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ABSTRACT 

Testing the convergent retrieval learning theory of testing effects 

February 2020 

WILLIAM J. HOPPER, B.S., UNIVERSITY OF CALIFORNIA SAN DIEGO 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: David E. Huber 

What is learned from retrieving a memory that is not learned by studying the same 

information? In response to this question, I have proposed a new theory of retrieval-based 

learning in which I argue that retrieval strengthens the ability to completely activate all 

portions of a memory trace from an initial state of partial activation. In effect, retrieval 

serves to unitize the features of a memory, making the entire memory remain retrievable 

in the future when cue-related activation may be weaker. This theory, called the Primary 

and Convergent Retrieval (PCR) model, explains why practice tests produce both better 

long-term retention and faster retrieval than restudy of the same information. In this 

dissertation, I explore and test several predictions arising from the assumptions of the 

PCR model’s learning rule. In Experiment 1, I use evidence from retrieval latencies to 

demonstrate that even unsuccessful retrieval attempts produce learning. In Experiment 2, 

I demonstrate retrieval practice does not generalize between retrieval cues, which has 

important consequences for assumptions about what the features of memory 

representations may be, and retrieval routes through these features. And in Experiment 3, 

I show that when the same gradual unfolding of features that is assumed to allow learning 

during retrieval is deliberately engineered to occur during encoding, it produces the same 
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types of retention and latency benefits produced by retrieval. These experiments further 

support the PCR model by confirming its prediction about what is learned from testing, 

and when this learning may be expected. Portions of this dissertation have appeared in 

previously published works; specifically, much of the general introduction and general 

discussion has appeared in Hopper & Huber (2018), and the entirety of Experiment 1 is 

also reported in Hopper & Huber (2019). Experiments 2 and 3 have not yet appeared in 

any published volume.  
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CHAPTER 1 

LEARNING FROM RETRIEVAL AND THE TESTING EFFECT 

1.1. Introduction 

It is rare that a single exposure to new information, like a new colleague’s name, is 

sufficient for anyone to retain that new information over a long period of time. Rather, 

experience tells us that retention requires repetition and practice, and even then, 

forgetting is difficult to stave off. If long-term retention of information is a goal everyone 

shares (at least from time to time), it is useful to ask whether any method of re-exposure 

produces better retention than others. Research beginning close to one hundred years ago 

has provided an answer to this practical question: recalling information from your 

memory is a highly effective method for retaining that information, and produces better 

long-term performance than methods involving restudy (see Roediger & Karpicke, 

2006a; and Karpicke, 2017 for recent reviews). Results demonstrating the long-term 

retention benefits of testing are so ubiquitous and consistent that the term “the testing 

effect” has been coined as shorthand to describe the universal finding of better memory 

accuracy after a practice test as compared to restudying the same information.  

A classic example of the testing effect comes from an experiment by Roediger and 

Karpicke (2006b), who contrasted the effects of restudy and free recall test practice on 

memory for facts from textbook passages. When their participants’ memory was tested 

five minutes after learning the material (i.e., a brief retention interval), memory was 

better for facts that were restudied than for facts that were practiced with a free recall test. 

However, this pattern of results reversed when the final test was given after a longer 

retention interval (two days or seven days); memory was better for facts that were 
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practiced with a free recall test than for facts that were restudied. The exact pattern of 

results from this experiment is shown in Figure 1, and similar patterns of results have 

been shown across multiple other studies (Carpenter, Pashler, Wixted, & Vul, 2008; Kuo 

& Hirshman, 1996; Toppino & Cohen, 2009; Wheeler, Ewers, & Buonanno, 2003). Thus, 

if you are cramming for an exam just before it starts, the best strategy may be quickly re-

reading the material, but when studying well in advance of an exam, a better strategy is to 

use a set of flash cards to practice recalling the material.  

