
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Doctoral Dissertations Dissertations and Theses 

March 2020 

Optimization and Training of Generational Garbage Collectors Optimization and Training of Generational Garbage Collectors 

Nicholas Jacek 

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 

 Part of the Artificial Intelligence and Robotics Commons 

Recommended Citation Recommended Citation 
Jacek, Nicholas, "Optimization and Training of Generational Garbage Collectors" (2020). Doctoral 
Dissertations. 1833. 
https://scholarworks.umass.edu/dissertations_2/1833 

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at 
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/288433288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1833&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1833&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/1833?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1833&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


OPTIMIZATION AND TRAINING OF
GENERATIONAL GARBAGE COLLECTORS

A Dissertation Presented

by

NICHOLAS JACEK

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial ful�llment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2020

College of Information and Computer Sciences



© Copyright by Nicholas Jacek 2020

All Rights Reserved



OPTIMIZATION AND TRAINING OF
GENERATIONAL GARBAGE COLLECTORS

A Dissertation Presented

by

NICHOLAS JACEK

Approved as to style and content by:

J. Eliot B. Moss, Chair

Benjamin Marlin, Member

Philip Thomas, Member

Antony Hosking, Member

James Allan, Department Head

College of Information and Computer Sciences



DEDICATION

For Christine, without whom none of this would have been possible.



ACKNOWLEDGMENTS

I begin by thanking my adviser, Eliot Moss, for his invaluable help and guidance. I

also thank my committee — Tony Hosking, Ben Marlin, and Phil Thomas — for their

thoughtful feedback which greatly improved this work. Special thanks are due to Phil

who was a friend to whom I could turn to for advice long before he was a committee

member.

Thank you to Sridhar Mahadevan, who was my adviser when I began graduate school,

for beginning me along this journey and laying the foundation that eventually became this

thesis. I further thank all the faculty and sta� of the College of Information and Computer

Sciences who have always provided a welcoming and engaging community.

I thank my siblings — Victor, Lucy, Steven, and Jenna — and my parents — Victor and

Rae Ann — for their continual encouragement. Finally, I thank my wife, Christine, for her

un�agging love and support.

v



ABSTRACT

OPTIMIZATION AND TRAINING OF
GENERATIONAL GARBAGE COLLECTORS

FEBRUARY 2020

NICHOLAS JACEK, B.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor J. Eliot B. Moss

Garbage collectors are nearly ubiquitous in modern programming languages, and we

want to minimize the cost they impose in terms of time and space. Generally, a collec-

tor waits until its space is full and then performs a collection to reclaim needed memory.

However, this is not the only option; a collection could be performed early when some

free space remains. For copying collectors, which are what we consider here, the system

must traverse the graph of live objects and copy them, so the cost of a collection is propor-

tional to the volume of objects that are live. Since this value �uctuates during a program’s

execution, a collector can minimize its cost by carefully choosing the points at which it

collects.

We help to realize this goal in two ways. First, by developing an algorithm that an-

alyzes after-the-fact traces and computes optimal collection points, we can explore the

theoretical limits of garbage collectors. This gives insight into what performance gains

are possible, and can guide future collector development into areas that could be most

fruitful.

vi



Second, we use techniques from machine learning to �nd improved garbage collection

policies that could be implemented in real systems. The optimal collection points provide

ground truth from which a model can learn.
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CHAPTER 1

INTRODUCTION

Computer programs continually allocate data for future use. If every allocated ob-

jects is retained forever, eventually the computer’s memory will completely �ll, and the

program will be forced to stop. Instead, once an object is no longer needed it should be

freed so that the memory it occupies can be reused. This deallocation can be done by

hand, as it is in C and C++, but the process is notoriously tedious and error prone. Most

modern programming languages and run times take the alternative strategy of employ-

ing garbage collectors (GCs) – systems that automatically detect and remove unneeded

data or garbage. These come with trade-o�s, however. One study, Hertz and Berger 2005,

found that in order to match the performance of carefully hand-crafted memory manage-

ment, Java programs with typical GCs require heap sizes that are three to �ve times larger.

At sizes smaller than that, the performance of the garbage-collected programs quickly de-

grade. If we agree to the widespread assumption that users will tolerate no more than

ten percent of a program’s execution time going to garbage collection, it is clear that the

memory requirements of the GC can be considerable.

Many types of GCs exist in the literature and one might wish to optimize various

di�erent aspects of their operation based on the needs of a speci�c application. In this

work, we focus on generational mark-compact collectors, similar to those used in Java

virtual machines. Our analysis seeks to minimize the total time overhead they incur over

the entire execution of a program.

While we want GCs to run as e�ciently as possible, little beyond loose worst-case

bounds is known about their theoretically optimal performance, and their behavior is
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generally based on simple heuristics. The main contributions of this work address these

two issues. First, we give a dynamic programming algorithm that exactly computes the

schedule of collector actions for a given program and input that has minimum cost. In

many cases there is substantial room for improvement over the default behavior of the

collector. Then, we present several di�erent policy algorithms that use features available

during the execution of a program. For some traces, they are unable to improve on the

default algorithm, but for others they give substantial improvement. In a few cases, the

learned policies obtain optimal performance.

As stated, this research will focus on generational garbage collectors. These belong to

the class of tracing collectors, which means they assume any object reachable by following

a sequence of pointers may be used in the future and must be retained. All other objects are

unreachable, so their space may be reused. The generational collectors we study divide the

heap space into two sections: a small young space (called a nursery by some authors), and

a larger old space. Objects are initially allocated into the young space. In a full collection,

the entire graph of objects in both spaces is walked and every object reached is marked

as live. These objects are then compacted into the old space. During a young collection,

the collector assumes that all objects in the old space are live and only walks the graph of

objects in the young space for marking. The marked objects are then copied into the old

space and the young space becomes empty.

The bulk of the work involved in the collections comes from traversing the object

graph and copying the live objects. Thus, for our simpli�ed model, we assume that the

cost of a young collection is proportional to the volume of data that is promoted and that

the cost of a full collection is proportional to the total volume of live objects at the time of

the collection. The default policy is to wait until the spaces �ll and perform a collection

once the remaining free space is smaller than is needed for an allocation. However, it is

also possible to collect when there is more space remaining, one hopes at a point when

the cost of collection is lower.

2



The two tiered layout of a generational collector is motivated by the generational

hypothesis (Ungar 1984), which states that most objects fall into one of two clear groups:

those that are used only brie�y and those that live for nearly the entire execution of the

program. Ideally, most objects in the young space will be short-lived and therefore dead

by the time a young collection occurs. In contrast, any object that reaches the old space is

hopefully long-lived, so the assumption that most objects in the old space are live is safe.

Frequent walks of the old-space object graph would be mostly wasted work.

In order to base our analysis on real programs, we have instrumented a number of

executions of programs from the DaCapo benchmark suite on the Java Virtual Machine.

The collected data include the size of each object allocated, the creation and modi�cations

of the pointers used in the program, and each method call in the program’s execution. The

allocation and pointer data allow us to calculate the birth and death times of each object,

and to simulate the performance of a garbage collector on the traces. The counts of object

allocations, method calls, and branches taken represent features that a garbage collection

system can instrument to make more accurate decisions.

At each point in time, a collector can choose to perform one of three actions: no

collection, a young collection, or a full collection. Our overarching aim is to investigate

how total collection cost can be minimized by careful selection of the points at which

collections are performed. This work is divided into three broad sections toward this

goal.

First, we develop a precise model of our collector. This is slightly idealized from the

real world, but it allows for mathematical analysis and precise quanti�cation of the costs

of di�erent actions.

Next, we study schedules of collections. An optimal schedule is a function from the

true underlying state of the collector to the optimal action. By following a schedule, the

garbage produced by a program can be collected at minimal cost. It is important to note

that the collector’s state can in general only be known after the fact. Intuitively, it might

3



be overall cheapest to take an expensive action now in order to get even greater savings

later. Thus, the state can implicitly include facts about the future. Nevertheless, we give

a dynamic programming algorithm that can calculate exactly optimal schedules given

after-the-fact traces of program executions.

This is the �rst work in the literature to give the exactly optimal cost to manage mem-

ory for a program using a realistic GC. Previously, it was impossible to know how much

the performance of a GC could be improved, even in theory. Our dynamic program gives a

lower bound on cost that we can compare various collection strategies against, and it can

guide future research to focus on programs and situations where useful improvements are

at least possible.

Finally, we turn our attention to collection policies. These are functions from observa-

tions, features of a program that can be measured at run time, to actions. We formulate

the development of a policy as a classi�cation problem, and attack it with several types

of classi�ers.

Before we continue, we wish to build a bit of intuition about the complexity that arises

in the choice of optimal collection points. Consider an extremely simpli�ed situation

where the cost of performing a collection is periodic and the only constraint on the col-

lector is that collections must be no more than one unit of allocation away from each

other; this is illustrated in Figure 1.1. The blue curve represents the cost of a collection

at that point. Then, the simplest policy, the default, is to spread the collections out as far

as possible. In our example, this results in collections at each integer along the vertical

axis, shown as green dots in the �gure. Since the wavelength of the cost function is not

an exact multiple of the time between collections, the collections have a variety of costs.

They sum to 19.57 over the entire trace.

You may suspect that, due to the simple nature of the cost function and collector model,

only limited and local information would be needed to select collection points more in-

telligently. One strategy is to collect at each local minimum of the cost function, where
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Figure 1.1: Example trace, collected with the default policy
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Figure 1.2: Example trace, collected with a naively optimized strategy
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collections are least expensive. In a running system, the locations of these local minima

may also be relatively easy to predict. The results of this naive optimization technique

are shown in Figure 1.2. The wavelength of the cost function is slightly larger than the

size of the heap. Thus, after one collection at a minimum, the collector is forced to collect

again before it can reach the next trough. These extra collections are themselves costly,

so the total cost of every collection in the trace is 20.94, more than the cost of the default.

Simple decisions like this, even if they are locally optimal, are not always sophisticated

enough to collect the garbage generated in an entire program e�ciently.

In comparison, we show the exactly optimal collection locations in Figure 1.3. They

were calculated using a dynamic program similar to the one we describe in Chapter 4,

though greatly simpli�ed for this much simpler model. All together, they sum to a cost of

15.56, showing that a signi�cant cost savings is possible. Note, however, that the collection

locations do not follow any obvious pattern. Though they tend not to be at the top of the
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Figure 1.3: Example trace, collected optimally
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cost curve, only two are located at minima. This illustrates an important property of these

collection problems: choosing the optimal points requires global information about the

trace. Whether we should collect right now to be optimal depends on what the program

will do in the future.

Clearly, choosing optimal collection points in a real program is even more di�cult.

For example, we have to place both young and full collections, and the costs of young

collections depend on what previous collection decisions we made. Furthermore, when

choosing whether to collect at run time, we cannot exactly predict the cost of even a

single collection, much less a series of them. Nevertheless, we have developed tools and

techniques that can address these problems. To further set the stage for our work, in the

next chapter we review the literature relevant to this research.
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CHAPTER 2

LITERATURE REVIEW

2.1 Machine Learning for Garbage Collection

There have been several applications of machine learning to garbage collection in the

literature. First, the most similar prior work comes from Andreasson, Ho�mann, and

Lindholm (2002). The JRockit VM includes a concurrent garbage collector. Too frequent

collections increase overhead, but if the heap �lls completely a program must pause and

wait for collection to �nish. The authors use the reinforcement learning (RL) algorithm

Sarsa to learn a policy that predicts the optimal times to begin garbage collection. How-

ever, the features used for learning are very simple and limited. In some experiments

they use only the available space remaining in the heap, and in others they also include

the change in available space. Nevertheless, they evaluate the learning algorithm using a

synthetic program and hand-created cost model, and in some cases �nd increased perfor-

mance over JRockit’s default policy. The authors train and evaluate their system on the

same program, and do not investigate whether the performance of their learned policy

generalizes to di�erent programs or heap con�gurations.

