 additional AMT users to provide labels (entailment, contradiction,

neutral) for the sentence pairs. If at least 3 of the 5 annotators (the original annotator
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and 4 additional annotators) agreed on a label the example was retained. Most of the

examples (98%) received a gold-standard label.

SNLI is an order of magnitude larger than previously available NLI data sets (550k

train/10k dev/10k test), and consists entirely of human-generated P-H pairs. SNLI is

evenly split across three labels: entailment, contradiction, and neutral.

Amazon Mechanical Turk (AMT) users were shown a caption that was taken from

the Flickr30k corpus [Young et al., 2014] and told that the caption was associated

with a photo. The users were not shown the corresponding photo. They were then

asked to write three alternate captions that could describe the photo: (i) one that is

definitely true, (ii) one that might be true, and (iii) one that is definitely false. These

newly generated sentences were then combined with the original caption to create

entailment, neutral, and contradiction sentence pairs, respectively.

2.2.1.2 Sentiment Analysis

The Stanford Sentiment Treebank (SSTB) [Socher et al., 2013] is a collection

of English text snippets extracted from movie reviews with fine-grained sentiment

annotations (very negative, negative, neutral, positive, very positive). SSTB includes

sentence- and phrase-level sentiment labels for 11,000 sentences (215,000 phrases).

SNLI is large, well-studied, and often used as a benchmark for new NLP models for

NLI. The data set consists of 67k/873/1.8k training/validation/testing examples.

2.2.2 Example Selection

We collected and evaluated a random selection from the SNLI NLI data set (GSNLI)

to build our IRT models. We first randomly selected a subset of GSNLI , and then

used the sample in an AMT Human Intelligence Task (HIT) to collect more labels

for each text-hypothesis pair. We then applied IRT to evaluate the quality of the

examples and used the final IRT models to create evaluation sets (GSIRT ) to measure

ability for NLI.

30



Example bank

Gather
response
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Fit IRT
model

Final test set

Example removal

Figure 2.1: High level overview of the test set construction process with IRT.

We selected a subset of GSNLI to use as an examination set according to the

following steps: (1) Identify all “quality-control” examples from GSNLI as described in

2.2.1.1, (2) Split this section of the data according to the number of users that agreed

on the eventual gold standard label, (3) Randomly select 30 entailment sentence pairs,

30 neutral pairs, and 30 contradiction pairs from each of the 4-annotator gold standard

(4GS) and 5-annotator gold standard (5GS) sets to obtain two sets of 90 sentence

pairs.

90 sentence pairs for 4GS and 5GS were sampled so that the annotation (supplying

90 labels) could be completed in a reasonably short amount of time during which users

remained engaged. We selected examples from 4GS and 5GS because both groups are

considered high quality for NLI. We evaluated the selected 180 sentence pairs using

the model provided with the original data set [Bowman et al., 2015] and found that

accuracy scores were similar compared to performance on the SNLI test set.

2.2.3 AMT Annotation

For consistency we designed our AMT HIT to match the process used to validate

the SNLI quality control examples [Bowman et al., 2015] and to generate labels
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SNLI IRT test set
(n=124)
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Figure 2.2: Building an IRT test set for the SNLI data set. Response patterns were
obtained from Amazon Mechanical Turk workers (Turkers) and processed using IRT.
A subset of examples were retained following analysis as the final test set. The test
set can then be administered to a trained DNN model.

for the SICK NLI data set [Marelli et al., 2014]. Each AMT user was shown 90

premise-hypothesis pairs (either the full 5GS or 4GS set) one pair at a time, and was

asked to choose the appropriate label for each. Each user was presented with the full

set, as opposed to one-label subsets (e.g. just the entailment pairs) in order to avoid a

user simply answering with the same label for each example.

For each 90 sentence-pair set (5GS and 4GS), we collected annotations from 1000

AMT users, resulting in 1000 label annotations for each of the 180 sentence pairs

according to the standards based on the non-central χ2 distribution [MacCallum et al.,

1996] used when comparing two multidimensional IRT models (Section 2.1.1).

We applied a set of quality control checks (Section 2.1.1) to ensure that the labels

gathered were of a high quality. After removing individuals that failed the attention-

check, we retained 976 labels for each example in the 4GS set and 983 labels for each

example in the 5GS set. Average time spent for each task was roughly 30 minutes, a

reasonable amount for AMT users.
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2.2.4 Statistical Analysis

We performed the exploratory model analysis on the gathered data (Section 1.3.5).

Data collected for 4GS and 5GS were analyzed separately. For both sets of examples,

the number of factors was identified by a plot of eigenvalues of the 90 x 90 tetrachoric

correlation matrix and by a further comparison between IRT models with different

number of factors. A target rotation [Browne, 2001] was used to identify a meaningful

loading pattern that associates factors and examples. Each factor could then be

interpreted as the ability of a user to recognize the correct relationship between the

sentence pairs associated with that factor (e.g. contradiction).

We built a unidimensional IRT model for each set of examples associated with a

single factor. We fit and compared one- and two-factor 3PL models to confirm the

unidimensional structure underlying these examples, assuming the possible presence

of guessing in people’s responses. We further tested the guessing parameter of each

example in the one factor 3PL model. If it was not significantly different from 0, a

2PL ICC was used for that particular example.

Once an appropriate model structure was determined, individual examples were

evaluated for goodness of fit within the model. If an example was deemed to fit the

ICC poorly or to give rise to local dependence, it was removed for violating model

assumptions. Furthermore, if the ICC of an example was too flat, it was removed

for low discriminating power between ability levels. The model was then refit with

the remaining examples. This iterative process continued until no example could be

removed (2 to 6 iterations depending on how many examples were removed from each

set).

The remaining examples make up our final test set (GSIRT ), which is a calibrated

scale of ability to correctly identify the relationship between the two sentence pairs.

Parameters of these examples were estimated as part of the IRT model and the set of
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4GS 5GS Overall

Pairs with majority agreement 95.6% 96.7% 96.1%
Pairs with supermajority agreement 61.1% 82.2% 71.7%
Individual Label = gold label 73.2% 82.3% 77.7%
New gold label = original gold label 81.1% 93.3% 87.2%

Table 2.1: Summary statistics from the AMT HITs.

examples can be used as an evaluation scale to estimate ability of test-takers or NLI

systems. We used the mirt R package [Chalmers et al., 2012] for our analyses.

2.2.5 Response Statistics

Table 2.1 lists key statistics from the AMT HITs. Most of the sampled sentence

pairs resulted in a gold standard label being identified via a majority vote. Due to

the large number of individuals providing labels during the HIT, we also wanted to

see if a gold standard label could be determined via a two-thirds supermajority vote.

We found that 28.3% of the sentence pairs did not have a supermajority gold label.

This highlights the ambiguity associated with identifying entailment.

We believe that the examples selected for analysis are appropriate for our task in

that we chose high-quality examples, where at least 4 annotators selected the same

label, indicating a strong level of agreement (Section 2.2.2). We argue that our sample

is a high-quality portion of the data set, and further analysis of examples where the

gold-standard label was only selected by 3 annotators originally would result in lower

levels of agreement.

Table 2.2 shows that the level of agreement as measured by the Fleiss’ κ score

is much lower when the number of annotators is increased, particularly for the 4GS

set of sentence pairs, as compared to scores noted in [Bowman et al., 2015]. The

decrease in agreement is particularly large with regard to contradiction. This could

occur for a number of reasons. Recognizing entailment is an inherently difficult task,

and classifying a correct label, particularly for contradiction and neutral, can be
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Data Set Fleiss’ κ Originally Reported Agreement

SNLI 4GS Contradiction 0.37 0.77 [Bowman et al., 2015]
SNLI 5GS Contradiction 0.59
SNLI 4GS Entailment 0.48 0.72 [Bowman et al., 2015]
SNLI 5GS Entailment 0.63
SNLI 4GS Neutral 0.41 0.6 [Bowman et al., 2015]
SNLI 5GS Neutral 0.54
SSTB 0.52 n/a

Table 2.2: Fleiss’ κ scores for the NLI and SA annotations collected from AMT.
Original label-level agreement scores for SNLI are also reported. Inter-annotator
agreement was not reported during SSTB collection.

difficult due to an individual’s interpretation of the sentences and assumptions that

an individual makes about the key facts of each sentence (e.g. coreference). It may

also be the case that the individuals tasked with creating the sentence pairs on AMT

created sentences that appeared to contradict a premise text, but can be interpreted

differently given a different context.

Inter-rater reliability scores for the collected annotations are shown in Table 2.2.

Human annotations for the SA annotations were converted to binary before calculating

the agreement. The agreement scores are in the range of 0.4 to 0.6 which is considered

moderate agreement [Landis and Koch, 1977]. With the large number of annotators

it is to be expected that there is some disagreement in the labels. However this

disagreement can be interpreted as varying difficulty of the examples, which is what we

expect when we fit the IRT models. In addition, when the SNLI data set was originally

collected, Turkers were instructed to label the premise-hypothesis relationship with

the understanding that the pair related to an (unseen) photo. The instructions in our

task were more general, and referred to the relationship between the two sentences

generally. Therefore there is more room for disagreement between Turkers, but since

the release of SNLI the concept of the sentence pairs referring to a photo has not been

applied to downstream learning tasks, so we feel that the general labeling task is more

representative of the typical use case for the data set.
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Before fitting the IRT models we performed a visual inspection of the 180 sentence

pairs and removed examples clearly not suitable for an evaluation scale due to syntactic

or semantic discrepancies. For example, example 10 in Table 2.3 was removed from

the 5GS contradiction set for semantic reasons. While many people would agree that

the statement is a contradiction due to the difference between football and soccer,

individuals from outside the U.S. would possible consider the two to be synonyms and

classify this as entailment. Six such pairs were identified and removed from the set of

180 examples, leaving 174 examples for IRT model-fitting.

2.2.6 IRT Evaluation

We used the methods described in Section 2.2.4 to build IRT models to evaluate

performance according to the NLI task. For both 4GS and 5GS examples three factors

were identified, each related to examples for the three GSRTE labels (entailment,

contradiction, neutral). This suggests that examples with the same GSRTE label

within each set defines a separate ability. In the subsequent steps, examples with

different labels were analyzed separately. After analysis, we were left with a subset

of the 180 originally selected examples. Refer to Table 2.3 for examples of the

retained and removed examples based on the IRT analysis. We retained 124 of the 180

examples (68.9%). We were able to retain more examples from the 5GS data sets (76

out of 90 - 84%) than from the 4GS data sets (48 out of 90 - 53.5%). Examples that

measure contradiction were retained at the lowest rate for both 4GS and 5GS data

sets (66% in both cases). For the 4GS entailment examples, our analysis found that

a one-factor model did not fit the data, and a two-factor model failed to yield an

interpretable loading pattern after rotation. We were unable to build an IRT model

that accurately modeled ability to recognize entailment with the obtained response

patterns. As a result, no examples from the 4GS entailment set were retained.
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Group Label Text

Retained

4GS Neutral 1. Premise: A toddler playing with a toy car next to a dog
Hypothesis: A toddler plays with toy cars while his dog sleeps

Contradiction 2. Premise: People were watching the tournament in the stadium
Hypothesis: The people are sitting outside on the grass

5GS Contradiction 3. Premise: A person is shoveling snow
Hypothesis: It rained today

Neutral 4 Premise: Two girls on a bridge dancing with the city skyline in
the background
Hypothesis: The girls are sisters.

Entailment 5. Premise: A woman is kneeling on the ground taking a photo-
graph
Hypothesis: A picture is being snapped

Removed

4GS Neutral 6. Premise: Two men and one woman are dressed in costume hats
Hypothesis: The people are swingers

Contradiction 7. Premise: Man sweeping trash outside a large statue
Hypothesis: A man is on vacation

Entailment 8. Premise: A couple is back to back in formal attire
Hypothesis: Two people are facing away from each other

Entailment 9. Premise: A man on stilts in a purple, yellow and white costume
Hypothesis: A man is performing on stilts

5GS Contradiction 10. Premise: A group of soccer players are grabbing onto each
other as they go for the ball
Hypothesis: A group of football players are playing a game

Neutral 11. Premise: Football players stand at the line of scrimmage
Hypothesis: The players are in uniform

Entailment 12. Premise: Man in uniform waiting on a wall
Hypothesis: Near a wall, a man in uniform is waiting

Table 2.3: Examples of retained & removed sentence pairs. The selection is not based
on right/wrong labels but based on IRT model fitting and example elimination process.
Note that no 4GS entailment examples were retained (Section 2.2.6)

Figure 2.3 plots the empirical spline-smoothed ICC of one example (Table 2.3,

example 9) with its estimated response curve. The empirical ICC plots the probability

values observed in the data for the estimated latent θ values, which is then smoothed to

approximate a continuous function. The ICC is not continuously increasing, and thus a

logistic function is not appropriate. This example was spotted for poor fit and removed.

Figure 2.4 shows a comparison between the ICC plot of a retained example (Table 2.3,

example 4) and the ICC of a removed example (Table 2.3, example 8). Note that the
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removed example has an ICC that is very flat between -3 and 3. This example cannot

discriminate individuals at any common level of ability and thus is not useful.

Figure 2.3: Estimated (solid) and actual (dotted) response curves for a removed
example.

The examples retained for each factor can be considered as an evaluation scale that

measures a single ability of an individual test-taker. As each factor is associated with

a separate gold-standard label, each factor (θ) is a person’s ability to correctly classify

the relationship between the text and hypothesis for one such label (e.g. entailment).

2.2.7 Example Parameter Estimation

Parameter estimates of retained examples for each label are summarized in Table

2.4, and show that all parameters fall within reasonable ranges. All retained exam-

ples have 2PL ICCs, suggesting no significant guessing. Difficulty parameters of most

examples are negative, suggesting that an average AMT user has at least 50% chance

to answer these examples correctly. This low range of example difficulty (relative to a
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Figure 2.4: ICCs for retained (solid) and removed (dotted) examples.

human population) is appropriate for the evaluation of NLP systems. Examples in

each scale have a wide range of difficulty and discrimination power.

Difficulty Slope
Example Set Min. Max. Min. Max.

5GS Contradiction -2.765 0.704 0.846 2.731
Entailment -3.253 -1.898 0.78 2.61

Neutral -2.082 -0.555 1.271 3.598

4GS Contradiction -1.829 1.283 0.888 2.753
Neutral -2.148 0.386 1.133 3.313

Table 2.4: Parameter estimates of the retained examples

With IRT one can use the heterogeneity of examples to properly account for such

differences in the estimation of a test-taker’s ability. Figure 2.5 plots the estimated

ability of each AMT user from IRT against their total number of correct responses

to the retained examples in the 4GS contradiction example set. The two estimates
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of ability differ in many aspects. First, test-takers with the same total score may

differ in their IRT score because they have different response patterns (i.e. they made

mistakes on different examples), showing that IRT is able to account for differences

among examples. Second, despite a rough monotonic trend between the two scores,

people with a higher number of correct responses may have a lower ability estimate

from IRT.

Figure 2.5: Plot of total correct answers vs. IRT scores.

We can extend this analysis to the case of NLI systems, and use the newly

constructed scales to evaluate NLI systems. A system could be trained on an existing

data set and then evaluated using the retained examples from the IRT models to

estimate a new ability score. This score would be a measurement of how well the

system performed with respect to the human population used to fit the model. With
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this approach, larger sections of data sets can be devoted to training, with a small

portion held out to build an IRT model that can be used for evaluation.

2.2.8 Application to an NLI System

As a demonstration, we evaluate the LSTM model presented in [Bowman et al.,

2015] with the examples in our IRT evaluation scales. The goal here is not to achieve

state of the art performance for the NLI task, but rather to demonstrate a use

case of the IRT test sets on an existing model. In addition to the theta scores, we

calculate accuracy for the binary classification task of identifying the correct label

for all examples eligible for each subset in Table 5 (e.g. all test examples where 5 of

5 annotators labeled the example as entailment for 5GS). Note that these accuracy

metrics are for subsets of the SNLI test set used for binary classifications and therefore

do not compare with the standard SNLI test set accuracy measures. The theta scores

from IRT in Table 2.5 show that, compared to AMT users, the system performed

well above average for contradiction examples compared to human performance, and

performed around the average for entailment and neutral examples. For both the

neutral and contradiction examples, the theta scores are similar across the 4GS and

5GS sets, whereas the accuracy of the more difficult 4GS examples is consistently lower.

This clearly demonstrates the advantage of IRT to account for example characteristics

in its ability estimates. For 5GS the theta score and accuracy for 5GS entailment

show that high accuracy does not necessarily mean that performance is above average

when compared to human performance.

Majority vote validation of a gold standard has been in common use since the

inception of NLP. It is easy to implement and evaluate, and allows for disagreements

between annotators as long as one choice hits a certain threshold, usually 50%

agreement. However, many factors may contribute to a majority vote. For example, an

“easy” example with a majority vote may not be useful for separating the performance
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Example Set Theta Score (Percentile) Test Acc.

5GS Entailment -0.133 (44.83%) 96.5%
Contradiction 1.539 (93.82%) 87.9%
Neutral 0.423 (66.28%) 88%

4GS Contradiction 1.777 (96.25%) 78.9%
Neutral 0.441 (67%) 83%

Table 2.5: Theta scores and area under curve percentiles for LSTM trained on SNLI
and tested on GSIRT . We also report the accuracy for the same LSTM tested on all
SNLI quality control examples (see Section 2.2.2). All performance is based on binary
classification for each label.

of NLP systems. By using a limited number of annotators there is a risk of bias or

uncertainty influencing the evaluation.

As NLP systems have become more sophisticated, sophisticated methodologies are

required to compare their performance. One approach to create an intelligent gold

standard is to use IRT to build models to scale performance on a small section of

examples with respect to the tested population. IRT models can identify data set

examples with different difficulty levels and discrimination powers based on human

responses, and identify examples that are not appropriate as scale examples for

evaluation. The resulting small set of examples can be used as a scale to score an

individual or NLP system. This leaves a higher percentage of a data set to be used in

the training of the system, while still having a valuable metric for testing.

Our current study uses the original GSNLI labels as answer keys to define response

patterns. A drawback of this is that our analysis depends on the validity of the original

GSNLI labels. However, IRT was still able to identify a final set of examples and

provide their meaningful characteristics, showing the robustness of this approach.

2.3 Sentiment Analysis

For SA, we collected a new data set of labels for 134 examples randomly selected

from the Stanford Sentiment Treebank (SSTB) [Socher et al., 2013], using a similar
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AMT setup as for NLI. For each randomly selected example, we had 1000 Turkers

label the sentence as very negative, negative, neutral, positive, or very positive. We

converted these responses to binary positive/negative labels and fit a new IRT 3PL

model using the mirt R package [Chalmers et al., 2012]. Very negative and negative

labels were binned together, and neutral, positive, and very positive were binned

together. To build the SA test set, the same procedure was followed as for the NLI

test sets. First, the tetrachoric matrix was inspected to identify the number of latent

factors. Single-factor and two-factor models were fit and compared to determine the

latent structure. After confirming that a single-factor model was appropriate, each

example was tested for goodness-of-fit, and removed if the example was a poor fit

for the model. At the end of this process, 77 examples were retained and 54 were

removed. Once the test was built, we used it to evaluate the same LSTM architecture

as in the NLI task. We trained the LSTM model on the full SSTB training set (M1)

and also on a training set where we randomly sampled two-thirds of the training data

(M2). Test set output showed that more training data leads to higher performance

(Table 2.6), as is expected. However we again see that by using the IRT test set

model performance is more clearly delineated than with raw accuracy. The model

trained with the full training set (M1) is significantly better than M2 with respect

to the human population of Turkers. This result echoes that of the NLI test sets. It

indicates that raw accuracy is not enough to accurately measure the performance of

these models and progress for the task. Accuracy scores for SA have been approaching

99% with the most recent DNN architectures, however that does not mean that the

task is solved. Instead, new data sets are required that measure difficult cases of SA.

2.4 Conclusion

We have introduced Item Response Theory from psychometrics as an alternative

method for generating gold-standard evaluation data sets. Fitting IRT models allows
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Model θ (Percentile) Accuracy (IRT Test) Accuracy (Held out test)

M1 1.16 (87.86) 77.27 87.27
M2 0.461 (67.79) 75.0 86.41

Table 2.6: Estimated ability (θ) and held-out test set accuracy for two LSTM models
trained with a full training set (M1) and a sampled training data set (M2). Differences
in θ are larger than differences in accuracy and better indicate the gap in model
performance.

us to identify a set of examples that when taken together as a test set, can provide a

meaningful evaluation of NLP systems with the different difficulty and discriminating

characteristics of the examples taken into account. We demonstrate the usefulness of

the IRT-generated test set by showing that high accuracy does not necessarily indicate

high performance when compared to a population of humans.

IRT is not without its challenges. A large population is required to provide the

initial responses in order to have enough data to fit the models; however, crowdsourc-

ing allows for the inexpensive collection of large amounts of data. An alternative

methodology is Classical Test Theory, which has its own limitations, in particular that

it is test-centric, and cannot provide information for individual examples.

Future work can adapt this analysis to create evaluation mechanisms for other

NLP tasks. The expectation is that methods that perform well using a standard

accuracy measure can be stratified based on which types of examples they perform

well on, and also perform well when the models are used together as an overall test of

ability. The hope is that this new method of evaluating NLP systems can lead to new

and innovative methods can be tested against a novel benchmark for performance,

instead of gradually incrementing on a classification accuracy metric.
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CHAPTER 3

UNDERSTANDING DEEP LEARNING MODEL
PERFORMANCE THROUGH TEST SET DIFFICULTY

3.1 Introduction

Interpreting the performance of deep learning models beyond test set accuracy is

challenging. Characteristics of individual data points are often not considered during

evaluation, and each data point is treated equally. In this chapter we examine the

impact of a test set question’s difficulty to determine if there is a relationship between

difficulty and performance. Experiments on Natural Language Inference (NLI) and

Sentiment Analysis (SA) show that the likelihood of answering a question correctly is

correlated with the question’s difficulty. As DNNs are trained with more data, easy

examples are learned more quickly than hard examples.

