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ABSTRACT 

 

MOLECULAR DESIGN OF ORGANIC SEMICONDUCTORS FOR INTERFACIAL AND 

EMISSIVE MATERIAL APPLICATIONS 

MARCUS D. COLE, B.S., UNIVERSITY OF SOUTH CAROLINA COLUMBIA 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph.D, UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Todd Emrick 

This dissertation describes the synthesis and characterization of functional 

optoelectronically active materials. Synthetic techniques were used to prepare polymers containing 

perylene diimide (PDI) or tetraphenylethylene (TPE) moieties in the polymer backbone. PDI-

based structures were prepared with embedded cationic or zwitterionic moieties intended to tailor 

organic/inorganic interfaces in thin film photovoltaic devices. The aggregation-induced emission 

(AIE)-active TPE polymers were synthesized to study how AIE properties evolve in π-conjugated 

polymers. The syntheses discussed here focused on modulation of molecular architecture to give 

rise to materials with tailored optoelectronic properties.  

Chapter 1 provides a brief overview of the field of organic electronics and the key concepts 

underpinning this thesis research. Chapter 2 describes the synthesis of PDI-containing polyionenes 

and linear polymer zwitterions. Dual-functional PDI monomers containing tertiary amines at the 

imide position, and bulky bromide or phenyl groups at the aromatic core, afforded reactive and 

high solubility monomers.  Polymers with ammonium bromide and sulfobetaine functionality in 

the backbone were prepared by reacting PDI monomers with the appropriate electrophiles. By 
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controlling PDI content, macromolecular structures with tunable PDI-PDI interactions were 

achieved and studied spectroscopically. Chapter 3 focuses on integration of novel PDI-based 

materials into organic and perovskite solar cells as interfacial layers.  The interfacial properties, 

morphology, and device enhancement were studied as a function of PDI incorporation in the 

polymer backbone. Trends in electronic properties and device performance were correlated to 

polymer structure and revealed a strong dependence on the selection of cationic vs. zwitterionic 

functionality. The PDI-containing polymers were found to enhance photovoltaic device 

performance, despite not being continuous conjugated structures, but rather having conjugated 

molecular segments in the polymer backbone.   The effective work function modification of metal 

cathodes and energy level overlap with perovskite active layer permitted enhanced device 

performance when tertiary amine-functionalized PDI small molecules were incorporated into 

devices. Chapter 4 centers on the synthesis and characterization of conjugated polymers containing 

TPE. The optical properties of these materials were adjusted by controlling extent of vinylene 

groups in the polymer backbone.  These vinylene-containing TPE polymers exhibited similar 

optical and electronic properties to poly(phenylene vinylene) (PPV) while maintaining the 

desirable AIE properties of TPE. Moreover, by controlling the mole percent of TPE in PPV 

copolymers aggregation-caused quenching (ACQ) was attenuated without perturbation of PPV’s 

optical properties. Finally, Chapter 5 projects an outlook of the discussed research. Emphasis is 

given to where research focus should be oriented to advance the technology beyond the academic 

space.  The aim of this chapter is to highlight the impact of this work and its relationship to bringing 

the science closer to the general public. The experimental procedures of the materials synthesis, 

characterization, and device fabrication are then detailed in Chapter 6. 
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CHAPTER 1 

 ORGANIC OPTOELECTRONIC MATERIALS AND THEIR APPLICATIONS 

 

1.1 Overview of organic semiconductors and their applications  

 

Conjugated molecules capable of interacting with the electromagnetic spectrum and/or 

transporting electrical charges are prevalent throughout nature (Figure 1.1). The cyclic pyrrole 

tetramer, known as porphyrin, is the photoactive component in chlorophyll and stabilizes iron in 

heme to transport oxygen in red blood cells.  Chromophores such as retinal enable vision as the 

photosensitive component of photoreceptor cells in the retina of organisms with advanced optical 

receptors, while other pigments such as beta-carotene and lycopene provide color to food. The 

electrical and optical properties of these materials arise from the configuration of the π-bonds 

present in their molecular structure.  The alternating δ-bond/π-bond architecture delocalizes 

electrons through π-orbital overlap, stabilizing these systems due to the availability of resonance 

structures (Figure 1.2).  

Figure 1.  1. Structures of naturally occurring conjugated structures (A) porphyrin; (B) retinal; 

and (C) beta-carotene and where they are found. 
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 The unique properties of these biological molecules have been harnessed in synthetic 

structures to develop organic semiconductors.  Organic/soft electronics are more versatile when 

compared to traditional inorganic materials that comprise hard electronics. These organic materials 

can be processed from solution and modified synthetically with useful functionality. The unique 

properties of these materials can afford low-cost approaches to fabricate lightweight, thin film 

devices well-suited for emerging technologies such as wearable electronics and biological 

sensors.1 Early work in organic semiconductor synthesis produced polyacetylene2 and 

tetrathiafulvene-tetracyanoquinodimethane (TTF-TCNQ) salts3 which exhibited high 

conductivities but lacked the necessary solubility and processability for thin film fabrication. The 

issue of solubility was addressed through the development of polymers containing solubilizing 

side groups, such as poly(para-phenylene vinylene)4 and poly(alkylthiophenes).5  Synthetic  

advances in recent years have resulted the synthesis of a vast library of conjugated small molecules 

 

Figure 1. 3. Device architecture of (A) OPV and (B) and OLED devices. 

Figure 1. 2. Schematic of delocalization of electrons through π-orbitals in naphthalene 
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and polymers with controllable molecular weights, optoelectronic characteristics, and solution 

properties. Through these synthetic achievements, solution-processable organic/polymeric 

semiconductors have been integrated into device architectures such as organic light-emitting 

diodes (OLEDs) for displays and organic solar cells (OSCs) (Figure 1.3). This thesis work focuses 

on the synthesis and characterization of novel optoelectronic polymers that represent useful 

synthetics pathways to materials capable of enhancing the performance of OSC or producing 

superior emission in the aggregated state.  

1.2 Structure property relationship of perylene diimides 

 

Chapter 2 details the synthesis and characterization of perylene diimide (PDI)-based 

polyionenes and polymer zwitterions.  Perylene is a polycyclic aromatic hydrocarbon which is 

used today as an industrial colorant6  but lacks solubility in most organic solvents, limiting its 

utility in thin film electronics.  Appending the perylene structure with solubilizing imide groups 

has proven to be an effective approach to preparing solution processable perylene derivatives 

(Figure 1.4). PDIs commonly employ bulky substituents at the imide position to achieve optimum 

 Figure 1. 4. Structure of PDI and the influence of functionality at its imide 

and aromatic core positions. 
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solubility.7–9 The two imide groups draw electron density from the aromatic core, resulting in low 

lying lowest unoccupied molecular orbital (LUMO) (4-5 eV) and highest occupied molecular 

orbital (HOMO) (6-7 eV). The influence of PDIs energy levels is reflected by its strong electron-

accepting behavior. Density-field theory (DFT) calculations have revealed the presence of nodes 

in the LUMO and HOMO located at the imide nitrogen atoms. 10 This permits modification of the 

solution properties without significant perturbation of intrinsic photophysical and electronic 

properties. Due to PDI’s structural tunability and high electron affinity, it has found utility as an 

electron-acceptor in OSCs and active layer in n-type field-effect transistors.11–14   

In addition to PDI’s exceptional optoelectronic properties, its π-π-driven self-assembly into 

ordered structures is also noteworthy.  The assemblies can be modified by introducing 

functionality with affinities to substrates or solubility properties at the imide group and/or the 

perylene aromatic core. Hydrogen bonding,15 electrostatic attraction,16 co-assembly with other 

electronically active molecules,17 and solvent selection18 have all been shown as methods for 

Figure 1. 5. Electronic and vibronic transition in relation to spectral features afforded by 

transition dipole coupling. 



5 
 

controlling PDI assembly morphology. These PDI assemblies have been reported to  form a variety 

of structures including, nanowires, fibrils, sheets, and nanotubes.19–21  PDIs exhibit distinct 

absorption and photoluminescent spectral features, which arise due to interaction of the PDI 

transition dipole with the local electronic environment. Transition dipoles couple π-conjuaged 

structures, such as PDIs, to the electromagnetic spectrum and other electronically-active 

molecules, allowing for absorption of photons of a specific energy or through-space interactions, 

respectively.  In dilute solutions PDI small molecules are freely dispersed; as such, there is no 

overall alignment of the transition dipoles. This is reflected in the absorption spectra, in which the 

singlet transition from the ground state to the lowest vibronic band of the first excited state (S0-0) 

is the dominant and is followed by the lower intensity hypsochromic S0-1 transition which arises 

from the population of the higher vibronic state of the first excited state.22–24  These features also 

differentiate J-type aggregation, in which the transition dipoles are offset from each other, from 

co-facial H-type aggregates, in which the transition dipoles are aligned parallel to each other 

(Figure 1.5).  These spectral signatures are further explored in chapter 2 as they relate to polymer 

composition.  

1.3 Interfacial engineering in photovoltaic devices 

  

Organic photovoltaics (OPVs) offer many advantages over traditional silicon based 

photovoltaic devices. The solution-processable components of OPV devices can be fabricated in 

high volumes using low temperature processing conditions to realize low-cost systems. Early work 

in silicon alternatives to harvesting solar energy focused on photogalvanic (PG) cells.25 PG devices 

experienced limitations primarily due to the absence of proper charge selectivity for efficient 

charge extraction.26  Introduction of electron-donating, mesoporous metal oxides-supported dyes 

in dye sensitized solar cells (DSSCs) produced moderate charge selectivity, but still suffered from 
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low power conversion efficiencies and required leachable, liquid electrolyte solutions.27 The 

disadvantages of PGs and DSSCs guided further research to develop high performing photovoltaic 

devices.  

Conventional OPV devices are comprised of a photoactive layer containing a p-type 

electron donor (red), such as poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-

diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7), and an n-type 

electron acceptor (blue), such as [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), forming a 

bulk-heterojunction (BHJ) as shown in Figure 1.6.  The BHJ is sandwiched between and electrodes 

which collect charges. Upon photoexcitation an electron-hole pair (i.e., an exciton) is formed in 

the p-type material.  This exciton diffuses to the p-n interface in the BHJ, and under an internal 

voltage the electron and hole separate into free charge carriers. The BHJ must exhibit sufficient 

thickness (~50 nm) for maximum light absorption and morphology on the length scale of the 

Figure 1. 6. Cross section schematic of photoexcitation in BHJ with electron donor (PTB7) and 

acceptor (PCBM) structures in a photovoltaic device and energy level diagram of charge 

extraction. 
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exciton’s diffusion length (~10 nm) for efficient free charge generation.28  The holes and electron 

travel  through the HOMO of the p-type material and LUMO of the n-type material, respectively.  

Finally, holes and electrons are collected at the appropriate electrodes to produce a current as 

shown in Figure 1.6.  

The performance of the device is determined by extracting the photovoltaic metrics: short-

circuit current density (Jsc), open-current voltage (Voc), fill-factor (FF), and power conversion 

efficiency (PCE) (Figure 1.7). The Jsc corresponds to the maximum measurable current in the 

absence of an applied bias and is associated with photocurrent generation efficiency.  The Voc is 

the voltage at which all the charges recombine within the solar cell and are not extracted out into 

the external load. The Voc is influenced by several factors, including the energy difference between 

the HOMO of the p-type materials and LUMO of the n-type materials (ΔEP-N), light intensity, 

exciton recombination, etc.29 One factor, which is highlighted in this thesis work, is the anode-

cathode work function offset (ΦA-C), which can be tailored by interfacial modification. The FF 

reflects the “squareness” of the current density-voltage (J-V) curve and the ratio of the integrated 

Figure 1. 7. Representative J-V curve of a photovoltaic device and relevant metrics used 

to determine photovoltaic performance. 
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area from the Jsc and Voc to the current density (Jmp) and voltage (Vmp) at maximum power output 

in the J-V (Figure 1.7). The FF is correlated with recombination events in the photovoltaic device. 

Finally, the PCE is determined by the ratio of the maximum power output (Pm) to the incident 

power of the light source (Pin), as shown in Figure 1.7. Together these photovoltaic metrics provide 

key information on device performance and how it might be improved by adjusting the materials 

utilized as active layers or interlayers.   

A multi-layered OPV device contains several interfaces at which device failure or 

enhancement can occur. While the realization of BHJ systems improved donor-acceptor surface 

area and created desirable length scale for exciton diffusion, this mixed morphology also 

resurrected contact selectivity issues found in PGs.30 Methylammonium lead halide (MAPbX3) 

perovskite solar cells have also become popular as active layer materials.  In perovskites, the need 

for mixed donor-acceptor systems is circumvented due to the ability of perovskites to effectively 

transport both holes and electrons. While perovskite solar cells (PSCs) have been shown to produce 

PCE values > 22%31 they still suffer from limitations in charge selectivity at the electrodes. 32–38  

In the absence of charge selective contacts, photocurrent generation is significantly impeded by 

the recombination of holes and electrons at the active layer/electrode interface.39,40 Even with the 

advances in active layer materials and morphology, device performance issues have persisted and 

must be addressed with novel solutions to achieve high performing and sustainable devices.  

Tailoring the organic/inorganic interface of the active layer material with the metal and/or 

metal oxide electrode is crucial to device performance.27,41–43 This thesis work will highlight 

materials for the active layer/cathode interface where it is desirable to introduce materials that can 

facilitate electron injection and blocks hole transport. Metal oxides such as zinc oxide (ZnO), 

titanium oxide (TiOx), niobium oxide (Nb2O5), and tin oxide (SnO2) have been commonly 
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employed as electron selective layers in OPV44–47 and perovskite-based devices.48–53  While these 

interfacial materials have found some success in improving device performance, they require high 

temperature processing conditions to form uniform films.  An alternative approach is to employ 

solution processable organic compounds as interfacial layers. 

When small molecules and polymers with specific functionalities are coated on inorganic 

substrates, such as metals and metal oxides, an interfacial dipole (Δ) is induced. While the exact 

mechanism of the induced Δ is still unclear, electron transfer, fermi-level pinning, or image charge 

generation have been the prevailing theories behinds its origins.42,54,55  Interfacial dipole result in 

a shift in the vacuum level (Evac) (e.g., energy required to eject an electron) at the organic/inorganic 

interface (Figure 1.8). 41,42,55–57  The changes in the vacuum level can be experimentally observed 

by modification of the work function (Φ) of the underlying substrate by ultraviolet photoelectron 

spectroscopy (UPS).  UPS provides information on the direction and magnitude of Δ through 

Figure 1. 8. The mechanism of work function modification of a metal substrate by introduction of 

organic layer with structures capable of producing negative interfacial dipoles. 



10 
 

comparison of the measured Φ of the bare substrate to that of the coated substrate .  Lowering the 

Φ of cathode materials via application of a thin organic film reduces the energetic barrier for 

injection of an electron, which is a desirable attribute for high performing electron-transporting 

layers (ETLs).  Alternatively, low Φ metal electrodes, such as calcium (Ca) and aluminum (Al), 

can be employed to enhance ΦA-C and improve charge extraction. While low Φ cathodes improve 

device performance, they are detrimental to device stability due to their propensity to oxidize and 

degrade over time. Using a high work function metal like silver (Ag) or gold (Au) in the presence 

of a work function modifying interlayer, a high performing and stable photovoltaic devices can be 

achieved.   

There has been significant work in the establishing structure-property relationships of 

novel ETL materials. This research has revealed that small molecules and polymers containing  

functional groups with lone pairs such as tertiary amines and thiols, as well as cations and 

zwitterions favorably lower the work function of metal cathodes, resulting in enhanced 

performance and increase stability of organic and perovskite-based photovoltaic devices.58–63     

Beyond work function modification, a high performing ETL must form a uniform film as to 

prevent short circuiting due to pin holes in the film and facilitate charge transport. The desirable 

film-forming properties of polymeric structures have made them ideal candidates as interfacial 

layers. While insulating polymers like polyethyleneimine (PEI)64 and poly(sulfobetaine 

methacrylate) (PSBMA)65 have been shown to enhanced photovoltaic performance due to their 

ability to preferentially modify the work function of metal cathodes (Figure 1.8), this enhanced 

performance was observed only in ultra-thin films. A significant decrease in PCE was observed as 

thickness increases, as charges are unable to penetrate the insulating polymer layer above a critical 

thickness (~8-10 nm). This thickness intolerance may become a larger issue in high throughput 
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manufacturing in which interlayer thickness can vary batch-to-batch. Therefore, it was necessary 

to develop materials with a high thickness tolerance.  

Bazan and coworkers previously demonstrated that conjugated polyelectrolytes (CPEs) 

were able to improve performance of OLEDs over a broad range of thicknesses.66   Introduction 

of similar materials to OPV devices as ETLs yielded high efficiency devices that showed good 

tolerance to interlayer thickness.67–71.  Similar results were shown in device containing 

zwitterionic, conjugated small molecules and polymers containing zwitterions, in which the 

positive and negative charges are covalently linked.58,62,72,73 In Chapter 3, the work function 

modification and ETL performance properties of PDI-containing structures are detailed and 

highlight the importance of compounding charge transport and interfacial tuning properties in 

charge selective layers. 

1.4 Aggregation-induced emission: structures and concepts 

 

Chapter 4 details the syntheses and characterization of tetraphenylethylene (TPE)-

containing small molecules and conjugated polymers. The utility of π-conjugated small molecules 

and polymers extends beyond transportation of charge or energy.  These types of materials also 

are capable of emitting photons to generate light when a stimulus is applied.  This stimulus can be 

the absorption of higher energy photons or application of an electrical potential which promotes 

an electron from a ground state molecular orbital into an unoccupied molecular orbital (excited 

state). In conjugated systems the predominant electronic transition is from the ground-state π 

orbital to an unoccupied π orbital (i.e., π to π*). The excited electron is then able to relax back to 

the ground state by several different processes (Figure 1.9). Depending on the vibrational state of 

the excited molecule, internal conversion (IC) takes place, which allows for relaxation to the lowest 
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vibrational mode of the excited state. Intersystem crossing (ISC) to the  “spin-forbidden” triplet 

state (T1) then relaxation to S0 results via phosphorescence.  Photoluminescence, also known as 

fluorescence, arises from radiative relaxation from S1 to S0 and has become an important analytical 

tool for monitoring the presence of analytes74  and molecular processes.75  

In contrast to radiative relaxation, an excited molecule can relax back to the ground state 

via IC processes (e.g., dissipation of energy through molecular vibration) and/or through energy 

or electron transfer to its environment. Both processes result in non-radiative relaxation of the 

excited molecule and compete with the radiative relaxation pathways.  Stimulation of non-radiative 

relaxation is referred to as quenching and drives the “on-off” response in fluorescence sensors. 

While quenching can be beneficial for certain applications, it is detrimental for efficient 

luminescence in imaging probes and active layers in OLEDs.  These applications require that the 

conjugated small molecules or polymers maintain their emissive properties following fabrication 

into nanoparticles or thin films. The planar structure and high affinity to π-π stacking of most 

Figure 1. 9. Jablonski diagram of transitions occurring in π-conjugated structures. 



13 
 

conjugated systems leads to the formation of non-radiative excimers in the aggregated stated, 

resulting in concentration- or aggregation-caused quenching (ACQ).76 ACQ is highly sensitive to 

the orientation of the molecules in the aggregate.  For example, the fluorescence of chlorophyll 

was shown to quench during in vitro experiments at concentrations significantly lower than those 

found in vivo in chloroplasts.77,78 The differences between the in vivo and in vitro relaxation modes  

was due to the proximity of chlorophyll molecules in the solution (~10 Å) versus in chlorophyll-

containing proteins (~12 Å).79  Proper spacing of the fluorophores prevents the π-π overlap 

necessary to form fluorescent trap sites. With a greater understanding of the relationship between 

molecular architecture and quenching, several approaches have been developed to attenuate ACQ.  

Methods such as introduction of bulky moieties to interfere with π-π stacking,80 co-assembly of 

chromophores,81 cross-dipole stacking,82 enhanced intramolecular charge transfer transition by 

introduction of heteroatoms,83,84 and formation of emissive J-type aggregates15,85 have been shown 

to be effective.  A simpler approach to addressing ACQ would be to design structures that exhibit 

enhanced emission in the aggregated state.  