Findings like this give rise to the general conclusion that restudying and recalling 

information produce unequal learning about that information. But despite many empirical 

investigations and several proposed theoretical accounts, there is still no universally 

accepted explanation for testing effects, or retrieval-based learning more broadly 

(Rowland, 2014). However, a useful framework for conceptualizing the different effects 

Figure 1: Recall accuracy in Experiment 1 of Roediger and Karpicke, 2006b. 
Restudying produces better accuracy at short retention intervals, but test practice 

produces better accuracy at longer retention intervals. Error bars represent 
standard errors of the mean in each condition. 
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of restudy and test practice comes from the “bifurcated” distribution account presented by 

Kornell, Bjork and Garcia (2011). Under this account, the “early” advantage for restudy 

and “late” advantage for test practice stems from the effects these practice methods have 

on the properties of the memory strength distributions for to-be-remembered items. A 

chance to restudy increases the memory strength for all restudied items, effectively 

shifting the distribution of memory strengths up to a higher mean without changing its 

shape. A practice test (without feedback) produces a great deal of learning for the items 

recalled on the practice test, but no learning for the unrecalled items. This divides the 

memory strength distribution into two portions – the part strengthened by retrieval, and 

the residual, unstrengthened portion. If the strengthening from restudy is less than the 

strengthening from successful recall practice, and not all items are recalled on the 

practice test, this produces better performance in the short term following restudy 

(because all of the restudied items are strengthened, instead of just the already recallable 

items) but better performance in the long term following test practice (because the larger 

increase from successful retrieval makes the items remain memorable for a longer period 

of time).  

The notion of a bifurcated distribution of memory strengths following test 

practice has been supported by several studies examining its predictions. Jang et al. 

(2012) administered an initial practice test for all studied items for the purposes of 

dividing items into separate pools of recallable and non-recallable items. Items in each 

pool underwent either additional study or test practice, before taking a final test on all 

items. The results showed that the advantage of restudy before the final test was almost 

entirely due to strengthening the items in the non-recallable pool. In addition, if recall 
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success on the practice test is very high (i.e., there is little bifurcation of the memory 

strength distribution), a practice test is better than restudy even for an immediate final test 

(Rowland & DeLosh, 2015). However, the bifurcation model is a descriptive account - it 

assumes that successful recall produces more learning than restudy but does not specify 

why this is the case or whether these different magnitudes of learning reflect different 

processes. The theory set out here specifies the learning mechanisms underlying the 

testing effect by building upon the common assumption in formal models of memory that 

recall is a two-stage process. 

1.2. Two-Stage Retrieval Operations 

Many formal process models of memory assume that recall is a two stage 

process with the following stages: 1) an initial ‘search’ process isolates a candidate 

memory using the current context and retrieval cues; and 2) a subsequent ‘recovery’ 

process extracts the details (e.g., semantic, phonological, or orthographic attributes) of 

the candidate memory to produce on overt response. A failure to recall could arise from 

either a failure to find the desired memory, or a failure to recover the details of a memory 

after locating it. To highlight this conceptual distinction, consider an analogy in which 

long-term memory is a shipping warehouse and memories are packages in the warehouse. 

To find a specific package, you need to use the attributes of that package to narrow down 

your search. Some attributes may work better than others for this search process (e.g., 

‘rectangular shape’ may describe the majority of the packages whereas ‘taller than four 

feet’ may apply to only a handful of packages). Assuming that this search process 

identifies the desired package, you cannot specify the contents of that package without 
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opening it up, and packages may differ in their ease of opening (e.g., a package wrapped 

in duct tape versus a tiny bit of scotch tape). 

Search and recovery processes exist in most formal models of recall (e.g., 

Minerva II: Hintzman, 1984; CLS: Norman & O’Reilly, 2003; SAM: Raaijmakers & 

Shiffrin, 1981), with this distinction serving to describe differences between recognition 

performance (which is related to the information that guides search) versus recall (which 

additionally requires recovery). Although these models assume that recall involves two 

processes, they do not specify different learning for each process, instead assuming that 

any learning makes it easier to isolate a memory and easier to extract its details for recall. 

In developing an account of the benefits from taking a recall practice test, learning for 

different kinds of associations is considered (e.g., between context and the item, between 

retrieval cues and the item, and between some features of the item and other features of 

the item). If learning is a dynamic process in which associations are created or 

strengthened depending on the temporal order of activation, then different kinds of 

practice may differentially affect these different associations, selectively boosting the 

search or recovery processes.  