One method for interpreting deep neural networks (DNNs) is to examine model

predictions for specific input examples, e.g. testing for shape bias as in [Ritter et al.,

2017]. In the traditional classification task, the difficulty of the test set examples is

not taken into account. The number of correctly-labeled examples is tallied up and

reported. However, it may be worthwhile to use difficulty when evaluating DNNs. For

example, what does it mean if a trained model answers the more difficult examples

correctly, but cannot correctly classify what are seemingly simple cases? Recent work

has shown that for NLP tasks such as Natural Language Inference (NLI), models can

achieve strong results by simply using the hypothesis of a premise-hypothesis pair and

ignoring the premise entirely [Gururangan et al., 2016,Tsuchiya, 2018,Poliak et al.,

2018].
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We consider understanding DNNs by looking at the difficulty of specific test set

examples and comparing DNN performance under different training scenarios. Do

DNN models learn examples of varying difficulty at different rates? If a model does

well on hard examples and poor on easy examples, has it has really learned anything?

In contrast, if a model does well on easy examples, because a data set is all easy, have

the particular task really been “solved”?

As before, methods from Item Response Theory (IRT) are used to model difficulty

[Baker and Kim, 2004]. IRT is used to model the difficulty of test examples to

determine how DNNs learn examples of varying difficulty. IRT provides a well-studied

methodology for modeling example difficulty as opposed to more heuristic-based

difficulty estimates such as sentence length. In chapter 2 we used IRT to build new

test sets for the NLI and SA tasks and showed that model performance is dependent

on test set difficulty. Here the focus is to use IRT to probe specific examples to try to

analyze model performance at a more fine-grained level, and expand the analysis to

include the task of SA.

We train three DNNs models with varying training set sizes to compare performance

on two NLP tasks: NLI and Sentiment Analysis (SA). These experiments show that

a DNN model’s likelihood of classifying an example correctly is dependent on the

example’s difficulty. In addition, as the models are trained with more data, the odds of

answering easy examples correctly increases at a faster rate than the odds of answering

a difficult example correctly. That is, performance starts to look more human, in the

sense that humans learn easy examples faster than they learn hard examples.

That the DNNs are better at easy examples than hard examples seems intuitive but

is a surprising and interesting result since the example difficulties are modeled from

human data. There is no underlying reason that the DNNs would find examples that

are easy for humans inherently easy. This is the first work to use a grounded measure

of difficulty learned from human responses to understand DNN performance.
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Premise Hypothesis Label Difficulty

A little girl eating a sucker A child eating candy Entailment -2.74
People were watching the tour-
nament in the stadium

The people are sitting outside
on the grass

Contradiction 0.51

Two girls on a bridge danc-
ing with the city skyline in the
background

The girls are sisters. Neutral -1.92

Nine men wearing tuxedos sing Nine women wearing dresses
sing

Contradiction 0.08

Table 3.1: Examples of sentence pairs from the SNLI data sets, their corresponding
gold-standard label, and difficulty parameter (bi) as measured by IRT (§2.1).

Phrase Label Difficulty

The stupidest, most insulting movie of 2002’s first quarter. Negative -2.46
Still, it gets the job done - a sleepy afternoon rental. Negative 1.78
An endlessly fascinating, landmark movie that is as bold as
anything the cinema has seen in years.

Positive -2.27

Perhaps no picture ever made has more literally showed that
the road to hell is paved with good intentions.

Positive 2.05

Table 3.2: Examples of phrases from the SSTB data set, their corresponding gold-
standard label, and difficulty parameter (bi) as measured by IRT (§2.1).

As deep learning models are trained with larger data sets, the odds of answering

easy examples correctly increases at a faster rate than the odds of answering a difficult

example correctly. That is, performance starts to look more human, in the sense that

humans learn easy things faster than they learn hard things. This result is not as

intuitive as it seems, as a deep learning model has no reason to consider examples

that are easy for humans as easy.

3.2 Methods

3.2.1 Data

In this chapter the focus is on the difficulty parameter bi, which represents the

midpoint between the upper and lower asymptotes of the item characteristic curve

[Baker and Kim, 2004]. Low values of bi are associated with easier examples (since
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an individual with low ability has a 50% chance of answering correctly), and higher

values of bi represent more difficult examples.

To estimate example difficulties for NLI and SA, we used the pre-trained IRT models

from the test-set generation (Ch. 2) and extracted the difficulty example parameters.

Tables 3.1 and 3.2 show examples of the examples in the data sets, and the difficulty

values estimated from the IRT models. The first example in Table 3.1 is a clear case

of entailment, where if you assume that the premise is true, you can infer that the

hypothesis is also true. The label of the second example in SNLI is contradiction, but

in this case the result is not as clear. There are sports stadiums that offer lawn seating,

and therefore this could potentially be a case of entailment (or neutral). Either way,

one could argue that the second example here is more difficult than the first. Similarly,

the first two examples of Table 3.2 are interesting. Both of these examples are labeled

as negative examples in the data set. The first example is clear, but the second one

is more ambiguous. It could be considered a mild complement, since the author still

endorses renting the movie. Therefore you could argue again that the second example

is more difficult than the first. The learned difficulty parameters reflect this difference

in difficulty in both cases.

3.2.2 Models

For the analyses we trained three representative deep learning models. Each

model was trained according to the original parameters provided in the respective

papers. Word embeddings for all models were initialized with GloVe 840B 300D word

embeddings [Pennington et al., 2014].

3.2.2.1 Long Short Term Memory

The Long Short Term Memory (LSTM) model used here was provided by [Bowman

et al., 2015] with the release of the SNLI corpus. The model consists of two LSTM

sequence-embedding models [Hochreiter and Schmidhuber, 1997], one to encode the
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premise and another to encode the hypothesis. The two sentence encodings are then

concatenated and passed through three tanh layers. Finally, the output is passed to a

softmax classifier layer to output probabilities over the task classes. For SA, we kept

the same architecture but used a single LSTM layer to encode the input text. We

implemented this model in DyNet [Neubig et al., 2017].

3.2.2.2 Convolutional Neural Network

We used the convolutional neural network (CNN) model of [Kim, 2014] in our

experiments. For each input, the word vector representation of the input tokens

were concatenated together to form a matrix. A series of convolutional operations

were applied, followed by a max-pooling operation and a fully connected softmax

classifier layer. More concretely, for an input sentence x, let xi be the word vector

representation of the i-th word in x. The convolution operation of filter w over a

window of length h starting with word xi results in a context vector ci:

ci = f(w · xi:i+h−1 + b) (3.1)

where b is a bias term [Kim, 2014]. The filter is applied over all windows in the

sentence to generate a feature-map, and max-pooling is used to identify the feature

for this particular filter. The process is repeated with multiple filters, and the output

features are then passed to a softmax classification layer to output probabilities over

the class labels [Kim, 2014]. For NLI, the premise and hypothesis sentences were

concatenated before encoding.

3.2.2.3 Neural Semantic Encoder

Neural Semantic Encoder (NSE) is a memory-augmented neural network that

uses read, compose, and write operations to evolve and maintain an external memory

[Munkhdalai and Yu, 2017] M during training and outputs an encoding h that is used

for downstream classification tasks:
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ot = fLSTMr (xt) (3.2)

zt = softmax(o>t Mt−1) (3.3)

mr,t = z>t Mt−1 (3.4)

ct = fMLP
c (ot,mr,t) (3.5)

ht = fLSTMw (ct) (3.6)

Mt = Mt−1(1− (zt ⊗ ek)>) + (ht ⊗ el)(zt ⊗ ek)> (3.7)

where fLSTMr is the read function, fMLP
c is the composition function, fLSTMw is

the write function, Mt is the external memory at time t, and el ∈ Rl and ek ∈ Rk are

vectors of ones [Munkhdalai and Yu, 2017].

For NLI, the premise and hypothesis sentences were each encoded with an NSE

module. The outputs were combined and passed through a softmax classifier layer

to output probabilities. For SA, we kept the same architecture but used a single

NSE layer to encode the input text. We used the publicly available version of the

NSE model released by the authors1 implemented in Chainer [Tokui et al., 2015], and

followed the original NSE training parameters and hyperparameters [Munkhdalai and

Yu, 2017].

3.2.3 Experiments

The goal in this chapter is to understand how DNN performance on examples of

varying difficulty changes under different training scenarios. To test this, we trained

three DNN models using subsets of the original SNLI and SSTB training data sets.

For each task (NLI and SA), we randomly sampled subsets of training data, from

100 examples up to and including the full training data sets. We sampled 100, 1000,

1https://bitbucket.org/tsendeemts/nse
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2000, 5000, 10000, 50000, 100000, 200000, and 500000 examples for NLI, and sampled

100, 1000, 5000, 10000, 50000, and 75000 examples for SA. We trained each model on

the training data subsets, using the original development sets for early stopping to

prevent overfitting. The IRT data with difficulty estimates were used as test sets for

the trained models. For the IRT data, difficulty parameters were estimated from the

Amazon Mechanical Turk response pattern data (Ch. 2). The same test set is used

for each of the model/training set size configurations so that we can compare across

them.

Once the models were trained and had classified the IRT data sets, we fit logistic

regression models to predict whether a DNN model would label an example correctly,

using the training set size and example difficulty as the dependent parameters.

3.3 Results

Figure 3.1 plots the contour plots of the learned regression models. The top row

plots results for the NLI task, and the bottom row plots results for the SA task. From

left to right in both rows, the plots show results for the LSTM, CNN, and NSE models.

In each plot, the x-axis is the training set size, the y-axis is the example difficulty,

and the contour lines represent the log-odds that the DNN model would classify

an example correctly. As the plots show, example difficulty has a clear effect on

classification. Easier examples have higher odds of being classified correctly across

all of the training set sizes. In addition, the slopes of the contour lines are steeper at

lower levels of difficulty. This indicates that, moving left to right along the x-axis, a

model’s odds of answering an easy example correctly increase more quickly than the

odds of answering a harder example correctly.

The contour plots for the CNN and NSE models on the SA task (Figure 3.1, second

row middle and right plots) show that the easier examples have higher likelihood of

being classified correctly, but the odds for the most difficult examples decrease as
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Figure 3.1: Contour plots showing log-odds of labeling an example correctly for
NLI (top row) and SA (bottom row) as a function of training set size (x-axis) and
example difficulty (y-axis). Each line in the plots represents a single log-odds value
for labeling an example correctly. Blue indicates low log-odds of labeling an exam-
ple correctly, and pink indicates high log-odds of labeling an example correctly. The
contour colors are consistent across plots and log-odds values are shown in the legend
on the right.

training size increases. This suggests that these models are learning in such a way that

improves performance on easy examples but has a negative effect on hard examples.

This result is important for interpretability, as it could inform stakeholder decisions if

they need to have difficult examples classified.

For the DNN models, there were several subsets of examples with interesting

results. Each DNN model (LSTM, CNN, NSE) had at least one subset regression with

a negative difficulty coefficient, a positive training set size coefficient, and a negative

interaction coefficient. For an example with difficulty 0, as more training data is

used, performance increases, which is expected. The negative coefficient of interaction

means that the negative slope associated with difficulty is flatter when training size is

smaller (e.g. difficult has a smaller effect on performance). In addition, this interaction

52



parameter tells us that the positive association with training size is steeper for easier

examples (examples with difficulty less than 0) and flatter for harder examples. In

other words, easier examples are easier to learn than the difficult examples. The slope

of performance (in terms of log-odds) with respect to log of training size decreases

with example difficulty, indicating that more difficult examples are harder to learn and

have a flatter learning curve. This negative interaction also means that the slope of

performance with respect to example difficulty decreases with training size. It could

be that the training data sets simply have more easy examples in them than difficult

examples. In this case, it is important to understand what types of examples are in a

particular training set, as it will affect the ability of a model to predict certain types

of examples in the future. At the same time, examples may be easy or difficult for

different reasons, so deeper analysis of the characteristics of data sets is required.

This behavior, where the expected probability of answering correctly is higher

for easy examples than difficult examples, is consistent with the assumptions of IRT

models when estimating human ability. A human with a particular estimated ability

level will have probability of 0.5 of correctly answering a question with a difficulty

parameter equal to his or her ability. This probability increases for easier examples and

approaches 1 for the easiest examples. For harder examples, probability decreases and

approaches 0.

The idea that easy examples should be easier than hard examples is consistent with

learning strategies in humans. For example, when teaching new concepts to students,

easier concepts are presented first so that the students can learn patterns and core

information before moving to more difficult concepts [Collins et al., 1988,Arroyo et al.,

2010]. As students do more examples, all questions get easier, but easy questions

get easier at a faster rate. This result is also consistent with the key assumptions of

curriculum learning [Bengio et al., 2009].
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With more training data, the models move away from treating each question

equally regardless of difficulty to a structure more consistent with that of human

learning, where the probability of answering an easy question correctly is higher than

that of answering a difficult question correctly. This aligns with the expectation that

there is a higher probability of answering an easy question than a harder one. As this

interaction is evident in each DNN model that was tested, by increasing training size

for an NLP model, not only does the expected overall performance increase [Halevy

et al., 2009], but the models exhibit a more human-like learning capability with respect

to the difficulty of the test set examples.

3.4 Analysis

We conducted additional analysis on the NLI data to see if there were other

interesting characteristics associated with these data.

3.4.1 Model Performance

Table 3.3 shows the results of evaluating the models listed above when trained on

the original SNLI training set (550k examples). We report ability percentiles on the

IRT test sets and accuracy on the SNLI test set as a baseline comparison of models.

Recall that for SNLI we obtained 5 different IRT test sets, split according to gold label

and the number of quality control annotators that agreed in the original SNLI data

set creation. Table 3.3 shows that the RNN models (LSTM and NSE) outperform

the CNN model in both accuracy and IRT. However the IRT scores are much more

sensitive in terms of identifying high performing RNN models. The NSE model, which

had high overall accuracy (84.06%), scores lower in the IRT metrics when comparing

with the LSTM model.

Because IRT considers the individual examples that are answered correctly, it may

be the case that the specific response pattern for the NSE output is associated with
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Theta Percentile Scores
Model 5E 5C 5N 4C 4N Acc

LSTM 44.83 93.82 66.28 96.25 67.00 77.6
CNN 1.88 47.89 14.63 78.40 28.46 67.0
NSE 14.87 62.76 34.84 90.60 57.79 84.1

Table 3.3: Theta Percentile Scores of tested models on the full SNLI training set.
Each column refers to one of the 5 SNLI IRT test sets (§2.2.6).

a lower ability score than the LSTM response pattern. The overall accuracy score

does not consider the difficulty and discriminatory parameters of individual examples,

and therefore cannot distinguish models on the basis of ability. When you consider

responses to the IRT test set examples, the LSTM and NSE models answer a similar

number of examples correctly (in fact, for some tests the NSE model answers one

more question correctly), but the specific examples that are answered correctly affect

the ability scores from the IRT models. In addition, there is a larger gap between IRT

scores than accuracy scores, which helps when identifying high-performing models

and distinguishing between randomness in performance scores.

Figure 3.2: Correlation matrix for theta scores and SNLI test set accuracy. Correlations
that are not significant (p < 0.05) are crossed out.
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To confirm the validity of IRT as a metric the correlations between accuracy and

the IRT scores are reported to see how consistent the scores are (Figure 3.2). The IRT

percentile scores are highly correlated with accuracy (above 0.8 for 5C, 4C, and 4N,

0.69 for 5N and 0.59 for 5E). In addition, each IRT score is highly correlated with each

other (≥ 0.80 for all pairs except 4C and 5E, which is 0.73). All but 3 correlations

are statistically significant (p < 0.05). The strong positive correlation between IRT

scores and accuracy shows that IRT as an evaluation metric is consistent with existing

metrics.

3.5 Discussion

We have shown that DNN model performance is affected by example difficulty as

well as training set size. This is the first work that has used a well-established method

for estimating difficulty to analyze DNN model performance as opposed to heuristics.

DNN models perform better on easy examples, and as more data is introduced in

training, easy examples are learned more quickly than hard examples. Learning easy

examples faster than harder examples is what would be expected when examining

human response patterns as they learn more about a subject. However this has

not previously been shown to be true in DNN models. As more training examples

are used for training, mastery of easy examples comes more quickly than of harder

examples. Figure 3.1 plots the predicted log-odds of answering an example correctly

based on the regression models. In each case, the odds increase as the training set

size increases, which is to be expected. However, the odds increase more quickly for

easier examples than for harder examples.

That the results are consistent across NLI and SA shows that the methods can be

applied to a number of NLP tasks. The SA results do show that the odds of labeling

a difficult example correctly decrease with more training data 3.1. It could be the

case that these difficult examples in the SA task are more subjective than the easier
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examples, for example a review that is fairly neutral and is split between positive

and negative annotations. These cases would be more difficult for a model to label,

and are worth examining in more detail. By identifying examples such as these as

difficult makes it easier to see where the model is going wrong and allows for research

on better way to represent these cases.

This result has implications for how machine learning models are evaluated across

tasks. The traditional assumption that the test data is drawn from the same distribu-

tion as the training data, makes it difficult to understand how a model will perform

in settings where that assumption does not hold. However, if the difficulty of test

set data is known, one can better understand what kind of examples a given model

performs well on, and specific instances where a model underperforms (e.g. the most

difficult examples). In addition, researchers can build test sets that consist of a specific

type of data (very easy, very hard, or a mix) to evaluate a trained model under specific

assumptions to test generalization ability in a controlled way. This could allow for

more confidence in model performance in more varied deployment settings, since there

would be a set of tests a model would have to pass before being deployed.

It is important to note that the difficulty parameters were estimated from a human

population, meaning that those examples that are difficult for humans are in fact more

difficult for the DNN models as well. This does not need to be the case given that

DNNs learn very different patterns, etc. than humans. In fact there were exceptions

in the results which shows that these models should be carefully examined using

techniques like those described here. Future work can investigate why this is the

case and how this information can be leveraged to improve model performance and

interpretability.

Evaluating progress in Machine Learning requires effective metrics to measure

algorithms output on test sets. We demonstrate the reliability of IRT as a metric for

NLI. IRT scores are consistent in that they separate models based on performance
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in a similar manner as accuracy, while providing more information with regards to

the examples answered correctly by each model. These experiments have shown

that the IRT metric is consistent with the standard accuracy results in identifying

high-performing and low-performing models. A key benefit of IRT is that provides

a way to estimate parameters of individual examples, such as difficulty. Estimating

example parameters allows for more fine-grained analysis of model performance. The

results show that as DNN models are trained with larger data sets, their performance

begins to look like performance expected from humans. That is, the probability that

the model will answer an easy question correctly is much higher than the probability

that it will answer a more difficult question correctly. These difficulty parameters are

modeled on human response data, which makes the result all the more interesting.

Those questions that humans find hard are also hard for the models. As the DNN

models are trained with more data, learning patterns emerge that mirror those

of humans. Whereas with little training, easy and difficult examples have similar

likelihood of being answered correctly, with larger training sizes easy examples have a

higher likelihood of being answered correctly.

These results use parameters learned from human response patterns when estimat-

ing ability. IRT makes it possible to estimate a model’s ability with regard to the

original human population. This allows us to place a model on a scale of ability that

is directly comparable to humans. A traditional metric like accuracy is dependent

on the data set. If a data set is very easy, high accuracy scores are not necessarily

indicative of high performance. This is reflected in scores for the 5E IRT test set,

which is very easy. Conversely, a test set is hard, then low accuracy does not imply

low ability (e.g. the 4C test set).

These results are dependent on the difficulties estimated from a human population

of AMT annotators. Therefore it is possible that certain subsets of questions had

a greater influence on the IRT models than others. A larger set of examples in the
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IRT models could reduce the implicit weighting of certain questions and have a more

appropriate distribution of ability levels. This is difficult due to the need for human

annotators, but automating response pattern generation would be an interesting

direction for future work.

Future work can explore additional models using more specialized features to

attempt to improve performance. Ensemble models that consider the output of

multiple DNNs (e.g. CNNs, RNNs, and memory networks) can take advantage

of the high performance of different categories of sentence pair to further improve

performance.
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CHAPTER 4

SOFT-LABEL MEMORIZATION-GENERALIZATION

4.1 Introduction

Often when multiple labels are obtained for a training example it is assumed that

there is an element of noise that must be accounted for. It has been shown that this

disagreement can be considered signal instead of noise [Inel and Aroyo, 2017]. In this

chapter we investigate using soft labels for training data to improve generalization in

machine learning models. However, using soft labels for training Deep Neural Networks

(DNNs) is not practical due to the costs involved in obtaining multiple labels for large

data sets. We propose soft label memorization-generalization (SLMG), a fine-tuning

approach to using soft labels for training DNNs. We assume that differences in labels

provided by human annotators represent ambiguity about the true label instead of

noise. Experiments with SLMG demonstrate improved generalization performance on

the natural language inference (NLI) and sentiment analysis (SA) tasks. By injecting a

small percentage of soft label training data (0.03% of training set size) we can improve

generalization performance over several baselines.