In this work, we use a richer set of features, allowing the representation of more so-

phisticated policies. Additionally, we evaluate the performance of the learned policies

using traces collected from runs of a standard suite of benchmark applications. This al-

lows for more realistic assessment of the impact the learned policies may have in actual

practice. Finally, this research focuses on generational garbage collectors. At each time

point, these have three possible actions: no collection, young collection, or full collection.

This is more complicated than the decisions to collect or not explored in the cited paper.

8



While this may make policies more di�cult to learn, there may also be more room to

improve over default policies. Generational garbage collectors are more widespread in

current run-time systems, which gives this research greater applicability to actual usage.

To our knowledge, the work of Andreasson, Ho�mann, and Lindholm (2002) is the

only paper in the literature that attempts to learn policies that pick out points in time

to perform garbage collections. So, it is the only research directly comparable to ours.

Machine learning, however, has been directed towards the same overarching goal of im-

proving the performance of garbage collectors by tuning other aspects of their operation.

One possible optimization is pretenuring, which is the allocation of new objects di-

rectly into the old space rather than the young space. If the object would be promoted

eventually anyway, this saves work in a future young collection. Thus, accurate predic-

tion of which objects are likely to be long-lived is necessary for e�cient pretenuring. To

this end, Singer, Brown, Luján, et al. 2007 investigated the information-theoretic concept

of mutual information (MI) between various features of an object and its lifetime. Infor-

mally, MI measures how well we can predict one value given another. The authors report

MI values for several object features, and �nd that a combination of an object’s static al-

location site and its dynamic calling context is the best predictor of object lifetime that

they examine. But they do not develop any system that actually uses this information for

pretenuring. In contrast, a main focus of this research is to learn policies and evaluate

them on realistic models of garbage collection systems.

Another aspect of a garbage collector that can be tuned is its heap size. A too small

size will increase the overhead from frequent collections, but a too big size will decrease

memory locality and increase the occurrence of cache misses. In White et al. (2013), the

authors use a proportional-integral-derivative (PID) controller to resize the JVM heap in

order to keep garbage collection overhead at a user-speci�ed target. The input to the PID

controller is the time cost of the most recent GC divided by the time since the most recent

GC, and at each collection it outputs a multiple by which to resize the heap. The PID is

9



tuned for each benchmark using the standard Ziegler and Nichols method (1942). The

authors �nd that the controller gives better performance than the heap resizing heuristics

built into the Jikes and HotSpot JVMs, which tend to be too conservative in that they

change the size of the heap too slowly. Our research instead tries to minimize collection

cost given a �xed heap size. This allows for more e�cient usage of memory, especially in

cases where the total available memory is limited.

Next, the Memory Management Tool Kit for the Jikes RVM contains several di�er-

ent garbage collection schemes, such as semispace, mark-sweep, generational copying,

etc. These schemes have di�erent relative performance on di�erent programs, so Singer,

Brown, Watson, et al. (2007) used machine learning to predict the optimal collection

scheme for a given program. They collect features from static analysis of a number of

benchmark programs, as well as dynamic features from a single run of each program.

Their ground-truth cost model is the total execution time of a program using a given col-

lection scheme. The features are used to train a number of C4.5 decision trees that predict

for a given input which of two schemes will have the lower cost. By arranging them in

a tournament, the trees can then be used to predict the optimal collector for an input.

Though one pro�ling run of a new program is still necessary, this is still much cheaper

than exhaustive trials of all the available collection schemes.

Mao, Zhang, and Shen (2009) extend this work to predict the best collection scheme

based on the input to a given program. They �nd that for a given heap size ratio (HSR),

which is the ratio between the size of the heap used for a program execution and the mini-

mum possible heap size for the program, one or two collection schemes are almost always

optimal regardless of the input to the program. This gives rise to a two-step prediction

scheme: �rst, predict the minimum possible heap size based on static features of the input

and calculate the resulting HSR, then use the same features to choose between the two

best collection schemes for the predicted HSR. The authors accomplish the �rst task with

a regression tree and the second with either a classi�cation tree or the nearest neighbors
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technique. In all cases, they achieve enough accuracy to increase performance on their

benchmarks.

Singer, Kovoor, et al. (2011) then investigated the selection of a garbage collection

scheme for programs that use a Java implementation of MapReduce, a popular frame-

work for distributed computation. They study the case of using MapReduce on a single

processor with multiple cores, rather than across a compute cluster. There are six di�er-

ent schemes examined in this study: serial, parallel, or concurrent collection, each using

a young size to old size ratio of either 1:2 or 1:8. Static features of the JVM con�guration

and dynamic features from a pro�ling run of each program are collected and used to train

binary classi�ers. These are random forests of 20 trees, and predict whether a scheme

is “good” for a program, meaning that the program will execute with this scheme in less

that 95% the time used by the default scheme, and less than 110% the time used by the

optimal scheme. The collector for a new scheme is then predicted by running it through

the classi�ers one by one in a �xed order, and selecting the �rst “good” scheme found.

This improves performance compared to the default collector.

These three papers all focus on making very coarse decisions. Before a program is run,

they choose from a handful of �xed collection schemes and then make no other decisions

for the entire program’s execution. Our work focuses on one scheme, generational collec-

tion, then analyzes and optimizes its performance. This gives lower cost in the cases for

which generational collectors are already optimal, and may make generational collectors

competitive with other schemes in a larger space of programs.

Finally, Tiwari and Vala (2017) examine stub-scion pairs (SSP), a method for reference-

counting garbage collection for systems distributed over networks. They build a Bayesian

belief network that models how likely di�erent objects are to have pointers to each other.

This information is then used to prioritize whether SSP chains should be created in ad-

vance, and which SSPs to prioritize for reclamation. They �nd that this can reduce the

network overhead on a synthetic benchmark.
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Our research focuses on tracing, rather than reference-counting collectors, and inves-

tigates the single-processor, rather than the distributed case. Thus, it is directed toward a

very di�erent goal than ours.

2.2 Feature Selection

When we look to build practical GC systems, each program presents thousands of

possible features, far too many to ever be used in practice. We need to select a small group

of them, but we need some way of choosing those that will be most useful in deciding

whether to collect. The problem of �nding the most useful subset of features from a large

group is known as the feature selection problem, and in this section we give an overview

of the extensive literature that has been produced on it.

Our presentation follows Guyon and Elissee� (2003) in grouping feature selection al-

gorithms into three broad groups: variable ranking methods, wrapper methods, and em-

bedded methods. As we explain later in Section 5.2, we have used one method from each

of these groups in order to give a wide sampling of the possible approaches.

In variable ranking methods, the �rst group, we compute some measure of a feature’s

usefulness and then simply select the features that score highest by this measure. Per-

haps the simplest possible ranking criterion is the correlation between each feature and

the output we are trying to predict. This can capture only linear relationships between the

features, which is often not informative enough for di�cult problems. However, Weston

et al. (2003) �nd that this simple technique can give good results when used for gene mi-

croarray analysis, in which a few genes of interest must be located from among thousands

of irrelevant ones.

Another possible ranking measure is the performance of single variable classi�ers.

That is, a classi�er is restricted to use just a single variable, and trained to predict the

output. The accuracy of the classi�ers’ prediction becomes the ranking criterion. Forman
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(2003) applies Naive-Bayes classi�ers to this technique, and �nds it gives performance

competitive with much more sophisticated methods for some problems.

Finally, information theory provides a range of measures that may be suitable for

di�erent applications. The mutual information between each feature and the prediction

target is the most commonly used such measure. The algorithm of Fleuret (2004) extends

this approach to include the conditional mutual information among the candidate feature

and the target, given each previously selected feature. We apply this approach to our

problem, so we defer detailed discussion of it to Section 5.2.3.

The next class of feature selection algorithms is wrapper methods. An early and in-

formative study of these algorithms is given by Kohavi and John (1997). Selection of the

exactly optimal subset of features in NP-hard (Amaldi and Kann 1998), so wrapper meth-

ods instead repeatedly make small changes to the set of selected features until a locally

optimal set is found. At each step, classi�ers are trained and tested to evaluate which

modi�ed set of selected features is best. One of the main bene�ts of these methods is that

they can use the same classi�cation algorithms to guide feature selection as will be used

in the �nal classi�er. This helps to give us con�dence that the selected features will be

genuinely useful. Many algorithms for modifying the selected feature set have been used.

One of the simplest is the forward-stepwise technique. It begins with an initially empty

set, and adds features one by one according to which most improve classi�er performance.

Similarly, the backward-stepwise begins by selecting all available features, and eliminates

them one by one, guided by the performance of the classi�er. In this class, we use the

technique of random forest importance (Archer and Kimes 2008), since we are also using

random forest classi�ers. Detailed explanation of this technique is given in Section 5.2.2.

The �nal group of feature selection algorithms is embedded methods. These algo-

rithms train classi�ers and select the features that will be used as two parts of one uni�ed

whole. One example comes from decision trees (Breiman 2001), which select a feature and

associated threshold for each node of the tree. The set of selected features is then simply
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the set of features that are used at any node. Another very popular class of embedded

methods is to add a penalty, such as l1 regularization, to the cost function that the clas-

si�er seeks to optimize. The penalty pushes many of the weights the classi�er learns to

zero, e�ectively de-selecting the features associated with these weights
1
. Bach et al. (2012)

give a very thorough overview of these algorithms. As explained in Section 5.2.1, we use

Group Orthogonal Matching Pursuit (Swirszcz, Abe, and Lozano 2009), which includes

embedded feature selection.

2.3 Behavioral Cloning

Our learned policies fall into the broad category called learning from demonstration

or imitation learning, in which the learner tries to copy the actions of a human or algo-

rithmic expert. This basic idea has been explored from di�erent directions and di�erent

disciplines, but one early and in�uential paper is that of Schaal (1997). In it the authors

�nd that good policies for some problems can be learned much more quickly from demon-

stration than by standard reinforcement learning methods.

Many di�erent aspects of a task, such as a model of the system to be controlled or a

plan to execute, can be learned from expert demonstrations. We take perhaps the sim-

plest approach where we learn a mapping from system states to actions to be taken. This

strategy is sometimes called behavioral cloning, since we seek to clone exactly the ex-

pert’s behavior. For systems such as ours where the agent must decide between taking

discrete actions, the mapping takes the form of a classi�er. In the literature, many dif-

ferent classi�ers have been applied to many di�erent control tasks, which we summarize

below.

1
In early work, we tried to apply these methods to our problem. We found that because we needed such

a tiny ratio of selected to de-selected features, these algorithms tended to become numerically unstable and

extremely di�cult to tune.
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First, both Baysian networks and k-nearest-neighbors classi�ers have been applied to

the problem of obstacle avoidance and navigation by Inoue, Inamura, and Inaba (1999) and

Saunders, Nehaniv, and Dautenhahn (2006). Chernova and Veloso (2007) train Gaussian

mixture models to control a car. Next, support vector machine classi�ers (Cortes and Vap-

nik 1995) were applied to the task of robotic ball sorting (Chernova and Veloso 2008). Most

similar to the techniques we employ, Sammut et al. (1992) train decision trees to control

simulated airplanes. Finally, Stéphane Ross, Gordon, and D. Bagnell (2011) and (Stephane

Ross and J. A. Bagnell 2014) relatively recently developed algorithms that intelligently

query their experts for speci�c demonstrations in order to improve the performance of

their learned policies, which are represented by neural networks.
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CHAPTER 3

GENERATIONAL GARBAGE COLLECTOR MODEL

In this chapter we describe our model of a generational collector. We begin with an

intuitive explanation of our model, then continue with a description of the traces we

collect in order to simulate the behavior of our collector on Java programs. Finally, we

give a precise mathematical description of a generational garbage collector.