 

Figure 1. 10. Mechanism of aggregation-induced emission of propeller-like aromatic structures. 
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Aggregation-induced emission (AIE) was first reported by Tang and coworkers in 2001 

with hexaphenyl silole (HPS) derivatives.86 AIE-active molecules, or AIEgens, exhibit 

distinguishing structural features. Compared to the planar, fused-ring structures susceptible to 

ACQ such as perylene, AIE-molecules (e.g., TPE and HPS) consist of propeller-like structures 

with multiple aromatic rings that form randomly oriented structures in the solid-state with 

inadequate π-π interactions necessary for quenching (Figure 1.10).86 This difference in structure 

plays a crucial role in how these types of molecules behave in solution or the aggregated state. In 

solution, AIEgens exhibit infinitesimal emission due to energy transfer to the surround solvent 

through molecular motion leading to higher non-radiative relaxation rate relative to the radiative 

relaxation rate. This can be easily observed in the emittance of solutions of AIEgens in THF:H2O 

mixtures (Figure 1.11): as the water content is increased, the hydrophobic fluorophores begin to 

aggregate resulting in observable emission. The opposite effect is observed in trifluoroethanol 

 
Figure 1. 11. Images of (A) PDI TFE/H2O mixtures and (B) TPE in THF/H2O 

under 365 nm UV excitation illustrating ACQ and AIE. 
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(TFE):H2O mixtures of PDI. Theoretical modeling and experimental results by Peng and 

coworkers provided insight to the relationship between the structure of AIE-type molecules and  

rates of radiative or non-radiative decay under various conditions.87,88  Their results were in 

agreement with first principles ideas of freely rotating phenyl rings in AIE compounds leading to 

the dominant non-radiative relaxation in solution.89  Further studies by Tang and Wu provided 

insight to the mechanism of AIE.  Firstly, the induced emission was not due to twisted 

intermolecular charge transfer (TICT) observed in other structures, as the emission and absorption 

of the AIE-active species were not influence by solvent polarity.90 Secondly, emission was 

observed to increase in response to an increase in viscosity and decrease in temperature. Under 

these conditions the intramolecular rotation and vibration was significantly hindered, resulting in 

increased radiative relaxation.90 Finally, it was shown that by preparing structures with hydrogen 

bonding moieties which hindered intramolecular motion, emission could be achieved.91 

Combined, these results support the proposed mechanisms of restriction of intramolecular motion 

(RIM) as the source of AIE.   

Due to its synthetic accessibility, TPE is an ideal molecular scaffold for developing AIE 

materials. Integrating TPE into conjugated polymer has realized a versatile class of polymers with 

applications ranging from polymeric OLEDS to dual-channel fluorescent sensors.92–94  When TPE 

was incorporated into these systems, it behaved independently as an AIE-active component rather 

than in cooperation with the polymeric structure. A greater understanding of molecular design in 

AIE-active polymers is necessary to fully realize their potential as high performing emitters.  One 

approach to this would be to synthesize TPE within a known polymeric solid-state emitter and 

study the evolution of the polymer’s optoelectronic properties.  A promising candidate for this 

kind of study is PPV, which has been investigated extensively as a solid-state emitter in OLEDs 
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but still suffers from ACQ.95–101   In Chapter 4, the synthesis and characterization  of small 

molecule precursors and  TPE-containing π-conjugated polymers is discussed.  This work 

highlights how AIE can be harnessed within a known solid-state emitter and methods for tailoring 

of the TPE optical properties through simple modification of molecular structure. 

1.5 Thesis outline 

 

 This dissertation thesis discusses the synthesis, characterization, and device integration of 

functional PDI- and TPE-containing polymers as interfacial layers in photovoltaic devices and 

quench-resistant emissive materials for solid-state emitter applications. Focus is given to 

synthesizing polymeric structures with tunable optical and electronic properties via modification 

of polymer backbone functionality and monomer solution properties. 

In Chapter 2, the molecular design, synthesis, and characterization of PDI-based polymers 

are discussed.102 Two PDI small molecules containing tertiary amines at the imide positions and 

bromide or phenyl groups conjugated to the aromatic core were prepared. The moieties introduced 

at the aromatic core served two primary functions: 1) to attenuate π-π stacking to improve 

monomer and polymer solubility and 2) to modify the optoelectronic properties of the synthesized 

compounds. The tertiary amine groups were used to react with α,ω-alkyl dihalides or bis-sultone 

monomers, resulting in polymers with ionene or zwitterionic functionality embedded in the 

polymer backbone, respectively.  The PDI content (mole%) was modulated by controlling the 

monomer feed ratio and polymers with targeted 10, 50, and 100 mole% PDI were prepared with 

good yield (40-80%) and agreement with targeted PDI incorporation.  The solution optical 

properties of the resulting polymers were studied by UV-vis absorption and photoluminescence 

spectroscopy. The ratio of S0-0 to S0-1 vibronic bands in the absorption spectra and the 

photoluminescence quantum yield were related to PDI content and cationic vs. zwitterionic 
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functionality. The strong dependence of functionality on solution properties observed in these 

materials and will guide future design of molecules amenable to thin film electronic devices. 

In Chapter 3, the efficacy of PDI-containing small molecules and polymers as ETLs is 

discussed.103,104 The work function modifier properties were investigated using ultraviolet 

photoelectron spectroscopy (UPS).  Photovoltaic device performance was studied as function of 

PDI content. The PDI-based polymers were also able to enhance the performance of perovskite-

based photovoltaic devices, demonstrating the universal applicability of these novel materials.  The 

results of this study revealed an optimum conjugation density for interlayer performance, which 

holds the potential for a cost-effective method for designing interfacial materials. Additionally, 

tertiary amine-containing small molecule PDIs with bromide or phenyl-terpyridyl groups were 

integrated into perovskite devices.  The devices prepared with the PDI-containing ETLs 

outperformed interlayer free devices as well as devices containing the phenyl-terpyridyl small 

molecules and exhibited good tolerance to interlayer thickness. 

In Chapter 4, focus is given to the synthesis and characterization of TPE-containing 

conjugated polymers. TPE monomers were designed to contain functionality amenable to 

palladium (Pd)-catalyzed Suzuki-Miyaura coupling or metal-free Horner-Waddsworth-Emmons 

polymerizations.  The optoelectronic properties of the two sets of polymers were compared to 

study the effect of backbone chemistry.  Additionally, small molecule analogs were synthesized to 

further analyze the influence of effect of bond rigidity on AIE properties.  The structures containing 

vinylene spacers, effectively acting as poly(para-phenylene vinylene) (PPV) analogs of TPE 

exhibit strong emission when aggregated in THF:H2O mixtures, as well as solution emission, in 

stark contrast to the small molecules. Moreover, by preparing copolymers of PPV with 25 and 50 
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mole% TPE, ACQ could be mitigated. These results illustrated a simple approach to prepare 

versatile polymers with both solution and aggregate emission. 

In Chapter 5, the results and impact of this work are summarized.  The results of this thesis 

are also examined in the context of the broad and developing field of organic electronics. 

Additionally, future outlooks of this work are considered with a focus on key modifications 

necessary for commercialization of thin film photovoltaic devices and novel polymeric materials 

for solid-state emitters. Finally, in chapter 6 the synthetic methodology and instrumentation 

employed for this work is documented in detail. 
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CHAPTER 2  

SYNTHESIS OF LINEAR POLYELECTROLYTES AND POLYMER ZWITTERIONS 

CONTAINING PERYLENE DIIMIDES 

2.1 Introduction 

 

 Ionene polymers, or ‘polyionenes’, represent a class of polyelectrolytes in which the 

charged moieties are embedded within the polymer backbone rather than positioned as pendant 

groups. In general, polyionenes are synthesized by the Menschuktin reaction1 of bis-tertiary 

amines or bis-diphenylphosphines with electrophilic dihalides in polar organic solvents as shown 

in Figure 2.1. Rembaum and coworkers pioneered much of the early work on both aliphatic and 

aromatic polyionenes.1–3  

 The discovery of high conductivity polyionene-tetracyanoquinodimethane (TCNQ) 

complexes catalyzed further investigation of theses novel polyelectrolytes.4 Since these initial 
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Figure 2.1. Structural comparison of conventional polyelectrolyte and polymer zwitterions to their 

linear analogs. 
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reports, there have been  several accounts describing the syntheses, structure-property 

relationships, and mechanical properties of water-soluble ammonium- and phosphonium-based 

polyionenes.5,6,7 Some commercially available polyionenes, such as polybrene, have proven useful 

for enhancing viral transfection.8 More recently, novel polyionenes have emerged as components 

of electronically active polymeric and nanocomposite materials.9,10 

 The covalent integration of optoelectronically active components into polyionenes as 

pendant or main-chain moieties has also been described by Suzuki, who reported the photophysical 

properties of functional polyionenes containing pendent anthracene groups for probing 

intra/intermolecular chain dynamics.11  Additionally, reinforced polymer folding behavior and 

self-assembly in aromatic polyionenes via donor-acceptor interactions in the polymer backbone 

have been examined.12  

 Zwitterionic polymers are another class of ion-containing macromolecules that have gained 

significant scientific interest. In these polymers the negative and positive charges are covalently 

linked, resulting in net neutral structures. Zwitterionic polymers have been extensively studied for 

their  non-fouling properties,13–15 biocompatibility,16–18 and electronic properties 19–21.  As with 

polyelectrolytes, the zwitterionic functionalities in these polymers have predominately been 

introduced as pendant groups (Figure 2.1).  In this chapter the synthetic methodology and 

characterization of novel polyionenes and linear polymer zwitterions containing perylene diimides 

(PDIs), in which ionic groups are embedded in the polymer backbone, are detailed. 

 PDIs are generally interesting for their thermal and chemical stability, as well as their 

tunable electronic and solution-assembly properties.22 The primary focus of this work was to 

develop novel approaches to integrate PDI into functional polymers for photovoltaic applications. 

The PDI structure allows for simultaneous modification of the solubility and optoelectronic 
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properties.  This is particularly desirable for developing π-conjugated materials for components in 

organic photovoltaic (OPV) devices. The versatility of PDI-based conjugated polymers was 

exemplified by its integration into photovoltaic devices as an electron acceptor in all polymer solar 

cells23–28  as well as  electron-transport layers (ETLs) in organic and perovskite29,30 photovoltaic 

devices. While these π-conjugated PDI polymers have garnered significant interest, non- 

conjugated, main-chain PDI polymers have not been given as much attention.     

  In contrast to the previously mentioned conjugated polymers, π-conjugation is isolated to 

single PDI units in the main-chain polymers which holds the potential for unique optoelectronic 

and photophysical properties. Emerging efforts to prepare hydrophilic PDI-based polymers 

include water-soluble PDI-containing polyurethanes as fluorescent probes for live cell imaging,31 

and PDI-terpyridine polymers as metal ion sensors.32 However, in prior reports of polyionenes 

containing PDI, the PDI monomers lacked functional group versatility at the aromatic core.   

 It has been shown that through modification of the PDI aromatic core, materials with 

improved emission properties and solubility can be realized.33 Here, functionality was introduced 

at the 1 and 7 positions of the PDI aromatic core to yield 1,7-dibromo- (PDIBr2) and 1,7-diphenyl-

substituted (PDIPh2) PDI monomers. Introduction of aromatic functionality resulted in PDI 

monomers with good solubility for facile incorporation into polymers with cationic or zwitterionic 

groups into the polymer backbone. The photophysical properties of the ionene and zwitterionic 

structures were investigated spectroscopically following systematic incorporation of PDI 

derivatives.   

2.2 Synthesis of PDI monomers and polymers 

 

 While the aggregation of PDIs can be advantageous for certain applications, PDI 

monomers with high solubility and low propensity towards aggregation were necessary for the 
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polymer chemistry discussed here. There are two approaches to attenuate the π-π interactions and 

increase solubility of PDIs: 1) introduction of sterically hindered groups at the imide position and 

2) appending functional groups at the aromatic core.  The second approach was employed in this 

work so that functionality at the imide position could be used for polymerization.   A variation of 

syntheses previously reported by Marder and coworkers was used to prepare aromatic core-

functionalized PDI derivatives under mild conditions.34 As shown in Scheme 2.1, 3,4,9,10-

perylene tetracarboxylic dianhydride (PDA) is initially reacted with 1-bromobutane and 1-butanol 

in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), and subsequently treated with 

molecular bromine under basic conditions.  The crude brominated product was recrystallized from 

an acetonitrile:CH2Cl2 mixture to yield regioisomericallly-pure 1,7 perylene tetrabutyl 

tetracarboxylate (PTBC-Br). PTBC-Br subsequently underwent an acidic ring-closing step to 

revert the molecule back to the dianhydride, followed by further reactions to prepare PDI 

derivatives containing tertiary amine groups at the imide position.   

 PDIs have traditionally been prepared by reacting the PDA with an amine in organic 

solvent under high temperature conditions (>100 °C) for extended reaction times (>12 hours).35–37  

2) 3-(dimethylamino)propylamine

DMF:Dioxane 65  C 2 hrs

1-bromobutane, 1-butanol, 

DBU

DMF 85  C 18 hrs

1) Br2, CH2Cl2
0 to 25  C, 24 hrs

2) Recrystallization

1) pTsOH, Toluene reflux

16 hrs

4-phenylboronic acid

Pd(dppf)Cl2, AQ336, K2CO3

DMF:Dioxane 65  C 2 hrs

92%
50%

57%

80%

PDA

PTBC-Br

PDI-Br2
PDI-Ph2

Scheme 2. 1. Synthesis of key perylene precursors and PDI monomers for polymer synthesis. 
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Here, it was found that the desired tertiary amine groups could be prepared at 65 °C in 

dimethylformamide (DMF):1,4-dioxane mixtures within 2 hours in appreciable yields (~57%). 

PDIBr2 was converted to the 1,7-diphenyl derivative (PDIPh2) by Suzuki-Miyaura coupling, 

allowing for a second PDI derivative for polymerization. The resulting PDI monomers were used 

to prepare PDI-containing polymers.  

 Polyionenes were synthesized by reacting PDIBr2 or PDIPh2, with N,N,N’,N’-

tetramethyl-1,6-hexanediamine (TMHDA) and 1,6-dibromohexane to yield structures of desired 

PDI incorporation and tailored solubility (Scheme 2.2).  The isolated PDI-containing polyionenes 

exhibited excellent solubility in water, methanol, and 2,2,2-trifluoroethanol (TFE) at >15 mg/mL 

in all cases.  The bromide and phenyl groups in the perylene core attenuated inter-PDI π-π 

interactions to the benefit of polymer solubility and evolution of appreciable molecular weight, 

while the tertiary amines at the imide positions provided nucleophilic sites for polymerization. 

Scheme 2.2 illustrates the addition step-growth polymerization strategy, in which the PDI 

monomers were reacted with 1,6-dibromohexane to afford the desired ionene polymers 

respectively. Previous reports of PDI polyionenes employed DMF as the reaction solvent and PDI 

monomers without aromatic core functionality.9  Here, attempted polymerizations of PDIBr2 and 

PDIPh2 in DMF resulted in low product yields and poor control over PDI incorporation due to the 

low solubility of the monomers and polymers in DMF. To address this issue, polymerizations of 

CHCl3:MeOH 65  C 48 hrs

TFE 65  C 48 hrs

Scheme 2. 2. Synthesis of PDI-based polyionenes and polymer zwitterions. 
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PDIBr2 or PDIPh2 were conducted in mixture of CHCl3 and methanol, in which the monomer 

exhibited good solubility. Polymerizations were conducted at an initial total monomer 

concentration of 0.5 M in a 1:1 mixture of CHCl3 and methanol for 48 hours at 70 °C. Upon 

cooling, viscous solutions were precipitated into diethyl ether and the polymers were isolated by 

centrifugation. The crude products were dissolved in methanol then purified by dialysis against a 

1:1 methanol:water mixture, followed by pure water, and finally isolated as powders by 

lyophilization.  The purified polymers exhibited red or purple color, indicating incorporation of 

PDIBr2 (red) or PDIPh2 (purple), respectively, into the polymer backbone. Polymers were 

prepared with target PDI incorporation of 10, 50, or 100 mole% PDI which allowed for studying 

the influence of PDI content on solution and optical properties.The nomenclature in Table 2.1 is 

based on the selected PDI derivative and its mole% incorporation into the polyionenes.  

Characterization of the molecular weight and solution photophysical properties of these 

macromolecules proved highly solvent dependent, with spectral signatures hinging on solvent-

induced aggregation.  

  

Polymera Monomer  

feed 

(mole %) 

ΧPDI 

(mole %)b 

Mnc 

(kDa) 

Mwc 

(kDa) 

ᴆc Yield d 

(%) 

PDIBr2-10% 10 9 38.1 56.4 1.5 82 

PDIBr2-50% 50 47 33.7 47.4 1.4 80 

PDIBr2-100% 100 100 18.5 25.5 1.4 43 

PDIPh2-10% 10 8 30.5 46.2 1.5 83 

PDIPh2-50% 50 51 30.3  39.0 1.4  74 

PDIPh2-100% 100 100 18.1  23.0 1.3  48 

aPolymer nomenclature based on theoretical PDI incorporation; b mole percent PDI 

incorporation determined by 1H NMR spectroscopy; cnumber-average molecular 

weight estimated by GPC; dweight-average molecular weight estimated by GPC. 

Table 2.1. PDI incorporation, molecular weights, and yield of the PDI-containing 

polyionenes. 
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 The molecular weights of previously reported PDI-based polyionenes were estimated by 

gel-permeation chromatography (GPC) with water as the mobile phase.9,32  In aqueous 

environments these polymers aggregate, as reflected by the high intensity S0-1 absorbance band 

and weak vibronic signature observed in their solution UV-Vis absorption spectra.9,32 Aggregation 

of the polymer chains in solution could result inaccurate molecular weight estimations. Here, GPC 

and spectroscopic analyses were conducted in TFE for both the ionene and zwitterionic polymers. 

Representative UV-Vis spectra of the PDIBr2-50% polyionene in TFE, methanol, and water are 

shown in Figure 2.2.  In TFE, the absorption maxima of the polymer were observed at 528 nm; 

indicative of well-solvated PDI, in which the long-wavelength S0-0 vibronic transition is dominant. 

In water and methanol, the absorption maxima shifted to the shorter wavelength S0-1 vibronic 

transition at 500 nm (in water) and 491 nm (in methanol), indicative of strong H-type aggregate 

interactions (Figure 2.2). In Figure 2.2 the proposed transition dipole coupling of PDI units 

corresponding to spectral features observed for each solution is shown. These solution absorption 

Figure 2.2. (Left) Representative solution UV-Vis spectra of PDIBr2-50% ionene in TFE 

(green), methanol (blue), and water (red). (Right) Proposed PDI transition dipoles in 

corresponding solvents. 
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spectra suggest TFE as a preferred solvent for characterization and for suppressing the tendency 

of PDI units to aggregate.  

 The estimated molecular weights of the PDI polyionenes proved critically dependent on 

PDI content.  As PDI incorporation increased, polymer molecular weights and yields decreased 

(Table 2.1). This was likely due to the tendency of the charged polymer to aggregate in the 

CHCl3:MeOH solvent mixture, resulting in termination of the polymerization due to inaccessibility 

of the reactive groups.  The preparation of PDI-50% and PDI-100% was attempted in TFE to 

increase monomer conversion. However, these polymerizations resulted in low molecular weight 

oligomers, likely due to protonation of the tertiary amines.   The 1H NMR spectra of PDI-ionene 

polymers displayed chemical shifts corresponding to the polymer structure, as shown in Figure 

2.3. Signals ranging from 7.60 to 9.65 ppm correspond to protons in the aromatic core of the PDI, 

confirming successful PDI incorporation. Copolymer compositions were determined by 

integration of the imide protons of the PDI (4.40 ppm) against the methylene protons of the 

Table 2. 2. PDI incorporation, molecular weights, and yield of the PDI-containing 

zwitterionic polymers. 

 

Table 2.2. PDI incorporation, molecular weights, and yield of the PDI-containing 

zwitterionic polymers 

Polymer a  Monomer  

feed 

(mole %) 

ΧPDI 

(mole %)b 

Mnc 

(kDa) 

Mwc ᴆ c Yield d 

(%) 

PDIZBr2-10%  10 18 8.6 12.5 1.4 86 

PDIZBr2-50%  50 44 7.0 9.0 1.3 80 

PDIZBr2-100%  100 100 4.5 5.0 1.3 40 

PDIZPh2-10%  10 17 13.0 15.0 1.2 84 

PDIZPh2-50%  50 37 8.0 10.0 1.2 82 

PDIZPh2-100%  100 100 6.0 7.0 1.1 40 

aPolymer nomenclature based on theoretical PDI incorporation, with ‘Z’ denoting 

zwitterionic functionality; b mole percent PDI incorporation determined by 1H NMR 

analysis; cnumber-average molecular weight estimated by GPC, dweight-average 

molecular weight estimated by GPC. 
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THMDA-based polyionene segments (1.80 ppm).  Additionally, the aromatic protons increased 

in relative intensity as PDI content was increased. 

In contrast to the ionene polymers, the PDI polymer zwitterions (PDIZs), containing 

sulfobetaine groups in the polymer backbone, could not be prepared in a CHCl3:MeOH solvent 

mixture due to premature precipitation. Instead, the PDIZs were synthesized by reacting butene 

bis-sultone (BBS) with the appropriate stoichiometric equivalents of PDIBr2 or PDIPh2 and 

TMHDA in TFE. The polymerizations were conducted for 48 hours at 70 ˚C, then purified as 

described for the PDI-ionene polymers, with results shown in Table 2.2.  Ring-opening of BBS to 

form the polymer zwitterions was confirmed by the upfield shift of the methylene protons adjacent 

to the sulfur, from 4.40 ppm to 3.30 ppm, indicative of the sultone-to-sulfobetaine conversion. In 

contrast to conventional polymer zwitterions,19,38 the polymers discussed contained the 

zwitterionic sulfobetaine moiety in the polymer backbone.  