The distinction between what is learned from different kinds of practice is 

shown in Figure 2, which extends the shipping warehouse analogy to the benefits of 

restudy versus the benefits of recall practice. As seen in the figure, restudying identifies 

better attributes for searching for relevant packages (i.e., in the case of free recall, a larger 

set of correct memories 
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are included in the search set, which increases recall accuracy) whereas recall practice 

doesn’t add any memories to the search set, but makes it easier to recover the contents of 

the memories already in the search set (i.e., recall accuracy is not increased, but it is 

easier/faster to recall the contents of the memories in the search set). Because this 

account deviates from prior memory models in proposing that the two retrieval operations 

are differently affected by different kinds of practice, new terminology is used to 

described these two processes: ‘primary retrieval’ versus ‘convergent retrieval’.  

1.3. Primary and Convergent Retrieval 

The Primary and Convergent Retrieval (PCR) model of recall makes 3 

core assumptions about how information is recalled. The first two relate to the distinct 

Figure 2: This diagram shows the hypothesized effect of study practice and test 
practice using a shipping warehouse where packages must be retrieved and 

opened as an analogy for the memory system. Restudy strengthens the retrieval 
cues, resulting in a large set of correctly retrieved memory packages (e.g., higher 
accuracy in free recall or higher familiarity in recognition), whereas test practice 
makes it easier to reopen memory packages that were successfully recalled during 
test practice (e.g., higher recall accuracy for previously recalled items as well as 

faster recall for those items). 
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stages of processing involved in recalling information, while the third the learning rule of 

the model. The first assumption is that there is an initial stage of recall, termed Primary 

Retrieval. In this initial stage of recall, retrieval cues (both context and item cues) activate 

features of the relevant target memories. Feature activation is likely to be incomplete for 

any particular item (i.e., some, but not all of the features are active). The second 

assumption is that the initial stage of Primary Retrieval is complemented by a second 

stage, termed Convergent Retrieval. This subsequent process activates the initially 

dormant features in one of the items (presumably the most active item). It is considered to 

be a separate process from Primary Retrieval because features is not activated by retrieval 

cues directly, but rather by associations between the features within the item (i.e., intra-

item associations). This process may take time to gradually unfold as more and more of 

the item’s features become active. If this process stalls, ‘tip of the tongue’ occurs (see R. 

Brown & McNeill, 1966). However, if this process succeeds, all of the features become 

active and the item is available for report (i.e., recall is successful). 

The third assumption describes when and what is learned during retrieval. 

The PCR model makes the assumption of directional learning; Associations between 

features are directional (e.g., feature A might activate feature B, but not vice versa), and 

these directional associations are created according to the temporal order in which 

features become active (e.g., if feature A is active before feature B becomes active, then 

the directional association from feature A to feature B is strengthened). Because retrieval 

cues (e.g., context) are active before the presentation of an item for study, study practice 

results in directional learning from retrieval cues to items. Because successful convergent 
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retrieval is a gradual filling in of an item’s features, successful recall (but not study) 

promotes intra-item learning from some features of an item to other features of an item.  

The unique contribution of the PCR model is further specification of the 

recovery process and a proposal for the types of learning (e.g., recall practice) that 

uniquely affect recovery. Previously proposed memory models assume that the 

probability of recovery is based on the same item strength that underlies sampling and 

familiarity. In contrast, the PCR model allows for associative information that is unique 

to item recovery. Furthermore, unlike previous memory models, the PCR model assumes 

that item recovery takes some time, with this duration affected by recall practice.  

An example of convergent retrieval is shown in Figure 3A based on an 

item with five features. This is an illustrative example, and a full-fledged version of the 

model would assign many more features to each item, with features capturing the 

orthographic, phonemic, semantic, lexical, and perceptual details of the item. In this 

example, suppose that an inactive feature becomes active if it has two incoming 

associations from other already active features. The retrieval attempt begins with primary 

retrieval in the first time step, where the current retrieval cues (cue X) activate the first 

two features of the item. Feature three then becomes active via its associations from 

features one and two. Subsequently, feature four is activated via its associations from 

features two and three. Finally, feature five is activated via its associations from features 

three and four, and full convergence is achieved. Because convergent retrieval unfolded 

in a staged manner, new associations are formed between some of the item’s features 