3.1 Collector Model

We are concerned with a generational garbage collector. In our model, the heap is

divided into two spaces: the large old space, and the smaller young space. This is illustrated

in Figure 3.1. Objects are allocated into the young space, unless they are larger than the

young space itself. In this case, a collection must occur to empty the young space, then

the object is allocated into the old space instead. The collector can perform two types of

collections. A full collection reclaims all available space and a young collection frees space

only in the young space. In the remainder of this section, we give intuitive explanations of

these two types of collections based on the behavior of the program and run-time system.

Later, in Section 3.3, we abstract away these considerations into a mathematical model of

the collector.

3.1.1 Full Collections

The simpler type of collection is the full collection, shown in Figure 3.2. Any object

that is reachable by following a chain of pointers from the program’s local and global

variables may be used in the future and must be retained, so we consider them live. All
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Figure 3.1: Generational Collector Model
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This is a graphical representation of our collector model, showing how it is divided into

a young and an old space. The blue boxes are objects, and the arrows show the pointers

between them.
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other objects cannot be reached and will never again be used by the program. We consider

them dead, and it is safe to free the heap space they occupy and use it for new allocations.

The �rst step in a full collection is therefore to locate all live objects. The collector begins

with the local and global variables, collectively called roots. Then, the collector simply

walks the graph of pointers and objects and marks each object it encounters as live. Any

object not marked must be dead. Finally, the marked objects are compacted into the old

space, leaving the some of the old space and the entire young space empty. If instead the

total size of the live objects is larger than the old space, the data cannot be collected and

the program terminates.

3.1.2 Young Collections

In contrast to full collections, young collections empty the young space but do not

reclaim dead objects in the old space. They are shown in Figure 3.3. Instead of starting

from the roots, during a young collection the collector begins marking from any pointer

into the young space. This is equivalent to assuming that all objects in the old space

are live. Of course, this is not always true and some objects in the young space will be

marked even though they are reachable only from dead objects in the old space. We call

these objects baggage. After marking, the marked objects are promoted, or copied into the

old space, leaving the young space empty and ready to receive more allocations.

A young collection is generally cheaper than a full collection because the volume of

objects examined is lower—a full collection traces through all reachable objects, and the

young space is smaller than the old space. The two-tiered design of a generational col-

lector is further motivated by the generational hypothesis. This states that objects will

either die quickly or live nearly forever. Ideally, short-lived objects will die before a young

collection occurs and only long-lived objects will be promoted. Then, nearly all the ob-

jects in the old space will be live so the overhead of needlessly promoting baggage will be

minimal.
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Figure 3.2: Full Collection Model

(a) Initial con�guration.
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(b) Marking phase of a full collection. Beginning

with the roots, all reachable objects are marked.

The followed pointers and marked objects are

highlighted in orange.
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(c) After marking, any unmarked object is con-

sidered dead. The remaining objects are all live.
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(d) Finally, the live objects are all compacted into

the old space. Now, the young space is empty and

ready to receive new allocations.
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Figure 3.3: Young Collection Model

(a) Initial con�guration.
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(b) Marking phase of a young collection. The

collector follows all pointers into the young

space and marks the objects found, even if the

pointers originate from dead objects in the old

space. The marked objects and followed point-

ers are highlighted in orange.
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(c) After marking, any unmarked object in the

young space is considered dead. The collector

conservatively assumes that any marked object

may still be reachable.
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(d) Finally, the marked objects in the young

space are all copied into the old space. Some

copied objects are genuinely live, and others are

promoted as baggage. Again, the young space is

empty and ready to receive new allocations.
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3.1.3 Cost Model

It is known that the running time of collectors that copy objects—the kind we consider

here—is roughly proportional to the volume of objects copied, so we use the number of

bytes copied as our cost model. Therefore, the cost of a young collection is the volume of

objects copied from the young to the old space, and the cost of an old collection is the size

of all the reachable objects. Other cost models are possible, such as charging a “rental”

for volume of data in the heap at each time step. Our work focuses on minimizing total

garbage collector e�ort, rather than trying to reclaim heap space as quickly as possible

3.1.4 Alternative Models

Though generational collectors are popular, other types have been developed and

studied. One well-known type is the copying or semi-space collector. In this setup, the

heap is divided into two equally-sized halves, one of which is always empty during allo-

cation. New objects are created in the partially �lled space until it is full, at which point a

collection is triggered. In the marking phase of a collection, the entire object graph is tra-

versed, starting with the roots. The marked objects are then copied into the other empty

space, leaving the originally �lled space empty. In a copying collector, the cost of a collec-

tion comes from traversing the object graph and copying objects, as in our generational

model. Since there is also only one type of collection, it should be possible to analyze and

optimize a copying collector with techniques very similar to those we develop. However,

we believe the higher cost for each collection and lower space utilization will give less

opportunity for optimization.

In contrast, a mark/sweep collector works quite di�erently to those we study. In these

systems, after a marking phase, objects are left at whatever positions the happen to oc-

cupy. Instead, the collector manages a free list which records the non-contiguous locations

in memory that can receive allocations. Object allocations are then much more compli-

cated as appropriately sized chunks of free memory must be found on the free list, and
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the free list must be updated and maintained. A particular problem called fragmentation

can occur when only many small chucks of memory are free. Though the overall fraction

of the heap that is in use may be relatively low, it may still be impossible to �nd space to

allocate a large object.

Since allocation as well as collection can incur signi�cant costs in a mark/sweep col-

lector and collections do not involve copying objects in the heap, the cost model for these

collectors is completely di�erent from those that we study. Therefore, our results are not

likely to be directly relevant to them.

Finally, collectors have been developed that include more than two generations and

correspondingly increased types of collections. In our work (Jacek, Chiu, B. M. Marlin,

et al. 2019), we note that our dynamic program can be extended to these models in a

relatively straightforward manner. Unfortunately, adding additional generations greatly

increases the asymptotic time complexity of our algorithm, making it infeasible to run on

program traces of realistic length. We were thus unable to pursue this line of research

empirically.

3.2 Nature of Our Traces

We used the Elephant Tracks (ET) tool (Ricci, Guyer, and Moss 2011; Ricci, Guyer, and

Moss 2013) to obtain sequences of event records from executions of Java programs. There

are two kinds of relevant events in these traces: control events (method calls, returns, etc.)

and heap events (object allocation, pointer updates, object death). Like its intellectual

predecessor Merlin(Hertz, Blackburn, et al. 2006), ET computes precise death times for

each object, i.e., the point at which the object was last reachable. ET’s strategy for this is

to record when references to heap objects exist. ET then determines death time as the last

time an object was reachable from a root.

We post-process these event traces in two signi�cant ways:
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1. By simulating the heap events (allocations, pointer updates, and deaths), we can de-

termine the pointers within each object when it dies. We then use that information

to compute the pre-birth time for each object, a concept introduced by Jacek, Chiu,

B. M. Marlin, et al. (2019). Consider conceptually a heap large enough to hold all

objects allocated during a program’s execution. Suppose we inspect that heap at

the end of the run and determine, for a given object o, the set of objects from which

we can reach o in the heap, i.e., the predecessors of o in the heap graph. (The heap

graph is the directed graph where objects are nodes and pointers are the directed

edges.) The pre-birth time of o is the minimum (earliest) of the birth (allocation)

times of o’s predecessors.

Knowing the pre-birth time is signi�cant because it enables direct determination

of whether a given young collection will preserve o. Of course o will be preserved if

it is live (reachable) at the time of the collection—a requirement of garbage collector

correctness. However, if the previous collection (young or full) occurred between

the pre-birth and birth time of o, and the next collection is a young collection after o

dies, o will also be preserved. (In the terminology of Jacek, Chiu, B. M. Marlin, et al.

(2019), this is the case in which o is baggage.)

2. We group events of the trace. Every 256 Kbytes of allocation forms an allocation

group, and we also group the control events that occur in the same interval. Specif-

ically, if adding a second or later object to the current group would cause the group’s

size (bytes allocated) to exceed 256 Kbytes, then the allocation event of that next ob-

ject starts a new group. Groups are reasonable in that most real allocators will make

a decision about whether to run the garbage collector only as a block of some size

�lls. Groups serve several purposes in this work.
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• Groups facilitate calculating optimal collection schedules e�ciently, as dis-

cussed by Jacek, Chiu, B. M. Marlin, et al. (2019), because we can deal with

whole sets of objects at once rather than handling each object separately.

• Pre-computed groups further insure consistent de�nition of the possible times

for collection across heap sizes and previous collection histories.

• Groups are our basis for de�ning feature vectors from the control events of

a trace. In particular, within a group we compute for each Java method two

features concerning calls of that method: the number of times the method was

called, and a 0/1 feature that indicates just whether the method was called at

all. Each source of control events determines a similar pair of features: calls of

a method, returns from the method, exception throws and catches, calls from a

given call site, and allocations at a given allocation site. We also have features

for the number of bytes allocated at an allocation site, and the number of array

elements allocated at a site that allocates arrays.

A given program may have tens of thousands of possible features. Typically

only about 10% of the possible features are actually used in a given execution,

and of course many of those are zero in the time window of a given group.

Still, the number of features is large, so ultimately it is important to control

how many are used in a learned policy function. This is true both because

obtaining a feature’s value at run time has a cost every time the feature’s event

occurs, and because evaluating the learned function will be costly if it uses a

large number of features.

3.2.1 Trace Products

There are two key post-processed products for each trace:

• Allocation cohorts: A cohort is a set of objects whose pre-birth times fall into the

same group, whose birth times fall into the same group, and whose death times fall
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into the same group. Because those times entirely determine the collector’s behavior

and costs (under our models), for modeling collection behavior all we need to know

is the set of cohorts and their sizes.

• Feature vectors: Concerning the feature vectors, feature numbers for the same

method may vary from trace to trace, since the overall set of methods can be di�er-

ent. When we handle multiple traces from the same program, we �rst map all the

features of the individual traces onto the union of features across the traces.

An additional trace product is the number of times instrumentation would be triggered

for each feature, i.e., an estimate of the relative cost to obtain that feature at run time. (At

present we do not exploit this information.)

3.2.2 Trace Details

Table 3.1 lists the programs from which we gathered traces, indicating the number of

traces for each program and the ranges of number of groups, number of cohorts, bytes

allocated, and maximum live size (maximum number of bytes reachable at once) for the

traces of that program. Except for javac, these are all from the DaCapo benchmark suite

(Blackburn et al. 2006), though we developed additional inputs for most of them. In the

case of javac, the program is a modi�ed version of the original SPECjvm benchmark of

the same name, but modi�ed to avoid caching of class �le information across compilation

of multiple classes, to simulate better what a compilation server might be like. Across the

programs there is considerable variation in the statistics, and for many of the programs

considerable variation across traces.

3.3 Mathematical De�nition of a Generational Garbage Collector

Here, we give equations that de�ne the behavior of our model of a generational garbage

collector. As previously mentioned, we accumulate object allocations into groups of 256

kilobytes, and allow collections only at the borders between groups. Indices for indexed
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Table 3.1: Summary of traces used

Program Traces Groups Cohorts Alloc (MB) Max Live (MB)

avrora 4 181– 1606 944– 19603 45– 400 3.6– 105.7

batik 11 99– 586 586– 4766 25– 186 5.0– 24.6

fop 12 124– 6560 1024– 47124 30– 1587 5.0– 38.3

javac 4 1860–15759 25410–308523 459– 3899 10.3– 16.5

luindex 5 26– 27 170– 183 6– 6 2.0– 2.0

lusearch 3 2744–43921 9936–155178 664– 10510 2.0– 2.2

pmd 19 53– 5043 358–134539 13– 1202 1.7– 168.0

values in our dynamic programs are thus group numbers. The group size (sometimes called

the block size) is notatedG. We use n as the number of groups in a given trace (for a given

G). Grouping de�nes n + 1 positions in the trace (on either side of the n groups, like fen-

ceposts and a fence), which we number 0 through n and refer to as time steps. In general,

the notion of time we use is the number of bytes allocated so far in the trace. If A is the

total number of bytes allocated, then n < 2A/G. (The factor of two come from the worst

case grouping where each object is just over
1

2
G in size.)

We can now state our task more precisely. At each time step, our collector must per-

form one of three actions: no collection, a young collection, or a full collection. Note that

although we de�ne n + 1 time steps, the collector only has to choose n − 1 actions in an

entire trace. At time 0 no allocations have yet happened, and at time n the trace has ended

and no objects are live. The inclusion of these time steps makes our notation simpler and

more consistent, but at these points all three actions have identical e�ects and zero cost.