Like the trends observed in the polyionenes, the molecular weights and yields of the 

zwitterionic polymers were influenced by the extent of PDI incorporation.  Copolymer 

 

Figure 2. 3. 1H NMR in CDCl3:dTFA of (left) PDIBr2-and (right) PDIPh2-containing 

polyionenes. 
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composition was calculated using the same method employed for the polyionenes (Figure 2.4).  In 

comparison to the polyionenes, PDI incorporation into the zwitterionic polymers was not as well-

controlled.  Independent of PDI incorporation, the zwitterionic polymers exhibited lower 

molecular weights than the ionene polymers, due to the lower reactivity of bis-sultone 3 versus the 

α,ω-alkyl dihalide and the relative acidity of TFE as solvent. While the PDI-based zwitterionic and 

ionene polymers exhibited similar solubility properties in water and TFE, their solubilities in 

methanol were substantially different.  Specifically, the solubility of PDIZs in methanol was 

significantly lower (< 1 mg/mL) and independent of the PDI derivative employed for the 

polymerization.  This lower methanol solubility was attributed to dipole-dipole attractive 

interactions of the zwitterionic groups in the polymer backbone. 

2.3 Solution optical properties 

 

  The photophysical properties of PDIBr2 (ε = 40,400 M-1 cm-1, λabs = 528 nm) and PDIPh2 

(ε = 25,600 M-1 cm-1, λabs = 525 nm) were influenced by substituents on the PDI aromatic core. 

The bromide-substituted PDI exhibited characteristic absorption band corresponding to the S0 to 

 Figure 2. 4. 1H NMR in CDCl3:dTFA of PDIBr2-(top) and PDIPh2-containing (bottom) polymer 

zwitterions. 
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S1 electronic transition (transition dipole along molecular axis) with discrete 0-0 (527 nm), 0-1 

(493 nm), and 0-2 (460 nm) vibronic bands (Figure 2.5A and 2.5B). Additionally, a low-

absorbance peak at 396 nm associated with the S0 to S2 electronic transition (transition dipole 

orthogonal to molecular axis) was also observed.39 These spectral features correlated well with 

previously reported 1,7-dibromo substituted PDI derivatives.34 PDIPh2 absorption spectra was  

redshifted and lacked discrete vibronic structures in comparison to PDIBr2. Simulations of PDI 

derivatives containing bulky groups at the aromatic core, such as those in PDIPh2, revealed the 

sterically hindered moieties in these structures interfere with π-π interactions.39  The suppression 

of these interactions resulted spectroscopic features of J-type coupling (e.g., band-broadened and 

red-shifted),  similar to the UV-Vis spectra of the PDIPh2  and its corresponding polymers. The 

absorbance spectra of the all polymer samples were recorded as dilute (μM) TFE solutions at 

equivalent optical densities, allowing for optimized spectral resolution to elucidate the relationship 

between PDI content, charge density, and the observed spectral signatures. At low PDI 

incorporation, both the cationic and zwitterionic polymers exhibited similar vibronic signatures to 

the PDIBr2 and PDI-Ph2 small molecules.   Incorporation of PDIBr2 into the polymers resulted 

in a bathochromic (i.e., red or longer wavelength) shift of the absorption onset, which was most 

distinct in PDIBr2-10% and diminished with increasing PDI content. This trend was reversed for 

samples containing PDIPh2, with the homopolymer (i.e., PDIPh2-100%) exhibiting the largest 

red shift in its absorption spectrum. The details of the absorption spectra are shown in Tables 2.3.   

 The relative intensity of the S0-0 to S0-1 vibronic transitions in the absorption spectra, here 

referred to as I0-0/I0-1, quantified the extent of PDI-PDI interaction in these PDI-based structures. 

The discrete vibrational modes observed in the absorption spectra of the PDIBr2 ionene and 

zwitterionic polymers allowed for calculation of this ratio and comparison of the zwitterionic and 
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ionene derivatives. In TFE, PDI-Br2 exhibited an I0-0/I0-1 value of 1.43, indicative of a good solvent 

environment and low PDI-PDI transition dipole parallel alignment due to aggregation. The 

moderate decrease of the I0-0/I0-1 values as PDIBr2 was incorporated into the ionene polymers 

suggested that the PDI units remained solvated when incorporated into the polymer backbone. The 

zwitterionic polymers containing PDIBr2 exhibited significantly lower I0-0/I0-1 values. Notably, the 

S0-1 absorption band (493 nm) became dominant for PDIZBr2-50% and PDIZBr2-100% (while 

PDIZBr2-10% exhibit absorption features similar to the PDIBr2 monomer (i.e., S0-0 absorption 

maxima). The absorption maxima shift from S0-0 to S0-1 is characteristic of enhanced co-facial 

alignment of the PDI transition dipoles. This suggested that at 50 and 100 mole% PDI the 

zwitterionic polymers derivatives have a propensity to aggregate in contrast to the polyionenes.  

 The proposed aggregation of the zwitterionic polymers was not to an extent that resulted 

in fluorescence quenching.  This is shown in Figure 2.6, using dilute aqueous and TFE solutions 

of PDIZBr2-50%.  In TFE, the polymer was emissive upon UV irradiation at 365 nm (Figure 

2.6B), while in the aqueous solution no emission was observed (Figure 2.6A).  Similar findings 

were observed for the zwitterionic PDIZ-100% derivatives independent of aromatic core 

Table 2.3. Summary of Solution Photophysical Properties PDIBr2-

containing ionene and zwitterionic polymers 

Compound λabs (nm) λem (nm) I0-0/0-1 Фf 

PDIBr2 527, 493, 460, 392 551, 591 1.43 0.65 

PDIBr2-10% 527, 493, 460, 392 551, 591 1.38 0.34 

PDIBr2-50% 527, 493, 460, 392 551, 591 1.31 0.20 

PDIBr2-100% 527, 493, 460, 392 551, 591 1.10 0.10 

PDIZBr2-10% 527, 493, 460, 392 549, 597 1.20 0.30 

PDIZBr2-50% 527, 493, 460, 392 553, 591 0.87 0.21 

PDIZBr2-100% 527, 493, 460, 392 553, 591 0.83 0.16 

 

Table 2. 3. Summary of solution photophysical properties PDIBr2-

containing polyionenes and zwitterionic polymers. 
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functionality.  This suggests that the dominant S0-1 transition in the absorption spectra of polymers 

PDIZBr2-50% and PDIZBr2-100% is facilitated by dipole-dipole interactions of the zwitterions 

but the π-π interactions are insufficient for quenching.  This variation in spectral signatures 

between cationic and zwitterionic derivatives reflected the influence of these two polymer classes.  

Specifically, the enhanced H-type spectral features of the PDIZs was facilitated by attractive inter-

zwitterion interactions, in contrast to the repulsive cation-cation interactions of the PDI-based 

ionene polymers.   

 Polymers prepared from PDI-Ph2 lacked well-resolved vibronic signatures necessary for 

quantitative analysis of I0-0/I0-1 absorption intensity. The absorption spectra of the ionene polymers 

containing PDIPh2 are shown in Figures 2.5C.  The vibronic features in the absorption spectra of 

PDIPh2 and its resulting polymers could not be resolved. The PDIZPh2 zwitterionic derivatives 

displayed a hypsochromic (i.e., blue or shorter wavelength) shift of the absorption maxima relative 

to the PDIPh2 small molecule. The absorption maxima of the PDIZPh2-10% polymer was the 

most blue-shifted relative to PDIPh2 while PDIZPh2-50% and PDIZPh2-100% displayed 

 

H2O TFE H2O TFE
(A) (B) 

Figure 2. 5.  0.1 mg/mL of PDIZBr2-50% polymer 

zwitterions (A) in water (left) and TFE (right) in 

ambient light; (B) under UV irradiation at 365 nm. 
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maxima closer to the PDIPh2 precursor. These spectral observations again support the hypothesis 

that the zwitterionic functionality facilitates H-type aggregation and enhanced coulombic coupling 

in solution through dipole-dipole inter/intra zwitterion attractions.  

 Photoluminescence (PL) quantum yields (Фf) of the polymers were studied as a function 

of PDI incorporation for PDIBr2 derivatives (Tables 2.4). For both the ionene and zwitterionic 

polymers, Фf was observed to decrease with increasing PDI incorporation. The decrease in 

quantum yield following PDI incorporation is attributed to self-quenching between PDI units in 

the polymer backbone.  It was postulated that covalently linking PDI units together to prepare the 

discussed macromolecules, facilitated non-radiative processes. In accord with the UV-Vis results, 

the similar Фf values calculated for both cationic and zwitterionc derivatives of PDIBr2-based 

polymers suggest that zwitterion-zwitterion interactions influence chain conformation in solution 

without producing non-emissive, PDI aggregates. Through these studies new class of PDI 

polymers was developed with solution properties that could be easily tailored through polymer 

backbone functionality.  

 

Table 2.4. Summary of solution 

Photophysical Properties PDIPh2-containing 

ionene and zwitterionic polymers 

Compound λabs(nm) 

PDIPh2 564, 523, 397 

PDIPh2-10% 564, 523, 397 

PDIPh2-50% 535, 397 

PDIPh2-100% 531, 400 

PDIZPh2-10% 564, 522, 397 

PDIZPh2-50% 535, 397 

PDIZPh2-100% 531, 400 

Table 2. 4. Summary of solution photophysical 

properties PDIPh2-containing polyionenes and 

zwitterionic polymers. 
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2.4 Conclusion 

 

 In summary, cationic (ionene) and zwitterionic (sulfobetaine) PDI-based polymers were 

synthesized starting from two core-functionalized PDI-diamine monomers.  The novel bis-sultone 

comonomer BBS allowed access to linear zwitterionic polymers with solution properties and 

spectral features distinct from the cationic versions. Bromide and phenyl groups were introduced 

to the PDI aromatic core to attenuate π-π interactions, which drive self-assembly and diminish 

solubility. PDI incorporation was well-controlled via the monomer feed ratio and all polymers 

were synthesized in high yield with appreciable molecular weights. Both the zwitterionic and 

cationic polymers exhibited good solubility TFE, which will be used to process the polymers into 

thin films in chapter 3, independent of PDI content or core functionality.   

 The solution photophysical properties of these novel polymers were studied by UV-Vis 

absorption and PL spectroscopy, with absorption spectral signatures of the polymer modulated by 

PDI core functionality and cationic or zwitterionic groups embedded in the polymer backbone. 

Spectroscopic analysis revealed that PDI-PDI interactions could be modulated through the PDI 

incorporation in the polymer backbone. Moreover, the polyionene and linear zwitterionic platform 

offered a method to control π-conjugation density and study the evolution of optoelectronic 

properties. The knowledge of these materials developed here will be expanded in Chapter 3, in 

which PDI-based polyionenes and polymer zwitterions are evaluated as charge selective layers in 

photovoltaic devices. 
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CHAPTER 3  

PDI-BASED CATHODE MODIFYING LAYERS 

 

3.1 Introduction 

 

 Controlling interfaces has played a pivotal role in the advancement of thin film 

photovoltaic devices.  Within these multi-layered systems, each interface holds the risk of causing 

device failure while also presenting an opportunity to enhance the device’s performance and 

stability. In thin film photovoltaics, introduction of charge selective layers between the active layer 

and the metal electrodes has been a promising method of improving device stability, wettability of 

individual layers, and charge transport.1,2 An area of particular interest is the development of 

electron-transporting layer (ETL) materials.  Over the last two decades there has been significant 

advancement in ETL technology for both organic photovoltaic (OPV) and perovskite-based 

devices, realizing materials that can tailor the active-layer/electrode interface.   

As mentioned in chapter 1, low work function, transparent metal oxide materials have been 

shown enhanced photovoltaic performance as ETLs.2,3,12,4–11 While these materials efficiently 

transport electrons and can be fabricated as transparent films in traditional and inverted devices, 

they have been shown to exhibit limitation that can be detrimental to photovoltaic device 

performance and commercialization. Firstly, they require costly, high temperature processing 

conditions and have been shown to be susceptible to photodegredation.13 Secondly, the electronic 

properties (conductivity, bandgap, etc.) are fixed making these materials less versatile and 

applicable to the wide range of active layer materials used in high-performing photovoltaic 

devices. Moreover, heterogeneous doping in thin films of these materials leads to recombination 

trap sites limiting maximum photovoltaic performance.14 To address these issues there has been 

significant work in developing solution-processable organic ETLs.   
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Organic materials as ETLs offer the possibility of low-cost, solution-processing, tailored 

chemical functionality, and improved energy level compatibility with the active layer. The work-

function (Φ), the energy required to extract/inject and electron, is an important materials property 

for electronics. To efficiently extract electrons and block holes from the active layer, ETLs must 

exhibit a low Φ. The work function of a bare metal or metal coated with a thin film of organic 

material can be directly measured by ultraviolet photoelectron spectroscopy (UPS). In UPS the Φ 

of a substrate is measured by the empirical formula, Φ = Einc (eV) – ESEC (eV), where Einc is the 

energy of the incident photon and ESEC is the onset in the secondary electron cutoff region of the 

spectrum (Figure 3.1). Therefore, the interfacial dipole (Δ) of an inorganic/organic bilayer is 

simply the difference in the measured work function between the bare metal to the coated metal. 

Small molecules and polymers have both been shown to perform as effective ETLs, 

capable of producing a preferential interfacial dipole at the organic/inorganic interface resulting in 

a modification of the metal’s work function. Depending on the functionality of the molecule this 

work function modification facilitates injection of a hole of an electron.2,15,16 In the case of cathode 

materials in photovoltaic devices, decreasing the work function is preferential for electron 
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Figure 3. 1. Schematic of observed shift in work function of metal via interfacial dipole of 

organic layer measured by UPS. 
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injection. Based on this understanding, interest has been given to develop organic materials with 

proper functionality for modifying the work function of cathode materials. Polyethyleneimine 

(PEI) has been shown to be a promising ETL due to negative Δ produced by the amine groups in 

the polymer backbone which lower the work function of metals, such as silver (Ag), but is limited 

to ultra-thin films.  The high resistance of PEI films becomes detrimental to photovoltaic 

performance at thicknesses exceeding 20 nm.17  

To address this thickness intolerance research has been conducted to develop organic ETLs 

able to produce high power conversion efficiencies (PCEs) over a wide range of thicknesses. 

Through rigorous materials design and characterization, the key features of ETL materials have 

been elucidated. Specifically, it has been found that conjugated polymers containing tertiary 

amine, cationic, and zwitterionic pendant groups can preferentially lower the Φ cathodes and 

efficiently transport electrons with high thickness tolerance (2 to 200 nm) to achieve high 

performing photovoltaic devices.18–24 The thickness tolerance of these materials arose from the 

semiconducting properties of the conjugated polymer, which permitted efficient transport of 

charge through the layer.  

Figure 3. 2. Depiction of traditional π-conjugated polymer ETLs in comparison to novel polymer 

ETLs with segmented π-conjugation. 
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The results of this work elucidated the key materials properties for thickness tolerant 

interlayers. Specifically, an ETL should contain a work function modifying moiety (e.g., cationic, 

zwitterionic, etc.) and a charge transporting component (π-conjugated) (Figure 3.2). While all 

these components are necessary for an efficient ETL, there has been limited work on understanding 

how the ETL performance is affected by modifying the molecular architecture. Specifically, it 

would be of interest to determine if high performing ETLs can be achieved when the work function 

modifying group is embedded in the polymer backbone and long-range π-conjugation is broken.25   

The thesis work discussed here focused on relating molecular design of linear polyionenes and 

polymer zwitterions to interfacial properties.                

3.2 Interfacial properties of PDI-based polymers 

 

UPS measurements were performed on the PDI-based polyionenes and polymer 

zwitterions to investigate the interaction between the PDI-based ionene interlayers and Ag 

electrodes. In UPS, the ESEC in the high binding (low kinetic) energy region probes the effect of 

the contacting materials on the work function of Ag, where the difference in ESEC for bare Ag vs 

PDI-based polymer-coated Ag yields Δ values. The UPS spectra of the cationic and zwitterionic 

PDI polymers are shown in Figure 3.3.  In Chapter 2, the optical properties were studied as a 

function of PDI content in the ionene and zwitterionic polymers. In chapter 3 focus is given to how 

PDI content as well as zwitterionic or cationic functionality influences Φ modification and 

photovoltaic device performance.   

Ultra-thin (2 – 3 nm) layers of the PDI-based polymer films coated on Ag produced Δ 

values ≈ from 0.7 to -1.4 eV, which corresponds to a significantly reducing the observed Φ ranging 

from 3.4 to 3.8 eV compared to native Ag (4.3 eV) (Tables 3.1 and 3.2). The work function 

modification was independent of PDIBr2 or PDIPh2 derivative embedded in the polymer 
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backbone.  As PDI content was increased the observed Δ decreased in all polymers independent 

of cationic or zwitterionic functionality. Current interlayer technology has focused on either 

completely conjugated or aliphatic systems. The influence of conjugation content on work function 

modification has never been explored. Experimental and theoretical results have shown work 

function increase in Ag substrates upon adsorption of fused-ring structures, such as perylenes, 

pyrenes, and coronenes, due to charge-transfer complex formation.26–28  This is in agreement with 
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Figure 3. 3. UPS spectra secondary electron region of (A,C) PDIBr2 and (B,D) PDIPh2 

polyionenes and polymer zwitterions. 
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the results observed here.  While the presence of cationic and zwitterionic functionality lowered 

the Φ of Ag, increasing the PDI content in the polymers attenuated the Φ modification.  

The PDIZ-10% exhibited slightly larger Δ (1.4 eV) compared to the PDI-10% polymers 

(1.2 eV). Additionally, Δ decreased significantly more in PDIZ polymers as the PDI content was 

increased.  These results show that at low PDI content the zwitterionic functionality is more 

desirable for tailoring the organic/inorganic interface while cationic is preferable at higher PDI 

content. From the UPS studies it was concluded that the Φ of Ag could be tailored through the 

introduction of the PDI-based polyionenes and polymer zwitterions. These results suggested that 

these novel polymers could be used to achieve larger built-in potential, enhanced free charge 

generation, and extraction efficiency to maximize JSC and FF in photovoltaic devices. Moreover, 

the Δ increases the anode-cathode work function offset (ФA-C), which boosts the VOC.  

3.3 ETL performance of PDI-based polymers in OSCs 

 

 

 

 Polymer Δ (eV) ΦAg-PDI(eV) 

PDIBr2-10% 1.2 3.6 

PDIBr2-50% 1 3.8 

PDIBr2-100% 0.9 3.9 

PDIPh2-10% 1.2 3.6 

PDIPh2-50% 1.1 3.7 

PDIPh2-100% 1.0 3.8 

Table 3. 1. Summary of interfacial electronic properties of PDI-

based polyionenes. 

 

 Polymer Δ (eV) ΦAg-PDI(eV) 

PDIZBr2-10% 1.4 3.4 

PDIZBr2-50% 0.9 3.9 

PDIZBr2-100% 0.7 4.1 

PDIZPh2-10% 1.4 3.4 

PDIZPh2-50% 1.0 3.8 

PDIZPh2-100% 0.9 3.9 

Table 3. 2. Summary of interfacial electronic properties of PDI-

based polymer zwitterions. 
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OPV devices were first fabricated in a bulk heterojunction (BHJ) architecture (Figure 3.4) 

containing a blend of [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) or 3,9-bis(2-

methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl) dithieno[ 

2,3-d:2’,3’-d’]-s-indaceno[1,2-b:5,6-b’]dithiophene) (ITIC) as the electron acceptor and a low-

bandgap conjugated polymer, poly(benzodithiophene-a-thieno[3,4-b]thiophene) with 2-

(ethylhexyl)thienyl side chains (PBDTT-TT) or poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-

yl)-benzo[1,2-b:4,5-b’]dithiophene))-alt-(5,5-(1’,3’-di-2-thienyl-5’,7’-bis(2-ethylhexyl) benzo[ 

1’,2’-c:4’,5’-c’]dithiophene-4,8-dione))]) (PBDB-T), as the electron donor.29,30 An ITO/Poly(3,4-

ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)/photoactive layer/ PDI-Ph based 

polymer interlayers/Ag architecture was used for all of the organic solar cells (OSCs).31 An Ag 

electrode was selected in place of Al to illustrate the utility of stable, high work function, metal 

electrodes partnered with PDIPh2-based polyionene interlayers. For OSCs with PBDTT-TT: 

PC71BM active layer, Figure 3.5A and 3.5B compares current density-voltage (J-V) curves with 

Figure 3. 4. Structure of PDI-based ETL and photoactive components with 

OSC device architecture. 
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devices containing no interlayer (bare Ag control) as well as ionene versus zwitterionic PDI-10%, 

PDI-50% and PDI-100% interlayers of optimal thickness. The devices without interlayers gave 

a maximum PCEs of 1.74% (zwitterionic control) and 2.62% (ionene control). Introduction of the 

PDI polymer interlayers resulted in enhanced photovoltaic performance in comparison to the bare 

Ag devices. In contrast to trends observed in UPS experiments, increased PDI content 

corresponded to further enhancement of photovoltaic performance. The photovoltaic metrics of 

the champion devices with each PDI-based interlayer are shown in Table 3.3. The zwitterionic 

PDIZs containing PDIPh2 polymers were able to boost the OSC PCEs from 1.74% for the bare 

device to 3.90% (PDIZ-10%), 5.77% (PDIZ-50%), and 6.41% (PDIZ-100%). These 

improvements arise from the significant increase in Voc and Jsc upon introduction of the interfacial 

layer.  While introduction of the PDIZ interlayers increased the photovoltaic performance, the 

shape of the J-V provides insight to some of the drawbacks of these materials.  PDIZ J-V curves 

in Figure 3.5B exhibit an “S-shape” distinguishing them from the squarer curves in the ionene PDI 

J-V curves. The effects of this S-shape were reflected in the significantly lower FF observed in the 

PCEs:

2.62%

5.82%

10.64%

10.32%

PCEs:

1.74%

3.90%

5.77%

6.41%

Figure 3. 5. J-V curves of fullerene-based OSC devices employing PDIPh2-

containing (A) polyionene and (B) polymer zwitterion interlayers. 
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zwitterionic interlayer devices. This S-shape was attributed to shunt current loss separate from the 

applied bias to rectify the photogenerated current, arising from recombination at the 

organic/cathode interface due to trap sites or defects.32,33 Further investigation was given to the 

ionene polymer in which this shunt loss was not observed.    