(one  four, one five, and two  five, as shown by the dashed lines in Figure 3B).  
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Successful recall is able to produce better retention than restudy because it 

strengthens the associations between an item’s features. If the same features activated in 

primary retrieval during test practice (or a subset of those features, as occurs after a 

delay) are activated on a later test, the strengthened intra-item associations make the item 

more retrievable. In other words, learning directional associations from initially active 

features to dormant features makes it more likely that attempting recall with the original 

retrieval cues will be successful. This intra-item learning also serves to reduce retrieval 

latency because less work is required in convergent retrieval. For example, in Figure 3C, 

a second recall with the same retrieval cues now reaches convergence in a single time 

step. This prediction of faster retrieval following retrieval echoes the proposal that 

retrieval latency reflects the number of “decoding” steps required to output an item 

(MacLeod & Nelson, 1984). 

Why should delay result in activation of a subset of the originally activated 

features? During initial study, features representing the current context are active before 

item features, resulting in directional associations from the context to the item’s features. 

As previously outlined, these new associations provide the basis of primary retrieval. An 

increase in retention interval is thought to weaken the match between the context of 

initial learning and the context at time of retrieval (Howard & Kahana, 2002; Mensink & 

Raaijmakers, 1988). This change in context means that some features of the learning 

context (study and test practice) will not be present at the delayed final test. Without 

these features being present, fewer of the originally learned target features are activated 

Furthermore, a change of context cannot spontaneously result in the activation of target 

features that were not associated with the context prior to the delay. 
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Figure 3: The operations and intra-item learning that occur during convergent 
retrieval. A) The gradual activation of an item’s features during convergent 

retrieval, initiated by primary retrieval based on retrieval cue X in the first time 
step. With two lines of support (indicated by the bold arrows), the features of the 

item are activated one after the other across time steps, resulting in full convergent 
retrieval and recall success. B) Learning occurs according to the temporal order of 
feature activations, resulting in new intra-item learning (indicated by the dashed 

arrows) from features that were active earlier during convergent retrieval to 
features that became active later during convergent retrieval. C) If retrieval cue X is 
used for a subsequent recall attempt, convergent retrieval can occur in a single time 
step owing to intra-item learning from the prior recall success (i.e., decreased recall 

latency). D) Because learning is directional, initiating convergent retrieval with a 
different retrieval cue (cue Y), may fail despite prior intra-item learning. 



11 

Thus, the features activated by primary retrieval after a delay (i.e., a context change) are a 

subset of the originally learned features. Because of this weakened activation from the 

context cues, intra-item learning is critical for retrieval success -- prior recall practice 

makes it more likely that convergent retrieval will succeed from this subset of features, 

thus protecting recall performance from context changes.  

The benefits of recall practice can be contrasted with restudy. Restudy produces 

new associations between the retrieval cues and the item, but because re-presenting the 

item activates all its features at once, there is no opportunity for intra-item learning. 

Because restudy enlarges the set of features activated by primary retrieval, this can 

increase the probability of convergent retrieval success for a brief retention interval (e.g., 

it more likely that the starting point will support success). However, over a longer 

retention interval, this enlarged set of features may be diminished due to a change in 

context cues to the point that convergent retrieval fails. Thus, restudy result in faster 

forgetting relative to recall practice, because the learning it produces is more susceptible 

to contextual changes that occur over time. The PCR model also predicts is that test 

practice should also produce retrieval on the final test that restudy produces, because of 

its explanatory mechanism of better retention. If enhanced intra-item associations explain 

the long-term retention advantage of test practice, and enhanced intra-item associations 

produce faster retrievals, then test practice should also produce faster retrieval on the 

final test that restudy produces. 

To make this concrete, suppose that initial study results in learning 50% of the 

item’s features and restudy results in learning half of the remaining features, such that 

75% of the item’s features are now associated with the current context. With 75% of the 
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features active in response to the current context on an immediate final test, recall success 

is likely and will occur quickly (only 25% needs to be filled in). However, after a delay, 

context is changed, and might, for instance, only contact one third of the originally 

learned item features. Thus, after a delay, only 25% (reduced from 75%) of the features 

are activated during primary retrieval, which may be insufficient for recall success given 

that restudy does not promote intra-item learning (e.g., the links between this 25% of 

features and the remaining 75% were not strengthened). Furthermore, even if recall 

success occurs after a delay, it will not be particularly speedy as compared to a situation 

in which intra-item learning has occurred (e.g., after recall practice, it may be relatively 

easy to go from this 25% of features to the remaining 75%). In summary, after a delay, 

both the initial accuracy benefits and initial latency benefits following restudy are lost as 

compared to recall practice. 