Also, not every action is always valid. For example, if the old space is full, the collector

cannot successfully execute a young collection.

In order to determine which actions are valid and track their e�ects, we must precisely

express the states that the collector can be in. For this, three numbers su�ce:

1. t - The current time step.
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2. l - The time step of the last collection the collector preformed. This is needed to

calculate which objects will be promoted as baggage during a young collection.

3. u - The volume of data in the old space. This allows us to determine whether a young

collection should be disallowed because the data it may promote could over�ow the

heap.

We now give some preliminary de�nitions to prepare for explaining the e�ect of the three

actions. Every object x has a pre-birth time p(x), a birth time b(x), and death time d(x).

Necessarily p(x) ≤ b(x) ≤ d(x). It is helpful to think of the given times as picking out

instants, and the events as occurring between these instants. So, if for some object x we

have p(x) = b(x) = d(x) = t , we know that the object was pre-born, born, and died at

some times between the instants picked out at t and t +1. This helps clarify what happens

when we consider a garbage collection to happen “at” time t—for a full collection, objects

x with b(x) < t ≤ d(x) are live and will be retained. Others are either dead (d(x) < t ) and

will be reclaimed or have not yet been allocated (t ≤ b(x)).

The p, b, and d of each object are mapped to the group they fall within, the groups

being numbered 0 through n − 1. Objects with the same mapped (p,b,d) triple exhibit

the same collection behavior and form a cohort. We use V [...] to denote subscripting of

the various arrays of our dynamic programs. Then, c[p,b,d] is the size of the cohort with

pre-birth group p, birth group b, and death group d , i.e., the sum of the sizes of the objects

in the cohort. Here p ≤ b ≤ d . The values of c[·, ·, ·] completely capture the behavior of

the trace for the given group size, and form the basis of the optimization problem to be

solved.

Given c[·, ·, ·] it is easy to de�ne the live size, or volume of data that is live at a given

point:

L[t] =
∑

b<t≤d

c[p,b,d]. (3.1)

No data are live before the trace begins and after it ends, so we have L[0] = L[n] = 0.
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Similarly, we de�ne A[i, j] to be the volume of data allocated between i and j. It is

calculated as

A[i, j] =
∑
i≤b<j

c[p,b,d]. (3.2)

Finally, we use SYand SO to denote the sizes of the young and old spaces, respectively.

With this, we are ready to turn to the actions themselves. We give formulae for three

aspects of each action. The �rst is the precondition. If in a certain state this is not met,

the corresponding action cannot be taken. Next, we list the e�ect, which tells how each

action will change the state of the collector. Finally, we give the cost of each action. We

aim to minimize the sum of the costs of every action taken over a trace.

3.3.1 No Collection

We explain the simplest action �rst. Minimal bookkeeping is needed when no collec-

tion is performed.

• Precondition: A[l, t + 1] < SY - Some collection previously emptied the young

space at time step l , and we can only allocate into it until it �lls. If the allocations

in the next time step would over�ow the space, we must perform some collection,

and this action is not valid.

• Effect: (t, l,u) → (t + 1, l,u) - When no collection is done, the time step simply

advances.

• Cost: 0 - If we do not collect, we incur no cost.

3.3.2 Young Collection

Next, we examine young collections. For clarity, in this subsection we let y denote the

total volume of data that will be promoted during a young collection. We calculate it as a

sum of the a�ected cohorts:
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y =

∑
l≤b<t ∧ t≤d c[p,b,d] (live)

+
∑

l<t ∧ l≤b ∧ d<t c[p,b,d] (baggage),

• Precondition: u +SY < SO - We cannot know in advance how much of the data in

the young space will be promoted during a young collection before it is performed.

We therefore take a conservative approach and allow a young collection only if the

data already in the old space plus the entire contents of the young space would �t

into the old space.

• Effect: (t, l,u) → (t +1, t,u+y) - A young collection has three e�ects. We advance

by one time step, record that a collection has taken place at step t , and add the

volume of promoted data to the old space.

• Cost: y - The cost of a young collection is equal to the volume of data that is pro-

moted.

3.3.3 Full Collection

We now look at the �nal of the three actions, the full collection.

• Precondition: L[t] < SO - After a full collection, all live data will be in the old

space. We must ensure that it is large enough for this to happen.

• Effect: (t, l,u) → (t + 1, t, L[t]) - As in a young collection, we advance to the next

time step and record that a collection has taken place. In contrast, the occupancy of

the old space is equal to the live size after the collection.

• Cost: L[t] - All live objects are compacted into the old space, so the cost of a full

collection is equal to the live size.

Now that we have a complete de�nition of the dynamics of our collector model, we turn

our attention to an algorithm to �nd the minimum cost of a schedule of collections for a

trace.
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CHAPTER 4

DYNAMIC PROGRAMS FOR FINDING OPTIMAL SCHEDULES

4.1 Introduction

We have developed and analyzed a realistic model of a garbage collector. Previously,

we published an article (Jacek, Chiu, B. Marlin, et al. 2016) in which we used reinforce-

ment learning techniques to �nd approximately optimal collection schedules. However,

we directly improved on this work by developing a dynamic programming algorithm that

�nds exactly optimal collection schedules. The dynamic programming algorithm has ob-

viated the earlier work, so we present only the improved algorithm here. We emphasize

that this is the �rst work in the literature that calculates exactly optimal performance for

a realistic garbage collector.

We develop the dynamic program in two large stages. The �rst stage considers only

young collections. It addresses the constraint of young space size, but ignores the size of

the old space. It develops arrays y[i, j], Y [i, j], and Ȳ [i, j]. The second stage introduces

full collections and considers their optimal placement given the model of optimal young

collection placement. It develops arrays f [i, j] and F [t]. This two-stage development

ignores the consideration of objects that meet or exceed the size of young space, so we

add a re�nement that deals with that. It develops an array B[t] (for “big”).

4.2 Dynamic Program

The algorithm proceeds by �lling in a series of dynamic programming tables each of which

builds on the last. We now describe these tables in turn.
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First, consider the cohorts that are promoted
1

during a young collection. They fall

into two categories. The �rst is the live objects that have not yet been promoted, that is,

objects that were born after the previous collection but have not yet died. The second

is baggage, the objects that were pre-born during the previous collection and have since

died. All together this implies that, in order to calculate the cost of a young collection and

the volume of data that it promotes, we need only one piece of information in addition

to the properties of the cohorts themselves: the time step of the previous collection. This

allows us to de�ne y[i, j], which is the cost of a young collection at time step j, given that

the previous collection was at step i . (Necessarily i < j.) For convenience, we adopt the

convention that y[i, j] is in�nite if the volume of data allocated between i and j is larger

than our young space size, SY . Formally, we calculate y[i, j] as

y[i, j] =


∑

i≤b<j ∧ j≤d c[p,b,d] (live)

+
∑

p<i ∧ i≤b ∧ d<j c[p,b,d] (baggage), if A[i, j] ≤ SY

∞ otherwise

(4.1)

Again, y[i, j] is the cost of a young collection at time j assuming the previous collection

(young or full) was at i , i.e., there is no collection in between. (This intentionally does not

include the cost of the collection at i , only that of the collection at j.)

Next, we widen our focus to schedules of collections. Let Y [i, j] be the minimum

cost of any schedule that (a) begins with a collection (young or full) at i , (b) ends with a

young collection at j, and (c) has zero or more young collections in between (but no full

collections). Note that because the cost is the volume of data promoted, the same schedule

minimizes bytes traced and bytes promoted. This is important in determining impact on

occupancy in the old space. As with y[i, j], Y [i, j] includes the cost of collecting at j but

1
Observe that our cost model views promotion as essentially implying copying, so we tend to use the

terms synonymously.
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not the cost of collecting at i . Collecting a schedule of zero length has no cost, so we begin

with Y [i, i] = 0. Then, we can calculate Y [i, j] recursively:

Y [i, j] =


mini≤k<j Y [i,k] + y[k, j] if L[i] + Y [i,k] + SY ≤ SO

∞ otherwise

There are two possible cases. First, there may be no young collections between i and

j, giving cost y[i, j]. (Recall that if that is not feasible, y[i, j] = ∞.) This occurs in the

equation when i = k , which implies thatY [i,k] = Y [i, i] = 0. We must also guarantee that

the promoted data will �t into the old space. After a full collection at i , the amount of data

in the old space will be L[i], and Y [i,k] data will have already been promoted from prior

young collections. In practice, we do not know how much data will be promoted from a

young collection beforehand, so we conservatively estimate that everything in the space,

up to SY ,may be promoted. Because we allow a young collection only if the sum of these

values is less than the size of the old space, SO,we guarantee that any young collection that

is begun will be able to complete successfully. Second, there could be one or more young

collections between i and j. In this case, let k be the location of the last such collection.

Then, we can split the entire range into two smaller ranges, one from i to k and another

from k to j. We have met the constraint that there is a collection at the end of each range,

so the total cost of the schedule from i to j becomes the sum of the costs of the shorter

segments: Y [i,k] +y[k, j]. Of course, there may be many possible ways to split the range

into two segments. We choose the one that has the lowest cost. It is important in our later

analysis that the second component of this sum is y as opposed to Y .

In practice, we calculate Y in a dynamic programming table, as shown in Figure 4.1.

The value of a cell for a certain range depends only on the values for shorter ranges. So

we initialize values along the diagonal to be 0, and can then work across each row (more

generally, upwards from the diagonal).
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Figure 4.1: Schematic view of the dynamic programming table. The values on the main

diagonal can be initialized to zero. Then, the value in each cell depends only on the values

in cells that have darker colors. Computation therefore proceeds upward and to the right.
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0
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0

0

i

j
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Next, it is useful to relax the restriction that there must be a young collection exactly

at the end of a certain range. This yields Ȳ [i, j], which represents the minimum cost of a

schedule from i to j that allows only young collections. Intuitively, we begin at each cell

of Y [i, j] and look backwards for the minimum cost schedule that ends within one young

space size of j. The calculation of Ȳ is straightforward:

Ȳ [i, j] = min

{j ′ | i≤j ′≤j ∧ A[j ′,j] ≤ SY }
Y [i, j′]. (4.2)

Finally, we calculate the costs of schedules that include full collections. We de�ne

f [i, j] analogously to y[i, j]: it is the cost of a schedule that begins with a full collection

at i and ends with a full collection at j, but has no full collections between i and j. It does,

however, include the costs of any young collections between i and j. As with y, etc., it

includes the cost of the collection at j, but not of the one at i . We further ensure that the

amount of data promoted �ts into the old space. That constraint has to do with the space

in use at i , namely L[i], plus the volume promoted during i to j.

f [i, j] =


Ȳ [i, j] + L[j] if L[i] + Ȳ [i, j] ≤ SO

∞ otherwise

(4.3)

At last we are ready to calculate the optimal schedules with arbitrarily placed young

and old collections. We let F [j] be the minimum cost of a schedule that begins at 0 and

ends with a full collection at j. This is analogous to the �rst row of Y [i, j]. It would

be straightforward to extend F to be a two-dimensional table, but the extra data are not

needed for our purposes and would increase the cost of solving the problem. F [0] = 0,

since there is no cost to collect a schedule of length 0. The calculation proceeds almost

identically to Y [0, ·]:

F [j] = min

0<k<j
F [k] + f [k, j] (4.4)
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As before, we consider the cases where there are no full collections between 0 and j, and

those where there are one or more. We take the minimum cost of all the various options.