 Incorporation of PDI-10%, PDI-50%, and PDI-100% interlayers improved PCEs to 

average/maximum values of 5.82%, 10.64% and 10.32%, respectively. This enhanced device 

performance resulting from the interlayers is attributed to the increased VOC (~0.33 to 0.80 V), FF 

Figure 3. 6. Photovoltaic metrics 

as a function of PDI polyionene 

interlayer thickness. 

 

Interlayer JSC (mA/cm2) VOC (V) FF(%) PCE(%) 

PDI-10% 17.87 0.55 47.73 5.82 

PDI-50% 18.02 0.79 71.93 10.64 

PDI-100% 18.00 0.79 70.97 10.32 

PDIZ-10% 17.56 0.64 34.74 3.90 

PDIZ-50% 17.68 0.71 46.17 5.77 

PDIZ-100% 18.03 0.73 48.86 6.41 

Table 3. 3. Summary of fullerene-based OSC devices employing PDIPh2-containing 

polyionene and polymer zwitterion interlayers. 
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(~45 to 72%), and JSC (~17.1 to 18.4 mA/cm2) for PDI-50% and PDI-100% (Table 3.3). The 

influence of interlayer thickness on device performance was investigated by varying the solution 

concentration in TFE used for spin-coating onto the BHJ active layer. Devices with interlayer 

thicknesses varying from ~3 nm to ~55 nm were fabricated. The performance of OPVs containing 

PDI-10% was sensitive to interlayer thickness, with an appreciable reduction in PCE noted for 

layers exceeding 5 nm, due to a large decrease of FF and JSC (Figure 3.6). In contrast, the 

interlayers with larger PDI content (PDI-50% and PDI-100%) proved to be thickness tolerant, 

maintaining near peak photovoltaic metric values with VOC (~0.80 V) and FF (~72%) across 

thicknesses from ~3-55 nm. JSC only exhibited a moderate dependence on interlayer thickness, 

with values exceeding 14 mA/cm2 across the entire thickness range. Based on the desirable 

thickness tolerance of the PDI-50% and PDI-100%, these interlayers were selected for further 

studies with non-fullerene acceptor devices. 

 Figure 3. 7. (A) J-V curve of non-fullerene OSCs employing PDI-50% or PDI-100% 

interlayers; (B) Photovoltaic metrics as function of PDI-50% or PDI-100% thickness. 
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Non-fullerene-based OSCs hold the potential to achieve enhanced OPVs owing to the more 

diverse design for both donors and acceptors to achieve maximum light absorption and 

photocurrent generation.34,35 In spite of the success of non-fullerene acceptor devices, the proper 

design of polymer interlayers for non-fullerene-based PSCs has been seldom been reported.36,37 

PDI-50% and PDI-100% polyione. nes were employed as ETLs in OSCs with a non-fullerene 

BHJ active layer PBDB-T:ITIC. As shown in Figure 3.7A, the optimized non-fullerene PSCs 

fabricated with bare Ag cathodes gave PCE values of 3.34%. When PDI-50% or PDI-100% 

interlayers were integrated into devices PCE values of 10.34 ± 0.16% (maximum PCE 10.59%), 

9.53 ± 0.12% (maximum PCE 9.68%), respectively could be achieved (Figure 3.7 and Table 3.4). 

This striking improvement in PCE stemmed from higher VOC and FF values, while devices without 

interlayers suffered from the high intrinsic work function of Ag and the small built-in electrostatic 

potential difference. As with the fullerene-based devices, interlayers integrated into the non-

fullerene devices exhibited excellent thickness tolerance (from ~3 to ~38 nm), and high PCE 

values were maintained (Figure 3.7B). Thus, the PDI-50% and PDI-100% polymers proved 

efficient as cathode interlayer materials for both fullerene- and non-fullerene-based PSCs. It was 

anticipated that the PDI-100% would produce the highest performing devices as its Δ could 

effectively decrease the Φ of Ag as it contained the most PDI, which would provide pathways for 

electron transport. The maximum PCE observed with PDI-50% across a wide range of thicknesses 

was interesting as ETL polymers with controlled π-conjugated component had never been 

reported.   

Interlayer JSC  (mA/cm2) VOC (V) FF (%) PCE (%) 

Bare Ag 11.39 0.57 34.98 3.34 

PDI-50% 16.58 0.92 67.43 10.59 

PDI-100% 16.45 0.88 65.62 9.68 
 

Table 3. 4. Summary of non-fullerene-based OSC devices employing PDIPh2-containing 

polyionene interlayers. 
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The electronic properties of the polyionene interlayers were investigated further by electron 

paramagnetic resonance (EPR), space charge limited current (SCLC), and conductivity 

measurements. Self-doping in n-type small molecules and polymers has been shown to improve 

the charge transporting of ETLs. In previous reports, the self-doping was induced via charge 

transfer from a polar pendant group (cationic, or tertiary amines) to the electron deficient aromatic 

group.38–44 In the case of the PDI polyionenes, the self-doping functionality was embedded in the 

polymer backbone. EPR allowed for the observation of un-paired electrons in samples. As shown 

in Figure 3.8A an EPR response corresponded to un-paired electrons in the self-doped PDI 

aromatic core. The EPR spectra of the PDI-based polyionenes shows a single signal centered at 

3498 G, indicative of self-doping properties in these polymers through electron transfer from the 

ammonium bromides to the PDI units. The single peak was assigned to the PDI anions. For each 

EPR study 10 mg of polymer was used. At these quantities the PDI mole% was inversely related 

to EPR signal. This could be rationalized by the fact that the for PDI-10% and and PDI-50% there 

Figure 3. 8. (A) EPR spectra; (B) electron-only devices fabricated in the architecture: 

ITO/ETL/Ca/Al; and (C) current-voltage (I-V) measurements of PDI-based polyionenes. 
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was significantly more dopant relative to PDI in comparison to the PDI-100%. Therefore, the 

content of doped PDI was likely larger in polymers with less PDI in the polymer backbone.  

Duzkho has shown that fullerenes containing zwitterionic sulfobetaine groups do not exhibit self-

doping properties, in contrast to those containing cationic functional groups,41 and require external 

dopants for improved transport properties.45 The inability of n-type materials appended with 

zwitterionic functionality to self-dope may be the cause of the lower device performance in the 

PDIZ polymers when compared to the PDI ionene polymers.  Electron-only SCLC devices were 

fabricated with the PDI polyionenes to further study their charge transporting properties. PDI-50% 

and PDI-100% exhibited comparably high electron mobility values of 7.45 × 10-4 cm2/Vs and 

2.54 × 10-4 cm2/Vs, respectively, while the mobility of PDI-10% was two orders of magnitude 

Figure 3. 9. AFM images of: (A) PDI-10% film; (B) PDI-50% film; and (C) PDI-100% film. 

TEM images of: D) PDI-10% film; E) PDI-50% film; and F) PDI-100% film. (Rq is the root mean 

square roughness; scale bar is 100 nm). 
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lower at 7.75 × 10-6 cm2/Vs (Figure 3.8B). The conductivities of the PDI-based polyionenes were 

measured as thin films coated on parallel gold electrodes. Solutions of PDI-polyionenes in TFE 

were spin-coated onto the substrates to give a film thickness (T) of ~50 nm. The conductivities 

calculated from the current-voltage (I-V) curves for thin films of PDI-10%, PDI-50%, and PDI-

100% were found to be 2.2×10-5, 2.1×10-3, and 3.3×10-4 S/cm (Figure 3.8C). The maximum 

conductivity observed in PDI-50% can be rationalized by efficient doping of the PDI core observed 

in the EPR resulting in high thickness tolerance and peak photovoltaic performance in the 

polymers without complete π-conjugation throughout the polymer backbone. 

The influence of thin film morphology on charge transport in these PDI-based ionene 

interlayers was also investigated by atomic force microscopy (AFM) (Figure 3.9A-C). No large 

PDI clusters were observed, which makes PDI-based polyionenes suitable for device interfacial 

modification with a wide range of controllable interlayer thicknesses. Shown in transmission 

electron microscopy (TEM) (Figure 3.9D-F), fibril-like structures were found for samples of PDI-

50% and PDI-100% but absent from PDI-10%. These structures were hypothesized to be 

comprised of PDI-aggregates formed through π-π stacking. This was supported by the absence of 

structures in the PDI-10% (low PDI content) thin film and their prevalence in the PDI-50% and 

PDI-100% (high PDI content) thin films. Thus, higher PDI mole% provided more π-π stacked 

PDI cores to form fibril structures, working as efficient electron transport channels, which afford 

PDI-50% and PDI-100% with a higher SCLC electron mobility and conductivity than that of 

PDI-10%. Thus, the PDI ratios in these polymer interlayers play a key role on film morphology 

and determining charge transporting properties of the materials.        

 Near edge X-ray absorption fine structure (NEXAFS) characterization was performed to 

analyze the orientation of these PDI-based polyionene films on top of the active layer. Carbon K-
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edge total electron yield (TEY, ~10 nm) NEXAFS spectra showed the ensemble-averaged 

orientation at different average depths. Figure 3.10A shows the normalized X-ray absorption 

structure (XAS) of carbon 1s for PDI-10%, PDI-50%, and PDI-100%, plotted at different 

incidence x-ray angles (20º, 35º, 55º, 70º, and 90º), along with a zoom-in of the π* region from 

282.7 to 290.3 eV in Figure 3.10B, which corresponds to the states associated with the PDI core. 

The overall angular dependence was relatively small, but a significant experimental variation of 

intensities was observed. This was most notably for the π* states of the aromatic PDI cores. 

Therefore, the summation of the fitted main π* state intensities of the PDI cores were plotted as a 

function of incident angles (Figure 3.10C).  

Increases of the incident angles (i.e., increasing the in-plane component of polarization of 

the incident x-rays) decreased the sum of PDI peak intensities, indicating that the PDI cores in 

these PDI-based polyionene interlayers preferred a face-on orientation with respect to the 

underlying photoactive layer. In addition, PDI-10% showed a more drastic decrease in intensity 

with increasing incident angle in Figure 3.10C in comparison to PDI-50% and PDI-100%. This 

 Figure 3. 10. (A)  Full experimental region; and (B) π* zoom-in NEXAFS TEY 

spectrum of PDI-based ionene interlayer films on top of the photoactive layer 

(PBDTT-TT: PC71BM); (C) The normalized sum of the PDI peak intensities 

from the π* states of the PDI core as a function of incident angle. 
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difference in incident angle response may arise from the low content of PDI in the film or from 

stronger alignment with the substrate. These results indicated that the limited PDI content in the 

PDI-10% reduces the formation of PDI-rich charge transporting pathways, which likely played a 

crucial role in the inferior performance of the devices containing PDI-10% as the ETL. 

Subsequent analyses of morphology focused on the PDI-50% and PDI-100% which were able to 

yield high performing photovoltaic devices.  

The structural order of the fibrils in PDI-50% and PDI-100% films was evaluated by 

grazing incidence X-ray diffraction (GIXD) (Figure 3.11). The diffraction patterns showed a broad 

peak at q = 1.73 Å-1, corresponding to a d-spacing of 3.63 Å, which is typical of π-π stacking in 

aromatic compounds.46 These results  compounded with the NEXAFS experiments, provide further 

evidence of PDI units stacking face-on with a π-interaction distance of 3.63 Å. The low q 

 Figure 3. 11. 2D-GIXD patterns of (A) PDI-50%, and (B) PDI-100%; 

(C) the corresponding line-cuts of the 2D-GIXD patterns. 
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diffraction region, PDI-50% showed a peak at q = 0.26 Å-1, corresponding to a d-spacing of 24.17 

Å, while PDI-100% gave a peak at q = 0.29 Å-1, pointing to a d-spacing of 21.67 Å. The diffraction 

peaks at low q value were assigned to the distance between π-stacking PDI units. Interestingly 

PDI-50% and PDI-100% exhibited similar diffraction patterns. This was unexpected, as PDI-

50% contains significantly less PDI to form clusters to produce diffraction. This observation 

provided additional evidence of a PDI mole% threshold necessary for high performing ETLs. 

Based on this morphological characterization, it is evident that the PDI mole% in these polymers 

influence PDI aggregation, and thus the resultant charge transport. While low PDI mole% (PDI-

10%) produced higher Δ, these polymers could not form PDI aggregates (i.e., fibril-like structures) 

which served as conductive channels for charge transport. Additionally, at the highest PDI mole% 

ratio (PDI-100%) electron mobility, conductivity, doping and work function modification were 

lower than values observed with PDI-50%. Hence, PDI-50% proved to be the more effective ETL 

based on its excellent work function modification properties and formation efficient conductive 

channels for electron transport.       

 Figure 3. 12. (A) PSC device architecture: ITO anode/HTL/MAPbX3/PCBM/PDI-

Br/metal cathode; (B) Structure of PDI-Br interlayer; (C) Structure of PVBT-SO3 and 

NPB HTLs. 
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3.4 ETL performance of PDI-based polymers in PSCs   

 

 With the knowledge that 50 mole% PDI in the polyionene backbone produced the highest 

performing OSCs the PDIBr2-50% polymer, referred to in this section as PDI-Br, was used as an 

ETL as well as work function modifier in conventional and inverted perovskite solar cells 

(PSCs).47 Inverted PSCs with a device architecture of ITO/HTL/CH3NH3PbI3/PC61BM/PDI-

Br/metal cathode were fabricated as shown in Figure 3.12.  N,N’-bis(naphthalen-1-yl)-N,N’-

bis(phenyl)benzidine (NPB), or poly(benzothiadiazole vinylene-alt-2,5-bis(4-sodium 

sulfonate)butoxy)-1,4-phenylenevinylene) (PVBT-SO3)  were spin-coated onto ITO substrates to 

serve as the HTL. Devices employing the NPB as the HTL and PDI-Br markedly produced a JSC 

of 22.92 mA/cm2, a VOC of 1.11 V, a FF of 78.4% were able to achieve a maximum PCE of 19.96% 

(Figure 3.13). This impressive performance can be correlated to the PDI-based interlayer’s ability 

to preferentially modify the work function of Ag and transport electrons. The superior ETL 

properties of PDI-Br partnered with  the high hole mobility of NPB (reportedly (6-9)×10-4 

cm2/Vs48,49) and 5.20 eV HOMO level situated between the work function of indium tin oxide 

Figure 3. 13. J-V curve of PSC employing 

the PDI-Br interlayer and NPB as the HTL. 
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(ITO) and the valence band (VB) of CH3NH3PbI3 yielded the observed high performing 

photovoltaic devices.  

 Additional studies were conducted with PSCs employing the novel PVBT-SO3 HTL 

previously reported by Emrick and coworkers50 and PDI-Br as the ETL.  As shown in Figure 

3.14A, when using Ag as electrode, the devices showed the highest PCE of 19.12% in the reverse 

scan with JSC =23.77 mA/cm2, VOC =1.02 V, FF=78.99%. In the forward scan, the same device 

gave a PCE of 18.78%, indicative of minor hysteresis. The effects of the PDI-Br interlayers on 

device performance and thickness tolerance were investigated as shown in Table 3.5. The PCEs of 

Figure 3. 14. (A) Current density-voltage (J-V) characteristics of the champion PSC 

measured by reverse and forward modes; (B) PCE histogram of 40 devices with PDI-

Br interlayer (measured under reverse scan); (C) Stability performance of the PSCs 

with and without PDI-Br interlayer, the devices were stored and tested in the glove 

box without encapsulation; (D) J-V characteristics of PSCs by using Cu and Au as 

cathode, respectively, the devices were measured under reverse scan. 
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40 devices all exceeded 17% with an average efficiency of 18.08% as shown in Figure 3.14B, 

suggesting a high reproducibility of the devices fabricated with the PDI-Br interlayer.  Low FF 

values were observed in PSC without the PDI-Br interlayer. This is attributed to carrier 

accumulation at the PCBM/Ag interface due to the mismatch between the lowest unoccupied 

molecular orbital (LUMO) of PCBM and the work function of Ag. When inserting PDI-Br 

interlayer between PCBM and Ag, the FF shows a desirable rectification from 59.20% to 76.82%. 

Additionally, all photovoltaic metrics maintained near peak values with interlayer thicknesses 

ranging from ~4 nm to ~28nm, thus exemplifying the desirable thickness tolerance of PDI-Br.  

  The long-term stability of the devices with and without the PDI-Br interlayer was tested 

in a glove box without encapsulation as shown in Figure 3.14C. The device with the PDI-Br 

interlayer remained at ~80% of the initial PCE after ~1600 hours, while the device without the 

interlayer decreased by ~50% over the same time frame. The degradation of the PCE mainly arises 

from the decrease of the FF, as shown in Figure 3.15, especially for the PSC without the PDI-Br. 

Migration of I- ions through the perovskite active layer and reaction with metal electrode interface 

has been shown to lead to irreversible device degradation.51–53 The use of the PDI-Br interlayer 

could prevent the direct contact of PCBM and Ag and played an important role in affording 

effective improvement of device stability. Additionally, PDI-Br was shown to improve devices 

 

Interlayer Jsc (mA/cm2) Voc (V) FF (%) PCE (%) 

Bare Ag 21.04 1.02 59.20 12.78 

4 nm 20.21 1.01 75.25 15.41 

7 nm 20.62 1.03 75.88 16.14 

10 nm 21.62 1.00 78.30 16.97 

28 nm 20.65 1.00 77.79 16.13 

Table 3. 5. Summary of photovoltaic metrics employing PDI-Br interlayer at various 

thicknesses. 
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employing Cu or Au- cathodes, producing PCEs exceeding 17% (Figure 3.14.D). These results 

demonstrate the versatility of PDI-Br to enhance perovskite device efficiency and stability. 

Overall, all PDI-based polyionenes have been shown to improve device performance in both OSCs 

and PSCs. The main advantage of these systems is the control of the PDI content and the realization 

of 50 mole% as the threshold for peak device performance.  This finding will play a key role in 

developing cost-effective materials for thin film photovoltaics.   

3.5 Small molecule PDI ETLs in perovskite solar cells 

 

 While the polymeric PDI structures were able to preferentially modify the work function 

of metal cathodes and improve electron injection at the active layer/cathode interface, the ETL 

performance properties of small molecule PDIs was also investigated. (Poly[9,9-bis(3′-(N,N-

dimethylamino)- propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene) PFN and its derivatives, in 

Figure 3. 15. Stability investigation of (A) JSC; (B) VOC; and (C) FF of 

the PSCs with and without PDI-Br interlayer (3 devices of each type), 

the devices were stored and tested in the glove box without 

encapsulation. 
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addition to modifying the work function of metal cathodes, can passivate surface defects in the 

methylammonium lead halide (MAPbX3) perovskite active layer through coordination of the lone 

pair to the Pb2+ atoms, yielding PSCs with enhanced performance and stability.54–57 Similar effect 

has been shown with tertiary amine functionalized fullerenes58 and PDIs.59  The reported PDI small 

molecule could improve the performance but also exhibited limited thickness tolerance, likely due 

to the formation of large aggregates causing charge build-up at the perovskite/cathode interface.  

Here core-functionalized PDI small molecules were hypothesized to be promising candidates as 

thickness tolerant small molecule ETLs for PSCs.   