1.4. Support for the Convergent Retrieval Learning Hypothesis 

Support for the convergent retrieval learning hypothesis can be found 

across several lines of research. Prior studies have shown that practice tests involving 

recall produce larger retention benefits compared to practice using recognition tests 

(Carpenter & DeLosh, 2006; Glover, 1989; Rowland, 2014)0F

1. This difference is 

important because recall tests, but not recognition tests, require the full recovery of an 

item’s details in order to respond. The recall vs. recognition advantage is consistent with 

                                                 
1 This pattern of results is often interpreted in favor a retrieval effort explanation of 
testing effects (i.e., that the effort expended retrieving memories produces greater 
strengthening than restudying the information). However, this is not mutually exclusive 
with the PCR model, as retrieval effort explanations don’t specify the mechanisms 
underlying learning from retrieval. 



13 

the PCR model’s convergent retrieval learning mechanism: when testing requires 

recovery of detailed features from a state of partial activation, intra-item associations are 

strengthened and enable robust retention. Prior studies have also shown that recall 

practice results in faster retrievals on subsequent tests, an a priori prediction of the PCR 

model (Keresztes, Kaiser, Kovács, & Racsmány, 2014; Pyc & Rawson, 2009; van den 

Broek, Segers, Takashima, & Verhoeven, 2014; van den Broek, Takashima, Segers, 

Fernández, & Verhoeven, 2013; Vaughn & Rawson, 2014).  

Hopper and Huber (2018) performed a detailed investigation of the PCR 

model’s prediction that retrieval should be faster on a final test following test practice 

than on a final test following restudy, testing this prediction across both free recall and 

cued recall. Their free recall task measured accuracy and inter-retrieval time (IRT) for 

recall of 15 item word lists immediately following a practice recall test or a restudy. 

Accuracy and recall latency dissociated between the two methods of practice; restudy 

produced higher final test accuracy than test practice, but an analysis of the IRTs revealed 

faster recall following recall practice, especially for the last few items that were recalled. 

The results from their cued recall experiment conceptually replicated the free recall 

results, but also included additional conditions testing whether recall practice with one 

cue would generalize to a final test with a different cue. Each target item was paired with 

two unique cue words during initial study, but was only practiced again with one of these 

cues. The cue given on the final test was either the practiced cue or the unpracticed cue, 

and final test recall was found to be faster only with the practiced cue, regardless of 

retention interval. This result is compatible with the PCR model because of the 

directional nature of associative learning in the model; intra-item learning beginning from 
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a set of features activated by one cue may not benefit retrieval when convergent retrieval 

proceeds from a different set of features activated by another cue (i.e., learned navigation 

from one start point doesn’t necessarily help navigation to the same goal from a different 

start point). Thus, the results of Hopper and Huber provide support for the PCR model, 

confirming its central predictions about faster recall latency following test practice. 

1.5. Generality of Retrieval-Based Learning 

In addition to investigating long-term retention benefits, researchers have also 

investigated whether the learning from retrieval is transferable. In other words, does the 

learning from retrieval (whatever it may be) help you answer other, related questions, or 

are the benefits restricted to better recall of the specific answer produced during test 

practice? Experiments examining transfer of learning have found that tests can produce 

more general learning than restudy, but generalization benefits are not as universal as the 

classic testing effect. For example, Butler (2010) showed that retrieval practice of 

concepts from science-related passages produced better transfer of knowledge to 

questions from different domains than restudy (e.g., answering questions about the 

structure and function of animal wings to generalized to answering questions about the 

structure and function of aircraft wings), and McDaniel et al. (2013) showed that practice 

recalling the definition of a term generalized to recalling the term given the definition on 

the final test1F

2. However, Hinze and Wiley (2011) and Pan, Gopal and Rickard (2016) 

found that retrieving one component of a learned fact did not increase the ability to 

retrieve another component of the fact (e.g., recalling that it was Thomas Jefferson who 

                                                 
2 These studies also included feedback during the practice test. 
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purchased the Louisiana Territory from Spain did not increase the ability to recall who 

Jefferson purchased the territory from). Thus, it appears that testing benefits 

generalization more so when knowledge application is required, and less so when simply 

needing to recall adjacent information. 