We again calculate these values using a dynamic programming table.

After the end of the trace, all objects have died, so there is no cost to collecting at n.

This means that the minimum cost of a schedule for an entire trace can be read from the

table: it is F [n].

There is one additional complication we have glossed over. Objects larger than the

young space are allocated directly into the old space, provided that the young space is

empty at the time. Handling this condition requires some extra bookkeeping. We let B[i]

be the size of the group allocated at i , if it is at least as large as the young space size, and

0 otherwise. That is,

B[i] =


A[i, i + 1], if A[i, i + 1] ≥ SY

0 otherwise

(4.5)

Then, we make the following modi�cations. First, the calculation of y becomes

y[i, j] =


(
∑

i≤b<j<d c[p,b,d]) − B[i] (live)

+
∑

p<i≤b≤d≤j c[p,b,d] (baggage), if A[i, j] − B[i] ≤ SY

∞ otherwise

(4.6)

In the calculation of the constraint, we subtract the size of a large object only if it occurs

at i , which ensures that allocation directly into the old space is allowed only immediately

after a young collection. Note that since these objects are allocated directly to old space,

there is no cost to promoting them (hence the subtraction of B[i]). The di�erences from

before are highlighted with framed boxes. Here a large object allocation (at i) is followed

by zero or more allocations that �t into young space.

Next, we must ensure that every sequence of young collections has enough room left

in the old space for each collection to complete successfully, even after taking into account
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the extra data allocated directly into the old space. This is accomplished by adding an extra

constraint onto the calculation of Y :

Y [i, j] =


mini≤k<j Y [i,k] + y[k, j] if L[i] + Y [i,k] + SY +

∑
i≤h≤j B[h] ≤ SO

∞ otherwise

.

Finally, we modify f :

f [i, j] =


Ȳ [i, j] + L[j], if L[i] + Ȳ [i, j] +

∑
i≤k<j B[k] ≤ SO

∞ otherwise

(4.7)

. This adds the requirement that the promoted data still �ts into the old space once the

data allocated directly into the old space are included.

The dynamic program �nds the minimum schedule cost, i.e., the minimum cost at-

tained by any legal schedule. More than one schedule may have that cost, of course, but

in any case, how can one extract the schedule from the solution, as opposed to just the

cost? This is straightforward, and can be done after the fact or as we go. The “as we go”

form is easier to explain: As we compute each table entry that has multiple options, we

record also which option (which often includes an array index) we used for the minimum

cost. Doing this along the way adds a constant factor overhead in space and time. Doing

it after the fact requires some scanning, but it is proportional to n. For example, to �nd

how Y [i, j] was minimized, we scan values of k seeking to minimize Y [i,k] +y[k, j]. This

is best done starting from j−1 and working backwards, stopping either at i or wheny[k, j]

becomes∞.
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4.3 Calculation of the Action-Value Function for Arbitrary States

and Actions

We have presented an algorithm that calculates the minimum cost of a schedule for

an entire trace. Additionally, it is useful to be able to calculate the cost of beginning in an

arbitrary state, taking an arbitrary action, and acting optimally thereafter to the end of

the trace. In this section, we present an extension of our algorithm to this case.

First, we note that any state a collector is in can be completely characterized by three

numbers: the current time step, i , the time step of the last collection of any type, l , and

the volume of data in the old space, u. One might expect we would also need to know the

volume of data in the young spaces as well, but since we know how much is allocated at

each time step, this can be calculated from i and l .

Next, we need to augment F into a two-dimensional table that gives us segments of

optimal schedules that begin and end at di�erent points.

F [i, j] = min


f [i, j],

min

i<k<j
F [i,k] + f [k, j]

(4.8)

As with Y before, the F table can be �lled in beginning at the diagonal and working

upwards and to the left. Then, it is easy to calculate the cost of performing a full collection

in any state and acting optimally from that point forward:

V F (i, l,u) =


L[i] + F [i,n] if L[i] ≤ SO

∞ otherwise

L[i] gives the cost of the collection at i , and F [i,n] gives the cost of an optimal schedule

from i to the end of the trace. The condition checks to ensure that the full collection at i

will �t into the old space. If not, a full collection is not valid at this point.

Calculation of the value of a young collection is more complicated, and proceeds in

two steps. First, we compute Yy[j], which is the cost of an optimal schedule from i to j

37



using only young collections, and ending with a young collection at j. This di�ers from

Y because we have di�erent constraints from beginning in an arbitrary state: beginning

with an old state usage of u, we must ensure that all of the data promoted from the young

collections still �t into the old space. The equation becomes

Yy[j] =


min

i<k<j
Y [k] + y[k, j] ifu + y[l, i] + Y [k] + SY +

∑
i≤h≤j

B[h] ≤ SO

∞ otherwise

The value of a young collection is then

V Y (i, l,u) =


mini≤j<k y[l, i] + Y

y[i, j] + L[k] + F [k,n] if A[j,k] ≤ SY ∧ L[k] ≤ SO

∞ otherwise

The elements of the sum are

1. y[l, i] – the cost of the young collection itself.

2. Yy[i, j] – the cost of a sequence of young collections until the next full collection.

3. L[k] – the cost of the next full collection.

4. F [k,n] – the cost of an optimal schedule from the next full collection to the end of

the trace.

To be valid, the schedule must also meet a number of constraints:

1. A[j,k] ≤ SY– the allocations between the last young collection in the sequence and

the next full collection must �t into the young space

2. L[k] ≤ SO – the live data at the next full collection �t into the old space.
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As before, if these constraints are not met for any value of j, no valid schedule contains a

young collection in the current state.

Finally, the value of no collection at a certain point is reducible to the previous two

cases. We simply take the minimum value of the next young or full collection in the future.

That is,

V N (i, l,u) = min


min

i<j
V F (j, l,u)

min

i<j
V Y (j, l,u)

4.3.1 Complexity Analysis

We consider the asymptotic complexity of computing each array of our dynamic pro-

gramming solution in turn. Since the sizes of the arrays are determined by n, the number

of groups, we use n as our measure of the size of the problem. However, the actual input

to the dynamic program is the table of c[·, ·, ·] values, which leads to the question of how

the size of c relates to n. A �rst thought would be that c could have size O(n3) because

of the possible values for the indices p, b, and d of the c table, but in fact the number of

cohorts is bounded by the number of objects, which in the worst case is A/m, wherem is

the minimum object size (a constant determined by the language implementer, typically

4, 8, 16, 24, or 32 bytes). This will be larger than n3
only when G/m > n2

, roughly. To see

this, note that G/m is the maximum number of objects per group, and recall that n is the

number of groups. This requires traces to be fairly short, and in any case, asymptotically,

O(n) still holds. This con�rms that n is a sensible measure of the size of the problem—it

determines both the size of the dynamic program’s arrays and bounds the size of the c

table given as input.

L can be computed e�ciently with two copies of c , one sorted in birth order and the

other in death order, so the cost to �ll L is at most O(|c | log |c |). A[i, i] = 0 and A[i, i + 1]

can be determined with one pass over c . The remaining A[i, j] values require a total of

O(n2) work to compute. However, we really need the values only for j − i ≤ 2(SY/G), that

is, if i and j are more than a certain distance apart, A[i, j] necessarily exceeds SY . For a
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given i , we need entries up through the �rst j that gives A[i, j] > SY , but none after that.

Each group adds more than G/2 bytes on average. In the end, we need only O(n) entries

of A[·, ·], a constant number per row, rather then O(n2). Given A, it is trivial (O(n)) to

compute B.

Now consider y. For each element of c , we can add it to just those y entries for which

it is relevant. Since at most 2SY/G groups (call this value д) can occur between i and j for

y[i, j] to be �nite, c[p,b,d] adds to at most 2д elements of y. However, д is a constant, so

each element of c incurs constant work for this term. Therefore the total cost to calculate

that term is O(n). A similar argument works for the second term (and the two terms

sum two disjoint sets of elements of c). Since each element of y takes constant time to

compute, the total time to compute y is O(n2). Another way of looking at this is that

y[i, j] is necessarily in�nite once j − i is large enough. We need �ll in only a constant

number of diagonals.

Y is computed as the minimum of a number of cases. How many? At most 2д values

of k can index elements of y that are not ∞, so each Y value is determined by a constant

amount of work. Thus, computing Y takesO(n2) operations. This is where it is important

that the second term of the sum is y, not Y . It might be more natural to instead calculate

mini<k<j Y [i,k] + Y [k, j]. But notice that di�erent choices of k may represent exactly the

same underlying schedule of young collections, and would lead toO(n3) cost to computeY .

Since we use mini<k<j Y [i,k] + y[k, j], each choice of k corresponds to a unique schedule

of young collections, and we can “short circuit” the computation when y[k, j] becomes

in�nite. The same argument applies to the calculation of Ȳ .

Each element of f requires constant time to compute given Y , L, and B, so its cost is

O(n2). (One does need to precompute

∑
0≤j≤i B[j] for each value of i in order to compute

the sum term of f e�ciently.) Lastly, each element of F requires O(n) time to compute,

but there are only n of them, so that cost is O(n2).
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The total cost is dominated by a number of O(n2) terms, so is O(n2). This algorithm

has undergone several rounds of revision and optimization, each time becoming more

asymptotically e�cient (compare it to the algorithm of (Jacek, Chiu, B. Marlin, et al. 2016),

which �nds only approximately optimal schedules, and hasO(n3) complexity). We believe

that no more room remains to increase the asymptotic e�ciency of this algorithm, and

therefore conjecture that its complexity is optimal for this problem, though we have not

proved any lower bounds tighter than O(n logn).

The space required is O(n2).

4.3.1.1 Computing in parallel:

Given at least n processors, we can compute in parallel so as to reduce O(n2) to O(n).

However, there are a number of min reductions. The min computations involved for y,

Y , and Ȳ involve at most a constant number of items, so the min does not a�ect the

asymptotic cost. In the case of f and F , however, the number of min computations can

be O(n) for each element, which requires O(logn) parallel time. Thus, the asymptotic

cost with at least n processors is O(n logn), and the computation proceeds diagonal by

diagonal. If the number of processors, p, is less than n, the cost will be O((n2/p) logp).

What are the prospects for exploiting GPUs for this work? The large available p is

helpful, but the limits on total memory or on memory bandwidth may be more problem-

atic. We have not worked through all the details, but believe that with some cleverness

about which array elements are brought into GPU memory at once, one could achieve

high parallelism with GPUs. Still, GPU utilization may be reduced because of memory

limitations.

4.3.1.2 Impact of varying G:

What happens if we vary the group size, G? Suppose we cut G in half. Then n would

approximately double. The number of cohorts might increase some, but it is still bounded

by the total number of objects. The most that the number of cohorts could change by is a
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factor of 8 (each of p, b, and d could split into two di�erent values), but this can happen

only until we start to approach the number of objects in the trace. The value д, our bound

on the number of groups that can �t in SY , will double, so the cost of various computations

will double. In the worst case, here is the impact on each value’s computation: L, slightly

more than doubled; A[i, i + 1] slightly more than doubled; other A values, doubled; B,

doubled; y, each element’s cost is doubled (more c values are part of its sum) and twice as

many elements are non-in�nite, so the cost is quadrupled; Y , the cost of each element is

doubled, so that the total cost will increase by a factor of 8; Ȳ likewise goes up by a factor

of 8; f , quadrupled; and F , quadrupled. Thus the overall cost has a leading term with a

factor of about 1/G3
.

4.3.1.3 Varying heap size:

If we change SY we need to recompute most of the values. However, SO a�ects only

f . Therefore we can compute y, Y , and Ȳ once for a given SY , and then compute f and F

for many values of SO using the same y, Y , and Ȳ values. f is still O(n2) to compute, but

we certainly save usefully on overall computation time.