 The influence of tertiary amines functionality on PSC performance has been well 

documented, but other kinds of amines could also be advantageous for tailoring interfaces.  In 

addition to the PDIBr2 mentioned in chapter 1, 4-bromophenyl-terpyridine (tpyr-Br) and a PDI 

derivative containing phenyl-terpyridine groups at the aromatic core (PDItpyr2) were integrated 

into PSCs as interfacial layers. PDI-tpyr2 was prepared following similar procedures used to 

synthesize PDIPh2 via Suzuki-Miyaura coupling.  UPS studies was used to determine the Δ of 

tpyr-Br (-0.51 eV), PDIBr2 (-0.66 eV), and PDItpyr2 (-0.70 eV) thin films (~2-5 nm) coated on 

Ag substrates (Figure 3.16). The Δ of these small molecules was significantly smaller than the 
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PDIBr2, and tpyr-Br on Ag. (B) Energy level diagram of PDItpyr2 and 

PDIBr2. 



80 
 

polyionenes and polymer zwitterions in the previous section. This difference in Φ modification 

suggests that cationic and zwitterionic functionality possess superior interfacial tailoring properties 

over tertiary amines.  Tpyr-Br on its own produced a Δ preferential for electron injection into Ag, 

while the PDI-tpyr the same interfacial behavior as PDI-Br.  This potentially arises due to the 

orientation of the terpyridine groups relative to the underlying substrate when they conjugated to 

the PDI core.  Based on their desirable work function modification properties, the small molecules 

were integrated into MAPbX3 PSCs. 

 The J-V of devices fabricated with the small molecule spin-coated from varying solution 

concentrations to produce films ranging from 2 to 20 nm by controlling small molecule 

concentration in TFE with Ag contacts (Figure 3.17).  The ETL-containing devices were compared 

to bare Ag devices and low work function cathode Ca/Al devices. Ca/Al produced higher PCE 

values than Ag as expected for a low work function metal which allows for high ΦA-C and internal 

 

tpyr-Br

PDIBr2, mg/mL

PDIBr2

PDItpyr2, mg/mL

PDItpyr2

Figure 3. 17. J-V curves and photovoltaic metrics a function of interlayer solution 

concentration of (A,D) tpyr-Br; (B,E) PDIBr2; and (C,F) PDItpyr2. 
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bias. The J-V curves for champion devices and photovoltaic metrics as a function of interlayer 

thickness are summarized in Figure 3.17.  It was found that all interlayers were able to produce 

high performing devices ranging from 15.94 to 17.21 % PCE. The tpyr-Br small molecule was 

able to enhance device performance (16.51% PCE) when coated from 1 mg/mL solutions but 

exhibited low thickness tolerance. In contrast, PDIBr2 and PDItpyr2 ETLs were both able to 

maintain high device performance over all coating concentrations.  It is hypothesized that the 

thickness tolerance of the PDI interlayers discussed here, as opposed to the thickness intolerance 

of interlayers reported in the literature, was realized through the prevention of large, charge-

blocking aggregates by introduction of the bulky bromide or phenyl-terpyridine units at the PDI 

aromatic core. Additionally, the higher PCE observed in PDItpyr2 (17.21%) when compared to 

PDIBr2 (15.94%) is likely due to the lower lying LUMO of the PDItpyr2 (-4.74 eV) leading to 

more efficient extraction of electrons from the perovskite active layer (LUMO = -3.9 eV) (Figure 

3.16). These results illustrate the utility of PDI as a small molecule ETL and the necessity of core 

functionality for enhanced device performance.  

 

3.6 Conclusion   

      

 In summary several PDI-containing structures were developed as ETL for organic- and 

perovskite-based photovoltaic devices and their structure-property relationships were explored.  

PDI-based polyionenes and polymer zwitterions polymers were observed to preferentially modify 

the work function of Ag to facilitate electron injection.  This work function modification was found 

to be dependent on the amount of PDI embedded in the polymer backbone. When integrated into 

OSCs both the cationic polyionenes and polymer zwitterions were able to improve device 

performance.  Devices containing PDI polyionenes outperformed the zwitterionic analogs, likely 
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due to efficient transportation of charges into the electrode without loss due to interfacial 

recombination.  

 The electronic properties of the PDI polyionenes (electron mobility, conductivity, and 

doping) were all found to be dependent on the content of PDI embedded in the polymer backbone. 

The combination of fundamental electronic studies, morphological characterization, and device 

performance analyses revealed that 50 mole% PDI was the threshold for peak device performance.  

These results transferred to perovskite-based photovoltaic devices as well, in which the PDI-50% 

polymers were again able to improve device performance.  Small molecule PDI derivatives were 

also studied as interfacial layers in PSCs.  These small molecules showed aromatic core 

functionality dependence on work function modification and device performance. Moreover, the 

small molecule studies revealed that while terpyridine type structures could modify metal work 

functions, without the presence of a strong n-type component, such as PDI, these materials could 

not be integrated as thickness tolerant interlayers in PSCs.  The results of this work provided 

greater insight to design of effective charge selective layers in photovoltaic devices and produced 

a new platform of electronic materials that may provide a pathway towards commercialization of 

flexible photovoltaics.  
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CHAPTER 4  

SYNTHESIS AND OPTICAL PROPERTIES OF AGGREGATION-INDUCED 

EMISSION CONJUGATED POLYMERS 

4.1 Introduction 

When chromophores, such as pyrene and perylene, are in dilute solutions (< mM) they can 

be easily excited by an incident photon and relax back to their ground states through radiative 

relaxation (Figure 4.1).  The solution response to photoexcitation is distinguished from the 

relaxation observed upon aggregation. Upon photoexcitation of the aggregates, the excited 

molecules form complexes (excimers) via association with ground state molecules through π-π 

interactions. While these excimers may exhibit emittance, they are predominately “dark” states, 

especially for the larger exciplex clusters. Due to their planar structure and high affinity towards 

π-π stacking, most conjugated molecules are susceptible to aggregation-caused quenching (ACQ). 

The formation of excimers in the aggregated state, leading to dominant non-radiative relaxation 

after excitation, is the predominant theory behind ACQ (Figure 4.1).1,2 Non-radiative relaxation 

 

Figure 4.1. Mechanistic comparison of (top) ACQ versus (bottom) AIE. 
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can be detrimental to the performance of organic light-emitting diode (OLED) and biological 

imaging applications. While ACQ can mitigated by introducing bulky side chains to interfere with 

π-π overlap3 or embedding the luminescent compounds in a solubilizing matrix to enhance 

radiative relaxation,4 these techniques can be synthetically taxing and exhibit limited 

reproducibility. As an alternative, it would be desirable to design materials that not only were 

resistant to quenching in the solid state but also gained emission upon aggregation.   

 Aggregation-induced emission (AIE) molecules stand in stark contrast to many fused 

aromatic structures that undergo aggregation-caused quenching (ACQ). AIE-active molecules, 

such as tetraphenylethylene (TPE), consist of propeller-like structures with multiple aromatic rings 

that rotate freely.5 In solution, TPE exhibits miniscule emission due to energy dissipation via 

intermolecular rotation and vibration.  Restricting this molecular motion, via aggregation or other 

means, results in photoluminescence.6–8  This unique photophysical property has been employed 

to prepare fluorescent sensors,9 dual-functional imaging and photodynamic therapeutics,10 

mechanochromophores,11 and OLEDs.12–15 

TPE has been integrated into conjugated polymer frameworks, as seen for example in the 

work of Tang on TPE homopolymer sensors,16  and Dong on TPE/fluorene copolymer dual-

channel sensors with orthogonal fluorescent responses of the fluorene and TPE components.17 

Related studies were reported by Li for TPE/carbazole-containing polymers.18,19 Less-studied is 

the introduction of TPE into polymeric solid-state emitters to further enhance their emission, such 

as poly(phenylene vinylenes) (PPVs), which are well-known emitters20–25 that suffer from 

aggregation-caused quenching (ACQ).26  Integrating TPE into PPV holds the potential to enrich 

the optoelectronic properties of PPV without requiring synthetically taxing functionalization with 

substituents to effect steric repulsion. Horner-Wadsworth-Emmons (HWE) coupling was selected 
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to prepare PPVs with embedded TPE groups, and Suzuki-Miyaura (SM) coupling was employed 

to synthesize comparative TPE polymers containing para-phenylene moieties.  As described 

below, this tailoring of polymer backbone chemistry and TPE content dictated the optoelectronic 

properties of AIE-containing conjugated polymers, while expanding the capabilities of PPV with 

embedded AIE groups. 

4.2 Monomer and polymer synthesis  

The synthesis of key TPE derivatives is shown in Scheme 4.1. 4-Bromophenyl-4-

ethylhexyloxyphenyl methanone (1) was prepared by Friedel-Crafts acylation of 4-bromobenzoyl 

chloride and anisole, followed by demethylation and substitution with 2-ethylhexyl bromide.  1 

was subjected to McMurry coupling conditions to prepare the novel TPE derivative 2. This 

reaction produced the expected mixture of E and Z stereoisomers, as reflected in the 1H NMR 

spectra of 2. The chemical shifts observed from 7.35 to 6.66 ppm corresponded to both 

stereoisomers in the isolated product. The mixture of stereoisomers was also observed in the 

aromatic region of the 13C NMR spectrum from 159 to 114 ppm. 

Scheme 4. 1. Synthesis of TPE-based small molecules 
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2 was converted to the diformyl derivative 3 by lithiation at -78 °C, then introduction of 

dimethylformamide (DMF).   The polar aldehyde groups allowed for efficient chromatographic 

separation of the E and Z isomers, by silica gel chromatography eluting with a mixture of 

dichloromethane and ethyl acetate. In the aromatic region of the E and Z isomers of 3 (Figure 

4.2A), the protons of the aldehyde-substituted phenyls (7.63 and 7.20 ppm) and the ethylhexyloxy-

functionalized phenyls (6.93 and 6.70 ppm) are easily distinguished.  Molecular weights measured 

by MALDI-TOF (647.7 m/z) mass spectrometry provided further evidence that the two products 

isolated by chromatography were the E and Z stereoisomers (Figure 4.2B). Nuclear Overhauser 

effect spectroscopy (NOSEY) NMR experiments were conducted to confirm the stereochemistry.  

The presence or absence of cross peaks from 6.70 to 7.63 ppm in the NOESY NMR spectra, due 

to through-space coupling of the aromatic rings, confirmed the identity of the Z or E isomer (Figure 

4.2C). Compounds 4 and 5 were synthesized to compare the influence of phenylene vs. 

phenylenevinylene appendages on the AIE properties of TPE.  These structures were used to 

provided additional insight to the evolution of AIE properties. 
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Figure 4. 2. (A) 1H NMR spectra of the aromatic region; (B) MALDI-TOF; and (C) 2D 

NOESY NMR spectra of (top) E Z isomer and (bottom) Z isomer of 3. 
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 Scheme 4.2 illustrates the synthesis of TPE-based conjugated polymers and the results of 

these reactions are shown in Table 4.1. The TPE-PPV analog (P1) containing phenylene vinylene 

groups between the TPE units was prepared by reacting the E or Z isomer of 3 with the benzyl 

bisphosphonate comonomer in the presence of potassium tert-butoxide in THF.  A PPV 

homopolymer (P4) and copolymers containing 25 mole% (P3) or 50 mole% (P2) TPE were also 

prepared under the same conditions. TPE incorporation was determined by 1H NMR as shown in 

Potassium 

t-butoxide

THF

-78  C → rt

24 hrs

Pd(PPh3)4 RuPhos

KHCO3

THF

80  C 48 hrs

R = P1-P4

P5

+

Scheme 4. 2. Synthesis of polymers P1-P4 (top) by HWE coupling and polymer P5 (bottom) 

by SM coupling. 

Figure 4. 3. Structure of TPE-PPV copolymers and stacked 1H NMR spectra monitoring TPE 

content in P1-P4. 
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Figure 4.3.   The TPE polymer containing para-phenylene units between the TPE groups (P5) was 

prepared from 2, using Pd(PPh3)4 in the presence of potassium bicarbonate and the 1,4-

phenylboronic acid pinacol ester in THF/H2O mixtures. All polymers were precipitated into acidic 

methanol and isolated as yellow (P1-P4) or green powders (P5) yields of 43 to 90%. The optical 

properties of the synthesized small molecules and polymers are discussed in the proceeding 

sections.  

4.3 Solution and thin film optical properties  

The solution absorption and emission spectra of compound 1, P5, and P1 in DCM are 

shown in Figure 4.4A.  2 exhibited an absorption onset at 385 nm with maxima at 258 nm and 330 

nm corresponding to the phenyl rings and the extended conjugation in the TPE system 

respectively.27  The absorption onset of P5 (430 nm) was red shifted relative to 2, as expected by 

extending the conjugation.  Increased conjugation and planarization in P1 resulted in a further 

bathochromic shift of the absorption onset to 474 nm. P2-P4 exhibited absorption onsets at 517 

nm. Embedding TPE in the conjugated polymers afforded them with solution emission, which was 

not observed for 2, as reflected in the spectra shown in Figure 3. While the polymer chains 

remained solvated in the dichloromethane solution, restriction of TPE intermolecular motion by 

Table 4. 1. TPE incorporation, molecular weight and yield of conjugated polymers. 

Polymera Monomer feed 

(mole%) 

ΧTPE  

(mole%)b 

Mn
c 

(kDa) 

Mw
c 

(kDa) 

Ðc Yield (%) 

P1Z 100 100 23.0 61.2 2.7 43 

P1Z 100 100 11.4 17.3 1.5 46 

P2 50 40 22.1 46.6 2.1 68 

P3 25 25 54.8 132.3 2.4 90 

P4 0 0 45.6 131.7 2.9 60 

P5 100 100 4.9 8.1 1.4 48 
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embedding the subunits in the π-conjugated backbone allowed for the observed emission.  At 

equivalent optical density, the emission intensity of P1 was higher relative to the P5.  This 

enhanced solution emission was hypothesized to result from additional intramolecular restriction 

imposed by the vinylene linkers.  The thin film emission spectra of the P1, P5, and 2 are shown in 

Figure 4.4B. The emission maxima of 2, P5, and P1 were observed at 491nm (blue), 518 nm 

(green), and 550 nm (yellow) respectively (Figure 4).  These results show the emission color of 

TPE-containing conjugated polymers can tailored by slight modifications to the backbone 

chemistry (i.e. phenylene versus phenylene vinylene). The thin film optical properties of the PPV 

derivatives (P1-P4) were also compared. Films were prepared by spin coating from pure chlorform 

solutions or dropcast at 1wt% in PEO (Mn=1900) (Figure 4.5A-D) in THF. Film thicknesses were 

calculated based on optical densities measured by UV-vis and contact profilometry measurements.  

The photoluminescence (PL) of  P1 was not influenced by the thin film environment reflected by 

the nominal blue shift of the emission maxima from 543 for the pure thin film relative to 535 nm 

when embedded in PEO.  P2-P4 all exhibited shifts in ~ 30 nm bathochromic shifts in the emission 

Figure 4. 4. (A) Solution absorption (solid line) and emission (dashed line) spectra in CH2Cl2; 

(B) Thin films emission spectra on quartz substrates of 2, P5, and P1 their structures. 
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maxima and variance in vibronic signature when comparing the pure thin to the polymer embedded 

in PEO. This observations highlights the influence of TPE content on the optical properties of PPV 

structures.  

4.4 Aggregation-induced emission properties of novel structures 

 PL studies in THF:H2O mixtures allowed for studying how the discussed materials respond 

to aggregation.  As has been previously reported with other TPE-based small molecules, 2 became 

observably emissive at high water content (> 70% v/v) with ratio of maximum emission intensity 

to initial emission intensity (Imax/I0) > 200 indicative of AIE behavior (Figure 4.6). To further 

understand the role of extending the conjugation of the TPE structure and the influence of 

Figure 4. 5. PL spectra of P1-P4 (A-D) as thin films and embedded in PEO. 
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backbone chemistry the AIE properties of small molecules 4 and 5 and polymers P1 and P5 were 

examined (Figure 4.7).   As shown in Figure 4.7, 4, 5Z, and 5E exhibited the strongest emission 

at the highest water content and large Imax/I0 values of 204.1, 52.9, and 48.2 respectively.  

Noteworthy was the significant decrease in Imax/I0 with the vinylphenyl functionalized derivatives. 

Imax/I0   values of 19.6, 11.2, and 8.4 were measured for P5, P1Z, P1E. By increasing the rigidity 

and/or conjugation of the molecular structure, Imax/I0 values decreased. This is attributed to an 

increase in restriction of intermolecular motion, giving rise to enhanced solution emission as 

opposed to diminished aggregate emission.  Thus, appending the TPE structure with phenyl or 

vinylphenyl groups as well as embedding TPE into π-conjugated polymer backbones significantly 

influences its AIE properties. These results can be used to design future AIE systems with varying 

sensitivities to aggregation and tailored emission wavelengths.   

 The PL properties of PPV derivatives P2-P4 in THF:H2O mixtures are shown in Figure 

4.8. These polymers exhibited strong solution emission and clear vibronic structure with emission 

maxima at 513 and 550 nm.  In contrast to P1, the emission of the P4 was strongest in pure THF 

and became significantly quenched by the addition of water, decreasing by ~10-fold at 90 v/v% 
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Figure 4. 6. Photoluminescence spectra in THF/H2O solutions with inset of Imax/I0 plotted 

against v/v% H2O in THF/H2O solutions with molecular structure of 2. 
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H2O.  This clearly illustrated the dominant non-radiative relaxation in PPV upon aggregation.  

Additionally, the emission maximum of P4 was shifted from the initial 515 nm to 535 nm. While 

the TPE copolymers, P2 and P3, also exhibited non-radiative relaxation behavior, integration of 

TPE was found to attenuate ACQ. As shown in Figure 4.8, increasing TPE content in the 

copolymer resulted in a decrease in fluorescence quenching at high water content relative to 

emission measured in pure THF.  Thus, integration of TPE into PPV can efficiently reduce ACQ 

behavior in PPV structures, realizing a simple approach to ACQ resistant PPVs.  

To further understand the influence of TPE in the PPV structure solution quantum yield 

experiments and PL studies as a function of film thickness were conducted on P1 and P4.  Quantum 

yields (ΦPL) of P1-P4 were calculated relative to Rhodamine 6G standard (Figure 4.9).28,29  P4 

exhibited the highest ΦPL value 0.17 ± 0.07.   ΦPL was not significantly changed by introducing 25 

mole% TPE in P3, producing a value of 0.18 ± 0.06. By further increasing the TPE content to 50 

mole% in P2 or with the TPE-PPV homopolymer, P1, produced ΦPL values of 0.07 ± 0.03 an 0.03 
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Figure 4. 7. Imax/I0 plotted against v/v% H2O in THF/H2O solutions with molecular structure 

of (A) 4; (B) 5Z; (C) 5E; (D) P5; (E) P1Z; and (F) P2Z. 
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± 0.01, respectively. These results confirm that introduction of TPE into PPV systems can 

significantly decrease the influence of ACQ but also impacts the solution quantum yield. For thin 

film studies solutions of P1 or P4 were spin coated onto glass substrates at different concentrations 

in chloroform solutions.  By controlling the concentration of polymer in chloroform the thickness 

of the film could be controlled. Studying the thickness dependence of the photoluminescence 

properties of these polymers provided insight into ACQ in the thin films.  As shown in Figure 4.10, 

increasing P4 thickness from 1 nm to 12 nm resulted in an increase in PL intensity, as is to be 

expected by increasing the amount of polymer to participate in radiative relaxation. At greater 

Figure 4. 8. Fluorescence spectra and normalized fluorescence intensity plotted against water 

content of P4 (A,D); P3 (B,E); and P2 (C,F) solutions. 
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thicknesses (54 and 200 nm) the PL intensity was found to decrease. This decrease in PL was 

attributed to ACQ becoming dominant in the thicker films. PL response of P1 films was found to 

scale with thickness, resulting in continuous increasing PL intensity as film thickness increased 

from 2 to 113.  This suggests that in P1 the PL is sustained as thicker films are formed without 

significant radiative loss due to quenching which was observed in the P4. 

Figure 4. 10. Figure S6. Plot of ΦPL values of P1-P4 with 

error bars corresponding to one standard deviation. 