In Machine Learning (ML) classification tasks a model is trained on a set of labeled

data and optimized based on some loss function. The training data consists of some

feature set Xtrain = xi, . . . , xN and associated labels Ytrain = y1, . . . , yN , where Y is a

vector of integers corresponding to the classes of the problem. For binary classification,

Y would be a vector of 0’s and 1’s, with 0 representing the negative class and 1

representing the positive class. The goal when training an ML classification model is

to minimize the error in the model’s prediction of a class label for a given training
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example. The loss function can take many forms, but at a high level the goal is to

minimize the number of training examples the model misclassifies:

N∑
i

I[ŷi 6= yi] (4.1)

where I[x] is the indicator function. It is typically assumed that each training example

is labeled correctly, and each is equally appropriate for a single class. There is no way to

quantify the uncertainty of the examples, nor a way to exploit such uncertainty during

training. Particularly for NLP tasks with sentence- or phrase-based classification such

as natural language inference (NLI) and sentiment analysis (SA), it is not common to

model ambiguity in language in training data labels.

For example, consider the following two premise-hypothesis pairs, both taken from

the Stanford Natural Language Inference (SNLI) corpus for NLI [Bowman et al., 2015]:

1. Premise: Two men and a woman are inspecting the front tire of a bicycle.

Hypothesis: There are a group of people near a bike.

2. Premise: A young boy in a beige jacket laughs as he reaches for a teal balloon.

Hypothesis: The boy plays with the balloon.

In both cases the gold-standard label in the SNLI data set is entailment, which is

to say that if you assume that the premise is true, you can infer that the hypothesis

is also true. However, looking at the two sentence pairs one could argue that they

do not both equally describe entailment. The first example is a clear case: people

inspecting a front tire of a bike are almost certainly standing near it. However the

second example is less clear. Is the child laughing because he is playing? Or is he

laughing for some other reason, and is simply grabbing for the balloon to hold it (or

give it to someone else)? One could argue that a laughing child is more often than not

associated with play, but that requires additional external knowledge that might not

61



be contained in the data set. There is ambiguity associated with the two examples

that is not captured in the data. To a machine learning model trained on SNLI, both

examples are to be classified as entailment, and incorrect classifications should be

penalized equally during learning.

Previous work has shown that leveraging crowd disagreements can improve the

performance of named entity recognition (NER) models by treating disagreement not

as noise but as signal [Inel and Aroyo, 2017]. We use the same assumption here and

encode crowd disagreements directly into the model training data in the form of a

distribution over labels (“soft labels”). These soft labels model uncertainty in training

by representing human ambiguity in the class labels. Ideally we would have soft labels

for all of our training data, however when training large deep learning models it is

prohibitively expensive to collect many annotations for all data in the huge data sets

required for training. When training deep neural networks (DNNs), even a small

amount of soft labeled data can improve generalization.

With this in mind we propose soft label memorization-generalization (SLMG), a

fine-tuning approach to training that uses distributions over labels for a subset of data

as a supplemental training set for a learning model. Ideally a model could be trained

with soft labels for all training examples, but because of the costs involved, only a

small number of examples for fine-tuning augment a larger data set.

Our hypothesis is that using labels that incorporate language ambiguity can

improve model generalization in terms of test set accuracy, even for a small subset of

the training data. By using a distribution over labels we hope to reduce overfitting

by not pushing probabilities to 1 for examples where the empirical distribution is

more spread out. Results show that SLMG is a simple and effective way to improve

generalization without a lot of additional data for training.

We evaluate our approach on NLI using the SNLI data set [Bowman et al., 2015]

and SA using the Stanford Sentiment Treebank (SSTB) [Socher et al., 2013]. Prior
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work has shown that lexical phenomena in the SNLI data set can be exploited by

classifiers without learning the task, and performance on difficult examples in the

data set is still relatively poor, making NLI a still-open problem [Gururangan et al.,

2016,Poliak et al., 2018]. For soft labeled data we use the IRT evaluation scales for NLI

and SA data introduced earlier where each example was labeled by 1000 AMT workers

(Chapter 2). This way we are able to leverage an existing source of soft labeled data

without additional annotation costs. We find that SLMG can improve generalization

under certain circumstances, even thought the amount of soft labeled data used is tiny

compared to the total training sets (e.g. 0.03% of the SNLI training data set). SLMG

outperforms the obvious but strong baseline of simply gathering more unseen data

for labeling and training. Our results suggest that there are diminishing returns for

simply adding more data past a certain point [Halevy et al., 2009], and indicate that

representing data uncertainty in the form of soft labels can have a positive impact on

model generalization.

This chapter presents the following contributions: (i) we propose the SLMG

framework for incorporating soft labels in machine learning training, (ii) we use

previously-collected human annotated data to estimate soft label distributions for NLI

and SA and show that replacing less than 0.1% of training data with soft labeled data

can improve generalization for three DNN models, and (iii) we demonstrate for the

first time that soft labels can encode ambiguity in training data that can improve

model generalization in terms of test set accuracy.

4.2 Soft Label Memorization-Generalization

4.2.1 Overview

In a traditional supervised learning single-label classification problem, a model

is trained on some data set Xtrain, and tested on some test set Xtest. In this setting,

learning is done by minimizing some loss function L. We assume that the labels
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associated with instances in Xtrain are correct. That is, for each (xi, yi) ∈ Xtrain we

assume that yi is the correct class for the i-th example, where xi is some set of features

associated with the i-th training example and yi is the corresponding class. However

it is often the case, particularly in NLP, that examples may vary in terms of difficulty,

ambiguity, and other characteristics that are often not captured by the single correct

class to which the example belongs. The traditional single-label classification task

does not take this into account.

For example, a popular loss function for classification tasks is Categorical Cross-

Entropy (CCE). For a single training example xi with class yi ∈ Y where Y is the set

of possible classes, CCE loss is defined as

LCCE
i = −

|Y |∑
j=1

p(yij) log p(ŷij) (4.2)

In the single-class classification case where a single class j has probability 1 CCE loss

is

LCCE =
N∑
i

− log p(ŷij) (4.3)

where each example loss is summed over all of the training examples. With this loss

function a learning model is encouraged to update its parameters in order to maximize

the probability of the correct class for each training example. Without some stopping

criteria, parameter updates will continue for a given example until p(ŷij) = 1. This

may not always be ideal, since by pushing the model output probability to 1, the

learner is encouraged to overfit on an example that may not be representative of the

particular class.

With SLMG we want to take advantage of the fact that differences between

examples in the same class can be useful during training. Instead of treating each

training example as having a single correct class, SLMG uses a distribution over labels
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for the gold standard. This way examples with varying degrees of uncertainty are

reflected during training.

We make a different assumption regarding noise in human generated labels than

previous work [Dawid and Skene, 1979,Bachrach et al., 2012]. The presence of noise

when multiple labels are obtained is often attributed to labeler error, lack of expertise,

adversarial actions, or other negative causes. However, we believe that the noise in the

labels can be considered a signal [Inel et al., 2014,Aroyo and Welty, 2015]. Examples

with less uncertainty about the label (in the form of a label distribution with a single

high peak) should be associated with similarly high model confidence.

4.2.2 Learning with SLMG

In our experiments we investigated two ways to incorporate the soft labeled data

into model training, which we define below. Let Xtrain be the training set with one-hot

gold labels, and let Xtest be the test set. Let Xsoft be the soft labeled training data with

class probabilities. We assume that there is no overlap between the examples in Xtrain

and Xsoft: Xtrain ∩Xtrain = ∅. There are two ways to incorporate the Xsoft data into a

learning task that we investigate: (i) at each training epoch, training with Xtrain and

Xsoft interspersed (SLMG-I), and (ii) train a model on Xtrain for a predefined number

of epochs, followed by training on Xsoft for a predefined number of epochs, repeated

some number of times (meta-epochs) in a sequential fashion (SLMG-S). Algorithms 1

and 2 define the two training sequences, respectively. In our experiments we tested

two loss functions for the SLMG data, CCE (§4.2.1) and Mean Squared Error (MSE):

LMSE
i =

∑|Y |
j=1(p̂(yij)− p(yij))2.

4.2.2.1 Interspersed Fine-Tuning

The motivation for interspersing fine-tuning with soft labels is to prevent overfitting

as the model learns. After each epoch in the training cycle, the learning model will

have made updates to the model weights according to the outputs on the full training
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Algorithm 1 SLMG-I Algorithm

Input: Model m, NumEpochs e, Xtrain, Xsoft

for i = 1 to e do
Train m on XN

train

Train m on Xsoft

end for

set. By interspersing the fine-tuning after each epoch, using soft labels can account

for and correct overfitting earlier in the process by making smaller updates to the

model weights according to the soft label distributions. This method encourages

generalization early in the process, before the model can memorize the training data

and possibly overfit.

4.2.2.2 Sequential Fine-Tuning

In contrast with the interspersed fine-tuning, the motivation for sequential fine-

tuning is to adjust a well-trained model to improve generalization. After a full training

cycle of some number of epochs, the learning model is then fine-tuned using the

soft-labeled data. This way the fine-tuning takes place after the model has learned a

set of weights that perform well on the training data. Fine-tuning here can improve

generalization by updating the model weights to be less extreme when dealing with

examples that are more ambiguous than others. Since these updates happen on a

trained model, there is less risk of the model performance drastically reducing. By

repeating this process over a number of meta-epochs, the learning model can memorize,

generalize, and repeat the cycle.

4.2.3 Collecting Soft Labeled Data

For soft labeled data, we use the AMT response pattern data collected for earlier

work (Chapter 2). 180 SNLI training examples split evenly between the three labels

were randomly selected and given to Amazon Mechanical Turk (AMT) workers

(Turkers) for additional labeling. For each example 1000 additional labels were
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Algorithm 2 SLMG-S Algorithm

Input: Model m, NumMetaEpochs me, NumEpochs e, Xtrain, Xsoft

for i = 1 to me do
for j = 1 to e do

Train m on XN
train

end for
for j = 1 to e do

Train m on Xsoft

end for
end for

collected. In order to estimate a distribution over labels for these examples we

calculate the probability of a certain label according to the proportion of humans that

selected the label: P (Y = y) = Ny

N
, where Ny is the number of times y was selected

by the crowd and N is the total number of responses obtained.

For SA, 134 examples were randomly selected from SSTB, using a similar AMT

setup as for the SNLI data. For each randomly selected example, we asked 1000

Turkers to label the sentence as very negative, negative, neutral, positive, or very

positive.

Table 4.1 shows example premise-hypothesis pairs taken from the SNLI data set for

NLI [Bowman et al., 2015]. Table 4.1 includes the premise and hypothesis sentences,

the gold standard class as included in the data set, as well as estimated soft labels using

human responses.1 There are premise-hypothesis pairs that share a class label (e.g. the

first two examples) yet are very different in terms of how they are perceived by a crowd

of human labelers. In a traditional setup both examples would have a single class

label associated with contradiction (class label 1 if 0 = entailment, 1 = contradiction,

and 2 = neutral). Certain training examples have much less uncertainty associated

with them, which is reflected in the high probability weight on the correct label. In

other cases, there is a more evenly spread distribution, which can be interpreted as

1Typos in the examples are from the original data set and are preserved intentionally.
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a higher degree of uncertainty. In a learning scenario, one may want to treat these

examples differently according to their uncertainty, as opposed to the common practice

of weighing each equally. Similarly Table 4.2 shows examples of sentences for the SA

task that demonstrate how the gold standard label provided in the data set does not

capture the uncertainty with the labels provided by the crowd.

Premise Hypothesis P (E) P (C) P (N)
A little boy is opening gifts surrounded by a
group of children and adults.

The boy is being punished 0.005 0.839 0.156

A man and woman walking away from a
crowded street fair.

There are a group of men walking to-
gether.

0.045 0.542 0.412

Two men and a woman are inspecting the front
tire of a bicycle.

There are a group of people near a bike. 0.861 0.032 0.108

A young boy in a beige jacket laughs as he
reaches for a teal balloon.

The boy plays with the balloon. 0.659 0.026 0.316

A man wearing a gray shirt waving in the mid-
dle of a plant nursery

The man does not have a way to get
home.

0.011 0.174 0.815

A wielder works on wielding a beam into place
while other workers set beams.

The wielder is working on a building. 0.486 0.013 0.501

Table 4.1: Examples of premise-hypothesis pairs from the SNLI data set and the AMT-
estimated probability that the correct label is Entailment (E), Contradiction (C), or
Neutral (N). The original gold-standard label from SNLI is in bold. In some cases,
the gold label provided originally has a low probability based on AMT-population
estimates (i.e. less than 75%).

Sentence P (VNeg) P (Neg) P (Neu) P (Pos) P (VPos)
An endlessly fascinating, landmark movie that is as bold
as anything the cinema has seen in years.

0.01 0.015 0.023 0.128 0.824

If no one singles out any of these performances as award-
worthy, it’s only because we would expect nothing less
from this bunch.

0.061 0.148 0.164 0.297 0.329

Trivial where it should be profound, and hyper-cliched
where it should be sincere

0.421 0.416 0.093 0.048 0.021

Table 4.2: Examples from the SSTB data set and the AMT-estimated probabilities
over labels. The gold label from SSTB is in bold.

Consider calculating the entropy, H(X), of the first two training examples from

Table 4.1:

H(X) = −
∑
y∈Y

p(y) log p(y) (4.4)
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If we assume that the probability of the correct label (in this case, contradiction), is 1,

and the probability of all other labels is 0, then entropy in both cases is 0.2 However

if we use the distributions from Table 4.1, then entropy is 0.464 and 0.837 respectively.

There is much more uncertainty in the second example than the first, which is not

reflected if we assume that both examples are labeled contradiction with probability

1. This uncertainty may be important when learning for classification.

4.2.4 Learning from the Crowd

In this chapter we take advantage of the fact that we have a distribution over labels

provided by the human labelers. We can train using CCE or MSE as our loss function,

where we minimize the difference between the estimated probabilities learned by the

model and the empirical distributions obtained from AMT over the training examples.

SLMG attempts to move the model predictions closer to the soft label distribution of

responses. SLMG is not necessarily trying to push predicted probability values to 1,

which is a departure from the typical understanding of single label classification in

ML. Here I hypothesize that updating weights according to differences in the observed

probability distributions will improve the model by preventing it from updating too

much for more uncertain examples (that is, examples where the empirical distribution

is more evenly spread across the three labels).

This scenario assumes that the crowdsourced distribution of responses is a better

measure of correctness than a single gold-standard label. We hypothesize that the

crowd distribution over labels gives a fuller understanding of the examples being used

for training. SLMG can update parameters to move closer to this distribution without

making large parameter updates under the assumption that a single correct label

should have probability 1.

2Where 0 log 0 = 0.
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If we assume that ML performance is not at the level of an average human (which

is reasonable in many cases), then SLMG can help pull models towards average human

behavior when we use human annotations to generate the soft labels. If the model

updates parameters to minimize the difference between predictions and the distribution

of responses provided by AMT workers, then the model predictions should look like

that of the crowd. When ML model performance is better than the average AMT

user, there is a risk that performance may suffer, if we assume that our model would

outperform a human population. The model may have learned a set of parameters

that better models the data than the human population, and updating parameters to

reflect the human distribution could lead to a drop in performance. However since

SLMG is only used as a fine-tuning mechanism, the risk here is mitigated by the larger

training set used alongside the SLMG data.

4.3 Experiments

Our hypothesis is that soft labeled data, even in very small amounts, can improve

model generalization by capturing ambiguity of language data in the form of distri-

butions over labels. We describe our experiments to test this hypothesis, as well as

the data sets and models used in the experiments. At a high level, our goal is to

understand how distributions over labels can affect the learning process. To do this

we look at several ways of incorporating the SLMG data. By varying the point at

which we inject the SLMG data we can observe how performance is affected.

For the experiments in this chapter we utilize the same data sets (§2.2.1) as studied

earlier. For deep learning models, we use both the LSTM and NSE models described

earlier (§3.2.2) as well as the Enhanced Sequential Inference Model (ESIM) [Chen

et al., 2017]. ESIM consists of three stages: (i) input premise and hypothesis encod-

ing with BiLSTMs, (ii) local inference modeling with attention, and (iii) inference

composition with a second BiLSTM encoding over the local inference information.
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We used the publicly available ESIM model released by the authors3 implemented

in Theano [Theano Development Team, 2016] and kept all of the hyperparameters

the same as in the original paper. We do not use ESIM in our SA experiments. The

model was designed specifically for NLI, as opposed to NSE which performs well across

several tasks including sentiment analysis [Munkhdalai and Yu, 2017]. In addition,

NSE performance on SA is close to state-of-the-art, so testing another high-performing

model in this case is unnecessary.

The SA soft label data examples were selected from the SSTB test set, so for

our experiments we use a modified SSTB test set where the examples have been

removed. In our results we report baseline scores on the modified test set so as to be

consistent. We chose to select from the SSTB test set because the training set for

SSTB, particularly for the binary task, is smaller than the SNLI data set. We would

rather keep all data for training in this instance, and report all of our results on a

smaller, but still substantial test set. For all experiments we used early stopping and

report test results for the epoch with the highest dev set performance.

4.3.1 Baselines

We evaluate SLMG against three baselines: (i) B1, Traditional: we train the

DNN models (§3.2.2) in a traditional supervised learning setup, where the soft labeled

training data (Xsoft) is incorporated in the hard labeled training data (Xtrain) with

their original gold-standard labels, (ii) B2, Comparable Label Effort (CLE): Because

each of the 180 Xsoft examples have 1000 human annotations, our second baseline is

to add new single label training data to B1, to evaluate against a comparable data

labeling effort. To that end, we randomly selected 180,000 additional training data

points from the Multi-NLI data set [Williams et al., 2018] for additional training data,

(iii) B3, AOC: The third baseline is the All in one Classifier (AOC) approach [Kajino

3https://github.com/lukecq1231/nli
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et al., 2012], where for each example in Xsoft, every label obtained from the crowd

is used as a unique example in the training data. This baseline also has an addition

180,000 training data points as in B2, but the additional pairs all come from Xsoft

and have varying labels depending on the crowd responses.

4.4 Results and Analysis

Table 4.3 reports results on the SNLI test set. For each model on the NLI task,

SLMG leads to improved generalization performance (i.e. test set accuracy) by

injecting soft labeled data at some point. Note that the best performance with SLMG

varies according to the model, but for each model there is some configuration that

does improve performance. As with all model training, the effect of SLMG requires

experimentation according to the use case. In all cases, using CCE as the loss function

performs better than using MSE. We suspect that this is due to the fact that small

differences are penalized less with CCE than with MSE.

Task Model Baselines SLMG-S SLMG-I
B1 B2 B3 MSE CCE MSE CCE

LSTM 76.7 76.9 75.7 76.5 77.4 76.9 76.7
NLI NSE 84.6 84.8 84.0 84.1 85.1 84.3 84.4

ESIM 87.7 84.0 84.1 87.7 87.6 87.8 87.9

SA-B LSTM 87.4 86.7 87.0 87.3 87.5 86.5 87.5
NSE 88.9 88.7 87.7 87.5 88.6 88.4 89.1

SA-FG LSTM 49.7 n/a 50.1 50.8 47.0 51.7 49.9
NSE 52.3 n/a 50.6 51.0 51.9 52.0 51.2

Table 4.3: Training and test accuracy results for incorporating SLMG in three tasks:
NLI, binary sentiment analysis (SA-B), and fine-grain sentiment analysis (SA-FG).
Note: for B2, we cannot run on the fine-grained sentiment analysis task because the
supplemental data set only includes binary sentiment labels (positive/negative).

For the SA task, injecting SLMG data at some point again improves performance.

SLMG does not improve performance for the NSE model on the fine-grained SA task,

but for the binary task there are improvements for both the LSTM and NSE models.

This suggests that data close to the decision boundary that was originally misclassified
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was classified correctly when soft labeled data was added (see Table 4.4 for examples).

With binary SA, there is no distinction between “very negative” and “negative” so

changes in degree don’t have an effect, unless the change is from negative to positive.

Table 4.4 shows examples of premise-hypothesis pairs from the SNLI test set, and

the model output probabilities from the B1 baseline and the SLMG-I model trained

with CCE as the soft label loss function. In the first three examples, using SLMG

results in flipping the output from incorrect to correct. For the first pair, this pair

seems to be a weak case of entailment, and could be argued to be neutral. The SLMG

model considers this and has a reasonably high probability for the neutral class. In

the last example, training with SLMG results in the wrong label, but again it could be

argued that this is a case where neutral is appropriate. The “sedan” that is stuck may

not be the Land Rover (Land Rovers are SUVs), so neutral is a reasonable output

here.

Premise Hypothesis Model P (E) P (C) P (N)

This church choir sings
to the masses as they
sing joyous songs from
the book at a church.

The church is filled with
song

B1 0.191 0.021 0.788

SLMG-I-CCE 0.520 0.028 0.452

Two women are observ-
ing something together.

Two women are looking
at a flower together.

B1 0.530 0.066 0.404

SLMG-I-CCE 0.209 0.0270 0.764

A older man in a hat is
playing a accordion on
the street while sitting
in a chair.

A man is playing guitar. B1 0.814 0.090 0.096

SLMG-I-CCE 0.055 0.827 0.118

A land rover is being
driven across a river.

A sedan is stuck in the
middle of a river.

B1 0.014 0.561 0.435

SLMG-I-CCE 0.011 0.241 0.749

Table 4.4: Examples of premise-hypothesis pairs from the SNLI data set and output
probabilities from the LSTM model. For both examples the probabilities associated
with the gold label are in bold.
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4.4.1 Changes in Outputs from SLMG

To better understand the effects of SLMG on generalization, we look at the changes

in test set performance when SLMG is used as compared to the baseline case. Table

4.5 shows 3 confusion matrices: the test-set output for the baseline LSTM model on

the NLI task, and the same model when trained with SLMG-S and CCE as the loss

function for the soft labeled data, which improved test set performance and SLMG-S

with MSE as the loss function for the soft labeled data, which did not. In both cases of

training with SLMG, the number of correctly classified entailment and contradiction

examples increased, while the number of neutral examples correctly classified decreased.