Given that the benefits of retrieval practice do not seem completely boundless, 

examining situations when retrieval practice impacts memory other than the ability to 

recall the same information across two identical tests may be a useful method for testing 

the proposed theoretical mechanisms for producing the classic testing effect. The PCR 

model makes a simple prediction about the general circumstances when memory should 

be enhanced: when information is gradually activated, and when similar information is 

activated by the retrieval cues used across tests Here, I report three experiments arising 

from this prediction. In each, memory is predicted to be enhanced when these conditions 

are met. These experiments demonstrate that convergent retrieval leaning can be both 

highly general, applying across different classes of items and encoding methods, but also 

be highly specific, requiring consistency between learning conditions and testing 

conditions. In Experiment 1, I demonstrate that similar learning from testing occurs for 

unretrieved and retrieved items alike. In Experiment 2, I demonstrate that all cued recall 

practice is not equivalent, suggesting that unique conjunctions representing cue-target 

pairs are part of the features stored in episodic memory traces. And in Experiment 3, I 

demonstrate that learning from tests generalizes beyond tests – that is, when a study 

procedure mimics the convergent retrieval process, it produces a retention benefit similar 

to a practice test. Together, these experiments further support the convergent retrieval 

learning mechanism and its putative role in promoting retention following testing by 
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demonstrating the PCR model’s power to predict what is learned from testing, and when 

this learning may be expected. 

CHAPTER 2 

EXPERIMENT 1 

2.1 Learning from the failure to recall 

The learning rule assumed in the PCR model concerns the temporal activation of 

features regardless of whether full convergence is achieved. Thus, the PCR model also 

makes predictions regarding the effects of recall failure, which are illustrated in Figure 4. 

In this example, the items on the left and right have different sets of pre-existing intra-

item connections. While both items have connections supporting the gradual activation of 

additional features, the convergent retrieval process ultimately reaches a dead end for the 

item on the right; the second feature only has one intra-item connection and thus does not 

become active even if all the other item features are active. This results in a “tip-of-the-

tongue” state in which the test-taker may be keenly aware that they know the answer, but 

is unable to overtly produce the answer owing to a missing feature. Nevertheless, because 

this dead-end was gradually reached, intra-item learning occurs, as indicated by the 

dashed arrows. This intra-item learning supports faster failure to recall on the final test, 

assuming that the test-taker decides to give up on the process at the point when the 

pattern of features no longer changes. Again by analogy to navigation, when attempting 

to go from location A to location B, one might encounter an insurmountable road block, 

and this experience will make it easier/faster to navigate from A to the road block in the 

future (i.e., faster failure).  
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Unfortunately, the large retrieval practice literature does not provide a test of 

these predictions because failure-to-recall latencies are rarely examined. The primary 

goal of the current study is collection of these failure latencies to test these predictions. I 

refer to the key dependent measure as the failure latency rather than error latency because 

these predictions concern a stalling of the recall process and, subsequently, the decision 

to give up on the attempt (i.e., errors of omission). This type of error can be contrasted 

with recalling the wrong item (i.e., errors of intrusion or commission). The PCR model’s 

predictions for intrusions and commissions is complicated, depending on whether the 

same incorrect answer is given on the practice and final tests (in which case these error 

Figure 4: Comparison of the convergent retrieval process and intra-item learning 
for both recalled and unrecalled items. Left Column: Successful recall on a practice 

test produces intra-item learning, enabling faster retrieval on the final test. Right 
Column: Unsuccessful recall on a practice test also entails intra-item learning, but 

in this case intra-item learning results in faster failure to recall on the final test. 



18 

latencies should be faster following recall practice for exactly the same reason that 

correct recalls are faster) or whether intrusion/commission errors are unique to the final 

test (in which case they may reflect a failure of primary retrieval). In light of these 

complexities, intrusion/commission errors are not considered in this experiment. Instead, 

I focus on recall failures (omissions) by requiring participants to make a binary “recall” 

or “can’t recall” decision on each cued recall trial (see Figure 5A). If the participant 

reports that they can recall the missing target, they are instructed to immediately type in 

the target word (i.e., they need to have recalled the word before pressing the “recall” 

button). Each participant was tested on a large number word pairs in this fashion, across 

multiple days, allowing analysis of latency distributions. 