4.3.1.4 What if G =m?

(Recall that m is the minimum object size, so this means considering collection at

each object allocation.) If we choose the smallest possible group size, then we are not

grouping at all, but considering each object to be its own cohort, and not restricting where

collections can occur. The cost to solve the dynamic programming problem may be very

high (we typically have used G = 2
18

, leading to n’s being a factor of something like 5000

smaller than the number of objects in the trace). A trickier question is how di�erent is

the optimal cost for a given G from the optimal cost for G = m. This seems di�cult to

determine theoretically, though we have not worked hard on the problem. We believe

there may be lower bounds we could compute that might in practice show how close the

two costs must be. We also develop some empirical evidence of how the optimal cost

42



Table 4.1: Summary of complexity results (
∗ = using a band matrix representation).

Impact when

Variable Cost G → G/2 When G =m Parallel Space

c — ∼ 2 — — O(n)

L O(c log c) ∼ 2 O(m logm) O(logn) O(n)

A O(n) ∼ 2 O(m) O(1) O(n)∗

B O(n) ∼ 2 O(m) O(1) O(n)

y O(n2) ∼ 4 O(m2) O(n) O(n)∗

Y O(n2) ∼ 8 O(m2) O(n) O(n2)

Ȳ O(n2) ∼ 8 O(m2) O(n) O(n2)

SY terms O(n2) ∼ 8 O(m2) O(n) O(n2)

f O(n2) ∼ 4 O(m2) O(n logn) O(n2)

F O(n2) ∼ 4 O(m2) O(n logn) O(n)

SO terms O(n2) ∼ 4 O(m2) O(n logn) O(n2)

varies with decreasing G, within the memory available to the solver. We summarize all

these results in Table 4.1.

Having laid out our dynamic program in detail, we turn our attention from after-the-

fact analysis to learned policies that could be used at run time.
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CHAPTER 5

RUN TIME POLICIES

At each time step in the execution of a trace, we want to select the action—no collec-

tion, young collection, or full collection—that yields the lowest cost over the entire trace.

Our dynamic program computes the optimal schedule: a list of which action is optimal at

each step. However, this is correct only for a single program and input. A list of optimal

actions for one trace does not necessarily give information about how to choose good

actions in a di�erent trace. Instead, we seek a collection policy—a function that takes

measurable features of a program’s execution as input and gives predictions of the opti-

mal action as output. A good policy would use these features to give action predictions

for previously unseen inputs to a program.

This is a di�cult task. By collecting early, we can select points that have lower vol-

umes of live data and thus lower costs. However, early collections can lead to more fre-

quent collections, and the cost of these additional collections can eliminate any savings.

Furthermore, the exact points at which collections are performed in�uence which objects

are promoted in future young collections. These e�ects are complicated and may not be

realized until many steps in the future. In past unpublished studies we found that lo-

cally optimal collection, i.e., choosing a point to collect between the current time and the

time when young space has just been �lled, such that young space collection cost is min-

imized, does not lead to globally optimal collection. One simple example of this behavior

was given in Chapter 1. Globally optimal collection is a combinatorial optimization prob-

lem, and it requires exact knowledge of future behavior. However, certain features about
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the execution of a program, such as we use in the work reported here, can give reasonably

accurate prediction of that future behavior, at least for some programs.

We tackle this task by reducing the problem of �nding a policy to that of training

a classi�er. This approach is used in various �elds, and is most often called behavioral

cloning, since we wish simply to copy the optimal behavior. First, we calculate optimal

schedules using our dynamic program. Then, we treat the optimal actions as class labels,

and use classi�cation algorithms to predict the optimal actions. This eliminates any need

to learn policies directly from interaction with the system.

However, not all classi�ers are appropriate to our task. Since they would be run at

each group boundary to decide whether to collect, they must be relatively small and sim-

ple. Otherwise, the overhead of the policy itself would overwhelm any cost savings from

improved collection decisions.

Even more importantly, the collection of the features imposes a greater penalty. In a

practical system, the compiler would have to add code to instrument each feature used

by the policy. This will add overhead for each feature, and if too many features are in-

strumented the additional cost will counteract any savings from sophisticated policies.

To realize any cost savings, our classi�ers must use a set of features that is very limited

compared to the total number possible. We must include feature selection into our search

for polices. On the other hand, once a feature is instrumented, keeping a bu�er to record

the values it has taken at past time steps is inexpensive. These historical values provide

us with an additional source of information.

In the rest of this chapter, we give an overview �rst of the classi�er algorithms we use

to build policies, and then the methods of feature selection we employ.

5.1 Policy Algorithms

Here, we examine the methods we use to learn and represent policies. In all cases,

if a policy selects an action that is not possible due to insu�cient space in the young
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space or old space, we simply fall back to the default policy. Indeed, for some policies we

go further, and try to learn only whether a young collection or no collection should be

performed. Full collections are taken only when they are forced, as in the default policy.

The idea here is that since young collections are more common, we can improve our

policies by concentrating their predictive power only on the decision that will have the

greatest impact.

Recall that our policy algorithms are simply general purpose classi�ers that have been

trained on the data produced by our dynamic program. Thus, we have attempted to choose

a range of classi�ers to give an overview of how di�erent techniques may fare on our

problem. We start with linear regression, which is among the simplest machine learning

algorithms. Next, we employ random forests (Breiman 2001) since they are well studied

in the literature and o�er good performance on a wide variety of tasks. Neural networks

are a very popular family of classi�ers, but they are not appropriate for our needs. A

large amount of computation is needed to generate predictions from neural networks,

so they would introduce unacceptably high overheads if they were evaluated each time

a GC system needed to make a collection decision. Of course, it is possible to use any

classi�cation algorithm as a policy, and the best choice will depend on the exact properties

and constraints of a GC and the system it runs on.

5.1.1 Linear Policies

First, we present linear policies. Given a vector of features x for a certain time step in

a trace, we multiply it by a weight matrix β to yield a vector of preferences p:

p = xβ

We then choose the action for which we have the highest preference in order to implement

a policy. Then, the problem of �nding a policy is simply that of learning β . Broadly

speaking, we take a least squares approach, and select β such that it closely approximates
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a target value y. The targets we use take two di�erent forms. The simplest is to use the

state-action values for all valid actions along the states visited in an optimal schedule:

y = (V N ,V Y ,V F )T

This is the approach taken by the well-known LSTDQ algorithm from the reinforcement

learning literature, though it learns from traces of interaction with the system rather than

directly from known state-action values.

Note that this strategy has an important drawback. The state-action values are gener-

ally all larger toward the beginning of a trace than at the end, since more actions remain

to be taken. However, since the policy chooses the action with the largest preference, we

only need the relative rather than absolute preference values. All together, this means

that a large portion of the expressive power of the policy could be wasted on essentially

predicting how far a certain state is from the end of the trace: a useless fact. Instead, we

can use relative values themselves as the training target:

m = min(V N ,V Y ,V F )

y = (V N −m,V Y −m,V F −m)

The exact method we use to calculate β given these targets is intertwined with the feature

selection algorithm we use in the linear case, so we defer discussion of it to Section 5.2.1.

5.1.2 Hellinger Tree Policies

Our second type of learning algorithm is based on decision trees. Each internal node

of the tree holds a feature ID number and a threshold. To decide which action to take at a

time step, we begin at the root node, and compare the current value of the feature against

the threshold. If it is less than or equal, we proceed to the left child of the node, and if not,
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we proceed to the right child. Eventually we reach a leaf, which lists the probability that

each action should be taken.

Decision trees are built recursively by greedily selecting the feature and threshold that

best splits the examples to be classi�ed into left and right groups according to some mea-

sure. The most common measures, Gini impurity and information gain, are not suitable

for our purposes. This is because the distribution of the actions in our data are highly

skewed. In optimal schedules, most of the time no collection should be performed. Young

collections are rare, and full collections rarer still.

To overcome this limitation, we rank splits according to the Hellinger distance, which

is much more robust to skewed distributions (Cieslak et al. 2012). To see how it is cal-

culated, consider the case where we are distinguishing between only two classes; denote

them − and +. A given split creates two conditional probability distributions. Each repre-

sents the chance that an example will be passed along to either the left or right child, given

that it belongs to a given class. The PMF (probability mass function) of one distribution is

given by P(L|−) and P(R |−), and the PMF of the other is given by P(L|+) and P(R |+). The

Hellinger distance is then one measure of the distance between these two distributions.

The calculation is:
1

dH =

√
1 −

√
P(L|−)P(L|+) −

√
P(R |−)P(R |+). (5.1)

To visualize the Hellinger distance, note that these two distributions form vectors in a

two-dimensional space. The Hellinger distance is then the Euclidean distance between

the square roots of these two vectors. It reaches its maximum value, 1, when the two

distributions are completely disjoint, and is zero if the distributions are equal. We select

the split with the largest distance between the distributions it induces. Note, however, that

1
This formula di�ers by a constant factor from what is often seen in the literature. Because we are

interested only in �nding the point that maximizes the Hellinger distance, the constant factor is irrelevant

for our purposes.
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we have three actions, and therefore three classes. This gives us three di�erent conditional

probability distributions. There is little guidance in the literature as to the best way to

combine the distances between these three points into a single measure of the quality of a

split. We take what is arguably the simplest option, and use the sum of the three pairwise

distances between the three distributions.

As we build the tree we split the examples into smaller and smaller groups. Eventually,

either a given group contains only one action, or no feature and threshold will further

subdivide it. In this case, we add a leaf that records the distribution of actions in the

group. We use Laplace smoothing, a technique that helps to avoid over�tting. It adds one

to the count of examples in each class. This reduces the con�dence the classi�er has in

the empirical probabilities when the number of examples at a leaf is small, and ensures

that at every leaf every action has at least a small probability.

Now that we have presented the policy algorithms we use, we discuss our various

methods of selecting features to feed into them.

5.2 Feature Selection Algorithms

In this section, we explain the feature selection algorithms that we use. As discussed

in the preceding literature review (Guyon and Elissee� 2003), feature selection algorithms

can be divided into three broad families. In order to survey the possible methods that can

be applied to our task, we use one method from each family. The �rst is embedded meth-

ods. These are built-in to larger algorithms that both choose features and train classi�ers

as part of the same process. Group Orthogonal Matching Pursuit, our �rst feature selec-

tion algorithm, falls into this category. Next are wrapper methods, which repeatedly train

an underlying classi�er as a subroutine using di�erent features. Those that yield the best

performance of the classi�er are selected. From this group, we use Random Forest Im-

portance. Finally, information theoretic feature selection algorithms directly compare the

features themselves against the class to be predicted in order to calculate which features
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may be most informative. Our �nal feature selection algorithm, the Mutual Information

Filter, is of this type.

5.2.1 Group Orthogonal Matching Pursuit

This �rst feature selection algorithm is speci�c to linear policies, as in Section 5.1.1.

Recall that we seek a matrix β that, when multiplied by a vector of features x correspond-

ing to a particular state, yields

p = xβ

where p is a vector of preferences for each action. The policy then selects the action with

the highest preference. Group Orthogonal Matching Pursuit (Swirszcz, Abe, and Lozano

2009) is an algorithm that provides an elegant way of both selecting a small subset of

features and calculating β . It proceeds as follows.

• Take P andX as input. P denotes the ground-truth matrix, which is ether the matrix

of state-action values or relative values, depending on the policy algorithm we are

using. X is a set of feature matrices Xi where each row of the matrix represents the

current and historical values the ith feature takes at a particular time point.

• Initialize R, the residual, to be P , and S,the set of selected features, to be empty.

• Repeat until the desired number of features have been selected.

– Calculate the length of the projection of R onto the column space of each fea-

ture matrix, and select the feature that maximizes this value. In other words,

choose Xi ∈ S such that XT
i X
†
i R is maximized.