However when MSE is used as the soft label loss function, the increase in misclassified

neutral examples was enough to offset the gains in correctly classified entailment and

contradiction examples. Depending on the use case, this result could be useful for

applications. Fewer false negatives for entailment and contradiction examples may be

more important than fewer true positives for the neutral class.

E C N

E 2739 191 438
Baseline C 333 2360 544

N 441 332 2446

E 2828 157 383
SLMG-S (CCE) C 375 2401 461

N 520 328 2371

E 2967 158 243
SLMG-S (MSE) C 466 2415 356

N 677 422 2120

Table 4.5: Confusion matrices for the LSTM model, trained according to the baseline
(first block), using SLMG-S with CCE (second block), and using SLMG-S with MSE
(third block). Gold standard labels run down the left hand side, while predicted labels
are across the top in the matrix. The highest count of True Positives for each label
across the three model-training setups are in bold.

If SNLI is considered as a binary classification task, with two possible labels

“entailment” and “not entailment” (where we combine contradiction and neutral),

and look at Table 4.5 SLMG outperforms the baseline in both cases. In fact, the

74



SLMG-MSE method outperforms SLMG-CCE in the binary task (88.0% vs. 86.6%)

due to the fact that its performance on the entailment label is much higher.

4.4.2 Comparing the Crowd to the Gold Standard

We also looked at the soft labeled data itself to understand how well the crowd

label distributions align with the accepted gold-standard labels in the original data

set. Figure 4.1 reports on how well the crowd distributions align with the gold

standard labels included in the original data sets (SNLI and SSTB). There are quite

a few examples where the gold standard class label does not have a high degree

of probability weight as estimated from the crowd. In particular, for fine-grained

sentiment classification, the distribution is similar to a normal distribution, with a very

small number of examples where the probability associated with the gold standard

label is high.

For NLI, there is a high percentage of examples where the gold label has an

estimated probability of less than 80%. This may be due to the fact that individuals

have different understanding of what constitutes entailment. This uncertainty among

humans is useful for understanding outputs from ML models. This is consistent

with the inter-rater reliability (IRR) scores reported during our AMT data collection

(Chapter 2). Recall that IRR scores (Fleiss’ κ) for the data ranged from 0.37 to 0.63,

which is considered moderate agreement [Landis and Koch, 1977]. The moderate

agreement indicates that there is a general consensus about which label is correct

(which is consistent with Figure 4.1), but there is enough disagreement among the

annotators that the disagreements should be incorporated into the training data, and

not discarded in favor of majority vote or another single label selection criteria.

4.4.3 How Many Labels do you Need?

Of course, collecting 1000 labels per example to estimate soft labels becomes

prohibitively expensive very quickly. However it may not be necessary to collect
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Figure 4.1: Relative frequency histograms for the crowd-estimated probability of the
original gold-standard label.

that many labels in practice. To determine how many labels are needed to arrive

at a reasonable estimate of the soft label distributions, we randomly sampled crowd

workers from our data set one at a time. At each step, we used the sampled workers

responses to estimate the soft labels for each example and calculated the Kullback

Liebler divergence (KL-Divergence) between the true soft label distributions and the

sampled soft label distributions:DKL(p||q) = −
∑

i P (i) log P (i)
Q(i)

, where P is the true

soft label distribution estimated from the full data set and Q is the sampled soft label

distribution. Figure 4.2 plots the KL-Divergence averaged over the number of data
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Figure 4.2: Average KL-Divergence between sub-sampled crowd distributions and
the estimated soft label distribution from the entire crowd data. Sampling 20 crowd
workers achieves a good estimate of the label distributions without the cost of using
the full 1000 worker population.

set examples (180) as a function of the number of crowd workers selected.4 We plot

results for 5 runs of the random sampling procedure. As the figure shows, the average

KL-Divergence approaches 0 well before all 1000 labels are necessary.

When sampling randomly, the average difference drops very quickly, and is very low

with as few as 15 or 20 labels per example. Active learning techniques could reduce

this number further, either by selecting “good annotators” or identifying examples for

which more labels are needed. This is left for future work.

4We truncate the x-axis to focus on the lower values.
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To confirm the observation that significantly fewer labels are necessary, we randomly

sampled 20 annotators from the data set, used their responses to estimate the soft

label distributions, and re-trained the LSTM model with SLMG-I using CCE as the

soft label loss function. We ran this training 10 times, where each time we sampled a

new selection of 20 annotators for estimating the soft label distributions. The average

accuracy for these models was 76.9 and the standard deviation was 0.3. These models

perform as well as the model using the distributions learned from 1000 annotators,

with significantly less annotation cost.

4.5 Discussion

We have introduced SLMG, a fine-tuning approach to training that can improve

classification performance by leveraging uncertainty in data. In the NLI task, incorpo-

rating the more informative class distribution labels leads to improved performance

under certain training setups. By introducing specialized supplemental data the model

is able to update its representations to boost performance. With SLMG, a learning

model can update parameters according to a gold-standard that allows for uncertainty

in predictions, as opposed to the classic case where each training example should be

equally important during parameter updates. Training examples with higher degrees

of uncertainty within a human population have less of an effect on gradient updates

than those examples where confidence in the label is very high as measured by the

crowd.

SLMG is an easy fix, but it is not a silver bullet for improving generalization. In

our experiments we found that under different training settings SLMG can improve

performance for the different models. It is worthwhile to experiment with SLMG to

see if and how it can improve performance on other NLP tasks. NLI is a particularly

good use case for SLMG because of the ambiguity inherent in language and the

potential disagreements that can arise from different interpretations of text. In
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addition, further experimentation with the way soft labels are generated can lead to

further generalization improvements.

There are limitations to this work. One bottleneck is the requirement for having a

large amount of human labels for a small number of examples, which goes against the

traditional strategy for crowdsourcing label-generation. However one can probably

estimate a reasonable distribution over labels with significantly fewer labels than

obtained here for each example (Figure 4.2). On the other hand, the new SA data

set of human response can be used for modeling IRT parameters such as difficulty.

Identifying a suitable number using active learning techniques is left for future work.

While SLMG requires soft labels, it does not necessarily require human-annotated

soft labels. Rather, SLMG only requires some measure of uncertainty between training

examples as part of the generalization step. This can come from human annotators,

an ensemble of machine learning models, or some other pre-defined uncertainty metric.

In our experiments we demonstrate the validity of SLMG using an existing data set

from which we can extract soft labels, and leave experimentation with different soft

label generation methods to future work.

Future work includes investigation into data sets that can be used with SLMG

and why certain fine-tuning sets lead to better performance in certain scenarios.

Experiments with different loss functions (e.g. KL-Divergence) and different data can

help to understand how SLMG affects the representations learned by a model. Our

results suggest that future work training DNNs to learn a distribution over labels can

lead to further improvements.
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CHAPTER 5

LEARNING LATENT PARAMETERS WITHOUT
HUMAN RESPONSE PATTERNS: ITEM RESPONSE

THEORY WITH ARTIFICIAL CROWDS

5.1 Introduction

Incorporating Item Response Theory (IRT) into NLP tasks can provide valuable

information about model performance and behavior. Traditionally, IRT models are

learned using human response pattern (RP) data, presenting a significant bottleneck

for large data sets like those required for training deep neural networks (DNNs). In

this work we propose learning IRT models using RPs generated from artificial crowds

of DNN models. We demonstrate the effectiveness of learning IRT models using

DNN-generated data through quantitative and qualitative analyses for two NLP tasks.

Parameters learned from human and machine RPs for natural language inference and

sentiment analysis exhibit medium to large positive correlations. We demonstrate a

use-case for latent difficulty example parameters, namely training set filtering, and

show that using difficulty to sample training data outperforms baseline methods.

Finally, we highlight cases where human expectation about example difficulty does

not match difficulty as estimated from the machine RPs.

5.1.1 Motivation

What is the most difficult example in the Stanford Natural Language Inference

(SNLI) data set [Bowman et al., 2015] or in the Stanford Sentiment Treebank (SSTB)

[Socher et al., 2013]? A priori the answer is not clear. How does one quantify the

difficulty of an example and does it pertain to a specific model, or more generally?
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There has been much recent work trying to assess the quality of data sets used for

NLP tasks [Sakaguchi and Van Durme, 2018,Kaushik and Lipton, 2018]. In particular,

a common finding is that different examples within the same class have very different

qualities such as difficulty, and these differences affect models’ performance. For

example, one study found that a subset of reading comprehension questions were

so difficult as to be unanswerable [Kaushik and Lipton, 2018]. In addition, we have

shown that the difficulty of specific examples was found to be a significant predictor

of whether a model would classify the example correctly (Chapter 3).

While a number of methods exist for estimating difficulty, in this work we focus on

Item Response Theory (IRT) [Baker, 2001,Baker and Kim, 2004], a widely used method

in psychometrics. IRT models fit parameters of examples such as difficulty based on a

large number of annotations (“response patterns” or RPs), typically gathered from a

human population (“subjects”). It has been shown to be an effective way to evaluate

and analyze NLP models with respect to human populations (Chapters 2 and 3).

While IRT models are designed to be learned with human RPs for at most 100

examples, data sets used in machine learning, particularly for training deep neural

networks (DNNs), are on the order of tens or hundreds of thousands of examples

or more. It is not possible to ask humans to label every example in a data set of

that size. In this chapter we hypothesize that IRT models can be fit using RPs from

artificial crowds of DNNs as inputs, thereby removing the expense of gathering human

RPs. Recent work has shown that DNNs encode linguistic knowledge [Tenney et al.,

2019b, Tenney et al., 2019a] and can reach or surpass human-level performance on

classification tasks [Lake et al., 2015]. In addition, generating IRT data with deep

learning models is much cheaper compared to employing human annotators.

We demonstrate that learned parameters from IRT models fit with artificial crowd

data are positively correlated with parameters learned with human data for small data

sets. We then use variational inference (VI) methods [Jordan et al., 1999,Hoffman
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et al., 2013] to fit a large-scale IRT model. Using VI allows us to scale IRT models to

deep-learning-sized data sets. Finally, we show why learning such models is useful by

demonstrating how learned difficulties can improve training set subsampling.

Our contributions are as follows: (1) We show that IRT models can be fit using

machine RPs by comparing example parameters learned from human and from machine

RPs for two NLP tasks; (2) we show that RPs from more complex models lead to higher

correlations between parameters from human and machine RPs; (3) we demonstrate a

use-case for latent difficulty example parameters, namely training set filtering, and

show that using difficulty to sample training data outperforms baseline methods; (4) we

provide a qualitative analysis of examples with the largest human-machine disagreement

in terms of difficulty to highlight cases where human intuition is inconsistent with

model behavior.

These results provide a direct comparison between humans and machine learning

models in terms of identifying easy and difficult examples. They also provide a

foundation for large-scale IRT models to be fit by using ensembles of machine learning

models to obtain RPs instead of humans, greatly reducing the cost of data-collection.1

5.2 Data and Models

Here we describe the data sets used to conduct our experiments, as well as the

DNN model architectures for both generating response patterns and conducting our

training set filtering experiment.

For NLP we again experiment with the SNLI and SSTB data sets (§2.2.1). To test

the applicability of our methods to other domains, we also experiment with two data

sets from the computer vision community:

1Code for IRT model fitting is available at https://github.com/jplalor/py-irt.
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5.2.1 MNIST

The MNIST data set [LeCun et al., 1998] is a data set of handwritten digits from

0 to 9. It includes 60,000 training examples and 10,000 test examples, and is regularly

used to benchmark new machine learning models. We split the training set and use

the first 50,000 examples for training and the last 10,000 examples as a validation

set. With MNIST, we use a straightforward convolutional neural network (CNN)

architecture [LeCun et al., 1995] with two convolutional layers and two fully connected

layers with ReLU activations [Nair and Hinton, 2010]. Max-pooling layers [Krizhevsky

et al., 2012] are included after both convolutional layers, and there is a dropout layer

between the first and second fully connected layers [Srivastava et al., 2014]. Models

were trained for 100 epochs using stochastic gradient descent (SGD) with a learning

rate of 0.01 and momentum of 0.5.

5.2.2 CIFAR

The CIFAR data set [Krizhevsky and Hinton, 2009] is another popular image

recognition data set where each image is associated with 1 of 10 classes. It is a labeled

subset of the 80 million tiny images data set [Torralba et al., 2008]. Class labels include

“dog,” “automobile,” and “truck.” CIFAR consists of 50,000 training examples and

10,000 test examples. We split the training set and use the first 40,000 for training and

the last 10,000 as a validation set. For the CIFAR experiments we use the VGG-16

CNN model [Simonyan and Zisserman, 2015], a deep CNN model that has shown

impressive performance on image recognition tasks, including CIFAR. CIFAR models

were trained for 1000 epochs using SGD with a learning rate of 0.01, momentum of

0.9, and weight decay of 0.0005. MNIST and CIFAR models were implemented in

PyTorch [Paszke et al., 2017].
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5.2.3 Human RP Data

The human RP data sets for SNLI and SSTB were previously collected from

Amazon Mechanical Turk (AMT) workers (Chapter 2). For a randomly selected

sample of examples from SNLI and SSTB, new labels were gathered from 1000 AMT

workers (Turkers). Each Turker labeled each example, so that for each example there

were 1000 new labels. For each Turker, a RP was generated by grading the provided

labels against the known gold-standard label.

5.2.4 Building an Artificial Crowd

As mentioned earlier, it is not feasible to have humans provide RPs for data sets

used to train DNN models. Can we instead use RPs from DNNs? We trained an

ensemble of DNN models with varying amount of training data to simulate an artificial

crowd so that enough responses were obtained to fit the IRT models. The goal here is

not to build an ensemble of DNNs to surpass current classification state of the art

results, but instead to test our hypothesis to determine if machine RPs can fit IRT

models that can benefit NLP tasks.

For this work we tested with two deep learning models: LSTM and NSE (§3.2.2).

Specifically, we trained 1000 LSTM models for NLI classification using the SNLI

data set and 1000 LSTM models for binary SA classification using the SSTB data

set [Bowman et al., 2015,Socher et al., 2013]. The SNLI model consists of two LSTM

sequence-embedding models [Hochreiter and Schmidhuber, 1997], one to encode the

premise and another to encode the hypothesis. The two sentence encodings are then

concatenated and passed through three tanh layers. Finally, the output is passed to

a softmax classifier layer to output class probabilities. For SSTB, we used a single

LSTM model without the concatenation step. The models were implemented in

DyNet [Neubig et al., 2017]. Models were trained with SGD for 100 epochs with a

learning rate of 0.1, and validation set accuracy was used for early stopping.
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For each model mi, we randomly sampled a subset of the task training set, xitrain.

We corrupted a random selection of training labels by replacing the gold standard

label with an incorrect label. For each model-training set pair, we trained the model,

used the held out validation set for early stopping, and wrote the model’s graded

(correct/incorrect) outputs to disk as that model’s RP. The set of RPs for all models

is our input data for the IRT models.

We also looked at a more complex model to determine if the learned parameters

would differ given the different model architectures. For our more complex model

we used the Neural Semantic Encoder model (NSE), a memory-augmented recurrent

neural network [Munkhdalai and Yu, 2017]:

ot = fLSTMr (xt)

zt = softmax(o>t Mt−1)

mr,t = z>t Mt−1

ct = fMLP
c (ot,mr,t)

ht = fLSTMw (ct)

Mt = Mt−1(1− (zt ⊗ ek)>)

+ (ht ⊗ et)(zt ⊗ ek)>

where fLSTMr is the read function, fMLP
c is the composition function, fLSTMw is the

write function, Mt is the external memory at time t, and el ∈ Rl and ek ∈ Rk are

vectors of ones.

The goal with the data set restriction and label corruption was to build an ensemble

of models with widely varying performance on the SNLI test set. Training with different

training set sizes and levels of noise corruption means that certain models will perform

very well on the test set (large training sets and low label corruption) while others

will perform poorly (small training sets and high label corruption). This way we
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will get a variety of response patterns to simulate performance on the task across a

spectrum of ability levels. While we could have modified the networks in any number

of ways (e.g. changing layer sizes, learning rates, etc.), modifying the training data

is a straightforward method for generating a variety of response patterns, and has

been shown earlier to have an impact on performance in terms of example difficulty

(Chapter 3). Further investigations of network modifications is left for future work.

5.3 Methods

We conduct the following experiments: (i) a comparison of IRT parameters learned

from human and machine RP data, using existing IRT data sets as the baseline for

comparison, (ii) a comparison between MML and VI parameter estimates, and (iii)

a demonstration of the effectiveness of learned IRT parameters via training data set

selection experiments.

5.3.1 Validating Variational Inference

Before using VI to fit IRT models for DNN data, we must first show that VI

produces estimates similar to traditional methods. This was established in prior work

on synthetic data [Natesan et al., 2016]. Here we compare them on an existing human

data set.

A traditional Rasch model was fit with both MML and VI. MML was implemented

in the R package mirt [Chalmers et al., 2012] and VI in Pyro [Bingham et al., 2019],

a probabilistic programming language built on PyTorch [Paszke et al., 2017] that

implements typical VI model fitting and variance reduction [Kingma and Welling,

2014,Ranganath et al., 2014]. We calculate the root mean squared difference (RMSD)

between MML and VI estimates for subject and example parameters. Our expectation

is that the RMSD will be sufficiently small to confirm that the VI parameters are
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similar enough to those learned by MML, since we will not be able to use MML when

we attempt to scale up to larger data sets.

5.3.2 Human Machine Correlation

We further compare example difficulty parameters learned from machine RPs to

those learned from human RPs. These two sets of parameters cannot be compared

directly as they can only be interpreted in reference to their respective subject

populations. Instead, we compute the correlation between these two sets of parameters

to see whether examples that are easy for humans are also easy for machines. We

fit two Rasch models, one with existing human RPs, and one with the machine RPs.

Both models were fit with MML using the mirt R package [Chalmers et al., 2012].

Learned example difficulty parameters were extracted and compared via Spearman ρ

rank order correlations.

5.3.3 Training Set Subsampling

To demonstrate the usefulness of the learned IRT parameters, we next describe

a downstream use case: training set filtering for more efficient learning. Can we

maintain model performance by removing the easiest and/or hardest examples from

the training set? Once difficulty parameters for each data set were learned, we trained

a new DNN model using only a subset of the original training data. We trained a

number of models, each with a different cutoff in terms of training data to observe

how generalization was impacted in each case.

We looked at 4 filtering strategies (in each case d is the example difficulty threshold):

(i) absolute value inner (AVI), where all training examples with |bi| < d were retained,

(ii) absolute value outer (AVO), where all training examples with |bi| > d were retained,

(iii) an upper bound (UB), where examples with bi < d were retained, and (iv) a

lower bound (LB), where examples with bi > d were retained. These methods were

compared against two baselines that consider the percentage of models that label an
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(a) NLI

(b) SA

Figure 5.1: Comparison of learned example difficulty parameters for human (x-axis)
and machine data (y-axis) for NLI (Fig. 5.1a) and SA (Fig. 5.1b). Spearman ρ (NLI):
0.409 (LSTM) and 0.496 (NSE). Spearman ρ (SA): 0.332 (LSTM) and 0.392 (NSE).
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example correctly (0 ≤ pc ≤ 1) as an inexpensive proxy for difficulty: (i) percent-

correct upper bound (PCUB), where examples with pci < d were retained, and (ii)

percent-correct lower bound (PCLB), where examples with pci > d were retained.

Setting an upper bound on difficulty (UB) is similar to setting a lower bound on

percent correct (PCLB) (i.e., we are excluding the hardest examples from training).

Similarly, setting a lower bound on difficulty (LB) is analogous to setting an upper

bound on percent correct (PCUB) in that they both exclude the easiest examples from

training.

Each of the filtering strategies have arguments in favor of their potential effec-

tiveness. AVI includes “average” examples in terms of training examples, none that

are too easy or too difficult. AVO is the opposite, where only the easiest and most

difficult examples are retained, so that the extremes for each class can be learned. UB

ensures that those examples that are too difficult are not included, and LB ensures

that the examples that are too easy are not included so that the model doesn’t spend

time learning very easy examples.

5.4 Results

5.4.1 Human Machine Model Correlations

We first look at the results of our human-machine model comparison (Figures

5.1a and 5.1b). As an upper bound for correlations, we split the human annotation

data in half for both SNLI and SSTB, fit two IRT Rasch models, and calculated the

correlation between the learned parameters. Spearman ρ values were 0.992 and 0.987

for SNLI and SSTB examples, respectively.

For both SNLI and SSTB, we find a positive correlation between the example dif-

ficulties of IRT models fit using human and machine RPs. In addition, the more

complex NSE model has consistently a higher correlation with the human-learned

difficulty parameters than the LSTM model. This suggests that creating more complex
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Figure 5.2: Test set accuracy by filtering strategy for NLI (left) and SA (right) plotted
against percentage of training data retained. In both tasks filtering using the AVI
strategy is most efficient in terms of high accuracy for small training set sizes.

DNN architectures has bearing on how the model identifies difficult examples with

regards to human expectations.

The correlation is not perfect, and we would argue that this is an expected and

encouraging result. A close to perfect correlation would indicate that the DNN models

and the human population agree closely on the difficulty ranking for the data sets and

would be an incredible finding and evidence for the argument that DNN models encode

human knowledge well, at least with respect to the difficulty of specific examples.

This of course is not true, and the positive but not perfect correlation coefficients

indicate this as such. That said, it is encouraging that the positive correlation exists.

One would expect that training ensembles of more sophisticated NLP models such as

BERT [Devlin et al., 2019] would further increase correlation scores.