 

 Figure 4. 9. Photoluminescence spectra of thin films prepared at different concentrations 

of (A) P1 and (B) P4. 
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4.5 Conclusion   

Conjugated polymers containing TPE structures were prepared and their optoelectronic 

properties were studied as a function of TPE content and backbone conjugation chemistry. The 

TPE-PPV homopolymer, P1, displayed optoelectronic properties of both TPE and PPV evident by 

the observed solution and aggregate emission. P1 exhibited the lowest Imax/I0 due to the enhanced 

solution emission. Additionally, emission of the P1 remained constant upon aggregation in 

THF/H2O mixtures, thin films, or embedded in PEO. This distinguished it from P2-P4 which 

displayed fluctuations in emission wavelength depending on its local electronic environment. This 

work has shown that TPE can be successfully integrated into a PPV backbone without 

compromising its advantageous AIE properties. The PPV homopolymer, P4, exhibited clear 

spectral features of aggregation caused quenching in PL studies. By introducing controlled 

amounts of TPE to the polymer backbone (e.g., P2 and P3), ACQ could be attenuated without 

modifying the emission maxima (513 nm). Through these studies it was found that the TPE-PPV 

homopolymer, P1, exhibited the highest aggregate emission and stable emission wavelength across 

all THF/H2O mixtures. Moreover, the PPV and TPE components worked in synergy to produce 

the observed optoelectronic characteristics, thus realizing a PPV composition that synergistically 

combines desirable elements of both AIE and conjugated polymers.  
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CHAPTER 5 

SUMMARY AND OUTLOOK 

 

5.1 PDI-containing ionene and zwitterionic polymers 

 

In Chapter 2 the synthesis and characterization of PDI-based polyionenes and zwitterionic 

polymers with ammonium and sulfobetaine groups embedded in the polymer backbone was 

described.  PDI monomers containing bromide or phenyl groups at the 1 and 7 positions of the 

aromatic core were employed for polymer synthesis.  Appending bulky groups to the aromatic core 

imparted the PDI derivatives with solubility properties necessary for polymerizations.   Tertiary 

amine groups at the imide conditions served as active sites for polymerizations when reacted with 

1,6-dibromohexane or a novel butene bis-sultone.  By employing an aliphatic diamine comonomer, 

PDI incorporation in both the polyionene and polymer zwitterions could be controlled.   

 The influence of PDI incorporation was reflected in the yield, molecular weight, and 

spectral features. The experimental incorporation was in good agreement with the targeted PDI 

incorporation.  The vibronic structure in the UV-vis spectra provided insight into the π-π 

interactions of the PDI units in the polymers. This was quantitatively studied through the ratio of 

the S0-0 to S0-1 absorption bands.  The S0-1 absorption band was attributed to co-facial interactions 

of the PDI transition dipole, also associated with H-type aggregation, while the S0-0 was associated 

with well solvated PDI units.  The cationic PDI polyionenes were found to maintain S0-0/S0-1 values 

> 1 over across all PDI incorporations while the zwitterionic polymer exhibited ratio values of 

~0.8 for the PDIBr2-50% and PDIBr2-100%.  The difference in spectral features arose from the 

difference in chemical functionality in the polymer backbone.  The electrostatic repulsion in the 

polyionenes created a barrier for inter-or intrachain π-π stacking, distinct from the attractive dipole 
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coupling observed in zwitterions.  Thus, PDI-PDI interactions were facilitated by the presence of 

sulfobetaine groups in the zwitterionic and attenuated by cationic groups in the polyionenes. The 

results of this work yielded a novel approach to preparing functional PDI-containing polymers.  

While significant work was conducted to elucidate the structure property relationship of 

these structures, there are still areas of interest left to be explored. This work could be extended by 

introducing other conjugated monomers.  Naphthalene diimides and isoindigos are ideal 

candidates as they can be easily appended with tertiary amines for polymerization.  These aromatic 

structures are smaller than PDI which may afford them with enhanced solubility without the need 

of additional functionality at the aromatic core to mitigate π-π stacking.  In addition to introducing 

alternative aromatic component to polyionenes and linear polymer zwitterions, modification of the 

ionic component would afford novel structures. 

The accessibility of PDI permits the integration of a variety of functional groups at the 

imide position. Organophosphorus compounds containing  aryl phosphonium groups have been 

shown to effectively modify the work function of metal cathodes and improve performance of 

OPV devices.1 PDIs containing methyl sulfide or diphenyl phosphine groups could be prepared to 

achieve ionene and zwitterionic polymers with sulfonium and phosphonium groups in the polymer 

backbone (Figure 5.1). Additionally, through simple ion exchange methods a large library of 

polymers with varying cations and counterions can be achieved.  The polyionene and linear 

Figure 5. 1. Proposed structures of (left) phosphonium- and (right) sulfonium-based PDI 

polyionenes 
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zwitterionic polymer platform is poised for further innovation. The metal-free conditions and facile 

tunability of these structures are valuable attributes, which will prove integral to advancing their 

utility beyond academic research and into commercially viable platforms. 

5.2 PDI-based photovoltaic interlayers 

 

In Chapter 3 the interfacial properties and photovoltaic performance of PDI-containing 

structures was detailed.  The PDI polyionene and polymer zwitterion platform offered a unique 

opportunity for a greater understanding of interfacial material design.  Organic electron-

transporting layers (ETLs) have predominately been either completely aliphatic or conjugated 

structures, each coming with its own advantages and disadvantages.  Conjugated structures have 

emerged as the more desirable materials due to the ability to improve devices over a wide range 

of thicknesses.  The PDI-based polymers permitted the study of the role of conjugation density in 

relation to work function modification and charge transporting properties.  

 UPS experiments were conducted on Ag coated with polyionenes and polymer zwitterions 

containing controlled amounts of the PDIBr2 or PDIPh2.  These studies revealed that increased 

PDI content resulted in a decrease in the interfacial dipole, resulting in smaller work function 

modification.  This trend held true for both polyionenes and zwitterionic polymers independent of 

PDI derivative in the polymer backbone.  The interfacial dipoles produced by the polymers were 

larger than those observed for the small molecule analogs containing tertiary amines.  Photovoltaic 

devices were fabricated with the PDI-based materials to determine their efficacy as ETLs. 

 PDIPh2-containing polyionenes and polymer zwitterions were integrated into OSCs as 

ETLs to study how PDI content as well as zwitterionic versus cationic functionality influenced 

device performance. Devices containing PDI polymer interlayers exhibited enhanced performance 
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in comparison to devices fabricated with bare electrodes. The S-shaped J-V curves of devices 

containing the zwitterionic interlayers distinguished them from polyionene interlayer devices. This 

S-shape was reflected in the significantly lower fill-factors observed in these devices and attributed 

to charge build-up at the active layer/cathode interface.   In contrast, all ionene polymers exhibited 

high fill-factors, exceeding 70% with distinct rectification of the current. While the PDIPh2-10% 

polymer produced higher interfacial dipoles and was able moderately increase device performance, 

it also exhibited low tolerance to interlayer thickness. This was attributed to the insufficient PDI 

content necessary for effective charge transport as the 50 mole% and homopolymer of PDI-Ph2 

yielded devices with PCEs > 8% over a range of interlayer thicknesses. Noteworthy was the 

observed peak photovoltaic performance of devices employing PDIPh2-50% polyionene. 

 Additional electronic and morphological studies were conducted on the polyionene 

interlayers to further understand the trends in photovoltaic performance. PDIPh2-50% exhibited 

superior electron mobilities, conductivity, and doping efficiency in comparison PDIPh2-10% and 

PDIPh2-100%.  GIXD, TEM, and NEXAFS experiments revealed the morphology of PDIPh2-

50% to be ideal for efficient charge transport.  Based on these results it was concluded that 50 

mole% PDI was the threshold to achieve peak ETL performance with high thickness tolerance. 

 PDIBr2-50% polyionenes were also shown to be successful in perovskite-based 

photovoltaic devices.  With the superior perovskite active layer PCEs > 18% could be achieved 

over a wider range of interlayer thickness, exemplifying the versatility of these novel materials. 

The success of the polymers prompted additional investigation of the performance of small 

molecule interlayers.  A PDI derivative containing terpyridine groups at the aromatic core was 

prepared for these studies and compared to free terpyridine and PDIBr2. The terpyridine-modified 
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PDI produced the greatest efficiencies over a wide range of thicknesses which had not been 

previously shown with small molecule PDI interlayers in perovskite devices.   

 The results of the work discussed in chapter 3 are anticipated to play an integral role in 

advancing thin film photovoltaic devices.  The field has been focused on marginal increases in 

efficiency without consideration for cost-effective or sustainable materials for fabricating devices.  

Without greater focus on how materials are made, organic or perovskite photovoltaics will be 

limited to lab scale studies.  This thesis work revealed a threshold for PDI content in polymers for 

ETLs. PDI or other conjugated structures will be the costly component in fabricating interfacial 

materials for a photovoltaic device. Developing ways to minimize this cost is imperative to 

advancing the technology.   

 An area that was beyond the scope of this work, but should be considered, is the 

development of flexible devices. One of the staples of thin film photovoltaics is the idea of a 

malleable system that can be fabricated into a variety of structures (Figure 5.2).  While this is the 

ultimately goal, much of the current research primarily focus fabricating and testing devices 

employing rigid metal and glass substrates.  These rigid systems have remained popular due to 

higher efficiencies in comparison to flexible substrates.  Focusing on peak efficiencies, and not 

Metal paste

ITO on plastic

Flexible perovskite deviceRigid perovskite device

Figure 5. 2. Comparison of (left) rigid and (right) flexible perovskite-based photovoltaic devices. 
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realistic structures, is preventing the field from achieving the goal of high throughput, flexible 

photovoltaic devices.  Future work should employ flexible substrates with research focused on 

more critical properties such as device stability. 

5.3 Evolution of AIE properties in conjugated polymers 

 

Chapter 4 discussed the synthesis and characterization of conjugated polymers containing 

TPE.  As with the controlled chemistries implemented in Chapter 2, the structure of the polymers 

in Chapter 4 were modulated to develop a fundamental understanding of AIE-active 

macromolecular structures. The first approach to tailoring the backbone chemistry was through 

different coupling chemistries resulting in the presence (EtHexTPE-PPV) or absence 

(EtHexTPE-PPP) of vinylene groups in the polymer backbone. This afforded TPE polymers with 

different backbone rigidity. The second approach used TPE a comonomer in PPV structures as a 

method to attenuate ACQ. 

 Integration of TPE into conjugated homopolymers resulted in solution emission which was 

absent in the small molecules. The solution emission was due to restriction of molecular motion 

through covalently linking the TPE segments into the polymer. The influence of backbone rigidity 

was quantitatively determined through photoluminescence experiments conducted in THF/H2O 

solutions. The photoluminescence intensity ratio Imax/I0 was observed to be significantly higher for 

the EtHexTPE-PPP than for the EtHexTPE-PPV.  The lower Imax/I0 observed in EtHexTPE-

PPV was a result of enhanced solution emission rather than a loss of aggregate emission.  

 Structural similarity of TPE to the repeat unit of PPV, made it a desirable comonomer to 

address ACQ without significant modification PPV’s intrinsic photoluminescent properties. The 

EtHex-PPV homopolymer was synthesized and used as a control for photoluminescence studies.  
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In the absence of TPE in the PPV structure the fluorescence was observed to quench in solutions 

at high H2O content.  By increasing TPE content in the polymer structure ACQ could be mitigated 

but not completely impeded.  These results highlight the utility of TPE as well as the limitation of 

native PPV. 

 While AIE-active polymers have been studied for several years PPV-based systems have 

seldomly been reported.  The structures discussed here hold the potential to innovated current 

solid-state emitter technology. Current commercial OLEDS are predominately based on heavy 

metal complexes and processed by evaporative deposition. While solution processing polymer 

OLEDs are hypothesized to be less costly, infrastructure for evaporative processing has been well 

establish. Therefore, solution processable polymers must offer additional benefits to compete with 

the current materials. The resistance to ACQ observed in EtHexTPE-PPV make it a viable 

alternative to conventional OLED materials. Future work should focus on integrating TPE-PPVs 

into OLEDs and comparing them to pure PPVs.  Additionally, introducing functional side chains 

that would permit solution processing from green solvents and/or allow for modifying the 

interfaces in OLEDs to prevent non-radiative recombination would be desirable properties for the 
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Figure 5. 3. Representative OLED device employing functional TPE-PPV emissive layer. 
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next generation of TPE-PPV materials.  Introducing of fluorinated alcohols on top of PPV active 

layers has been shown to enhance charge injection and reduce interfacial recombination.2 By 

introducing fluorinated side chains to TPE-PPV structures, a multi-functional OLED active layer 

could be achieved (Figure 5.3). 
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CHAPTER 6 

 EXPERIMENTAL 

 

6.1 Materials 

 

 1-Butanol, 1-bromobutane, 1,8-diazabicyclo[5.4.0]undec-7-ene, dimethylformamide 

(DMF) anhydrous 98%, 1,4-dioxane anhydrous 99.8%, bromine, N,N,N’,N’-tetramethyl-1,6-

hexanediamine (TMHDA), 1,6-dibromohexane, trans-1,4-dibromo-2-butene, 1,3-propanesultone 

98%, rhodamine 6G, aliquat 336, phenylboronic acid 95%, 3-(dimethylamino)-1-propylamine 

99%, titanium (IV) chloride ReagentPlus©, 99.9%, 4-bromobenzoyl chloride 95%, aluminum(III) 

chloride 99%, pyridine anhydrous 99.8%, anisole anhydrous 99.7%, 2-ethylhexyl bromide, 2.5M 

n-butyl lithium in hexanes, sodium hydride 60% dispersion in mineral oil, 

tetrakis(triphenylphosphine)palladium(0) 99%, [1,1’-bis(diphenyl-phosphino) ferrocene] 

palladium dichloridewere purchased from MilliporeSigma. 3,4,9,10-perylenetetracarboxylic 

dianhydride was purchased from Tokyo chemical industry (TCI). 2,2,2-Trifluoroethanol was 

purchased from Alfa Aesar. Ammonium chloride, sodium bisulfite, potassium carbonate, 

potassium bicarbonate, diethyl ether, dichloromethane, chloroform, methanol, tetrahydrofuran 

(THF), acetone, and ethyl acetate were all obtained from Fisher Scientific. Silica powder, neutral 

alumina, and basic alumina were purchased from Sorbtech.  Regenerative cellulose dialysis 

membranes (MWCO 3,500) were purchased from Spectrum Laboratories. PBDTT-TT was 

obtained from 1-Material, and PC71BM was purchased from Nano-C. PBDB-T and ITIC were 

obtained from Solarmer. [1,1’-bis(diphenyl-phosphino) ferrocene] palladium dichloride. TEM 

grids were purchased from Ted Pella. 

6.2 Instrumentation 
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Proton nuclear magnetic resonance (1H NMR) and carbon nuclear magnetic resonance (13C 

NMR) spectra were recorded on a Bruker Avance-500 (500 MHz) instrument. Chemical shifts are 

reported in ppm relative to the residual TFE signal in CF3CD2OD, CF3COCF3·3D2O, or the 

residual CHCl3 signal in CDCl3. Absorption spectra were obtained using a UV-2600 manufactured 

by Shimadzu. Photoluminescence spectra were obtained using a UV-Vis LS 55 fluorescence 

spectrophotometers manufactured by Perkin Elmer for the PDI studies and a Shimadzu RF-6000 

Spectrofluorophotometer. MALDI-TOF mass spectrometry characterization was conducted on a 

Bruker MicroFlex working in linear mode employing 2-(4'-hydroxybenzeneazo) benzoic acid 

(HABA) or trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile as the 

analyte matrix. Gel permeation chromatography (GPC) characterization of PDI-based polymers 

was performed using 2,2,2-trifluoroethanol (TFE) (with 0.02 M sodium trifluoroacetate) as the 

mobile phase, and poly(methyl methacrylate) (PMMA) calibration standards, operating at 0.75 

mL/min at 40 °C with three Agilent PL HFIPgel columns (300 × 7.5 mm) equipped with refractive 

index (RI) and UV-Vis detection. Polymer freeze drying was performed with LABCONCO® 

FreeZone 4.5 lyophilizer. characterization of TPE-based polymers was performed using THF 

mobile phase against polystyrene standard, operating at 1.0 mL/min and 40 °C with an Agilent 

1260 isocratic pump, an autosampler, a PLgel guard column (50 x 7.8 mm2), two PLgel Mixed C 

columns (300 mm x 7.8 mm x 5μm), one PLgel mixed D column (300 mm x 7.8 mm x 5 μm), and 

an Agilent 1260 UV detector. UPS measurements were performed on the Omicron 

Nanotechnology Model ESCA+S, consisting of a helium discharge lamp (He I line, 21.2 eV) as 

the UV excitation source and a hemispherical SPHERA energy analyzer. The thin film thicknesses 

were determined using the surface profiler KLA Tencor (model Alpha-Step IQ). Atomic force 

microscopy (AFM) was performed in tapping mode on a Digital Instruments Dimension 3100. For 
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all devices I-V characteristics were measured under N2 atmosphere using a Keithley 2400 source-

meter under simulated AM1.5G irradiation using a 300 W Xe lamp solar simulator (Newport 

91160). The light intensity was adjusted with a National Renewable Energy Laboratory (NREL)-

calibrated Si reference solar cell and KG-5 filter. The illuminated area (0.05418 cm2) was defined 

by a photomask with an aperture, the area of which was measured at NREL, and used in all of the 

device measurements. Electrical conductivity measurements were completed using a Keithley 

4200 SCS-equipped probe station at ambient atmosphere. Cyclic voltammetry was conducted in 

glass container employing 3mm platinum working electrode on a BASi Cell stand instrument with 

Epsilon-EC software. 

 

6.3 Methods 

• Synthesis of tetrabutyl perylene-3,4,9,10-tetracarboxylate (PTBC)1 

3,4,9,10-perylenetetracarboxylic dianhydride (5 g, 12.7 mmol) was added to a 500 mL round-

bottom flask charge with stir bar and dispersed in 211 mL of acetonitrile. 1-Butanol (9.33 mL, 102 

mmol), 1-bromobutane (10.95 mL, 102 mmol), and 1,8-diazabicyclo[5.4.0]undec-7-ene were then 

injected into the suspension then the reaction vessel was fitted with a condenser. The reaction was 

heated to 90 °C for 16 hours under nitrogen. The reaction was then cooled to room temperature 

then concentrated under reduced pressure. The crude product was dissolved in chloroform then 

extracted with deionized water.  The organic layer was separated, dried over Na2SO4, filtered, then 

concentrated under reduced pressure.  Finally, the crude product was purified on a silica column 

eluting with chloroform.  The desired fraction was collected and concentrated as a golden yellow 

powder (6.48 g, 78%). 1H NMR (500 MHz, CDCl3, δ) δ 8.31 (d, J = 7.92 Hz, 4H), 8.06 (d, J = 

7.84 Hz, 4H), 4.36 (t, 8H), 1.80 (m, 8H), 1.51 (m, 8H), 1.02 (t, 12H). 
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• Synthesis of tetrabutyl 1,7-dibromoperylene-3,4,9,10-tetracarboxylate (PTBC-Br)1 

PTBC (3 g, 4.6 mmol) and K2CO3 (5.1 g, 36.8 mmol) were dissolved in 67 mL of DCM in a 2-

neck round bottom flask fitted with an addition funnel under nitrogen.  Bromine (3.7 mL, 73.6 

mmol) in 10 mL of DCM was added to the addition funnel then added dropwise to the reaction 

mixture over an hour then the reaction was stirred overnight at room temperature.  The crude 

mixture was treated with a 10 wt% NaHSO3 aqueous solution to quench toe excess bromine.  Then, 

the organic phase was separated and was extracted three times with the NaHSO3 solution. The 

organic phase was dried over Na2SO4, filtered, and concentrated under reduced pressure.  The 

isolated product was recrystallized twice from a mixture of acetonitrile and DCM to yield orange 

crystals (1.84 g, 49%). 1H NMR (500 MHz, CDCl3, δ) δ 8.99 (d, J= 7.99 Hz, 2H), 8.32 (s, 2H), 

8.12 (d, J=7.96, 2H), 4.36 (t, 8H), 1.80 (m, 8H), 1.51 (m, 8H), 1.02 (t, 12H). 

 

• Synthesis of 1,7-dibromo-[3-(dimethylamino) propyl] perylene diimide (PDIBr2)2  

Regioisomerically pure 1,7-dibromoperylene-3,4,9,10-tetracarboxylic dianhydride (3.50 g, 6.36 

mmol), synthesized according to literature procedure,3 was suspended in 175 mL of a DMF:1,4-

dioxane (3:2) solvent mixture.1 3-(Dimethylamino)propyl-1-amine (2.00 mL, 15.9 mmol) was 

added to the mixture and the reaction was stirred at 65 ˚C for 1.5 hours under N2.  The mixture 

was concentrated under reduced pressure, then precipitated into diethyl ether and subjected to 

centrifugation; this process was repeated three times until the supernatant appeared colorless. The 

product was dissolved in chloroform, washed three times with brine, then washed with DI water 

and dried over Na2SO4. The pure product was isolated as a red powder (2.86 g, 62.6%).  1H NMR 

(500 MHz, CDCl3, δ) δ 9.51 (d, J = 8.24 Hz, 2H), 8.94 (s, 2H), 8.72 (d, J = 8.24 Hz, 2H), 4.29 (t, 
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4H), 2.49 (t, 4H), 2.30 (s, 12H), 1.96 (m, 4H). 13C NMR (125 MHz, CDCl3, δ) δ 162.39, 137.98, 

133.02, 130.01, 129.26, 128.52, 126.95, 123.17, 122.74, 120.80, 57.26, 45.45, 39.19, 26.09. 