2

– Add feature i to the set of selected features – S ← S ∪ {i}

– Assemble XS by concatenating the matrices of the features that have been

selected so far.

2† denotes the Moore-Penrose pseudoinverse.
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– Calculate the current least-squares estimates of P and β – β ← X †
S
P and P̂ ←

XSβ .

– Update the residual R ← P − P̂ . This prevents redundancy among the selected

features by ensuring that the subsequently selected features can represent the

component of P that is orthogonal to the space spanned by the features that

have already been selected.

• Return S.

5.2.2 Random Forest Importance

Importance is a concept originally developed to investigate the internal workings of

random forests (Breiman 2001), but that has also been used as a method of feature selection

(Archer and Kimes 2008). For each tree of a random forest, a training set is chosen by

randomly selecting examples from the full training data with replacement. The examples

that are not selected then naturally form a di�erent random test set for each tree. We can

use these sets to calculate the importance of each feature.

First, we calculate the classi�cation accuracy of the tree on the test examples. Then,

we randomly permute the values that a certain feature takes among these examples, and

we calculate the tree’s classi�cation accuracy again. When these two are compared, the

more that permuting the values decreases the classi�cation accuracy, the more important

we conclude the feature is to the classi�er. The overall importance of a feature is then

the average of its importance to each tree in the random forest. We then select the most

important features for use later in our �nal classi�cation algorithm.

Note that it is typical to build each tree in a random forest using a random subset

of features, as well as a random subset of training examples. When we attempted to do

this on our data, most trees did no better than random at classifying training examples.

So, we were unable to calculate meaningful importance values. This is likely because, as

discussed in Chapter 6, the vast majority of the features do not carry information relevant
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to our task. Instead, as we calculate feature importance, each node in a tree is able to select

greedily a feature and threshold for its split from the entire set of features and values in

the data.

5.2.3 Mutual Information Filter

Our last feature selection technique is adapted from Fleuret (2004). It is based on mu-

tual information, which is one measure of the similarity between random distributions.

Mutual information takes its maximum value when one distribution is a deterministic

function of the other; one variable can be used to calculate the other, and the distribu-

tions contain the same information. Conversely, if the two distributions are independent,

the mutual information between them is zero. Furthermore, conditional mutual informa-

tion tells us how much more information one distribution gives about another, given that

a third distribution is already known. This motivates the algorithm. We wish to select

features that have a large mutual information with, and are thus informative about, our

target distribution. However, using the conditional mutual information given the previ-

ously selected variables protects us against choosing features that are highly redundant.

If we letH (X ) represent the entropy of the distributionX , then the mutual information

betweenX andY is I (X ,Y ) = H (Y )+H (X )−H (X ,Y ), and the mutual information between

X and Y conditioned on Z is I (X ,Y |Z ) = H (X ,Z ) − H (Z ) − H (X ,Y ,Z ) + H (Y ,Z ). These

values can be easily calculated by counting the occurrences of values that the distributions

jointly take. However, this can only be done with discrete distributions. Our ground truth

distribution, which is the schedule of optimal actions, is discrete, but our feature values

are not. They are comprised of counts that may be very large, and are therefore e�ectively

real-valued. To overcome this, we discretize each feature’s values into ten equally sized

bins that range from zero to the maximum value the feature takes in the training data.

The algorithm to select features is then as follows.
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• Take P , the schedule of optimal actions, andX, the set of discretized feature vectors

as input.

• Find the feature that has the highest mutual information with P . That is, calculate

X j = arg maxXi∈X
I (P,Xi).

• Initialize the set of selected features: S ← {X j}. We begin by selecting the fea-

ture that is most informative about the optimal schedule. Note that for the mutual

information calculations, we treat the present and historical values of a feature as

separate distributions. So, here we are adding one feature, but possibly more than

one distribution, to the set.

• Repeat the following until the desired number of features is selected.

– Find the feature with the highest mutual information with P conditioned pair-

wise on each feature already chosen:

Xk = arg max

Xi∈X

min

X j∈S
I (P,Xi |X j)

The outer argmax selects the most informative feature, but the inner mini-

mization ensures that it is not highly redundant with any previously selected

feature. This is done only pairwise since conditioning on more than one fea-

ture would be computationally intractable.

– Add the selected feature to the set: S ← S ∪ {Xk}.

• Return S.

Finally, we turn our attention to empirical results showing the performance of our algo-

rithms.
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CHAPTER 6

EMPIRICAL RESULTS

We now present empirical results of running our various algorithms. First, Section 6.1

gives the output of our dynamic program, establishing a lower bound to the performance

of any policy. Then, we give empirical results for our linear and decision-tree based poli-

cies in the following sections.

6.1 Dynamic Program Results

6.1.1 Heap Size and Collection Cost

To begin, we consider results for a particular trace: a run of javac on one input,

using a young size of 8 MB. We chose this trace because its relatively short length makes

various properties of its optimal policies easily visible.
1

First, Figure 6.1 shows the points

where collections occur in the optimal schedule and under the default policy, using an

old size of 25 MB. Notice that the young collections in the optimal schedule tend to occur

at smaller live sizes than those in the default policy, but they are not always located at

exact local minima of the live size curve. This illustrates that minimizing the total cost of

a schedule depends on global, rather than simply local, information about the trace. How-

ever, also note that the optimal schedule contains only one full collection. This contrasts

with the two expensive full collections that the default policy performs, greatly increasing

its cost.

1
We make no claim as to whether the heap sizes are what one would choose in practice. This example

is chosen only to illustrate how optimal collection can be di�erent from the default policy.
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Figure 6.1: Collection points for a particular trace.
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Next, Figure 6.2a plots the cost of optimal and default schedules against the old space

size. As expected, the optimal cost is always less than the default cost, and in general costs

decrease as the heap size grows larger. However, note that the default cost can sometimes

be greater at larger heap sizes, while the optimal cost never increases. This is because

at larger heap sizes, at worst, the optimal schedule will simply collect at the same points

as it will for smaller heap sizes. It may seem counter-intuitive that increasing heap size

can cause the default policy to make decisions that cost more. However, this is a (now)

well-known e�ect and comes about because collection points shift and can cause a full

collection at a time with high live size shortly before a large number of objects becomes

unreachable. Adjusting young collection times can avoid that costly full collection.

As for the optimal schedules, increasing the heap size never excludes schedules that

are valid at smaller sizes. Also, note that full collections tend to be much more expensive

than young collections. As the heap grows, it provides opportunity for more inexpensive

placement of collections. But when certain thresholds are reached, the trace can complete

with one fewer full collection, giving a substantial decrease in costs. This explains the

characteristic stair-step shape of the cost curves. The cost decreases slowly until an entire

full collection is optimized away, at which point the cost drops quickly. Note, furthermore,

that these points occur at smaller old sizes for the optimal schedule than for the default

schedule. Finally, notice that the optimal schedule curve extends further left than the

default schedule curve. This shows that careful placement of collection points can allow

a collector to continue in situations where the default strategy paints itself into a corner

with no valid actions left to take. We present the same data again in Figure 6.2b, scaled

by the default schedule cost (at the same heap size). As the old size changes, the relative

savings of the optimal schedule varies within certain bounds.

The previous graphs tell us the cost of the two di�erent schedules at various old sizes,

but we can ask a di�erent, related question: If one is willing to tolerate a certain cost of

collection, what is the smallest old size one can use without exceeding this cost? Fig-
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Figure 6.2: Cost vs old size for a particular trace
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Figure 6.3: Minimum required old size vs cost for a particular trace

(a) Size has not been scaled
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ure 6.3a answers this question. Using the same trace and settings as the previous �gures,

the horizontal axis shows the cost we are willing to tolerate, and the vertical axis shows

the minimum old size needed to meet this requirement. As the cost decreases, the old size

needed increases, but it increases much more quickly in the case of the default policy. Fig-

ure 6.3b presents the same data, scaled by the size required by the default schedule. Note

that the curves meet in the upper right corner. This shows that if we tolerate a very high

cost, we run into the hard limit that the live data must �t into the heap, and we cannot

reduce the heap size any more. Essentially, we must collect at nearly every time step, and

no optimization is possible.

Next, we expand our view from a single trace to the cost reductions associated with

optimal schedules on a wide range of programs and inputs. Figure 6.4a shows the rela-

tionship between the costs of the default and optimal schedules versus the size of the old

space. These results are summaries over all of the programs, inputs, and young sizes we

analyzed; in order to draw meaningful comparisons across di�erent traces, the old sizes

on the horizontal axis are scaled to be multiples of the maximum volume of live data in

the trace (“max live size”). Clearly, the optimal schedule provides a greater cost savings

at smaller old sizes, but there is quite a large variance in the data.

Figure 6.4b shows the same data as Figure 6.4a, but the cost of each optimal schedule

has been divided by the cost of the default schedule that corresponds to the same trace

and settings. The savings become more clearly visible. At larger heap sizes, the aver-

age optimal schedule costs about eighty percent of what the default schedule does, and

the relative cost decreases at smaller old sizes. This matches our intuition that smaller

heap sizes are “tighter”: they are more sensitive to the placement of collections, and thus

provide more opportunity for optimization.

As we did for the single trace, we can ask what minimum old size is needed for a given

cost; these results are summarized in Figure 6.5. In order to compare between traces of

di�erent lengths, the horizontal axis is scaled to show the cost per byte allocated, some-

59



Figure 6.4: Summary of cost vs old size
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Figure 6.5: Overall min old size vs cost, scaled to fractions of the default size.
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times called the mark/cons ratio. Another, possibly more intuitive, way to describe that

quantity is the average number of times an allocated byte will be copied by the collector.

6.1.2 Impact of Collector Model

The model of a generational collector we presented in Chapter 3 di�ers slightly from

that which we used in Jacek, Chiu, B. M. Marlin, et al. (2019). There, we used what we

will call an “unsafe” model, where a young collection is allowed if the objects it promotes

will �t into the old space. Of course, how much of the data in the young space will be

promoted cannot be determined beforehand. A collector running on this model would

need a mechanism for backing out of a failed collection and performing a full collection

instead. We call the alternative model we use here “safe” because any young collection

that is allowed to begin will have enough room in the old space to complete successfully,

which we feel is more realistic for a practical collector. Empirical results comparing the

optimal schedules under these two collector models are presented here.

First, Figure 6.6 compares the costs of the default policy against the optimal schedules

under these two di�erent models. At very small heap sizes, the additional �exibility given

by the unsafe model allows for much less expensive schedules. But at moderate and larger

sizes, the optimal schedule costs for the two di�erent models are nearly identical.

This trend is common among all of our traces, as seen in Figure 6.7. A large advantage

for the unsafe model at very small heap sizes mostly disappears at medium and large

sizes. We conclude that, for our purposes, the choice between these two collector models

is largely irrelevant.

6.2 Learned Policies

As we have established theoretical lower limits to the costs incurred by generational

garbage collectors, we now turn our attention to the performance of learned policies.
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Figure 6.6: Old Size vs Cost Using Both Collector Models for A Particular Program

(a) Cost has not been scaled
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Figure 6.7: Summary of Old Size vs Cost Using Both Collector Models

(a) Old size has not been scaled.
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For policy training, we selected 32 instrumented features as an approximation of the

number that could be used in a practical system. The fraction of the young and old spaces

that are occupied would also be available to a system so they are also included, bringing

us to a total of 34 features. First, we �rst trained a single decision tree on each trace in our

set using features selected based on importance, and then tested its performance on that

same trace. In all cases, the learned trees were able to perfectly reproduce the optimal

policy. This likely indicates that they were over�tting to their training data, but it does

suggest that the selected features are informative enough to represent good policies.