Thus far, memory models have not addressed learning from cued recall practice 

as measured with recall latencies, although different aspects of this situation have been 

investigated in isolation. Raaijmakers and Shiffrin (1981) implemented learning from 

retrieval in the SAM model by increasing the associative strength between retrieval cues 

and memory traces following recall success, and this assumption explained part-list 

cueing effects as well as output interference in free recall. Similarly, Criss, Malmberg, 

and Shiffrin (2011) modeled output interference during recognition tests with the REM 

model, assuming that existing memory traces are updated when items are judged to be 

old, whereas new traces are added to the memory set when items are judged to be new. 

Most similar to the current experiment, Nobel and Shiffrin (2001; also see Diller, Nobel, 

& Shiffrin, 2001), modeled intrusion and “give up” latencies from cued recall testing of 

word pairs using a modified version of the REM model. However, Nobel and Shiffrin did 

not test the same word pairs more than once, and so these data are unsuitable for testing 
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the prediction that a failure to recall following one cued recall test should produce a faster 

failure to recall on a subsequent cued recall test with the same cue word. In brief, existing 

memory models have not addressed learning from recall failures. This is not to say these 

models are incompatible with learning from errors of omission, or that they make 

different predictions than the PCR model, but rather that their predictions in this respect 

have not been explored.  

2.2 Recall latencies: a change in response bias or memory? 

The PCR model predicts that the convergent retrieval process should unfold more 

quickly after recall practice and, furthermore, that this speed-up should exist both for 

recall success and recall failure. However, an examination of average recall latency could 

be misleading in regard to these predictions. More specifically, faster responses can occur 

at the expense of accuracy (i.e., a speed-accuracy tradeoff) in a situation where there is a 

shift in response bias rather than a change in the evidence accumulation process. In the 

context of cued recall, such a response bias corresponds to the adoption of a more liberal 

stopping rule (e.g., giving up more readily) or a more conservative stopping rule (i.e., 

careful checking before producing an answer), with changes in this stopping rule 

depending on the cue item. For instance, the participant may explicitly remember that 

they failed or succeeded with the cue word on the practice test and use this knowledge of 

their own memory process to adjust the effort they are willing to expend during cued 

recall. Such behavior is a kind of ‘metamemory’ (i.e., knowledge about your memory), 

similar to ‘judgments of learning’ (T. O. Nelson & Dunlosky, 1991), if the setting of 

response bias is based on a prediction for the outcome of the ongoing recall attempt. 

Similarly, the familiarity of the cue word may influence the time it takes to make a 
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“Recall” vs. “Can’t Recall” decision. For example, Malmberg (2008) showed that 

increasing the familiarity of a cue can increase the amount of time spent searching 

memory without increasing accuracy. Fortunately, cue familiarity is not expected to 

differ between the restudy and test practice conditions, given that both re-present the cue 

word.2F

3 Nonetheless, an adjustment of response bias based on memory for the success of 

the previous recall attempt is likely to affect performance and thus it is critical that any 

analysis of the results consider this decision making aspect of the task. 

This decision making component lies outside of the current scope of the PCR 

model. In situations such as this, measurement models are often used to untangle 

decisional aspects (e.g., response bias) from memorial aspects (e.g., sensitivity) of the 

data, such as with an application of signal detection theory (Green & Swets, 1966; 

Macmillan & Creelman, 2005). Fortunately, a broad class of reaction time measurement 

models (so-called ‘sequential sampling’ models) have been developed to address the 

potential ambiguity of a speed-accuracy tradeoff and these models have proven useful in 

the study of memory (S. D. Brown & Heathcote, 2008; Ratcliff & Smith, 2004; Starns, 

2014). These decision models address latency and choice data on a trial-by-trial basis to 

identify whether an on-average change in speed or accuracy reflects a change in response 

bias versus a change in the evidence accumulation process. Following in this tradition, a 

sequential sampling model is used to transform the data into more psychological relevant 

parameters that, for instance, indicate whether the observed latency effects reflect the 

                                                 
3 If test practice increases cue familiarity more than restudy, this would work against the 
central prediction of faster “Can’t Recall” decisions after test practice, assuming cue 
familiarity increases willingness to continue searching memory. 
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retrieval process (as predicted by PCR) or whether they reflect a change in the speed-

accuracy tradeoff (or more likely some combination of these factors).  