MALDI-TOF (m/z): [M+H]+ calculated for: C34H30Br2N4O4: 718.45, found: 718.80 

 

• Synthesis of 1,7-diphenyl-[3-(dimethylamino) propyl] perylene diimide (PDIPh2)2  

PDI-Br (200 mg, 0.278 mmol), potassium fluoride (64 mg, 1.1 mmol), and phenyl boronic acid 

(89 mg 0.695 mmol) were added to a thick-walled glass pressure vessel followed by 8 mL of 

DMF:1,4 dioxane (3:2), 800 μL of 2M K2CO3 in water, and 2 drops of Aliquat 336 (AQ336). Then, 

[1,1’-bis(diphenyl-phosphino) ferrocene] palladium dichloride (6.1 mg, 0.008 mmol) was added 

to the solution after degassing using a stream of N2 for thirty minutes.  The vessel was sealed under 

a N2 atmosphere and the reaction was stirred at 65 ˚C for 2.5 hours.  The reaction was allowed to 

cool to room temperature and diluted with chloroform (25 mL).   The organic phase was subjected 

to three cycles washing with 50 mL of saturated aqueous LiCl solution (25 mL), brine, and 

deionized water.  The organic phase was dried over anhydrous Na2SO4, filtered, and concentrated 

under vacuum.  The concentrated solution pulled over neutral alumina gel eluting with CHCl3: 

MeOH (98:2), yielding dark purple crystals after removing solvent (178 mg, 90%). 1H NMR (500 

MHz, CDCl3, δ) 8.60 (s, 2H), 8.14 (d, J= 8.24 Hz, 2H), 7.80 (d, J= 7.93 Hz, 2H), 7.54(m broad, 

10H), 4.33 (t, 4H), 3.03 (broad, 4H), 2.71 (s, 12H), 2.28 (m, 4). 13C NMR (125 MHz, CDCl3, δ) δ 

163.45, 142.04, 135.30, 134.90, 132.61, 130.33, 130.21, 129.44, 129.20, 129.04, 128.74, 127.62, 

122.19, 121.85, 57.14, 45.95, 45.22, 38.83, 25.93. MALDI-TOF (m/z): [M+H]+ calculated for: 

C46H40Br2N4O4: 712.85, found: 713.30 

• Synthesis of 1,7-diphenylterpyridyl-[3-(dimethylamino) propyl] perylene diimide 
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 PDIBr2 (100 mg, 0.139 mmol), phenylterpyridine boronic ester (152 mg, 0.349  mmol), 

and [1,1’-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (3 mg, 0.005 mmol) were added 

to a pressure vessel. The reagents were dissolve in 4 mL of DMF:dioxane (3:2) mixture, 400 μL 

of 2M K2CO3 in  water, and 2 drops of Aliquat 336 (AQ336). The solution was deoxygenated via 

N2 bubbling then sealed and heated at 110 °C overnight.  The crude product was diluted with 

CHCl3 then extracted with brine three times.  The organic layer was separated, dried over Na2SO4, 

and concentrated under reduced pressure.  The crude product was purified on basic alumina eluting 

with a gradient of pure CHCl3 to 95:5 CHCl3:TEA. The desired fraction was isolated and 

precipitated into isopropyl alcohol to yield a light purple solid (56 mg, 35%). MALDI-TOF (m/z): 

[M+H]+ calculated for: C76H58N10O4: 1175.46, found: 1176.6.  

• Synthesis of 3,3'-(bute-2-ene) bis(1,2-oxathiolane-2,2-dioxide) (bis-sultone) 

 1,3-Propane sultone (16.5 mmol) was dissolved in THF (80 mL) and cooled to -78 oC. N-

butyllithium (2.5 M, 15 mmol) was added slowly, and the mixture was stirred for 30 min. A THF 

solution of trans-1,4-dibromo-2-butene (8.25 mmol) was added drop wise (in THF solution) to the 

vigorously stirred solution. The mixture was stirred at -78 oC for 2 hrs, and the -78 oC cooling bath 

was replaced with an ice water bath, and the mixture was stirred for an additional 30 min. Water 

was added, and the crude product was extracted with ethyl acetate three times. The mixture was 

dried over anhydrous Na2SO4, and volatiles were removed under reduced pressure. Column 

chromatography was performed using silica gel, eluting with a 2:8 ethyl acetate:hexanes mixture, 

affording the product as a white solid (1.2 g, 25%).  1H NMR (500 MHz, CDCl3, δ in ppm): 5.71-

5.67 (m, 1H), 4.50-4.35 (m, 2H), 3.35-3.25 (m, 2H), 2.67 (m, 1H), 2.49 (m, 1H), 2.34-2.30 (m, 

1H). 13C NMR (125 MHz, CDCl3, δ in ppm): 127.7, 66.1, 54.1, 30.8, 28.1. HRMS. Calcd for 

C10H16O6S2 [(M+1)+]: m/z 296.3604. Found: m/z 296.3604. 
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• General procedure for preparation PDI-containing ionene polymers 2 

 In a typical procedure, 1,6-dibromohexane (180 μL, 1.18 mmol) and 1.18 mmol of PDIBr2 

or PDIPh2 and N,N,N’,N’-tetramethyl-1,6-hexanediamine (TMHDA) to achieve the desired 

copolymer composition were added to a glass pressure vessel in air dissolved in 1:1 mixture of 

CHCl3: MeOH (4.7 mL). This mixture was stirred vigorously for 2 days at 70 ˚C.  The crude 

product was cooled to room temperature and precipitated into diethyl ether.  The precipitate was 

isolated by centrifugation at 5000 rpm for five minutes then the crude product was dissolved in 

TFE. The product was further purified by dialysis against H2O:MeOH (1:1) over one day, then 

pure water for two days using a cellulose dialysis membrane (MWCO 3,500). The purified product 

was lyophilized and isolated in yields ranging from 43% to 83%.       

 

• 10 mole% PDIBr2 ionene copolymer (PDIBr2-10%)  

1H NMR (500 MHz, CF3COCF3 · 3D2O, ppm) δ 9.00- 7.92 (6H ar of PDI-Br2 polymer), 3.61 (4H 

of imide ((O=C)2NCH2CH2CH2N
+(CH3)2R) PDI-Br2 polymer), 2.72 (4H of imide CH2 PDI-Br2 

polymer), 2.45 (8H of aliphatic ionene polymer RN+(CH3)2CH2R), 2.32 (12H of imide R2N
+(CH3)2 

of PDI-Br2 polymer), 2.26 (s, 12 H of aliphatic ionene polymer R2N
+(CH3)2), 1.55 (4H of imide 

CH2 PDI-Br2 polymer), 1.04 (8H of aliphatic ionene polymer RN+(CH3)2CH2CH2R), 0.74 (8H of 

aliphatic ionene polymer RN+(CH3)2CH2CH2CH2R) 

 

• 50 mole% PDIBr2 ionene copolymer (PDIBr2-50%) 

 1H NMR (500 MHz, CF3COCF3·3D2O, ppm) δ 9.00- 7.92 (6H ar of PDI-Br2 polymer), 3.67 (4H 

of imide CH2 PDI-Br2 polymer), 2.75 (4H of imide CH2 PDI-Br2 polymer)), 2.56 (4H CH2 of PDI-
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Br2 polymer), 2.45 (8H CH2 of aliphatic ionene polymer), 2.38- 2.32 (12H of imide R2N
+(CH3)2 

of PDI-Br2 polymer), 2.26 (12H of R2N
+(CH3)2 of aliphatic ionene polymer), 1.54 (4H of imide 

CH2 PDI-Br2 polymer), 1.15 (4H CH2 of PDI-Br2 polymer), 1.05 (8H CH2 of aliphatic ionene 

polymer), 0.86 (4H CH2 of PDI-Br2 polymer), 0.74 (8H CH2 of aliphatic ionene polymer). 

 

• PDIBr2 ionene homopolymer (PDIBr2-100%) 

 1H NMR (500 MHz, CF3COCF3·3D2O, ppm) δ 9.00- 7.92 (6H ar), 3.62 (4H of imide CH2), 2.80 

(4H of imide), 2.60 (4H CH2), 2.37 (12H of imide R2N
+(CH3)2), 1.56 (4H of imide CH2), 1.18 (4H 

CH2), 0.86 (4H CH2). 

 

• 10 mole% PDIPh2 ionene copolymer (PDIPh2-10%)  

1H NMR (500 MHz, CF3COCF3·3D2O, ppm) δ δ 7.97-6.78 (16H ar), 3.65 (4H of imide CH2 PDI-

Ph2 polyimer), 2.82 (4H of imide CH2 PDI-Ph2 polymer), 2.56 (8H CH2 of aliphatic ionene 

polymer), 2.40 (12H of imide R2N
+(CH3)2 of PDI-Ph2 polymer) 2.35 (s, 12 H R2N

+(CH3)2 of 

aliphatic ionene polymer), 1.55 (4H of imide CH2 PDI-Ph2 polymer), 1.09 (8H CH2 of aliphatic 

ionene polymer), 0.78 (8H CH2 of aliphatic ionene polymer) 

 

• 50 mole% PDIPh2 ionene copolymer (PDIPh2-50%)  

1H NMR (500 MHz, CF3COCF3·3D2O, ppm) δ 7.97-6.78 (16H ar of PDI-Ph2 polymer), 3.57 (4H 

of imide CH2 PDI-Ph2 polymer), 2.64 (4H of imide CH2 PDI-Ph2 polymer), 2.43 (10H CH2 of 

aliphatic ionene polymer and PDI-Ph2 polymer), 2.28 (12H of imide R2N
+(CH3)2 of PDI-Ph2 

polymer), 2.24 (12H of R2N
+(CH3)2 of aliphatic ionene polymer), 1.49 (4H, CH2 of PDI-Ph2 
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ionene polymer imide), 1.02 (10H, CH2 of aliphatic ionene polymer and PDI-Ph2 polymer), 0.72 

(10H CH2 of aliphatic ionene polymer and PDI-Ph2 polymer). 

 

• PDIPh2 ionene homopolymer (PDIPh2-100%)  

1H NMR (500 MHz, CF3COCF3·3D2O, ppm) δ 7.97-6.78 (16H ar), 3.57 (4H of imide CH2), 2.68 

(4H of imide CH2), 2.45 (4H CH2), 2.07 (12H of imide R2N
+(CH3)2), 1.50 (4H of imide CH2), 

1.02 (4H CH2), 0.65 (4H CH2). 

 

• General procedure for the preparation of PDI-containing zwitterionic polymers 

 In a general procedure, 3 (0.05 g, 0.16 mmol) and 0.16 mmol of 1,7-(dibromo/phenyl)-[3-

(dimethylamino) propyl] perylene diimide and TMHDA to achieve the desired copolymer 

composition were added in air to a 7 mL pressure vessel equipped with a magnetic stir bar and 

dissolved in TFE (0.35 mL ) (Scheme 1). The sealed vessel was placed in a preheated oil bath at 

70 °C for 48 h. The crude product was cooled to room temperature and precipitated into diethyl 

ether. The precipitate was isolated by centrifugation at 5000 rpm for five minutes, then redispersed 

in 2,2,2-trifluoroethanol. The polymerization mixture was dialyzed against water for 2 days using 

a cellulose dialysis membrane (MWCO 3,500) and lyophilized and isolated in yields ranging from 

40% to 85%.  

 

• 10 mole% PDIBr2 zwitterionic copolymer (PDIZBr2-10%)  

1H NMR (500 MHz, CF3CD2OD, ppm) δ: 9.65-8.39 (6H, Ar of PDI-Br2 polymer), 5.74-5.65 (2H, 

RHC=CHR of aliphatic zwitterionic polymer), 4.32 (4H, R2NCH2CH2CH2 of PDI-Br2 polymer 

imide), 3.72 (2H, R2CH(SO3
-)), 3.44 (4H, R2NCH2CH2CH2 of PDI-Br2 polymer imide), 3.26 (4H 
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of imide CH2PDI-Br2), 3.05 (12H, of imide R2N(CH3)2), 2.88(12H of imide R2N(CH3)2 of PDI-

Br2), 2.78(12H of imide R2N(CH3)2 of PDI-Br2), 2.47 (4H, RCH2-CH=CHR), 2.35(4H, RCH2-

CH=CHR), 2.15 (4H, CH2 of aliphatic zwitterionic polymer), 1.85 (4H, CH2 of 6,6-

polyzwitterion), 1.51 (2H, R2NCH2CH2R of 6,6-polyzwitterion), 1.37 (4H CH2 of PDI-Br2 

polymer). 

 

• 50 mole% PDIBr2 zwitterionic copolymer (PDIZBr2-50%)  

1H NMR (500 MHz, CF3CD2OD, ppm) δ 9.53-8.40 (16H; Ar), 5.85-5.65 (2H, RHC=CHR), 4.38 

(4H, R2NCH2CH2CH2 of imide), 3.68 (2H, R2CH(SO3
-)), 3.38 (4H, R2NCH2CH2CH2 of imide), 

3.21(4H of imide CH2PDI-Br2), 3.05 (12H, of imide R2N(CH3)2), 2.89(12H of imide R2N(CH3)2 

of PDI-Br2), 2.75 (4H, CH2 of aliphatic zwitterionic polymer), 2.43 (4H, RCH2-CH=CHR), 2.35 

(4H of imide R2NCH2PDI-Ph2 polymer), 2.15 (4H, CH2 of aliphatic zwitterionic polymer), 1.82 

(4H, CH2 of aliphatic zwitterionic polymer), 1.53 (2H, R2NCH2CH2R of aliphatic zwitterionic 

polymer), 1.37 (4H CH2 of PDI-Br2 polymer). 

 

• PDIBr2 zwitterionic homopolymer (PDIZBr2-100%)  

1H NMR (500 MHz, CF3COCF3·3D2O, ppm) δ 8.98-7.75 (6H Ar), 5.12-5.00 (2H, RHC=CHR), 

3.69 (4H, R2NCH2CH2CH2 of imide), 3.28(2H, R2CH(SO3
-)), 3.15 (4H, CH2 of imide), 2.82 (4H 

of imide CH2PDI-Br2), 2.42 (12H, of imide R2N(CH3)2), 2.30 (4H of imide R2N(CH3)2 of PDI-

Br2), 2.22 (4H, RCH2-CH=CHR), 1.59 (8H, R2NCH2CH2R of PDI-Br2 polymer).  

 

• 10 mole% PDI-Ph2 zwitterionic copolymer (PDIZPh2-10%)  
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1H NMR (500 MHz, CF3CD2OD, ppm) δ 8.65-7.42 (16H; Ar), 5.74-5.65 (2H, RHC=CHR), 4.38 

(4H, R2NCH2CH2CH2 of imide), 3.71 (2H, R2CH(SO3
-)), 3.42 (4H, R2NCH2CH2CH2 of imide), 

3.23(4H of imide CH2PDI-Ph2), 3.05 (12H, of imide R2N(CH3)2), 2.88(12H of imide R2N(CH3)2 

of PDI-Ph2), 2.78 (4H, CH2 of aliphatic zwitterionic polymer), 2.46 (4H, RCH2-CH=CHR), 2.35 

(4H of imide R2NCH2PDI-Ph2 polymer), 2.15 (4H, CH2 of aliphatic zwitterionic polymer1.83 (4H, 

CH2 of 6,6-polyzwitterion), 1.50 (2H, R2NCH2CH2R of aliphatic zwitterionic polymer), 1.37 (4H 

CH2 of PDI-Ph2 polymer). 

 

• 50 mole% PDI-Ph2 zwitterionic copolymer (PDIZPh2-50%)  

1H NMR (500 MHz, CF3CD2OD, ppm) δ 9.53-8.40 (16H; Ar), 5.85-5.65 (2H, RHC=CHR), 4.38 

(4H, R2NCH2CH2CH2 of imide), 3.68 (2H, R2CH(SO3
-)), 3.38 (4H, R2NCH2CH2CH2 of imide), 

3.21(4H of imide CH2 PDI-Ph2), 3.05 (12H, of imide R2N(CH3)2), 2.89(12H of imide R2N(CH3)2 

of PDI-Ph2), 2.75 (4H, CH2 of aliphatic zwitterionic polymer), 2.43 (4H, RCH2-CH=CHR), 2.35 

(4H of imide R2NCH2PDI-Ph2 polymer), 2.15 (4H, CH2 of aliphatic zwitterionic polymer), 1.82 

(4H, CH2 of aliphatic zwitterionic polymer), 1.53 (2H, R2NCH2CH2R of aliphatic zwitterionic 

polymer), 1.37 (4H CH2 of PDI-Br2 polymer). 

 

• PDI-Ph2 zwitterionic homopolymer (PDIZPh2-100%)  

1H NMR (500 MHz, CF3COCF3·3D2O, ppm) δ 7.65-6.35 (6H Ar), 4.85-4.76 (2H, RHC=CHR), 

3.45 (4H, R2NCH2CH2CH2 of imide), 2.95 (2H, R2CH(SO3
-)), 2.85 (4H, CH2 of imide), 2.53 (4H 

of imide CH2PDI-Br2), 2.15 (12H, of imide R2N(CH3)2), 1.98 (4H of imide R2N(CH3)2 of PDI-

Br2), 1.83 (4H, RCH2-CH=CHR), 1.35 (8H, R2NCH2CH2R of PDI-Ph2 polymer).  
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• UV-vis absorption characterization of PDI small molecules and polymers 

 Stock solutions of the PDI small molecules and polymers were prepared at 1 mg/mL in 7 

mL glass scintillation vials with TFE.  The solutions were diluted to achieve equivalent optical 

densities of ~0.3. Spectra were collected in quartz cuvettes with 1 cm path length. Absorption 

spectra were obtained using a UV-2600 from Shimadzu. 

 

• Quantum yield measurement of PDI small molecules and polymers. 

 Solutions of the PDI derivative in TFE were prepared at low concentrations (below 0.005 

mg/mL) to achieve optical densities below 0.1 to prevent fluorescence loss due to re-absorption. 

Photoluminescence spectra were obtained using a UV-Vis LS 55 fluorescence spectrophotometers 

manufactured by Perkin Elmer. The fluorescence quantum yields (Фf) were estimated from the 

emission and absorption spectra by comparative method at the excitation wavelength of 488 nm 

using Rhodamine 6G in ethanol (Фf = 0.95) as the standard. All spectra were collected in quartz 

cuvettes with 1 cm path lengths.  The quantum yield of the samples (ФX) was calculated using the 

empirical formula: Фf = Фstandard (ODstandard/ODx)(Ix/Istandard)(η
2

x/ η2
standard) where Фstandard is the 

quantum yield of the standard, OD is the optical density, I is the integrated fluorescence intensity, 

and η is the refractive index of the solvent.  

• Ultraviolet photoelectron spectroscopy (UPS) characterization of PDI small 

molecules and polymers 

 Samples were dissolved in TFE at 2 mg/mL and 40 °C overnight with stirring. Ag was 

thermally evaporated on N-doped silicon and interlayers were coated at 1000 RPM for 60 seconds.  

UPS measurements were performed on the Omicron Nanotechnology Model ESCA+S, consisting 

of a helium discharge lamp (He I line, 21.2 eV) as the UV excitation source and a hemispherical 
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SPHERA energy analyzer. All samples were biased by -3V to compensate for the instrument work 

function difference repelling the low-kinetic energy electrons, shifting the energy scale of 

experimental graphs by 3 eV. 

 

• Photovoltaic device fabrication and characterization containing PDI-based 

interlayers4,5 

 OSC devices were fabricated by spin-coating PEDOT:PSS (CLEVIOS™ P VP AI 4083) 

onto pre-cleaned glass substrates (14.7 × 14.7 mm), patterned with ITO film (10 Ω/□, from Thin 

Film Devices, Inc.). The PEDOT:PSS coated substrates were baked at 150 °C for 15 minutes in 

air, then transferred to an inert atmosphere glove box (N2 atmosphere, < 1 ppm O2, <1 ppm H2O) 

for deposition of the photoactive layer, interlayer and top electrode. A mixture of PBDTT-TT and 

PC71BM (1:1.8 weight ratio) in chlorobenzene (CB):1,8-diiodooctane (3.2 v% DIO), or a mixture 

of PBDB-T and ITIC (1:1 weight ratio) in CB: DIO (0.5 v% DIO), was stirred at 55 °C for ~12 

hours. The photoactive layers were deposited by spin-coating the solution onto the PEDOT:PSS 

layer. The thickness of the active layer film was ~100 nm as determined by profilometry. DIO was 

removed under vacuum, followed by spin-coating of interlayers from solutions with different 

concentrations at constant spin-coating speed of 4000 rpm. The interlayer thicknesses were 

determined using the surface profiler KLA Tencor (model Alpha-Step IQ) and AFM. Thermal 

evaporation of Ag electrodes was performed through a shadow mask, defining the maximum 

available device area of 0.06 cm2.  