Next, we investigated how well our learned policies could generalize across di�erent

inputs to a program. For the cases that we used random forests, each was built with

100 trees. We selected this large number in order to give our policies the best chance of

performing well, since random forests do not tend to over�t as the number of trees they

contain is increased. On the other hand, each additional tree in a policy increases the cost

of making each action decision. A practical system would require additional engineering

to precisely quantify these costs and make any necessary trade o�s between the cost and

performance of a decision tree policy. Still, our results give insight into what might be

possible for any practical system.

In all results reported below, we performed leave-one-out cross validation of our poli-

cies by training on all but one input to a program. The resulting policy was then simulated

on the remaining input. We repeated this procedure for every input in our suite.

Our training data represented optimal schedules for old spaces sized to be three times

the maximum live size of the trace. For all programs except luindex, we used a young

space size of 8MB. This size is large enough that luindex did not perform any collec-

tions, so instead we used a young space size of 2MB for that program only.
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6.2.1 Generalization Over Old Space Sizes

If a policy is e�ective at one heap size, will it perform similarly well at other heap

sizes? This is the question we answer in this section. To do so, we construct a specialized

policy for each program and input from the optimal schedule calculated for a heap size

of three times the trace’s maximum live size. When run at di�erent old space sizes, the

policy will attempt to follow the same schedule, taking the same action at each time step.

If that action is not possible, the policy falls back to the action the default policy would

take. We call this a “schedule-policy” because it is a policy that simply tries to follow a

pre-established schedule.

Of course, this is not a practical policy; one rarely needs to run the same program on

the same input, just using di�erent heap sizes. Instead, the idea here is to establish how

easily policies can generalize over di�erent old space sizes. For example, do policies need

to be narrowly tailored to speci�c heap sizes, or is a policy trained at one heap size likely

to over�t and perform poorly at other sizes?

Consider Figure 6.8, which compares the cost of this policy to the default and optimal

on the same javac program and input considered previously in this chapter. As we can

see, the schedule policy closely follows the cost of the optimal schedule.

The performance for this policy is summarized across all programs and inputs in Fig-

ure 6.9. At very small heap sizes, considerably smaller than the three times the maximum

live size they are trained at, the average cost of the schedule policy degrades, approach-

ing the default. Additionally, in a small number of cases, this policy can cost considerably

more than the default. However, at most old space sizes, this policy essentially matches

the performance of the optimal schedule. In other words, to build a nearly optimal pol-

icy for a particular program and input at any heap size, all one needs to do is memorize

an optimal schedule for one particular old space size. We can expect policies to easily

generalize over di�erent old space sizes.
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Figure 6.8: Schedule-Policy Performance for a Particular Trace

(a) Cost has not been scaled.
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Figure 6.9: Schedule-Policy Performance Summary
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Figure 6.10: State-Action Value Linear Policy on a Particular Trace
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6.2.2 Linear Policies

Here, we presents results from the performance of linear policies on our traces. Recall

that we have two di�erent linear policies. Both use the group orthogonal matching pursuit

algorithm, but one is trained using the state-action values as their target, and the other

uses the disadvantage. Figures 6.10 and 6.11 show the performance of these policies on

the javac trace we have been using for illustration, and Figures 6.12 and 6.13 summarize

the performance of these policies over all traces. Finally, Figures 6.14, 6.15, 6.16, and 6.17

recapitulate the same results for policies that use history features reaching twenty time

steps into the past.

In all cases, the graphs show a consistent pattern. The policies are able to reproduce the

performance of the default policy when using up to three features, but at greater numbers,

their cost rapidly increases. Only in rare instances are they able to perform at lower cost

than the default. We conclude that linear polices are ine�ective for this problem. When
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Figure 6.11: Disadvantage Linear Policy on a Particular Trace
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Figure 6.12: State-Action Value Linear Policy Summary
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Figure 6.13: Disadvantage Linear Policy Summary
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Figure 6.14: State-Action Linear Policy with History For a Particular Trace
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Figure 6.15: Disadvantage Linear Policy with History for a Particular Trace
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Figure 6.16: State-Action Linear Policy with History Summary
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Figure 6.17: Disadvantage Linear Policy with History Summary
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the policies have few features and therefore few degrees of freedom, they cannot represent

policies in detail. This leads them to nearly always predict that no action should be taken,

essentially falling back to the default policy and giving identical performance. Given more

features, however, their performance is even worse, suggesting that they decide to collect

too frequently. In very few cases do they give any improvement over the default.

6.2.3 Hellinger Tree Polices with Importance Feature Selection

We tested each of our learned policies on 100 di�erent old sizes ranging from 1 to 5

times the maximum live size of the trace. The results from one program and input, javac

on asm, are given in Figure 6.18.

Figure 6.18(b) shows the same data as Figure 6.18(a), but the cost values have been

shifted and scaled to bring the cost of the optimal schedule to 0 and the cost of the default

policy to 1. The graphs show tor hat the performance of the learned policy does not

generalize well to small heap sizes, but for most of the range it achieves about half the

possible improvement.

Unfortunately, not all traces fare as well. Figure 6.19 shows similar graphs for the

large60 input to the batik program. For most of the range, the learned policy simply

reproduces the default policy. For some traces, it does so for its entire range. However,

the performance of the learned policies varies between inputs to a single program, not

simply across di�erent programs. Figure 6.20 illustrates a di�erent input to the batik

program on which the learned policy has much better performance than the default.

Next, Figure 6.21 gives the distribution of scaled costs for every program and input in

our suite. About half the time, the learned policy is identical to the default policy, and in

rare cases worse. However, in many cases the learned policy is better. It gives a mean of

about 20 percent of the possible improvement so long as the heap size is not too small. In

a few cases, it equals the optimal schedule.
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Finally, we show a similar summary for the case where the decision trees are built

using historical features as well as the features of the current time step. This is found in

Figure 6.22. Note that although the polices themselves use history features, the feature

selection was done only using the current time-step features. This is because the time

to run the importance calculation increases linearly with the number of features that we

are selecting from, and including the history features increases the number of features

forty times. This makes the calculation prohibitively expensive. Instead, we select the

same features as in the previous case. Unfortunately, the inclusion of history features

degrades the performance of the polices, pushing the mean up to be more costly than the

default policy. Historical features, at least chosen in this manner, seem to generally be

less informative than the features from the current time step.

6.2.4 Hellinger Tree Polices with Mutual Information Feature Selection

Finally, we discuss the results we obtain using Hellinger tree policies, but with feature

selection accomplished by mutual information algorithm. One of the primary advantages

of this algorithm is that it can be executed much more quickly than the alternative that

uses random-forest importance. This allows us to select from history features as well as

the features of the current time step. The results are shown in Figure 6.23 for the case

where only features of the current time step are selected and used. The performance

is very similar to that of the default policy. In fact, the cost is not equal to that of the

default for only three traces: javac on the crystal input, and luindex on the

default60 and poem60 inputs.

The performance improves markedly when history features are included in the policy,

as shown in Figure 6.24. These costs are quite similar to the importance case, though these

policies achieve a slightly lower mean cost.
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6.3 What In�uences Learned Policy Performance?

It’s natural to ask what aspects of a trace in�uence the performance of the learned

policies. This may help us to predict whether a learned policy will be e�ective in a partic-

ular situation or further re�ne our policies to a particular need. In this section, we restrict

our attention to results obtained using Hellinger tree policies with mutual information

feature selection and history features simply because they had the best results of all of

our learned policies.

First, are the performance gains limited only to certain programs? The programs di�er

widely in the number of inputs we have for them, but Figure 6.25 suggests that the costs

vary across inputs to each program. The programs generally show a range of di�erent

values for the learned policy costs, and they tend to have many results near the default.

The one possible exception is the luindex program, though with only a few inputs it

is hard to draw �rm conclusions.

Next, we investigate whether the length of the trace in�uences the cost of the learned

policy. The results are shown in Figure 6.26; note the logarithmic horizontal axis. Each

point on the plot represents the cost of the learned policy at at a heap size of three times

the maximum live size, the same size at which it is trained. The trend line has an r-value

of 0.50 and a p-value of 8.3×10
−8

, so we conclude that there is a correlation between these

two values. The learned policy is able to achieve better results on shorter traces. When

traces are short, each collection decision has a greater impact on the overall cost. If the

policies are able to learn just a limited number of very good collection decisions, this may

explain the trend we see here.

Finally, we investigate a relationship between the performance possible with the opti-

mal schedule and the performance actually achieved by the learned policy. In other words,

can the learned policy perform well only when the optimal schedule is much better than

the default? Figure 6.27 answers this question in the negative. The regression line has an

r-value of 0.34 and a p-value of 0.01, so we cannot conclude that any trend exists. The
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learned policy cost does seem to depend on whether the optimal schedule makes a large

or small improvement over the default policy.

Next, in our �nal chapter, we summarize our conclusions and suggest ways this work

may be extended in the future.
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Figure 6.18: Policy costs for javac asm.

(a) Costs have not been scaled.
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(b) Costs scaled to fractions of default policy cost.
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Figure 6.19: Policy costs for batik default60.

(a) Costs have not been scaled.
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(b) Costs scaled to fractions of the default policy costs.
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Figure 6.20: Policy costs for batik default60.

(a) Costs have not been scaled.
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(b) Costs scaled to fractions of the default policy costs.
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Figure 6.21: Distribution of learned policy costs.
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Figure 6.22: Distribution of Hellinger tree policy costs, using importance and history fea-

tures.
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Figure 6.23: Distribution of Hellinger tree policy costs, using mutual information
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Figure 6.24: Distribution of Hellinger tree policy costs, using mutual information and

history features.
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Figure 6.25: Distribution of learned policy performance across di�erent inputs to the pro-

grams.
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Figure 6.26: Learned policy cost vs trace length
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Figure 6.27: Learned policy cost vs optimal schedule cost.
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CHAPTER 7

CONCLUSIONS AND FUTUREWORK

We have presented a dynamic program that can exactly calculate optimal schedules

of collections, and shown that for many programs and inputs there is substantial room

for improvement over the default policy. Future work might look to develop similar al-

gorithms for di�erent collector models. These could include di�erent con�gurations of

generations, or di�erent cost calculations.

We have also shown that it is possible to learn GC policies that improve collector per-

formance even on new inputs. To our knowledge, this is the �rst work in the literature

to apply machine learning techniques to the problem of optimizing generational garbage

collection times. Linear policies cannot adequately represent the needed complexity, and

generally cannot improve over the default. Decision tree policies, on the other hand, often

improve over the default and sometimes match the optimal schedule. Among the feature

selection algorithms we studied, mutual information is slightly better when history fea-

tures are used, and signi�cantly worse when they are not. We can conclude that history

features give some bene�t, but to do so they must be considered during feature selec-

tion step as well during policy training. Simply adding the history of previously selected

features can be counterproductive.

A number of avenues remain open for future research:

• There are di�erent performance costs to instrumenting di�erent features. A prac-

tical policy may bene�t from selecting features in a cost-aware manner.

• Classi�ers other than random forests may give better performance on this task. For

example, our random forests classify each time step on its own and do not make
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any use of the fact that our data form ordered series. Likewise, it is possible that

neural net models, for example, might do better (although a quick check suggested

that in this simple case they did worse).

• Our continuous features could be discretized in di�erent manners, such as logarith-

mically into percentiles.

• For each program and input, our classi�ers are trained on a single trace using a

single heap size. Including additional heap sizes in the training data may help the

learned policies to generalize to new inputs and heap sizes. This may address the

issue of the sometimes bad performance for small heap sizes.

The policies are also given only the exactly optimal schedules as ground truth, but many

schedules have costs only slightly higher. Training on these slightly sub-optimal sched-

ules as well may improve the performance of our policies by o�ering more training data

and avoiding over-sensitivity to the exact decisions needed to achieve optimal cost.

Much work remains before collection policies similar to those we investigate here

could be put into production in real run-time systems. We have, however, made the im-

portant �rst steps toward using machine learning techniques to decide when generational

garbage collectors should be run in order to optimize their performance, and we have

shown that further investigation may be worthwhile.
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