5.4.2 Learning IRT Models with VI

Our next goal was to determine if VI could be used to fit IRT models and confirm

prior work to that effect [Natesan et al., 2016]. The RMSDs between MML and VI

estimates were 0.158 and 0.154, respectively, for the difficulty and ability parameters.

Learned parameters are very similar between the two methods, which is to be expected.
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Figure 5.3: Test set accuracy for MNIST and CIFAR for each filtering strategy plotted
as a function of the percentage of training data retained.
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This echos the results of prior work showing that VI is a good alternative to traditional

MML methods for learning IRT models [Natesan et al., 2016]. This result holds not

only with synthetic data, as was used in the prior work, but also with human data

collected for the development of an actual IRT test.

5.4.3 Data Filtering

Finally we consider training new DNN models on the filtered training data sets,

restricted according to latent difficulty and the strategies described above (Figure 5.2).

The horizontal dotted lines in each plot represent the test set accuracy for a model

trained with the full training data set. For both SNLI and SSTB, the AVI strategy of

selecting “average” examples leads to very good test set accuracy scores with less than

25% of the original training data. This shows that the strategy of selecting training

data in terms of average difficulty, and gradually adding easier and harder examples

at the same time provides examples that allows trained models to generalize well. For

both tasks, there is a large number of examples that are very easy in terms of latent

difficulty (Figure 5.4). Sampling with AVI avoids selecting too many examples that

are too easy and instead selects examples that are of average difficulty for the task,

which may be better for learning. In both cases LB and PCUB are the least effective

strategies, indicating that it is not enough to only include the most difficult examples.

The plots show that PCUB and LB provide very similar results, as do PCLB and

UB, which is to be expected. Difficulty parameters learned from IRT are very similar

to metrics such as percent correct, but as the plots show are not exactly the same.

Differences in RPs (i.e. which specific examples were answered correctly/incorrectly)

have an effect on example difficulty that is not captured by calculating percent correct.
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Figure 5.4: Density plot of learned difficulties for SNLI and SSTB (left) and MNIST
and CIFAR (right) data sets.

It is worth noting here that the filtering strategy we used did not take class labels

into consideration.2 The only determining factor as to whether a training example was

included was the learned difficulty parameter bi, which led to class imbalances in the

training set. This imbalance, however did not seem to have a significant negative

effect in terms of performance.

Figure 5.3 shows results of the training data filtering experiments for MNIST and

CIFAR, respectively. Note that for MNIST, test set accuracy was above 90% even

for very small percentages of the training set, and therefore the MNIST plot y axis is

truncated to show variations more clearly (Fig. 5.3). For both data sets, removing up

to 50% of the training data according to learned difficulty maintains test set accuracy

within a few percentage points of the baseline. For MNIST, baseline accuracy is

maintained with as little as 15% of the training data.

2This is true for only the filtering step. Class labels are needed for learning the difficulty parameters
needed for filtering (§1.3).
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Strategy % of Training Data
0.1% 1% 10%

Random (reported) 82.1 85.2 88.4
Random (small batch) 81.79 84.90 88.32

Lower-bound 43.68 41.56 39.89
Upper-bound 81.62 80.46 79.06

AVI 82.44 85.44 86.73
AVO 43.60 42.05 40.81

Table 5.1: Dev accuracy results for MT-DNN model with different training set sampling
strategies.

For MNIST, AVO and LB are more effective filtering strategies than AVI and UB,

while AVI is the most effective for CIFAR. For MNIST, relative variance within the

class is small. That is, even the hardest “3” still looks like a single numerical digit.

Therefore it is unnecessary to include a large number of examples of average difficulty

in order to learn a particular class, making AVO an effective strategy. Similarly, the

easiest examples in a class can be ignored in favor of more challenging ones (LB).

For CIFAR, on the other hand, there is much more variance within each class. In

these cases the easiest and hardest examples may truly be outliers in terms of the

class. Therefore the DNN models would require more examples from the middle of

the difficulty distribution to learn a representation of the class (AVI). That said, LB

is the least effective strategy in both cases, indicating that it is not enough to only

include the most difficult examples.

As with the SNLI experiments, the filtering strategy we used did not take class

labels into consideration. More advanced sampling strategies that maintain training

set distribution or sample data using a Bayesian approach are left for future work.

As an additional experiment, we used the learned difficulty parameters to compare

data sampling strategies for a state-of-the-art NLI model, MT-DNN [Liu et al., 2019].

We sampled training data for SNLI at several intervals (0.1%, 1%, 10%) and trained

the MT-DNN model with the sampled data. We trained each model, as well as the
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Label Premise Hypothesis Difficulty

Ent. Two men and a woman are inspecting the
front tire of a bicycle.

There are a group of peo-
ple near a bike.

-3.675

A street vendor selling cupcakes. There is a person outside
in this picture

-3.506

A young boy in a red shirt plays on a mini-
trampoline in a grassy field

Someone is outside. -3.483

This is nice place to relax and chat. the place is nice 2.235
Neck and neck to the finish line, every
competitor has been training for this race.

The competitors have
trained very hard and
are all very close to the
finish line.

2.759

A girl in a newspaper hat with a bow is
unwrapping an item.

The girl is going to find
out what is under the
wrapping paper.

3.144

Cont. Two dogs playing in snow. a cat sleeps on floor -4.014
Girls playing soccer competitively in the
grass.

Nobody is playing soc-
cer.

-3.558

The backside of a woman leaning against
the guard rail of a passenger boat looking
out at the open ocean.

The woman is driving
her car on the highway.

-3.407

A rider mid-jump on a snowmobile during
a race.

A snowboarder in mid-
air during a race.

3.639

A man and woman walking away from a
crowded street fair.

There are a group of
men walking together.

3.658

Man sweeping trash outside a large statue. A man is on vacation. 3.766

Neut. People sitting in chairs with a row flags
hanging over them.

a family reunion for
fourth of July

-3.603

Two men together, one watching, one rest-
ing.

Two men are together
because they are friends.

-3.446

two girls on a bridge dancing with the city
skyline in the background

The girls are sisters. -3.385

A wielder works on wielding a beam into
place while other workers set beams.

The wielder is working
on a building.

2.864

Two soccer players on the field running
into each other.

There are two people col-
liding and falling.

3.422

A group of dancers are performing. The audience is silent. 3.798

Table 5.2: The easiest and hardest examples judged by machine responses for each
class in the SNLI test data set.

random sample baseline, using the publicly available MT-DNN code.3 Results are

3https://github.com/namisan/mt-dnn
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Task Label Example Text Difficulty ranking
Humans LSTM NSE

SNLI Contradiction P: Two dogs playing in snow.
H: A cat sleeps on floor

168 1 5

Entailment P: A girl in a newspaper hat with a bow
is unwrapping an item.
H: The girl is going to find out what is
under the wrapping paper.

55 172 176

SSTB Positive Only two words will tell you what you
know when deciding to see it: Anthony.
Hopkins.

9 103 110

Negative ...are of course stultifyingly contrived
and too stylized by half. Still, it gets
the job done–a sleepy afternoon rental.

128 46 41

Table 5.3: Examples from the SNLI and SSTB data sets where the ranking in terms
of difficulty varies widely between human and DNN models. In all cases difficulty is
ranked from easy to hard (1=easiest).

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

airplane automobile bird cat deer dog frog horse ship truck

airplane automobile bird cat deer dog frog horse ship truck

Figure 5.5: The easiest (first and third rows) and hardest (second and fourth rows)
examples in the MNIST and CIFAR test sets.
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reported in Table 5.1. Note that we report two random baselines: (i) those reported

in the original work, which were obtained by training the MT-DNN model with a

batch size of 32. Due to GPU resource constraints we had to train each MT-DNN

model with a batch size of 8, and therefore report our reproduced random baseline

results that we obtained as well (“Random (small batch)”). For very small samples of

data, the AVI strategy outperforms random sampling and all other methods as well.

As more data is sampled, the random models perform better. This indicates that

a more advanced sampling strategy that starts with AVI then incorporates outliers

(very easy/hard examples) at certain thresholds may improve learning as well.

5.5 Analysis

5.5.1 Qualitative Evaluation of Difficulty

Table 5.2 shows examples of premise-hypothesis sentence pairs from SNLI with the

learned difficulty parameter from the machine RP IRT model. The easy sentence pairs

for each class seem to be very obvious, whereas the most difficult examples are difficult

due to ambiguity. For example, the hardest contradiction example could be classified

as neutral instead of contradiction. It could be the case that the man is sweeping

while on vacation, though it isn’t likely. The hypothesis doesn’t directly contradict the

premise like the easy example does (cats instead of dogs, sleeping instead of playing).

We were also able to show that the learned difficulty parameters are interpretable

for image tasks such as MNIST and CIFAR. Figure 5.5 shows the easiest and hardest

examples in the test data sets. For a certain class, there are examples that one may

consider more difficult than others, due to noise or irregular lines (in the case of

MNIST), and this is reflected in the learned difficulty parameters. As we can see,

there is interpretability in the learned difficulty parameter bi. The difference between

the easiest and hardest examples in the MNIST test set for each digit is clear. The

easiest examples are very much prototypical examples of their specific digit, while the
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hardest examples for each digit are outliers and in some cases (e.g. 3 and 8) are hard

to distinguish from certain other digits. For CIFAR the differences are present but

more subtle because the variation in the images is greater. For the hardest examples it

seems that the difficulty arises mostly from the subject of the image being non-typical

for the class, either according to color or orientation. For example, the hardest “car”

is a car in a rotary lift, which is not common for cars, and the hardest “ship” is sitting

on land instead of water. The hardest “frog” is blue, and the hardest “dog” is wearing

an orange sweater. These are not consistent with the typical cases for each class,

which may be the reason that the DNN models do not perform well with regards to

labeling them.

5.5.2 Analysis of Differences

An interesting question comes up as a result of the less-than-perfect correlation

scores (§5.4.1): Where are the differences? To examine these more closely we identified

those examples from the data sets where the rank order was most different between

the human- and machine-response pattern models (Table 5.3). That is, we calculated

the absolute difference in ranking between the human model and the DNN model,

and selected those where that value was highest. The average absolute difference in

ranking was around 40 for the SNLI task and around 30 for SSTB, for both the LSTM

and NSE ensembles.

We can see interesting patterns in the discrepancies. For SNLI, the easiest sentence

pair for the LSTM model (which is also very easy for the NSE model) is one of the

hardest for humans (Table 5.3, row 1). Upon inspection of the gathered labels, the

high difficulty comes from the fact that there were many Turkers who labeled the data

as neutral and also many who labeled it as contradiction.

On the other hand, an example that is easy for humans but difficult for the DNN

models (Table 5.2, row 2) requires more abstract thinking than the earlier example.
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The humans are able to infer that because the girl is unwrapping an example, she will

discover what is under the wrapping paper when the unwrapping is complete. The

models find this pair to be one of the most difficult in the data set.

For SSTB, we see similar patterns (Table 5.3, rows 3-4). For humans, one of

the easiest review snippets is clearly positive (row 3), mainly because we know who

Anthony Hopkins is and know how to rate his quality as an actor. However for

the DNN models, the text itself does not have a lot of positive or negative signal

and therefore the example is considered very difficult. On the other hand, the last

example is very difficult for humans (row 4), possibly due to the relatively neutral

text. However, for the DNN models certain terms such as “stultifyingly contrived”

may signal a more negative review and lead to the example being easier.

In both cases, it is not clear if there is a “gold standard” for difficulty. Estimating

difficulty using IRT relies on responses from a group of humans or an ensemble

of models, and the resulting difficulty estimates may be biased based on who or

what provides the labels. Human intuitions or model architecture decisions impact

the response patterns collected, which in turn affect the learned parameters. An

investigation into what upstream information drives downstream effects such as

learned difficulty is an interesting and important direction for future work.

5.6 Conclusion

We have described how large-scale IRT models can be trained with DNN response

patterns using VI. Learning the difficulty parameters of examples and the ability pa-

rameters of DNN models allows for more nuanced interpretation of model performance

and enables us to filter training data so that DNN models can be trained on less data

while maintaining generalization as measured by test set performance. IRT models

with machine RPs can be fit not only for NLP data sets but also data sets in other

machine learning domains such as computer vision.
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One limitation of this work is the up-front cost of generating RPs from the DNN

ensemble. However, the cost of running a large number of DNN models to generate

response pattern data is significantly less than the cost of obtaining those labels

from human annotators in two ways. First, the monetary cost of asking thousands of

humans to label tens or hundreds of thousands of images or sentence pairs is prohibitive.

Second, since the response patterns require that a single individual provide labels for

all (or most) of the data set, each individual would need to label a huge number of

examples. Each individual would most likely get bored or burned out and the quality

of the labels would suffer.

That said, consider for example a large company (or research lab) that runs

hundreds or thousands of experiments each day on some internal data set. Many of the

experiments would not lead to significant improvements in model performance, and

the outputs from those experiments would be discarded. With the methods proposed

here those outputs can be used to learn the latent parameters of the data to focus in

on what exactly is working well and what isn’t with respect to the models being tested

and the data used to train them. Using the previously discarded data to learn IRT

models and estimate latent difficulty and ability parameters can be used to improve

a variety of tasks such as model selection, data selection, and curriculum learning

strategies.

IRT models assume difficulty is a latent parameter of the examples and can be

estimated from response pattern data. Difficulty is directly linked to subject ability,

in contrast to heuristics such as sentence length or word rarity. Certain examples may

be easy or difficult for a variety of reasons. With the methods presented here, an

interesting direction for future work is to further examine why certain examples are

more difficult than others.

We have shown that it is possible to fit IRT models using RPs from DNN models.

This work also opens the possibility of fitting IRT models on much larger data sets.

100



By removing the human bottleneck, we can use ensembles of DNN models to generate

RPs for large data sets (e.g. all of SNLI or SSTB instead of a sample). Having

difficulty and ability estimates for machine learning data sets and models can lead to

very interesting work around such areas as active learning, curriculum learning, and

meta learning.
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CHAPTER 6

DYNAMIC DATA SELECTION FOR CURRICULUM
LEARNING VIA ABILITY ESTIMATION

6.1 Introduction

Curriculum learning is a popular and well-studied method for machine learning

model training. However, most methods rely on heuristics to estimate the easiness

or difficulty of training examples when building curricula. In this chapter we show

that modeling difficulty using psychometric methods is more effective for curriculum

learning than heuristic measures of difficulty such as sentence length. We introduce

Dynamic Data selection for Curriculum Learning via Ability Estimation (DDaCLAE),

a curriculum learning strategy that probes model ability at each training epoch to

select the best training examples at that point in time. DDaCLAE adds data at a rate

commensurate with the model’s capability, in contrast to scheduled curricula that add

data at a predetermined rate. Experimental results demonstrate that DDaCLAE is

more efficient and effective than existing curriculum learning methods, improving test

set accuracy while reducing training set size by up to 88%.

6.1.1 Motivation

Curriculum learning, the process of training a model by showing easy examples

first and gradually adding more difficult examples, can speed up learning and improve

generalization in machine learning models, a result that has also been shown in

humans [Bengio et al., 2009, Amiri et al., 2017, Platanios et al., 2019]. The basic

premise is that machine learning models are trained according to a curriculum that

sorts training examples according to difficulty. At first, the model is trained with only
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the easiest examples, and more difficult examples are gradually added according to

some schedule. A benefit of curriculum learning methods is that model convergence

can often be faster than a baseline model trained without a curriculum [Bengio et al.,

2009,Platanios et al., 2019]. With the size of machine learning models and data sets

continuing to grow, and with better understanding of the impact of model training on

the environment, there is a growing need for efficient model training [Strubell et al.,

2019].

A major drawback of existing curriculum learning techniques is that they rely

on heuristics to measure the difficulty of data, and either ignore the competency of

the model at its present state or rely on heuristics there as well. For example, often

for natural language processing (NLP) tasks, sentence length is considered a proxy

for difficulty [Bengio et al., 2009, Platanios et al., 2019]. Similarly, the number of

objects in an image has been used as a proxy for difficulty in an image recognition

task [Bengio et al., 2009]. These heuristics can be useful but have limitations. First,

a model’s notion of difficulty may not align with the heuristic imposed by a human

developing the model. It could be the case that examples that appear difficult for

the human are in fact very easy for the model to learn. Second, the heuristic chosen

may not actually be a proxy for difficulty. For example, often times sentence length

is used as a proxy for difficulty in NLP tasks. However, depending on the task, long

sequences could signal easier or harder examples, or have no signal at all with regard

to difficulty.

Competency was recently introduced as a mechanism to determine when new

examples should be added to the training data [Platanios et al., 2019]. However,

in that work competency is assumed to be a monotonically increasing function of a

pre-determined initial competency c0. Competency is not evaluated during training.

Ideally, model competency would be measured at each training epoch, so that the
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training data could be appropriately matched with the model at a given point in the

training.

As we have shown in earlier chapters, it is possible to estimate both the difficulty

of examples and the ability of deep learning models as latent variables based on model

performance using Item Response Theory (IRT). IRT is a well-studied methodology in

the psychometric literature for test set construction and subject evaluation [Baker and

Kim, 2004]. A typical IRT model will estimate latent parameters such as difficulty for

examples under consideration for inclusion in a test set and a latent ability parameter

for individuals taking the test. This is done by administering a test to a large number

of human subjects, collecting and grading their responses as correct or incorrect, and

using the student-response data matrix to estimate the latent traits of the data. Once

learned, these parameters can be used to estimate latent ability parameters of future

test-takers, based on their graded responses to the examples. IRT has not seen wide

adoption in the machine learning community, primarily due to the fact that fitting IRT

models requires a large amount of human annotated data for each example. Because

one can learn example difficulty and subject ability together, IRT is an interesting

framework to consider for the problem of curriculum learning.

We propose Dynamic Data selection for Curriculum Learning via Ability Estima-

tion (DDaCLAE, pronounced “day-clay”), a novel curriculum learning framework that

uses the estimated ability of a model at a specific point in the training process to

identify appropriate training data. At each training epoch, the latent ability of the

model is estimated. Based on this estimate, only training data that the model has a

reasonable chance of labeling correctly is included in training. As the model improves,

the estimated ability will improve, and more training examples will be added.

Our contributions are as follows: (i) we propose a novel curriculum learning frame-

work, DDaCLAE, which automatically selects training data based on the estimated

ability of the model, (b) we show that model training using DDaCLAE leads to faster

104



Data Pool

Learner

te = f(e)

(a)

Data Pool

Learner

te = f(θ̂e) θ̂e

(b)

Figure 6.1: (6.1a) A typical curriculum learning framework, where examples are added
at each epoch according to a static monotonically-increasing learning schedule. (6.1b)
DDaCLAE estimates ability at each training epoch to dynamically select appropriate
training data given the model’s current ability.

convergence and better performance than traditional training and baseline curriculum

learning methods, (c) we analyze DDaCLAE to show why certain training examples

hurt instead of help generalization. This is the first work to learn a model competency

during training that is directly comparable to the difficulty of the training data pool.

6.2 Methods

We first describe a typical curriculum learning framework. We then introduce

IRT for those unfamiliar with the methodology, specifically the one-parameter logistic

(1PL) model, also referred to as the Rasch model [Rasch, 1960,Baker and Kim, 2004].

Learning IRT models for machine-learning scale data sets with variational inference

methods is then described, and finally we introduce the Dynamic Data selection for

Curriculum Learning via Ability Estimation model (DDaCLAE) for probing model

ability to select training examples.

6.2.1 Curriculum Learning

In a traditional curriculum learning framework, training data examples are ordered

according to some notion of difficulty, and the training set shown to the learner is

augmented at a set pace with more and more difficult examples (Fig. 6.1).
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Algorithm 3 DDaCLAE

Input: (X, Y), model φ, D
Output: Learned model φ

1: while True do
2: Ŷ = φ(X)
3: θ̂e = score(Y, Ŷ ,D)
4: Xe, Ye = {(x, y) : dx < θ̂e}
5: train(φ,Xe, Ye)
6: end while
7: procedure score(Y, Ŷ ,D)
8: Z = ∀y∈Y I[yi = ŷi]

9: θ̂e = arg maxθ p(Z|θ, b)
10: return θ̂e
11: end procedure

Typically, the model’s current performance is not taken into account. Recent work

has incorporated a notion of competency to curriculum learning [Platanios et al., 2019].

In that work the authors structure the rate at which training examples are added

based on an assumption that model competency is modeled by either a linear or root

function of the training epoch. However there are two issues with such an approach.

First, this notion of competency is artificially rigid. If a model’s competency improves

quickly, more data cannot be added more quickly because the rate is predetermined.

On the other hand, if a model is slow to improve, it may struggle because more data

is being added too quickly. Second, the formulation of competency proposed by the

authors reduces to a competency-free curriculum learning strategy with a tunable

parameter for inclusion speed. Once this parameter is set, there is no check of model

ability during training to assess competency and update training data examples. We

do away with the heuristics and instead measure difficulty and competency directly.

6.2.2 Dynamic Data selection for Curriculum Learning via Ability Esti-

mation

We propose DDaCLAE, where training examples are selected dynamically at each

training epoch based on the estimated ability of the model at that epoch. With
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DDaCLAE, model ability can be estimated according to a well-studied psychometric

framework as opposed to heuristics. The estimated ability of the model at a given

epoch e (θ̂e) is on the same scale as the difficulty parameters of the data, so there is a

principled approach for selecting data at any given training epoch.

The first step of DDaCLAE is to estimate the ability of the model using the

scoring function (§1.3.7). To do this we use the full training set, but crucially, only

to get response data, not to update parameters (i.e., no backward pass). We do not

use a held out development set for estimating ability because we do not want the

development set to influence training. In our experiments the development set is only

used for early stopping. Model outputs are obtained for the training set, and graded

as correct or incorrect as compared to the gold standard label. This response pattern

is then used to estimate model ability at the current epoch (θ̂e).