For PSC devices all the pre-cleaned ITO substrates were treated by UV-ozone for 15 min 

to remove the last traces of the organic residues before the device fabrication. Then PVBT-SO3 

water solution (2 mg/ml) was spin-coated onto ITO substrates at 3500 revolutions per minute (rpm) 
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for 40 s without any post-treatment. The perovskite film was made by anti-solvent method [25] 

inside a glove box (N2 atmosphere, ˂ 1 ppm O2, ˂ 1 ppm H2O) , the perovskite precursor solution 

of CH3NH3PbI3 was composed of PbI2 and CH3NH3I (1:1 molar ratio) in a mixture of dimethyl 

sulfoxide (DMSO):γ-butyrolactone (GBL) (3:7, v/v) with a total concentration of ~43 w%, then 

the precursor solution was deposited onto PVBT-SO3/ITO substrate by a consecutive two-step 

spin-coating process at 1500 rpm and 4000 rpm for 20 s and 60 s, respectively, and the 

chlorobenzene in final spin-stage was dripped onto the substrate during spin coating. For thermally 

annealed devices, the perovskite films were next annealed at 100 °C for 5 minutes. For solvent 

annealed devices, the perovskite films were put into the bottom of a glass petri dish, and 10 μl 

N,N-dimethylformamide (DMF) solvent was added at the edge of the petri dish, then the perovskite 

films were covered by the lid of the petri dish and put on top of a hot plate with a temperature of 

100 °C for different annealing time. Afterwards, a thin layer of PC61BM was then spin-coated 

inside the glove box (N2 atmosphere, ˂ 1 ppm O2, ˂ 1 ppm H2O) from a solution in chlorobenzene 

(15 mg/ml) at 1000 rpm for 60 s. PDI-Br interlayer was dissolved in 2,2,2-trifluoroethanol (TFE) 

and spin-coated onto PC61BM surface at 4000 rpm for 30 s with different concentrations. Finally, 

100 nm Ag electrode was deposited (device area of 0.06, 0.09, or 0.27 cm2 was defined by a metal 

shadow mask) on the active layer under high vacuum (4×10-6 mbar) using a thermal evaporator. 

For all devices I-V characteristics were measured under N2 atmosphere using a Keithley 2400 

source-meter under simulated AM1.5G irradiation using a 300 W Xe lamp solar simulator 

(Newport 91160). The light intensity was adjusted with a National Renewable Energy Laboratory 

(NREL)-calibrated Si reference solar cell and KG-5 filter. The illuminated area (0.05418 cm2) was 

defined by a photomask with an aperture, the area of which was measured at NREL, and used in 

all of the device measurements. 
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• Grazing incident X-ray diffraction (GIXD) of PDI-based polyionenes4 

 Polymer thin films were prepared silicon substrates employing conditions described by 

photovoltaic device fabrication. An X-ray beam impinged onto the sample at a grazing angle above 

and below the critical angle of the polymer film (αc = 0.16) but below the critical angle of the 

silicon substrate (αc = 0.22). The wavelength of X-rays used was 1.240 Å, and the scattered 

intensity was detected by a PILATUS 1M detector. 

Near edge X-ray absorption fine structure (NEXAFS)4 

Angular   dependent   X-ray Absorption Spectroscopy (XAS) was acquired at BL  8-2 at Stanford 

Synchrotron Radiation Light Source (SSRL), a bending magnet beamline with a linear polarization 

of about 0.9 and a spherical grating monochromator, operated in this study at a resolution of around 

0.3eV, providing around 1×1010ph/s onto a 1 mm 2 beam spot. The  samples  were  mounted  onto  

an aluminum  sample  holder  with  double  sided  carbon  tape,  and the  incidence  angle  was  

varied relative  to  the  incoming  beam,  using  the  same  convention  of  the  geometry  as  Stöhr  

and Outka.[S1]The   spectra   were   background   subtracted   and   normalized   to   the   atomic 

cross-section (at higher energies) and energy aligned to adventitious carbon (285.3eV) from a 

reference  sample  mounted  upstream.  The peak intensities were analyzed using IGOR Pro 

software version 7.  The energy positions for the aromatic pi* states were established in spectra 

with stronger contributions, and thereafter fixed in position and width for the full dataset that was 

batch fitted with the same constraints for most rigid results. Both the individual and averaged 

angular dependence for the major pi-states contributing to the angular dependence was extracted 

for each sample and fitted to the function for angular dependence for an azimuthally averaged 

vector states according to Stöhr and Outka, to extract the ensemble-averaged angle of the aromatic 

backbone with respect to the substrate. 



134 
 

• Conductivity measurements of PDI polyionenes4 

 Parallel gold electrodes (thickness =50 nm) were patterned on silicon dioxide substrates 

using standard photolithographic procedures. The length of the gold electrode (W) was 4000 μm 

and the separation distance (L) between the two electrodes was 500 μm. Solutions of PDI 

polyionenes in TFE were spin coated onto the substrates to give a film thickness (T) of ≈50 nm. 

Electrical characterization was completed using a Keithley 4200 SCS-equipped probe station at 

ambient atmosphere. The conductivity was extracted from the equation of σ= I× L/(V× W× T). 

 

• Synthesis of (4-bromophenyl)(4-methoxyphenyl)methanone  

Aluminum (III) chloride (36.4 g, 0.27 mol) was added to a flame-dried 1L round-bottom 

flask charge with a stir bar and fitted with an addition funnel under argon and dispersed in 150 mL 

of anhydrous dichloromethane. The slurry was cooled to 0 °C then a solution of 4-bromobenzoyl 

chloride (50 g, 0.23 mol) in 125 mL of anhydrous dichloromethane was added dropwise.  The 

reaction was stirred for one hour at 0 °C then a solution of anisole (28 mL, 0.273 mol) in 125 mL 

of dichloromethane over 30 minutes. The reaction was warmed to room temperature and stirred 

for 16 hours.  The crude mixture was quenched by addition of 100 mL of methanol dropwise at 0 

°C. The precipitate was separated by filtration and washed with additional methanol.  The filtrate 

was concentrated then precipitated into methanol again to yield white crystalline solid (64 g, 96%). 

1H NMR (500 mHz, DMSO, δ) δ 7.75 (m, 4H), δ 7.64 (d, J = 8.2, 2H), δ 7.10 (d, J = 8.5 Hz, 2H), 

δ 3.87 (s, 3H). 13C NMR (125 MHz, DMSO-d6, δ) 193.93, 163.62, 137.26, 132.69, 132.00, 131.77, 

129.48, 114.47, 56.09. 

• Synthesis of (4-bromophenyl)(4-hydroxyphenyl)methanone  



135 
 

 Aluminum (III) chloride (9.14 g, 0.07 mol) was added to a flame-dried round bottom flask 

fitted with an addition funnel and reflux condenser under nitrogen and dissolved in 50 mL of 

anhydrous toluene and cooled to 0 °C.  A solution of 1 in 200 mL of anhydrous toluene was added 

to the reaction dropwise then the reaction as heated to reflux for 2 hours.  The crude mixture was 

cooled to room temperature then quenched into 100 mL of 2M hydrochloric and extracted diethyl 

ether. The organic layer was washed with 2M hydrochloric acid and then saturated KHCO3. The 

organic layer was separated, dried over Na2SO4, filtered, then concentrated under reduced 

pressure.  The   product was diluted with diethyl ether, precipitated into hexanes and filtered to 

yield the pure product as tan crystals (6.87 g, 73%). 1H NMR (500 mHz, DMSO, δ) δ10.49 (s, 

1H), δ 7.76 (d, J = 8.45, 2H), δ 7.67 (d, J = 8.70), 2H), δ 7.62 (d, J = 8.5, 2H); 13C NMR (125 MHz, 

DMSO-d6, δ) 193.76, 162.67, 137.58, 133.02, 131.91, 131.65, 127.98, 126.12, 115.81. 

• Synthesis of (4-bromophenyl)(4-((2-ethylhexyl)oxy)phenyl)methanone (1) 

 60 wt% dispersion of NaH in mineral oil (0.55 g, 16.2 mmol) was added to a flame-dried 

round bottom flask charged with stir bar and dispersed in 5 mL of anhydrous DMF under nitrogen.  

Then a solution of 4 (3.0 g, 10.8 mmol) in 5 mL of anhydrous DMF was added to the suspension 

dropwise.  The reaction was allowed to stir for 10 minutes then 2-ethylhexylbromide (2.9 mL, 16.2 

mmol) was added dropwise and the reaction was heated to 60 °C for 3 hours.  The solution was 

cooled to room temperature, poured into 2 wt% LiCl (aq.) and extracted with diethyl ether.  The 

organic layer was extracted several times with the LiCl solution, dried over Na2SO4, filtered and 

concentrated under reduced pressure. The crude residue was purified through a silica plug eluting 

with 1:1 dichloromethane:hexanes mixture to yield an off white solid (3.04 g, 72%). 1H NMR (500 

mHz, DMSO, δ) 7.76 (q, 4H), 7.63 (d, J = 8.5 Hz, 2H), 7.10 (d, J = 8.5 Hz, 2H), 3.97 (d, J = 5.8 

Hz, 2H), 1.72 (m, 1H), 1.43 (m, 4H), 1.30 (m, 4H), 0.90 (m, 6H).  13C NMR (125 MHz, DMSO-
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d6, δ) 193.90, 163.29, 137.31, 132.70, 131.99, 131.75, 129.31, 126.41, 114.90, 70.86, 30.32, 28.87, 

23.72, 22.97, 14.42, 11.35. 

• Synthesis of 1,2-bis(4-bromophenyl)-1,2-bis(4-((2-ethylhexyl)oxy)phenyl)ethene (2) 

 3 (3.52 g, 9.04 mmol) and zinc dust (0.5 g, 7.71 mol) were added to a flame-dried round 

bottom, fitted with a condenser and charged with a stir bar.  The reaction vessel was evacuated 

then back-filled with nitrogen three times.  The reagents were dispersed in 25 mL of anhydrous 

THF, treated with pyridine (2.2 mL, 27.1 mmol), then cooled to -78 °C with a dry ice/acetone bath. 

Titanium (IV) chloride (2.96 mL, 7.71 mmol) was added dropwise to the cooled suspension and 

the reaction was slowly warmed to room temperature over two hours then refluxed for 14 hours.  

The reaction was cooled to 0 °C and quenched with 2M hydrochloric acid then extracted with 

diethyl ether.  The organic layer was separated and washed with additional 2M hydrochloric acid 

then dried over Na2SO4, filtered, and concentrated under reduced pressure. The concentrated 

residue was purified on basic alumina eluting with 1 to 5% CH2Cl2 in hexanes then recrystallized 

from 9:1 mixture of methanol to diethyl ether as a white crystalline solid.  The desired fraction 

was concentrated then precipitated to yield a mixture of the E and Z isomers as a white powder 

(1.94 g, 58%). 1H NMR (500 mHz, DMSO, δ) 7.35 (m, 4H), 6.90 (m, 4H), 6.84 (m, 4H), 6.72 (m, 

4H), 3.77 (d, J = 5.2 Hz, 4H), 1.61 (m, 2H), 1.33 (m, 16H), 0.87 (m, 12H). 13C NMR (125 MHz, 

DMSO d6,  δ) 158.17, 158.08, 143.13, 142.98, 138.97, 138.93 135.35, 135.15, 133.05, 133.01, 

132.45, 132.45, 132.38, 130.97, 130.88, 120.41, 120.28, 113.92, 113.85, 70.46, 39.42, 30.53, 

29.12, 23.84, 23.05, 14.11, 11.15. MALDI-TOF (m/z): [M+H]+ calculated for: C42H50Br2O2: 

746.67, found: 747.7. 

• 4,4'-(1,2-bis(4-((2-ethylhexyl)oxy)phenyl)ethene-1,2-diyl)dibenzaldehyde 

(EtHexTPE-CHO) (3) 



137 
 

 EtHexTPE-Br (0.29 g, 0.52 mmol) was added to a flame-dried round bottom flask charged 

with stir bar under argon and dissolved in 10 mL of anhydrous THF.  The solution was cooled to 

-78 °C then 2.5 M n-butyl lithium in hexanes (0.7 mL, 1.75 mmol) was added dropwise and the 

reaction was stirred for ten minutes.  The reaction was then treated with DMF (1.5 mL, 19.5 mmol) 

and allowed to warm to room temperature over twenty minutes.  The reaction was quenched with 

a saturated NH4Cl solution then extracted with diethyl ether.  The organic layer was washed with 

2M hydrochloric acid several times then dried over Na2SO4, filtered and concentrated under 

reduced pressure.  The crude product was purified on silica eluting with a solvent gradient of 

hexane:CH2Cl2 (70:40) to pure CH2Cl2 and the pure product was isolated as a bright yellow viscous 

oil of the E and Z isomers (0.22 g, 87%). Z isomer: 1H NMR (500 mHz, DMSO d6,  δ) 9.92 (s, 

2H), 7.63 (d, J = 8.2 Hz, 4H), 7.20 (d, J = 8.2 Hz, 4H), 6.93 (d, J = 8.7 Hz), 6.70 (d, J = 8.8, 4H), 

3.80 (d, J = 5.9 Hz, 4H), 1.71 (m, 2H), 1.41 (m, 16H), 0.92 (m, 12H). 13C NMR (125 MHz, DMSO-

d6, δ) 193.00, 158.33, 150.39, 140.53, 134.74, 132.58, 131.98, 129.58, 114.57, 70.32, 30.34, 28.90, 

23.71, 22.94, 14.40, 11.38. E isomer: 1H NMR (500 mHz, DMSO d6, δ) 9.95 (s, 2H), 7.66 (d, J = 

8.4 Hz, 4H), 7.24 (d, J = 8.2 Hz, 4H), 6.87 (d, J = 8.7 Hz), 6.66 (d, J = 8.8, 4H), 3.77 (d, J = 5.9 

Hz, 4H), 1.74 (m, 2H), 1.31 (m, 16H), 0.89 (m, 16H). 13C NMR (125 MHz, DMSO-d6, δ) 193.00, 

158.24, 150.18, 140.47, 134.78, 132.45, 132.07, 129.59, 114.53, 70.30, 30.36, 28.91, 23.74, 22.96, 

14.40, 11.40. MALDI-TOF (m/z): [M+H]+ calculated for: C44H52O4: 644.90, found: 645.7. 

• Synthesis of TPE conjugated polymer with para-phenylene spacer (P5) 

 EtHexTPE-Br (0.21 g, 0.28 mmol) and 1,4-benzene diboronic acid bis(pinacol)ester (0.09 

g, 0.28 mmol) were added to a 15 mL pressure vessel and dissolved in 5 mL of THF and 

deoxygenated via nitrogen bubbling for 30 minutes. Potassium bicarbonate (0.17 g, 1.68 mmol) 

was added to a separate vial, dissolved in 1 mL deionized water and deoxygenated via nitrogen 
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bubbling for 30 minutes. Pd(PPh3)4 (0 .016 g, 0.014 mmol) and RuPhos (0.019 g, 0.42 mmol) were 

dissolved in THF inside a glovebox then added to the pressure vessel along with a drop of Aliquat 

336 under nitrogen.  The reaction vessel was capped and heated to 70 °C for 48 hours.  The crude 

reaction was cooled to room temperature, diluted in chloroform, then precipitated into methanol 

with 5 v/v% acetic acid several times. The isolated green precipitate was dried under vacuum and 

subjected to no further purification. Mw = 8.1 kDa, Mn = 4.9, Ð = 1.6; 0.120 g, 65%). 1H NMR 

(500 mHz, CDCl3, δ) 7.64, 7.43, 7.16, 7.02, 6.70, 3.81, 1.71, 1.45, 1.34, 0.93 

 

• Synthesis of EtHexTPE-based poly(phenylenevinylene) (P1) 

 EtHexTPE-CHO (66 mg, 0.102 mmol) and tetraethyl (1,4 

phenylenebis(methylene))bis(phosphonate) (39 mg, 0.102 mmol) was added to a 7 mL scintillation 

vial charged with stir bar and dissolved in 2 mL of anhydrous THF. The solution was cooled to -

78 °C and then a solution of potassium tert-butoxide (46 mg, 0.41 mmol) in 1 mL tert-butanol  was 

added in one portion then the reaction was warmed to room temperature and stirred for 16 hours 

under nitrogen.  The crude mixture was dilute with chloroform then precipitated into methanol 

with 5 v/v% acetic acid several times then hexanes. The isolated orange solid was dried under 

vacuum and subjected to no further purification Z isomer (Mw = 61.2 kDa, Mn = 23.0, Ð = 2.7, 

0.045 g, 43%). 1H NMR (500 mHz, CDCl3, δ) 7.48, 7.06, 6.97, 6.67, 3.79, 1.70, 1.44, 1.33, 0.92.  

E Isomer (Mw = 17.3 kDa, Mn = 11.4,  Ð = 1.5, 0.079 46%.). 1H NMR (500 mHz, CDCl3, δ) 7.44, 

7.05, 6.97, 6.68, 3.80, 1.71, 1.44, 1.33, 0.93. 

 

• Synthesis of 1,2-di([1,1’-biphenyl]-4-yl)-1,2-bis(4-((2-ethylhexyl)oxy)phenyl)ethene 

(4) 
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 Following procedure described for EtHexTPE-PPP and purified on silica eluting with 

mixture of hexanes and CH2Cl2 (88 mg, 40%).  1H NMR (500 mHz, CDCl3, δ) 7.59 (m, 4H), 7.39 

(m, 10H), 7.15 (m, 4H), 7.00 (m, 4H), 6.69 (m, 4H), 3.80 (m, 4H), 1.71, 2H), 1.43 (m, 16H), 0.93 

(m, 12H). 13C NMR (125 MHz, CDCl3, δ) 157.94, 157.87, 143.56, 143.45, 140.77, 140.72, 139.41, 

138.63, 138.51, 136.09, 132.62, 132.59, 131.93, 131.91, 128.70, 128.67, 127.09, 126.88, 126.85, 

126.18, 113.75, 113.73, 70.43, 70.41, 39.46, 30.55, 29.13, 23.86, 23.07, 14.12, 11.16. MALDI-

TOF (m/z): [M]+ calculated for: C54H60O2: 741.07, found: 740.1. 

• Synthesis of 1,2-bis(4-((2-ethylhexyl)oxy)phenyl)-1,2-bis(4-styryl)phenyl)ethene (5) 

 Following procedure described for EtHexTPE-PPV purified on silica eluting with mixture 

of hexanes and CH2Cl2 (11 mg, 29%). 1H NMR (500 mHz, CDCl3, δ) 7.50 (d, J = 7.7 Hz, 4H), 

7.37 (m, 4H), 7.28, 7.06 (m, 8H), 6.97 (d, J = 8.3 Hz), 3.79 (d, J= 5.7 Hz, 4H), 1.70 (m, 2H), 1.43 

(m, 16H), 0.93 (m, 12H). 13C NMR (125 MHz, CDCl3, δ) 157.99, 144.04, 139.47, 137.49, 136.03, 

135.03, 132.63, 131.86, 128.67, 128.57, 128.18, 127.49, 126.44, 125.90, 113.76, 70.42, 39.44, 

30.53, 29.12, 23.84, 23.05, 14.11, 11.16. MALDI-TOF (m/z): [M]+ calculated for: C54H60O2: 

793.15, found: 793.3. 

• Synthesis of ethylhexyloxy poly(phenylenevinylene) (P4)6 

 Following procedure described for EtHexTPE-PPV (Mw = 131.7, Mn = 45.6, Ð = 2.9 39 

mg, 60%). 1H NMR (500 MHz, CDCl3, δ) 7.56, 7.17, 4.00, 1.86, 1.58, 1.40, 0.97. 

• Synthesis of 25 mole% EtHexTPE poly(pphenylenevinylene) (P3) 

 Following procedure described for EtHexTPE-PPV (Mw = 132.3, Mn = 54.8, Ð = 2.4 45 

mg, 90%). 1H NMR (500 MHz, CDCl3, δ) 7.55, 7.16, 7.07, 6.97, 6.67, 4.00, 3.79, 1.87, 1.42, 0.96. 

• Synthesis of 50 mole% EtHexTPE poly(pphenylenevinylene) (P2) 
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 Following procedure described for EtHexTPE-PPV (Mw = 46.6, Mn = 22.1, Ð = 2.1 38 mg, 

68%). 1H NMR (500 MHz, CDCl3, δ) 7.53, 7.16, 7.06, 6.97, 6.67, 4.00, 3.79, 1.85, 1.42, 0.95. 

• Aggregation-induced emission studies with TPE- and PPV-based structures 

Stock solutions of TPE- and PPV-based small molecules and polymers were prepared in 

THF at concentrations of 1 mg/mL.  10 μL of the stock solution was then added to 2 mL 

of THF/H2O mixtures ranging from 0 to 90% H2O in 7 mL scintillation vials.  The mixtures 

were vortexed for 10 seconds prior to photoluminescence characterizations. Each solution 

was added to a 1 cm x 1 cm quartz cuvette with a Teflon stopper.  Spectra were collected 

at wavelengths ranging from 400 to 750 nm at excitation wavelengths of 365 nm or 405 

nm.  Excitation and emission bandwidths were held constant at 3 nm and automatic 

sensitivity was used for all samples characterized on the Shimadzu RF-6000 

spectrofluorophotometer. 
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