Once ability is estimated, data selection is done by comparing estimated ability

to the examples’ difficulty parameters. Each example in the training pool has an

estimated difficulty parameter (bx). If the difficulty of an example is less than or

equal to the estimated ability, then the example is included in training for this epoch.

Examples where the difficulty is greater than estimated ability are not included.

With DDaCLAE, the training data size does not have to be monotonically increas-

ing. If a model’s performance suffers as a result of adding data too quickly, then this

will be reflected in lower ability estimates, which leads to less data selected in the

next epoch. This avoids a scenario where data is added too quickly at the expense of

learning the easier examples. At the same time, if estimated model ability is high,

then more data can be added more quickly, without artificially slowing down learning.

Algorithm 3 shows all of the steps for DDaCLAE. Code implementing DDaCLAE is

included as supplemental material and will be released upon publication.
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6.3 Data and experiments

We experiment with four data sets, two from vision (§5.2) and two from NLP

(§2.2.1), to demonstrate the effectiveness of DDaCLAE across multiple domains:

MNIST for handwritten digit recognition, CIFAR for image recognition, SSTB for

sentiment analysis, and SNLI for natural language inference.

6.3.1 Generating Response Patterns

In order to learn the difficulty parameters of the data we require a data set of

response patterns. As previously mentioned, gathering enough labels for each example

in the data sets to fit an IRT model would be prohibitively expensive for human

annotators. In addition, the annotation quality would be suspect due to the humans

labeling tens of thousands of examples. Therefore we used artificial crowds to generate

our response patterns (Chapter 5).

Briefly, for each data set an ensemble of neural network models is trained, using

different subsets of the training data set. Training data is subsampled and corrupted

via label flipping so that performance across models in the ensemble is varied. Each

trained model then labels all of the examples (train/validation/test). These labels

are graded correct/incorrect against the gold-standard label and the output response

patterns are used to fit an IRT model for the data (§1.3).

6.3.2 Experiments

In order to demonstrate the effectiveness of DDaCLAE we must show that the

model is more efficient than standard supervised learning training while maintaining

the level of performance in terms of test set accuracy. Any gains in predictive

performance are an additional benefit, but are not the main goal. We will also compare

DDaCLAE to a competency-based methods (CB) that uses a fixed, monotonically-

increasing competency schedule for adding training examples during training [Platanios
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et al., 2019]. For the CB methods below, t is the current time-step in training, T is

the point where the model is fully competent, c0 is the initial competency.

For each data set, we trained a standard model architecture for a set number

of epochs. For the NLP tasks we trained a simple LSTM model [Hochreiter and

Schmidhuber, 1997]. For SNLI, the model consists of two LSTM sequence-embedding

models, one to encode the premise and another to encode the hypothesis. The two

sentence encodings are then concatenated and passed through three tanh layers.

Finally, the output is passed to a softmax classifier layer to output class probabilities.

For SSTB, we used a single LSTM model without the concatenation step. For MNIST

we trained a two-layer convolutional neural network (CNN) and for CIFAR we trained

a VGG network [Simonyan and Zisserman, 2015,LeCun et al., 2015]. We varied the

training data available to the model at each epoch based on the type of curriculum

applied:

• Baseline: At each epoch, the model has access to all of the data, shuffled and in

mini-batches

• CB-Linear: The proportion of training examples to include at time t is clinear(t)
∆
=

min(1, t1−c0
T

+ c0)

• CB-Root: The proportion of training examples to include at time t is csqrt(t)
∆
=

min(1,

√
t

1−c20
T

+ c2
0)

• DDaCLAE: At each epoch, model ability is estimated (θ̂e, see §6.2.2) and all

training examples where difficulty is less that θ̂e are included.

It is worth noting here that neither CB-Linear nor CB-Root actually measures

competency of the model at any point. Instead it is assumed that the model becomes

more and more competent over time, whereas with DDaCLAE model competency is

probed at each training epoch and training data is selected based on this competency.
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This is critical because at a given training epoch, there is a chance that less training

data is used than the prior epoch, if data was added too quickly.

MNIST CIFAR

SNLI SSTB

Figure 6.2: Test set accuracy as a function of training epoch for each data set tested.
Vertical lines indicate the point at which each method had the highest dev set accuracy
(for early stopping). Dotted lines indicate the percentage of training data used by
each method at a given epoch. For MNIST, CIFAR, and SSTB, models trained
with DDaCLAE converge more quickly than all other training setups. For SNLI, the
baseline (training with all data) outperforms all curriculum learning setups. Note: the
y-axis has been truncated for each plot to improve visibility. Figure best viewed in
color.

Performance in terms of test set accuracy is determined by using the development

set accuracy as an early stopping indicator. All models were trained for 200 epochs

with development set accuracy used for early stopping.

To determine the effectiveness of difficulty as estimated by IRT methods, we

experiment with two versions of the competency-based models in our NLP tasks: (i)

dlength: using sentence length as a heuristic for difficulty, as in the prior work [Platanios
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et al., 2019],1 (ii) dirt: difficulty as estimated by fitting an IRT model using the artificial

crowd (§5.2.4). To the best of our knowledge, most difficulty heuristics for image

recognition are based on heuristics from a single model (e.g. confidence score), which

we do not consider in this work.

6.4 Results

Using DDaCLAE leads to quicker convergence for the trained models for both the

vision and NLP experiments (Figure 6.2). The vertical lines in each plot indicate the

point at which the model has converged, based on early stopping using the development

set accuracy. For MNIST, CIFAR, and SSTB, DDaCLAE converges more quickly than

the baseline models and the competency-schedule baselines. The dotted lines in each

figure plot the percentage of training data used for each experiment at a give epoch.

For the easier tasks (MNIST and SSTB), DDaCLAE adds training data much more

quickly than the competency schedules. Those are artificially holding model learning

back due to the rigid structure. What’s more, DDaCLAE training data curves are not

monotonically increasing (Figure 6.2). If too much training data is added, and model

performance suffers as a result (in terms of estimated ability), at the next epoch the

hardest examples can be removed until the model is ready for them. This behavior

goes against most all other curriculum learning strategies, where more data is added

at each epoch.

Along with faster convergence, models trained with DDaCLAE also outperform

the other models in terms of test set accuracy (Table 6.1). For SSTB and CIFAR, the

models are more efficient (in terms of training data to convergence) and more effective

(test set accuracy). In particular, for SSTB training with DDaCLAE leads to 0.45%

relative improvement in test set accuracy with an 88.68% relative decrease in training

1For NLI, we use the length of the premise sentence to determine difficulty
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examples used. Even though training with these curriculum use less data than the

baseline, efficiency does not have a significant negative impact on generalizability in

terms of test set performance (Table 6.1). The number of training examples required to

reach convergence is lower than the baseline in each case except SNLI for DDaCLAE.

The baseline SNLI model converges very quickly (after 32 epochs), and because the

training data set is so large (550k examples), moving past that point, even slightly,

will lead to a large penalty in terms of total number of training examples. For MNIST,

the model is more efficient but less effective. We believe this is due to the fact that

baseline performance on MNIST is already extremely high (e.g. above 99% accuracy).

We also experimented with using DDaCLAE for hard example mining. At each

epoch, only examples where difficulty was greater than θ̂e, however for all data sets this

lead to worse performance. Intuitively there is an upper limit to performance in this

case, where the model is trained with only the hardest examples as ability increases,

leading to a scenario where the patterns of very difficult examples are learned instead

of general class patterns.

By using DDaCLAE a curriculum can adapt during training according to the

estimated ability of the model. DDaCLAE adds or removes training data based

not on a fixed step schedule but rather by probing the model at each epoch and

using the estimated ability to match data to the model (Figure 6.2). This way if a

model has a high estimated ability early in training, then more data can be added to

the training set more quickly, and learning isn’t artificially slowed down due to the

curriculum schedule. For each data set in question, DDaCLAE adds training data

more quickly than a more traditional curriculum learning schedule, which leads to

faster convergence.
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Metric Experiment MNIST CIFAR SSTB SNLI

%∆ Baseline 0 0 0 0
Train Size DDaCLAE -9.37 -53.71 -88.68 33.51

CB Lin -8.22 -21.56 -73.17 38.07
CB Root 11.29 -22.63 10.23 60.08

%∆ Baseline 0 0 0 0
Accuracy DDaCLAE -0.17 0.66 0.45 -1.08

CB Lin -0.01 -0.90 -0.18 0.69
CB Root -0.06 0.13 -0.38 -0.37

Table 6.1: Percent change in training size (lower is better) and test set accuracy
(higher is better) for each curriculum learning method tested.

6.4.1 Discrepancies in difficulty

The differences in results between the methods that use dlength and dirt for NLP

indicate that there are cases where learned difficulty does not match the expectations

of human heuristics. We calculated the absolute difference between difficulties to

identify those with the largest discrepancies for further analysis: ∆d = |dirt − dlength|

The cases where discrepancy is largest indicate clear patterns that are worth discussing

(Tables 6.2 and 6.3).

For sentiment analysis, there are a number of easy to classify examples that are

very long. The authors of these review snippets are clear in their like/dislike for a

particular film, but use a lot of words to make their point. These are interesting

examples because they could be very useful for a model early in training to identify

patterns of long-but-easy reviews. On the other hand, there are one-word snippets

that are very difficult to classify and would cause problems for a model if introduced

very early during training.

For NLI, some of the biggest discrepancies come from short, neutral examples.

Models find these very difficult because there is not enough information to determine

that the premise neither entails nor contradicts the hypothesis. On the other hand,
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examples with long premises are easier to deal with because (a) there is a short but

clear contradiction in the hypothesis or (b) the hypothesis is neutral and irrelevant.

Label Review ∆d

Pos Heart 67342
Pos Leaping from one arresting image to another, Songs from the Second Floor

has all the enjoyable randomness of a very lively dream and so manages to
be compelling, amusing and unsettling at the same time.

67339

Pos The year’s greatest adventure, and Jackson’s limited but enthusiastic adapta-
tion has made literature literal without killing its soul – a feat any thinking
person is bound to appreciate.

67334

Pos Hip 67332
Neg Exit 67346
Neg In theory, a middle-aged romance pairing Clayburgh and Tambor sounds

promising, but in practice it’s something else altogether – clownish and
offensive and nothing at all like real life.

67337

Neg There’s an admirable rigor to Jimmy’s relentless anger, and to the script’s
refusal of a happy ending, but as those monologues stretch on and on, you
realize there’s no place for this story to go but down.

67330

Table 6.2: Examples from SSTB with the largest differences in difficulty.

Label Premise Hypothesis ∆d

Cont. Two men in a jogging race on a
black top street, one man wearing
a black top and pants and the other
is dressed as a nun with bright red
tennis shoes, while onlookers stand
in a grassy area and watch from be-
hind a waist high metal railing.

There is no metal railing. 549179

Ent. Two dogs in the water. They are swimming 549180
Neut. Male musicians are playing a gig

with one on the drums and the other
on the guitar, with a backdrop of
purple graphics apart of the light
show.

Male musicians with long hair
are playing a gig with one on
the drums and the other on
the guitar, with a backdrop of
purple graphics apart of the
light show.

549184

Neut. A dog in a lake. A dog is swimming. 549183
Neut. A man rock-climbing The man is outdoors. 549181

Table 6.3: Examples from SSTB with the largest differences in difficulty.
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6.5 Conclusion

DDaCLAE is the first curriculum learning method to dynamically probe a model

during training to estimate model ability at a point in time. Knowing the model’s

ability allows for data to be selected for training that is appropriate for the model

and is not rigidly tied to a heuristic schedule. Learning with DDaCLAE curriculum

learning strategies leads to more efficient models. The difference in performance is

small for many tasks, but being able to reduce training data by 50% or more allows for

the use of certain models in many more cases, and also allows for more researchers to

work on problems where huge computing and storage resources may not be available.

A key component of most prior work in curriculum learning is the notion of

balance. When defining a curriculum, it is often the case that proportions are

maintained between classes. That is, difficulty itself is not the only factor when

building the curriculum. Instead, the easiest examples for each class are added so that

the model is proportionally exposed to the data consistent with the full training set.

DDaCLAE does not consider class labels when selecting examples for training.2 In

this way DDaCLAE is more closely aligned with a pure curriculum learning strategy

that considers only the easiness/hardness of an example during training. This is an

added benefit to the method as there is no need for class label accounting during

training.

Even though it is dynamic, DDaCLAE employs a simple curriculum schedule:

only include examples where difficulty is less than estimated ability. However, being

able to estimate ability on the fly with DDaCLAE opens up as a research area the

following: what is the best way to build a curriculum, knowing example difficulty and

model ability? It may be the case that only data with difficulty within a range of

ability (higher and lower) is better, and the training set shifts as the model improves.

2It is important to note here that labels are used when learning difficulties, estimating ability,
and actually updating parameters during training. They are not used to balance the curriculum.
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There are many directions to for future work, and this will be an exciting area of work

moving forward.
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CHAPTER 7

COMPREHENOTES: ASSESSING PATIENT READING
COMPREHENSION OF ELECTRONIC HEALTH

RECORD NOTES

7.1 Introduction

Providing patients access to their medical records through personal health records

(PHRs) is becoming more common as physicians move to electronic health record (EHR)

systems. PHRs are defined as “electronic, lifelong resource of health information

needed by individuals to make health decisions” [Burrington-Brown et al., 2005].

Providing patients direct access to their EHR clinical notes can enhance patients’

understanding of their clinical conditions and improve their health care outcomes [Ross

and Lin, 2003,Honeyman et al., 2005,Delbanco et al., 2012]. For example, the Veterans

Health Administration offers the MyHealtheVet PHR through a Web-based patient

portal, which allows millions of veterans to view their EHRs [Nazi et al., 2013]. These

records include both structured (e.g., patient vitals) and unstructured data (e.g.,

discharge summaries and clinical notes). However, patients with limited health literacy

may struggle to understand the content of their medical notes, which can include

visit summaries with medical terms, lab reports, and terms and phrases that are not

common outside of medicine. A patient’s health literacy can have an impact on their

desire to engage with their own PHR [Noblin et al., 2012, Irizarry et al., 2015].

Low health literacy can impact a patient’s ability to communicate with their health

care providers and to navigate and understand complex EHR information. Health

literacy is defined by the Institute of Medicine as “the degree to which individuals

have the capacity to obtain, process, and understand basic information and services
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needed to make appropriate decisions regarding their health” [Lynn Nielsen-Bohlman,

2004]. According to the National Assessment of Adult Literacy, only 12% of adults

are proficient in health literacy [Kutner et al., 2006]. The average American reads

at or below an eighth grade level, and over 90 million Americans have limited health

literacy [Kutner et al., 2006]. Moreover, 50% of patients do not understand at

least one term in their medical problem list [Lynn Nielsen-Bohlman, 2004, Jones

et al., 1992, Lober et al., 2006]. In addition, EHR notes do not align well with

existing readability prediction formulas, making it difficult to estimate EHR note

readability [Zheng and Yu, 2017]. Consider the following example, taken from a

de-identified EHR clinical note: “The monitor has not shown any dysrhythmias or

arrhythmia either prior to or during any of his spells.” A patient might struggle to

understand the medical terms dysrhythmias and arrhythmia and might not understand

what the monitor is or what prior to or during any of his spells is referring to.

Low health literacy can lead to serious problems. For example, low health literacy

was shown to be independently associated with an increase in mortality among the

elderly [Sudore et al., 2006]. A recent assessment of health literacy involving over

400 Veterans found that 87% of Veterans have low health literacy [Schapira et al.,

2012]. Most health care consumers do not understand phrases often used in cancer

consultations [Chapman et al., 2003]. Patients understand less than 30% of medical

terms commonly used in the emergency department [Lerner et al., 2000]. Patients

with low health literacy are more likely to lack awareness of their atrial fibrillation

diagnosis [Reading et al., 2017] and are at higher risk for increased fear of cancer

progression [Halbach et al., 2016].

Given the prevalence of low health literacy in the population, tools that effectively

assess a patient’s health literacy are needed for both research and practice. Of the

existing instruments, 3 that are widely used are the Rapid Estimate of Adult Literacy

in Medicine (REALM), the Test of Functional Health Literacy in Adults (TOFHLA),
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and the Newest Vital Sign (NVS) [Davis et al., 1993,Parker et al., 1995,Weiss et al.,

2005]. Each of these has value, but also limitations. For example, REALM can be

administered in 2 to 3 min, but it assesses word recognition, not comprehension [Davis

et al., 1993]. TOFHLA assesses reading comprehension and numeracy using passages

from health care-related documents, hospital forms, and prescription labels [Parker

et al., 1995]; a short version of TOFHLA reduced the administration time from 22

min to 12 min [Baker et al., 1999]. NVS contains 6 items tied to a single stimulus (a

food label) and can be administered in 3 min. It was intended as a screening tool and

is less appropriate for generating scores that discriminate between different levels of

health literacy in patients [Weiss et al., 2005,Osborn et al., 2007]. Taken together,

these tests can provide information on a patient’s general health literacy, but none

assesses a patient’s ability to comprehend EHR notes.

The purpose of this study was to create an instrument to measure EHR note

comprehension in patients. We first identified a set of representative EHR notes for

6 diseases and conditions from a large hospital EHR system. From these notes, a

group of physicians and medical researchers generated questions using the Sentence

Verification Technique (SVT) [Royer et al., 1979, Mazor et al., 2012b, Mazor et al.,

2012a]. We obtained responses for these questions from the crowdsourcing platform

Amazon Mechanical Turk (AMT) and analyzed the results using Item Response

Theory (IRT) [Baker and Kim, 2004,Fries et al., 2005,Nguyen et al., 2016,Diviani

et al., 2017] to select a subset of questions for a test of EHR note comprehension.1 To

the best of our knowledge, the ComprehENotes question set is the first instrument to

assess EHR note comprehension.

The goal of this work is to develop a set of questions that can be used to test patient

EHR note comprehension. To that end we developed a process for note selection,

1For this chapter, because we are discussing a more traditional application of IRT, we return to
the traditional IRT terminology and refer to items as “items.”
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Figure 7.1: Visualization of the question generation and validation process for the
ComprehENotes test set.
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question generation, and question selection and validation (Figure 7.1). We discuss

each step in detail in the following sections. The first step is to identify a candidate

pool of questions that can ultimately be filtered down using IRT to become a test

set. To this end we use a topic model to identify representative EHR notes that were

given to a set of medical professionals to write questions. Once these questions were

generated and reviewed, we again used AMT to get enough response patterns to fit

our IRT model and generate a test set. To account for patients who may not have

a lot of time to take the test, both a full test and a short-form that can be easily

administered at a hospital as part of a check-up are presented.

7.2 Building ComprehENotes

7.2.1 EHR Note Selection

We selected notes according to International Classification of Disease (ICD-9) codes

associated with six important and common diseases: heart failure (428), hypertension

(401), diabetes (249, 250), COPD (493.2, 491, 492, 494, 496, 506), liver failure (571),

and cancer (140-239). By selecting notes from multiple diseases our goal was to obtain

a variety of notes associated with common diseases in order to generate questions across

multiple topics. We retrieved EHR discharge summary and progress notes from the

University of Massachusetts Memorial Hospital EHR system. Progress notes provide

information regarding a patient’s conditions and treatments, while discharge notes

may include a summary of the patient’s visit, necessary patient follow-up, and other

information. These types of notes include information that is relevant to patients and

are good candidates for question generation. For each disease/condition we randomly

selected 1000 notes. Since the EHR notes vary significantly for length (anywhere

between 50 words to over 1500 words), we limited the note selection to notes between

300 and 1000 words long. Notes that are longer than 1000 words often contain duplicate

information or large tables of lab results with few free-text section from which we can
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generate questions. We annotated each note with MetaMap [Aronson and Lang, 2010]

to map the note to Unified Medical Language System (UMLS) concepts [Bodenreider,

2004]. For each category, we ran topic modeling on the 1000 notes using the UMLS

concepts that were identified by MetaMap and hierarchically clustered the notes into

5 clusters based on topic similarities. Finally, we selected one representative note (the

note with the most UMLS concepts) from each cluster. By selecting the note with the

most concepts our goal was to identify those notes with the most information that

could be used as part of the question generation process. This procedure resulted in a

total of 30 notes, with 5 notes per disease/symptom. We discarded one cancer note

because the physicians identified it as a pure lab test report that did not include any

natural language text.

7.2.2 Generating Questions with SVT

SVT is a procedure for generating reading comprehension items to evaluate whether

an individual has understood a passage of text [Royer et al., 1979, Royer et al.,

1987,Royer, 2004]. SVT has been applied in many different reading comprehension

environments, such as basic language research [Kardash et al., 1988], evaluating the

effect of prior beliefs on comprehension [Kardash and Scholes, 1995], and assessing

language skills of non-native English speakers [Royer and Carlo, 1991]. In addition,

SVT has been used to develop tests to assess comprehension of cancer screening and

prevention messages [Mazor et al., 2012b,Mazor et al., 2012a]. SVT tests are sensitive

to both differences in reading skill and text difficulty. Tests using SVT questions have

been shown to be effective for measuring reading comprehension, and for assessing

comprehension of written and spoken health messages [Mazor et al., 2012b, Mazor

et al., 2012a].

We asked experts to create question-answer sets following two steps: (1) identify-

ing important content in the notes, and (2) creating comprehension test questions.
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Specifically, the selected 29 de-identified notes were provided to 5 groups. Each group

included one physician and 2-3 non-clinician researchers (a total of 4 physicians and 13

researchers where one physician participated in two groups). The groups were given

an introduction to the SVT methodology before taking part in the exercise. Each

member read every assigned EHR note and then identified important content (usually

a sentence). Each member then followed SVT protocol to create question-answer sets

for the identified content.

An SVT test is designed by taking a sentence or phrase from a passage of text (the

“original”) and generating three additional sentences or phrases: (i) a “paraphrase”

where as much of the sentence/phrase is changed as possible while preserving the

original meaning, (ii) a “meaning change” where the original sentence/phrase is changed

slightly, but enough that the original meaning is changed, and (iii) a “distractor” that

is unrelated to the original but still consistent with the passage theme [Royer et al.,

1979].

Once generated the question-answer sets were then discussed in the group and a

final question-answer set was agreed upon. 154 question-answer sets were generated

from the 29 EHR notes. Table 7.1 shows an example of a question-answer set generated

by the groups, and Table 7.2 shows how this question would be presented to patients

in a test scenario. We selected 83 of the 154 questions for further analysis. Questions

were selected based on their content. We manually selected questions that were

generally relevant to the main topic (e.g. diabetes) over questions that were very

specific to a patient’s note to keep the question set general enough to be given to

future patients. 11 to 13 question-answer sets were retained for 4 of the 6 topics, and

18 question-answer sets were retained for COPD and Diabetes.
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EHR Note Text The monitor has not shown any dysrhythmias or arrhyth-
mia either prior to or during any of his spells

Paraphrase His heart rhythm is normal before and during his fainting
spells

Meaning Change He has had abnormal rhythm prior to or during his spells
of chest pain

Distractor The monitor has shown abnormal heart rhythms before
and during his spells

Table 7.1: Example of questions generated from the researcher/physician groups.

Please read the following question and then examine the answer choices and
choose the answer that best represents the question text.

What does the following sentence mean? “The monitor has not shown any
dysrhythmias or arrhythmia either prior to or during any of his spells.”

1. He has had abnormal rhythm prior to or during his spells of chest pain
2. The monitor has shown abnormal heart rhythms before and during his spells
3. His heart rhythm is normal before and during his fainting spells

Table 7.2: Examples of how the generated questions would be displayed as a question-
naire, using the example from Table 7.1.

7.2.3 Data Collection

To gather enough human responses to fit the IRT model, we recruited participants

from AMT. We created 6 comprehension tasks on AMT, one per disease topic, to

analyze each topic separately. Each task was completed by 250 AMT workers (Turkers),

who were presented with the test questions, one question at a time. This sample size is

large enough to satisfy the accepted standards for IRT models based on the non-central

distribution [MacCallum et al., 1996]. We collected demographic information from the

Turkers prior to administering the test questions, and we implemented several quality

control mechanisms to ensure the quality of the Turker results. Only Turkers with

approval rates above 95% and located in the United States were able to participate.

The 95% approval rate identifies Turkers that have been approved most of the time

according to their completion of other tasks on AMT and is indicative of the high
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quality of their previous tasks. Restricting the task to users located in the United

States is used as a proxy for English proficiency. In addition, in each test one question

was randomly selected as a quality-check question and was presented to the Turker

twice during the course of the evaluation. If the Turker gave two different answers to

the repeated question his responses were not included in later analyses. Two simple

questions were also added to the test as quality control. If the Turker answered one

or both of the quality control questions incorrectly his responses were rejected from

consideration and not included in later analyses.

For the COPD and Diabetes tests, the 18 questions were split into 3 groups of 6

questions. Each Turker was given a random selection of two of the three groups. This

way the test lengths were similar to the other disease topic tests, and the conditions in

which Turkers provided responses were consistent across the groups. For the COPD

and Diabetes tasks we recruited 400 Turkers so that the number of responses per

question were consistent with the other topics.

7.2.4 Item Analysis and Selection using Item Response Theory

After data collection, the Turker responses were analyzed using a 3-parameter

logistic (3PL) IRT model.

The 3PL model was fit to data for each set of questions using the R packages mirt

and ltm [Rizopoulos, 2006,Chalmers et al., 2012]. Marginal residuals of each pair of

items and each triplet of items were checked and items that gave large residuals were

removed for violation of local independence. Items with a negative slope were also

removed. Guessing parameters not significantly different from zero were set to zero.

A key parameter used to identify a “good” question for future evaluations is the slope

of the item characteristic curve. If the slope is flat, then the item cannot distinguish

between individuals of high ability levels and individuals of low ability levels. After

refitting the remaining items, items with a slope parameter not significantly greater
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than zero or less than 0.71 were removed. The value 0.71 corresponds to a communality

of 0.15 in an exploratory factor analysis, which means that 15% of the variance of the

item would be explained by the latent ability factor if the item were continuous. 55

items were retained in this analysis for further validation. From the 55 items we also

identified 14 of the 55 items with the largest slopes (discrimination parameters) and

highest average information for inclusion in the short form of the test. The short test

should be as informative as possible while reducing the length of the test, making it

more practical to administer.

7.2.5 Confirmatory Evaluation of Item Quality

The questions retained from the initial IRT analysis were combined into a single

test and deployed in a new AMT task to validate the item parameters. For this task,

we split the 55 retained questions into 3 groups (each of 18-19 questions) and created

3 AMT tasks where Turkers were shown 2 of the 3 groups and asked for responses

as above. Quality checks were included as in the first set of AMT tasks. For these

tasks Turkers that participated in the initial data collection were excluded. Responses

were generated and a second round of IRT analysis was performed to confirm that the

questions retained from the first round could be considered a cohesive test of EHR

note comprehension as a whole.

7.2.6 AMT Responses and Turker Demographics

We first report descriptive statistics and demographic information about the

Turkers who completed the per-topic and validation AMT tasks (Figure 7.2, Table

2). Responses for both the per-topic and validation tasks covered a wide range of

correctly answered questions, with mean scores for each task above 70%. Across all

tasks no more than 10% of responses were removed because of quality control checks.

We also looked at raw scores and estimated ability in the validation task to see

if there were patterns in the responses that matched expected behavior (Table 3).
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Figure 7.2: Box plots of Turker scores on the AMT per-topic and validation tasks.
Average raw score is above 70% in all cases. Counts indicate the number of AMT
responses retained after quality-control.

As expected, mean scores for individuals with more education are higher than for

individuals with less education. In addition, Turkers over 45 score higher on average

than Turkers under 45. There is a slight drop in mean scores for Turkers over 65

which makes sense given that adults ages 65 and older have lower health literacy on

average [Kutner et al., 2006].

7.2.7 Item Selection

55 of the 83 questions (66%) provided to Turkers in the per-topic AMT tasks were

retained after the initial IRT analysis (Figure 7.3). Items were identified for removal

according to the procedure identified in the Methods section. Table 4 shows examples

of retained and removed items. In the case of the removed item, the question simply

defining the term “Osteoporosis” was too easy for the Turker population. That is,

most of the Turkers answered the question correctly, so the probability of answering

the question correctly is very high even at low levels of ability. A question like this

127



Demographic Value Per-topic count Validation count
n (%), (n=1694) n (%), (n=664)

Gender Male 880 (51.9) 253 (38.1)
Female 814 (48.1) 411 (61.9)

Race African American 107 (6.3) 59 (8.9)
Asian 163 (9.6) 51 (7.7)

Hispanic 89 (5.3) 32 (4.8)
American Indian 7 (0.4) 12 (1.8)
Pacific Islander 9 (0.5) 0 (0)

White 1319 (77.9) 510 (76.8)

Education Less than High School 17 (1.0) 4 (0.6)
High School Degree 504 (29.8) 189 (28.5)
Associate’s Degree 283 (16.7) 109 (16.4)
Bachelor’s Degree 697 (41.1) 256 (38.6)

Master’s Degree or Higher 193 (11.4) 106 (16.0)

Agea 18-21 n/a 14 (2.1)
22-34 n/a 331 (49.8)
35-44 n/a 158 (23.8)
45-54 n/a 106 (16.0)
55-64 n/a 40 (6.0)

65 and older n/a 15 (2.3)

Table 7.3: Demographic information of Turkers from the per-topic and validation
AMT tasks. aAge demographic information was not collected as part of the per-topic
AMT tasks.

does not give us any information about an individual’s ability and therefore is not

needed in the test set.

The test information curve is presented in Figure 7.4. Test information is defined

as the reciprocal of the squared Standard Error (SE) of the ability estimate: where

σ is the SE [Baker and Kim, 2004]. Test information measures how accurate the

ability estimates are at varying levels of ability. Given that most items have negative

difficulty, the information curve has high values in the negative ability levels. That

is, estimates of ability for negative ability levels are more accurate. Test information

is greater than 4 for the range of ability levels between -2.8 and 0.7, which means

for this range of ability levels (from 2.8 SDs below to 0.7 SD above the average of
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Demographic Characteristic Mean Percent
Correct (%)

Average Estimated
Ability

Education
Less than High School 64.7 0.899
High School Degree 84.9 0.038
Associate’s Degree 83.8 0.013
Bachelor’s Degree 83.8 0.034
Master’s Degree or Higher 88.1 0.199

Age
18-21 77.4 0.493
22-34 83.7 0.042
35-44 83.6 0.066
45-54 88.3 0.222
55-64 89.4 0.212
65 and older 85.9 0.122

Gender
Male 80.6 0.236
Female 87.2 0.143

Table 7.4: Average estimated ability of Turkers according to demographic information
for the validation task.

the population of AMT users), the SE of an ability estimate is smaller than 0.5. The

full test is most informative in ability around -2 with maximum information of 44.2

(Figure 5, red dotted line). This maximum is mostly due to a single item (44) with

the largest slope of 11.3. Because of the very large slope parameter, this item is very

informative around ability of -2, but is not informative at other areas of ability. Since

one goal of the test is to identify individuals with low ability, this item may be useful

and is therefore included in our test set. However, we also wanted to confirm that

the other test questions are still informative in their own right. To do this we plotted

the test information curve without item 44. Without this item, the item information

curve is most informative around -1.5, with a maximum of 30.6 (Figure 5, black solid

line).

The test information curve of this short test is also presented in Figure 7.4. The

short test includes item 44, so we also plot information for a 13-item test without item

44. For the short test, test information is greater than 4 (i.e. SE of ability estimate is
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Figure 7.3: Results of analysis to identify useful items from the question sets. Items
were removed according to the reasons outlined in the Methodology.

Question Pegfilgrastim 6 mg subcutaneous one dose
Retained Paraphrase Do an under skin injection of one dose of 6 mg pegfilgrastim

Meaning change Pegfilgrastim 6 mg epidermal one dose
Distractor Pegfilgrastim may prevent neutropenia

Question Osteoporosis
Removed Paraphrase Weakness in bones

Meaning change Hardening of bones as we get older
Distractor Some bones get hard and some weak

Table 7.5: Examples of retained and removed questions following IRT analysis.

smaller than 0.5) in the range between -2.4 and -0.5, or 2.4 SDs to 0.5 SD below the

average AMT user, again appropriate for a population of low literacy.

7.3 Validation with an Education Intervention

In recent years, many hospitals have adopted patient portals to make medical

records available to patients. In particular, patient portals allow patients to access

their electronic health records (EHRs). In a survey of studies related to patient access

to their medical records, generally, patients who chose to see their records were satisfied

with their contents [Ross and Lin, 2003,Masys et al., 2002,Sheldon, 1982,Bronson

et al., 1986] and felt greater autonomy about their care [Ross and Lin, 2003,Homer

et al., 1999,Draper et al., 1986]. Granting patients access to their records also does
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Figure 7.4: Test information curve for the full ComprehENotes instrument (55 items)
and various subsets.

not increase the workload of medical staff members [Ross and Lin, 2003,Hertz et al.,

1976,Baldry et al., 1986,Golodetz et al., 1976]. Generally, patient access to EHRs can

lead to positive health outcomes and greater understanding of their conditions [Ross

and Lin, 2003,Honeyman et al., 2005,Delbanco et al., 2012]. However, EHRs and the

progress notes that are included often contain complex medical jargon that is difficult

for patients to comprehend. When given access to their notes, patients have questions

about the meaning of medical terms and other concepts included in the notes [Golodetz

et al., 1976,Jones et al., 1992]. Tools such as OpenNotes have promoted the inclusion

of patient visit notes in patient portals, but simply including the notes may not be

beneficial for patients if they have questions regarding the meaning of terms in the

notes. Tools and resources that can define terms and provide lay definitions for medical

concepts are needed as part of the move to make EHR notes available to patients so

that they can understand the contents of their notes and their medical record.
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Self-service educational materials are widely available, especially on the Web.

There is a wealth of information related to medicine and health care on the internet,

ranging from well-maintained ontologies with curated educational materials to Web-

based discussion communities of patients that suffer from the same disease. With

this information, patients with certain symptoms can find information about their

condition on the internet. But is the wealth of information useful? That is, does

simply having access to health information lead to better understanding? We test

the usefulness of both passive and active interventions for assisting patients with

understanding medical concepts. The passive system, MedlinePlus (MLP) [Miller

et al., 2000], is a Web-based repository maintained by the US National Library of

Medicine that includes information and definitions for clinical concepts, diseases, and

other terms related to health care. MLP has been used in the past to promote patient

education and provide patients with definitions and educational material to improve

health literacy [Coberly et al., 2010,Gaines et al., 2011,McMullen et al., 2011,Teolis,

2010]. MLP is a large repository of high-quality health care information, but the

user must search for the information that he or she is looking for. MLP does not

automatically surface information for users.

NoteAid [Polepalli et al., 2013] is a freely available Web-based system developed by

our team that automatically identifies medical concepts and displays their definitions

to users. NoteAid has previously been shown to improve patients’ understanding of

notes as measured by self-reporting [Polepalli et al., 2013].

Our goal is to determine if access to NoteAid or MLP is associated with higher levels

of EHR note comprehension. Do these interventions of educational materials improve a

patient’s ability to comprehend his or her EHR note? We use the Amazon Mechanical

Turk (AMT) microtask crowdsourcing platform to give AMT workers (Turkers) the

ComprehENotes EHR note comprehension test, a set of questions designed to test

EHR note comprehension. AMT is an increasingly popular tool for gathering research
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data [Snow et al., 2008,Sabou et al., 2012] and recruiting participants for experiments,

both in open-domain tasks [Demartini et al., 2012] and medical-specific research [Zhai

et al., 2013,Good et al., 2015,Mortensen et al., 2015,Gottlieb et al., 2015]. Certain

Turkers were not given 1 of the external resources, whereas others were provided with

either MLP or NoteAid. Our results show that using NoteAid leads to significantly

higher scores on the EHR comprehension test compared with the baseline population

that was given no external resource. However, we found no significant difference

between the Turkers with no resource and the Turkers who used MLP. Turkers were

also asked to take the short Test of Functional Health Literacy in Adults (S-TOFHLA)

to assess functional health literacy. All the Turkers scored adequate health literacy,

the highest level for S-TOFHLA. This is the first work to quantitatively analyze the

impact of tools such as NoteAid using a test of EHR note comprehension as opposed

to self-reported scores.

We show that NoteAid has a significant impact on EHR note comprehension as

measured by a test specific to that task. In addition, simply giving a patient access

to sites such as MLP does not lead to significant improvements in test scores over a

baseline group that had no external resources available to them. Finally, we analyze

the demographics of the Turkers who completed our tasks. A regression model to

predict test scores showed differences between demographic groups that align with the

current knowledge regarding health literacy. For example, individuals that reported

education of less than high school scored lower than average, whereas individuals that

identified as white scored higher than average.

Health literacy is an important issue for patients. Low health literacy is a

widespread problem, with only 12% of adults estimated to be proficient in health

literacy [Kutner et al., 2006]. The Institute of Medicine defines health literacy as “the

degree to which individuals have the capacity to make appropriate decisions regarding

their health” [Lynn Nielsen-Bohlman, 2004]. Patients with low health literacy often
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have difficulty with understanding instructions for medications from their doctors and

have trouble navigating systems for making appointments, filling prescriptions, and

fulfilling other health-related tasks [Lerner et al., 2000, Chapman et al., 2003]. In

addition, having low health literacy has been linked to negative health outcomes in

areas such as heart disease and fear of cancer progression [Halbach et al., 2016,Reading

et al., 2017].

It is important to be able to test a patient’s health literacy to identify those patients

with low health literacy. Doctors can then provide these patients with educational

materials to improve their understanding of medical terms and concepts. Testing

health literacy is especially important with the proliferation of Web-based patient

portals, where patients can access their EHRs and EHR notes directly. Giving a

patient access to their EHRs and EHR notes without confirming that the patient can

understand the content of the notes may lead to confusion and frustration with their

health care experience.

There are a number of tests for health literacy, including the Test of Functional

Health Literacy in Adults (TOFHLA) and the Newest Vital Sign (NVS) [Parker

et al., 1995,Baker et al., 1999,Weiss et al., 2005]. TOFHLA and its shortened form

(S-TOFHLA) test comprehension and numeracy by providing scenarios to patients

and constructing fill-in-the-blank questions by removing key terms from the scenario

passages. NVS is a short test where patients are required to answer questions related

to a nutrition label, to test whether the patient can navigate the label. These tests

work well as screening instruments to identify patients who may have low health

literacy, but they are broad tests and do not specifically test EHR note comprehension.

Although these and other tests are available, the only test that specifically targets

a patient’s ability to comprehend their EHR notes is the ComprehENotes test. The

ComprehENotes test questions were developed using key concepts extracted from

de-identified EHR notes. Questions were written by physicians and medical researchers
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using Sentence Verification Technique and validated using Item Response Theory

(IRT) [Royer et al., 1979,Baker and Kim, 2004]. The test set is the first of its kind

that specifically tests a patient’s ability to comprehend the type of content that is

included in EHR notes.

7.3.1 Methods Overview

We recruited Turkers on the AMT platform and asked them to complete the

ComprehENotes EHR note comprehension test. Turkers were split into 3 groups and

were allowed to use 1 external resource when completing the test (or no resource in

the case of the baseline group). Test results were collected and analyzed using IRT

to estimate EHR note comprehension ability for each of the individuals, and group

results were analyzed to determine if either of the external resources had a significant

effect on test scores. Figure 7.5 illustrates our methodology at a high level. Details

for each of the steps are described below.

7.3.2 Data Collection

The questions in the ComprehENotes test set include questions from patient

EHR notes associated with 6 diseases: heart failure, hypertension, diabetes, chronic

obstructive pulmonary disease (COPD), liver failure, and cancer. The questions

are all general enough that they assess a key concept associated with 1 of the 6

diseases without being so specific to a single patient that they are not useful to others.

Therefore, the test can be used to assess a patient’s general EHR note comprehension

ability and allows for comparisons between patients with respect to comprehension

ability.

The ComprehENotes test set is most informative for individuals with low health

literacy. That is, the SE of the ability estimation is lowest at low levels of ability (e.g.,

-2 to -0.5). In addition, most of the ComprehENotes questions have low difficulty

parameters. The difficulty parameters range from -2.2 to 0.7. That is, the questions
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are of a difficulty that individuals with lower than average ability have a 50% chance

of answering correctly. For example, if a question has a difficulty parameter of -1.0,

then an individual with estimated ability of -1.0 has a 50% chance of answering the

question correctly. Ability estimates are normally distributed, so an individual with

estimated ability of -1.0 is 1 SD below the average individual. Individuals are shown

a snippet of text from a de-identified EHR note and asked to select the answer that

has the same meaning as the italicized portion of the text.

We set up 3 AMT tasks for Turkers to complete. Turkers were presented with the

ComprehENotes question set, 1 question at a time, and were asked to provide the

correct answer.

For 1 task (Baseline), the Turkers were instructed to not use any external resources

when answering the questions. For the first treatment task (Treatment-MLP), Turkers

were given a link to MLP and were told that they could use the site as a reference

when completing the task. Turkers were encouraged to use the MLP page search

functionality to search for definitions to unknown terms or concepts that appeared

in the task. For the second treatment task (Treatment-NoteAid [Treatment-NA]),

the Turkers were provided with a version of the ComprehENotes test set that had

been preprocessed with NoteAid. We preprocessed the ComprehENotes question text

using NoteAid, extracted the simplifications and definitions that were provided, and

used the NoteAid output as the question text shown to Turkers in the Treatment-NA

group (refer to Figure 7.6 for an example of text simplified by NoteAid). The tasks

were restricted so that individuals who completed 1 were not eligible to complete the

other 2. For all groups, we collected demographic information about the Turkers’

age, gender, ethnicity, level of education, and occupation. We also administered the

S-TOFHLA test for each group to assess functional health literacy and to compare

S-TOFHLA and ComprehENotes scores.
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As we are not able to monitor the Turkers as they complete our tasks, we cannot

know for sure that the baseline group did not use any external resources as instructed.

However, we can be confident that they did not have access to NoteAid. To access

NoteAid, the Turkers would have to have known the URL link to access the system,

even though we did not provide it to them. Alternatively, the Turkers would have had

to search for NoteAid without knowing the name of the specific system we are testing.

Therefore, we are confident that even if the baseline group did use some external

source during the task, they did not have access to NoteAid. The baseline Turkers

may have found MLP if they searched on the Web for medical concepts during the

task. For example, a Google search of “COPD definition” returns an MLP link on the

first page. However, unless the Turkers knew about MLP before beginning the task, it

is unlikely that they would use MLP as a reference during the task.

We included quality control checks for our AMT tasks to ensure a high-quality

response from the Turkers. First, we restricted access to our tasks to Turkers with a

prior approval rating above 95% to include only Turkers whose work has been judged

as high quality by other requesters. We also restricted the task to Turkers located in

the United States as a proxy for a test of English proficiency. Within the actual task,

we included 3 quality-check questions, which consisted of a very simple question with

an obvious answer. If any Turker answered 1 or more of the quality control checks

incorrectly, their responses were removed from the later analyses.

The NoteAid system supplies lay definitions for medical concepts in EHR notes

[Polepalli et al., 2013]. Users enter the text from their EHR notes into the NoteAid

system, which outputs a version of the note with medical concepts defined. When the

user hovers his or her mouse over a concept, a popup with the definition is shown.

Figure 7.6 shows a high-level overview of the components in the NoteAid system, with

example text that has been annotated. Users enter their EHR note text into NoteAid
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Figure 7.5: Flowchart describing our experiment. Amazon Mechanical Turk workers
were randomly assigned to one of three tasks on the platform. They completed the
ComprehENotes test with the use of the provided external tool. All scores were then
collected, and ability estimated were obtained using Item Response Theory (IRT).
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Figure 7.6: Example showing NoteAid simplified text.

and are provided with a reproduction of the text, with key medical concepts linked to

their definitions.

NoteAid consists of 2 components. The concept identifier component processes

input text and maps terms to medical concepts. The concepts are mapped to entries

in the Unified Medical Language System using MetaMap [Aronson, 2001,Bodenreider,

2004]. It then filters the list of returned concepts to include only concepts that match

a subset of possible semantic types related to patient health (e.g., disease or syndrome

and lab or test result). The definition fetcher component uses the filtered list of

concepts to pull definitions from an external knowledge resource (e.g., Wikipedia or

MLP).

Previous evaluation of NoteAid has shown that patients’ self-reported comprehen-

sion scores improve when using the system [Polepalli et al., 2013]. However, there

has not yet been an evaluation of NoteAid on a test of comprehension, as opposed to

self-reporting scores.
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7.3.3 Item Response Theory Analysis

Recall that the ComprehENotes test set was developed using IRT [Baker and Kim,

2004]. The test set was built according to a single factor, 3-parameter logistic IRT

model with a fixed guessing parameter. The test, therefore, measures a single latent

trait, specifically the ability to comprehend EHR notes. Once the model has been

fit, ability for a new test respondent is estimated by estimating θ according to the

respondent’s answers to the test questions after the responses have been converted to

a correct or incorrect binary format. For a single test question i, the probability that

individual j answers the question correctly is a function of the individual’s ability (θ).

The likelihood of a data set of response patterns is defined as:

pi(θj) = ci +
1− ci

1 + e−ai(θj−bi)
(7.1)

qi(θj) = 1− pi(θj) (7.2)

p(Uj|θj) =
I∏
i=1

pi(θj)
uijqi(θj)

(1−uij) (7.3)

where Equation 7.1 is used to calculate the probability that individual j with

an estimated ability of θj will answer question i correctly; Equation 7.2 calculates

the probability that individual j with estimated ability θj will answer question i

incorrectly; and Equation 7.3 calculates the likelihood of individual j’s set of responses

Uj to all items in the test set, where uij is 1 if individual j answered item i correctly

and 0 if they did not.

pi and qi are functions of the known item parameters, and therefore, we can

estimate θ via maximum likelihood for each Turker. We also calculated raw test scores

for each Turker (percent of questions answered correctly) for comparison.
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7.3.4 Results

We first report the demographic information for the Turkers who completed our

tasks. Table 7.6 shows the demographic information that we collected from the Turkers

for the Baseline, Treatment-MLP, and Treatment-NA groups. Overall, most of the

Turkers who completed our tasks are white, young, and have at least an associate

degree. In addition, most of the Turkers do not work in the medical field. These

demographics are not representative of a wider population and do not fit demographics

that are more commonly associated with low health literacy [Lynn Nielsen-Bohlman,

2004]. However, our goal here is to compare the results with respect to different

interventions. In this case, we do not need to test individuals with low health literacy;

we instead want to see if scores improve when users are provided with certain external

resources.

Our analysis includes both the raw test scores as well as the estimated ability

level using IRT. As the test set consists of questions that were fit using IRT, we can

also calculate the ability of these Turkers and test whether the mean ability score

was higher for Turkers that used NoteAid. Ability is a useful metric as it takes into

consideration which questions you answer correctly, not just how many. IRT models

question difficulty, so by considering whether easy or difficult answers were correct,

IRT allows for a more informative score than percent correct. For each Turker, we

calculated their ability score (θ) using the IRT model fit as part of the ComprehENotes

data set. We use the mirt and ltm open-source R packages for estimation [Rizopoulos,

2006,Chalmers et al., 2012].

Figure 7.7 plots the raw scores for each AMT Turker for our test set. The center

rectangles span the range from the first quartile to the third quartile of responses,

and the bolded line inside each box represents the median score. Open circles indicate

outlier scores. The upper horizontal line marks the maximum score for each group,

and the lower horizontal line is 1.5 times the interquartile range below the first quartile.
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Demographic Baseline MLP NA Total
n (%), (n=41) n (%), (n=29) n (%), (n=27) n (%), (n=97)

Gender
Male 27 (66) 8 (28) 18 (67) 53 (55)
Female 14 (34) 21 (72) 9 (33) 44 (45)

Age
22-34 23 (56) 16 (55) 16 (59) 55 (57)
35-44 6 (15) 9 (31) 8 (30) 23 (24)
45-54 8 (20) 2 (7) 3 (11) 13 (13)
55-64 4 (10) 2 (7) 0 (0) 6 (6)
65 and older 0 (0) 0 (0) 0 (0) 0 (0)

Ethnicity
Black or African
American

8 (20) 3 (10) 4 (15) 15 (16)

Asian 3 (7) 0 (0) 1 (4) 4 (4)
Hispanic 4 (10) 1 (3) 0 (0) 5 (5)
American Indian
or Alaska Native

0 (0) 1 (3) 1 (4) 2 (2)

White 26 (63) 24 (83) 21 (78) 71 (73)

Education
Less than High
School

1 (2) 0 (0) 0 (0) 1 (1)

High School De-
gree

9 (22) 8 (28) 8 (30) 25 (26)

Associate’s De-
gree

8 (20) 5 (17) 3 (11) 16 (17)

Bachelor’s Degree 20 (49) 14 (48) 14 (51) 48 (50)
Master’s Degree
or Higher

3 (7) 2 (7) 2 (7) 7 (7)

Occupation
Physician 0 (0) 0 (0) 1 (4) 1 (1)
Nurse 2 (5) 0 (0) 0 (0) 2 (2)
Medical student 1 (2) 1 (3) 1 (4) 3 (3)
Other profession
in medicine

2 (5) 3 (10) 3 (11) 8 (8)

Other profession 36 (88) 25 (86) 22 (82) 83 (86)

Table 7.6: Demographic information of Turkers from the follow-up study.

As the figure shows, visually there is a spread between the populations that did and

did not have access to the interventions. Median raw scores for the baseline and MLP
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groups are similar, whereas median scores for the NoteAid group is higher. The spread

of responses for the treatment groups is also smaller than the baseline group.

Figure 7.7: Box plot of raw scores for baseline and treatment Turker groups. The
treatment groups were able to use MedlinePlus and NoteAid, respectively, when taking
the ComprehENotes test.

Figure 7.8 shows the box plots of ability estimates. Again, the median values for

the baseline and MLP groups are similar and the median ability estimates for the

NoteAid group is higher. The lowest ability estimates for the baseline and MLP groups

are much lower than for the NoteAid group (2 SDs below the mean as opposed to 1

SD below). This shows that even for individuals that use NoteAid and still struggle,

the low range of ability is higher than when NoteAid is not used.

To test whether either intervention caused a significant difference in scores, we

compared each intervention with our baseline using Welch 2-sample t test. Table

7.7 shows the mean raw scores and mean ability estimates for Turkers in each group.
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Figure 7.8: Box plot of ability estimates for baseline and treatment Turker groups.
The treatment groups MLP and NA were able to use MedlinePlus and NoteAid,
respectively, when taking the ComprehENotes test. IRT: Item Response Theory.

Mean scores are significantly higher than the baseline for Turkers that had access to

NoteAid, both with regard to the raw scores (P=.01) and estimated ability (P=.02).

We also wanted to determine if demographic factors had an impact on test scores.

To that end, we fit a linear regression model to predict raw scores using demographic

information and group (e.g., baseline or treatment) as features. The results of the

analysis showed that the intervention (none, MLP, or NoteAid) was a significant feature

in predicting raw score. In addition, certain demographic groups were significant

in determining score. Regarding ethnicity, individuals who self-reported as white

had a significant positive coefficient. Regarding education, individuals that have

less than a high school degree had a significant negative coefficient. These results

are consistent with what is known about populations that are at risk for low health

literacy. Individuals with lower education often have higher instances of low health
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literacy, as well as minorities. Our populations for this task, particularly with regard

to minorities and less educated individuals, were very small. Future work on NoteAid

in minority populations would be worthwhile to confirm these effects.

Group Raw score Ability estimate
Baseline 0.831 -0.065

MedlinePlus 0.849 0.138
NoteAid 0.923∗ 0.477∗

Table 7.7: Mean scores for the 3 groups. Mean NoteAid scores are significantly higher
than the mean baseline scores, both for raw scores (P = .01) and estimated ability
(P = .02).

7.3.5 Comparison With the S-TOFHLA

All Turkers who completed our tasks were also given the S-TOFHLA test to

complete. Scores on S-TOFHLA place test-takers into 1 of the 3 categories: inadequate

health literacy, marginal health literacy, and adequate health literacy. It is most

useful as a screening tool to identify individuals with low or marginal health literacy.

All Turkers in our tasks were scored to have adequate health literacy. In fact, all

Turkers either scored perfect scores or only answered 1 question incorrectly, whereas

the scores from the ComprehENotes test covered a wide range of ability estimates. The

ComprehENotes can be used to assess EHR note comprehension at a more granular

level as opposed to a screening tool such as S-TOFHLA, where the primary concern is

identification of individuals with low health literacy.

7.3.6 ComprehENotes Analysis

Finally, we wanted to see if the IRT model that was originally fit as part of the

ComprehENotes data set was validated by the response patterns that we collected from

the Turkers. To this end, we selected the 2 questions that the most Turkers answered

correctly as well as the 2 questions that the fewest Turkers answered correctly.
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These questions can be considered the easiest and hardest, respectively, from

our task. The difficulty parameters for these items as modeled by IRT match the

expectation of how difficult these items should be. The 2 hardest questions from our

task (in terms of how many Turkers answered correctly) have difficulty parameters of

0.7 and -0.3, whereas the 2 easiest questions have difficulty parameters of -1.8 and -1.4.

The difficulty parameter is associated with the level of ability at which an individual

has a 50% chance of answering the question correctly. Therefore, the low difficulty

levels imply that someone of low ability has a 50% chance of answering the question

correctly. Conversely, a higher difficulty parameter means that someone must be of a

higher estimated ability level to have a 50% chance of answering correctly.

7.3.6.1 Discussion

We have shown the importance of targeted, active intervention when trying to

improve a person’s ability to comprehend EHR notes. By giving Turkers access to

NoteAid, scores on the ComprehENotes test are significantly improved over a baseline

population that had no external resources. On the other hand, Turkers that had

access to MLP but had to search themselves for the information that they wanted

did not have a significant improvement in scores. NoteAid automatically identifies

key medical concepts and provides definitions, as opposed to the scenario with MLP,

where a user must decide what to search for. The user may not know that a certain

concept is key for understanding a passage or they may assume that they understand

certain concepts that they do not. By letting the user decide what to search for,

important terms may be missed and overall comprehension may be affected. This

result is consistent with previous work on assessing comprehension using tools such as

NoteAid [Polepalli et al., 2013], but this is the first time where the conclusion is based

on an EHR note comprehension assessment instead of patient self-reported scores. By
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using the ComprehENotes test, we can quantitatively confirm the previous results

self-reported by patients.

There are limitations to this work. First, by using AMT, we are not able to

monitor the Turkers who complete our task to ensure that only the external resources

that we provide were used. This is particularly true in the baseline group, where our

expectation is that no external resource was used. However, it is unlikely that the

baseline users were able to access NoteAid without prior knowledge of the system;

therefore, we can be confident that they did not use it in our task. If the baseline

users did use external resources, they most likely used a passive resource such as

Google or even MLP. As NoteAid was integrated into the Treatment-NA task, we can

be confident that Turkers in the Treatment-NA task used NoteAid. The discrepancy

between Treatment-MLP and Treatment-NA may seem to bias improvements toward

the Treatment-NA group, but there is an important distinction to be made. At present,

sites such as MLP are available to any patient that seeks them out, but the onus is on

the patient to go to the site and search for terms. With the Treatment-NA group, we

have shown that by integrating a system that can simplify and define medical terms

automatically, the burden of defining terms is removed from the patient.

In addition, the demographics of the Turkers who completed our task are not

representative of the larger population, specifically among demographics associated

with higher risks of low health literacy [Lynn Nielsen-Bohlman, 2004]. In the case of

this work, that is not problematic, as our goal was to examine the effect of active and

passive interventions on EHR note comprehension. The demographics of our 3 groups

were similarly distributed, so the changes in scores can be linked to the intervention

used. Although the results obtained were significant, ideally larger populations could

be examined in each group. However, as the demographics of the Turkers are not

consistent with demographic groups associated with low health literacy, the follow-up

work should focus on those groups. By using AMT and Turkers, we have shown that
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tools such as NoteAid do improve EHR note comprehension generally, but future work

should look specifically at groups associated with low health literacy to determine if

our results hold for those groups as well.

Another limitation of this study is that patients are not evaluated on their own

notes. Ideally, we would be able to assess the EHR note comprehension of each

patient by testing the patient using concepts extracted from his or her own EHR

notes. However, there are several roadblocks to making this a reality. First, this type

of personalized assessment would reduce the ability to compare comprehension ability

between patients. If a patient scores highly on an assessment of their own note, we

can say that the patient understands the note, but if there were no complex concepts

in the note, we cannot compare this with a patient who scores poorly on an evaluation

based on his or her own complex EHR note. Second, to build a personalized EHR

note evaluation would require complex natural language processing (NLP) systems to

automatically generate multiple- choice questions (MCQs) for patients when they enter

their EHR notes. To our knowledge, there does not currently exist an NLP system for

medical MCQ generation. We do believe that the development of such a system will

be beneficial for personalized patient assessment of EHR note comprehension. Such

a personalized system could complement the ComprehENotes test so that a patient

would be assessed on their own EHR note as well as on a standardized assessment.

We have shown that simply having access to resources designed to improve health

literacy and medical concept understanding is not enough to provide benefit. The

Turkers in our experiment who had access to MLP did not score significantly higher on

the ComprehENotes test than those Turkers that were not provided with an external

resource. On the other hand, having access to NoteAid, which actively pulls definition

information and provides it to the user, led to significantly higher scores for Turkers.

This result validates previously reported self-scored comprehension results showing
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that users had an easier time understanding their notes when they had access to

NoteAid.

Knowing that users do not see benefits from simply having access to MLP is

an important observation. When doctors are recommending next steps for patients

who wish to improve their health literacy, it may not be sufficient to point them to

Web-based resources. Targeted interventions are necessary to ensure that patients

are able to learn about specific concepts and diseases that are relevant to them. In

particular, the integration of NoteAid with the EHR note on a patient’s portal would

remove the friction from the patient accessing an external resource. Instead, the

patient would have key terms defined and simplified within his or her own patient

portal, which would minimize the effort involved from the patient’s standpoint and

keep the information in the note within the portal itself.

There are several directions for future work. Developing target curricula is necessary

to ensure that patients can see benefits from Web-based resources. They may not need

a tool such as NoteAid (e.g., if they are not looking at their notes), but something

more targeted than MLP is needed to ensure that patients are learning. In addition,

there should be further validation of the ComprehENotes test set with patients that

are at risk for low health literacy. The Turkers in our task all scored either close to

average or above average in our ability estimates, except for a few outliers. The test

was designed to be most informative for individuals of lower ability, so this test should

be replicated with such a population.
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CHAPTER 8

CONCLUSIONS

8.1 Contributions

In this dissertation we have made several contributions based on an analysis of the

thesis statement:

Estimating the characteristics of individual data points such as difficulty and latent

model ability using psychometric methods can be done at a large scale, can improve

model performance, and can allow for more thorough model evaluation.

First, we have developed three new test sets using methods from IRT: two tests

for the NLP tasks of natural language inference and sentiment analysis (Chapter 2),

and a new test of electronic health record note comprehension (Chapter 7). Each test

allows for a new way to analyze machine learning models (or patients in the case of

the EHR note comprehension test) to better understand performance beyond a raw

accuracy score. For NLP, we have shown that analyzing model performance using

IRT can better measure performance on very easy/very hard data sets by comparing

the model’s performance to a population of humans. If a test set is easy, then very

high accuracy is not as impressive, and the latent ability score is reflective of that.

On the other hand, if a data set is very hard, even average performance in terms of

accuracy can be indicative of a high-ability model. For EHR note comprehension, the

ComprehENotes test is a measurement instrument that can assess patient EHR note

comprehension using questions that come from real-world de-identified patient notes.

The test questions cover several common diseases and conditions, and the questions in

the test were analyzed and confirmed to be appropriate using IRT. What’s more, using
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the ComprehENotes test we were able to confirm previously self-reported results on

patient comprehension improvement using the NoteAid tool with a valid measurement.

By having individuals take the ComprehENotes test with and without NoteAid we

can measure the impact of the NoteAid tool on EHR note comprehension instead of

relying on self-reported patient scores.

Knowing how easy or difficult specific examples in a data set are is useful information

for analyzing machine learning model performance. In particular, we analyzed the

effect of (a) example difficulty and (b) model training set size to predict whether a

trained model would label an example correctly and found that both difficulty and

training set size are significant predictors of performance (Chapter 3). What’s more,

as more training data is added to a model, the odds of labeling an easy example

correctly increase more quickly than the odds of labeling a difficult example correctly.

This result shows that knowing the difficulty of examples in the data set allows for

predictions in terms of model performance.

Next, we introduced the Soft Label Memorization Generalization (SLMG) algorithm

to leverage disagreements between annotators to improve machine learning model

performance (Chapter 4). Even though a relatively small number of soft-labeled

examples were used, by incorporating the distribution over labels into training we

were able to see improved model performance. For both natural language inference

and sentiment analysis, using the soft-labeled data led to improvements in test set

accuracy, indicating that the typical supervised learning paradigm of binary labeling

is excluding useful information for learning.

A bottleneck of the results detailed above is that utilizing IRT requires human

response pattern data. In Chapter 5 we show that human annotators can be replaced

by an artificial crowd, allowing us to generate response pattern data for entire machine

learning data sets instead of a carefully selected sample of examples. Using variational

inference methods we are able to fit IRT models for all of the examples in the data
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sets, and use the learned difficulty parameters to select the best examples in terms of

difficulty for model training.

Finally, we introduced the Dynamic Data selection for Curriculum Learning via

Ability Estimation (DDaCLAE) algorithm for dynamic curriculum learning (Chapter

6). By modeling model ability at each training epoch, we are able to train neural

network models that are more efficient and more effective than baseline models and

models trained with other curriculum learning strategies. DDaCLAE is the first

curriculum learning strategy to measure model competency during training and use

this information to inform data selection. Because DDaCLAE uses IRT, estimated

competency can be compared directly with example difficulty to select training

examples that the model has the highest likelihood of labeling correctly. DDaCLAE is

dynamic, and can adjust whether more or less training data is included at a given

epoch based on estimated ability at a specific point in the training process. This is in

contrast to previous approaches to curriculum learning where the data inclusion rates

are fixed and monotonically increasing.

We have have shown that the incorporation of Item Response Theory methods can

benefit machine learning model training and evaluation. By using IRT to measure latent

parameters of machine learning models and the examples that they are trained/tested

on, researchers can better understand model performance on specific tasks, and the

inherent difficulty of the tasks themselves without relying in heuristics. The work

in this thesis should stimulate future work in supervised learning by encouraging

researchers to fit IRT models of their data using an artificial crowd as part of the

standard analysis. Learning how easy or difficult your data set is should become

standard practice so that the relative importance of the task can be known by the

community.
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8.2 Future Work

As a result of this dissertation there are a number of interesting areas for future

work:

8.2.1 Amortized IRT

We have shown that it is possible to learn IRT models with artificial crowds and

variational inference methods. An interesting avenue for future work is to investigate

whether example difficulty can be estimated as a function of the example features

themselves. Recent work in variational autoencoders has shown that it is possible to

untangle latent codes when encoding examples. If difficulty is one such code, then

it is possible to learn the difficulty of an example without requiring a huge number

of responses. Once an amortized IRT model has been trained (with a large response

pattern data set), then for future examples difficulty could be estimated as a function

of the example itself.

8.2.2 Synthetic, Difficult Data Generation

If one is able to encode an example and untangle difficulty from the resultant latent

code, then the next step would be to decode a latent code and difficulty value back to a

data point. Given some latent code and a difficulty value, then the IRT decoder model

should output an example that is easy or difficult depending on the input difficulty

value. This would allow for synthetic data generation where the difficulty can be

specified, opening up entire new areas of synthetic curriculum learning research.

8.2.3 Merging Supervised Learning and IRT

The most exciting area of future work, and the hope we have for supervised learning

in general, is a new standard of training algorithms that incorporates IRT directly

into the learning process. As a model is trained on data, at each epoch model outputs

can be stored. The learner is then updated based not only on a typical supervised
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loss function, but also with a variational objective for learning difficulty estimates

for each of the training examples. That way the model learns an IRT function and a

classification function jointly. At test time, the model can not only output a predicted

class, but also a predicted difficulty, which allows the user to see how easy or difficult

the model thinks a given test example is. This can improve model interpretability and

potentially guard against adversarial attacks, as this model should determine that the

adversarial examples are more difficult than typical in-distribution examples.
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