2.3 The Linear Ballistic Accumulator Model 

In a sequential sampling model, “evidence” builds up in support of the possible 

response options over the course of the decision process (Donkin, Brown, & Heathcote, 

2011). These models have been applied to recognition memory tasks, assuming that the 

drift rate parameter reflects access to information from the memory system (Osth, Bora, 

Dennis, & Heathcote, 2017; Ratcliff, 1978; Ratcliff & Starns, 2009; Ratcliff, Thapar, & 

McKoon, 2004). As applied to recall, I assume that the drift rate reflects activation of 

item features during the convergent retrieval process – each additional feature that is 

activated provides further evidence towards a response. 

There are many successful sequential sampling models (see Voss, Nagler, & 

Lerche, 2013 for a good introduction to the properties of these models), all of which 

include parameters that capture the speed-accuracy tradeoff in which participants can 

elect to respond slowly and accurately, or quickly but with more errors. More 

specifically, some parameters of these models are related to response bias (e.g., the 

required evidence threshold and/or the starting level of evidence), which affect latency 

distributions in a different manner than parameters related to the rate of information 

accrual (i.e., drift rate). In the current case, if the test-taker realizes that a cue was 

previously used in a practice test, they may adopt a lower threshold for making an 

educated guess of the target or a lower threshold for giving up on the recall attempt. In 

addition, changes to primary retrieval may provide a higher level of initial evidence. 

These effects can be contrasted with intra-item learning, which should change the rate of 
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information accrual over the course of the retrieval attempt. A test of these predictions 

requires separate measurement of parameters related to recall success versus parameters 

related to recall failure, and so I used the Linear Ballistic Accumulator (LBA) model (S. 

D. Brown & Heathcote, 2008), because it is an independent race model, with one racer 

capturing recall success and the other capturing recall failure.  

The adoption of the LBA model was made after careful consideration. For 

example, a diffusion model could have applied to these data (Ratcliff, 1978; Ratcliff & 

Rouder, 1998; Ratcliff & Tuerlinckx, 2002). A diffusion model uses a single accumulator 

(and thus, a single drift rate parameter), and response outcomes are determined by which 

of two opposing decisional boundaries is reached first by the accumulator. In the Ratcliff 

diffusion model, the two responses are not independent of one another; any evidence 

gained in favor of one response is evidence against the other. Thus, the parameters of the 

diffusion model would not allow identification of characteristics of recall failure separate 

from the characteristics of recall success. Because the LBA model assumes independent 

accumulators, it is possible to identify parameters unique to the recall failure process as 

well as the recall success process. It is important to note that while evidence 

accumulators in the LBA model are independent, I am not asserting that there are two 

independent convergent retrieval processes occurring simultaneously. Rather, the 

accumulators of the LBA are being used to measure the internal evidence supporting 

recall of the target item and the evidence supporting the failure to recall. 

The LBA model assumes that any decision between a set of alternatives is based 

on the outcome of a race between competing evidence accumulation processes. Each 

accumulator begins with some initial amount of evidence supporting the corresponding 
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response alternative. Over time, additional evidence is gained, until one accumulator 

reaches a critical threshold, and at that point in time, the corresponding response is given. 

Thus, the LBA model describes the decision process as a race between evidence 

accumulators towards a response threshold, as illustrated in Figure 5B. The intercept of 

the vertical axis and the bold line shows the amount of initial evidence, the upward slope 

of the bold line shows the accumulation of evidence over time, and the dashed horizontal 

line across the top represents the critical amount evidence that must be reached for that 

particular response alternative.  

Because the LBA is an independent race model, the amount of evidence for the “Recall 

and “Can’t Recall” alternatives may have two different initial values, increase at two 

different rates, and be racing towards two different thresholds for responding. The initial 

evidence value for each alternative is drawn from a uniform distribution on each trial, 

ranging from 0 to the parameter A (thus beginning at a value of A/2 on average). The rate 

of evidence accumulation follows a normal distribution across trials, with mean v and 

standard deviation s. The v parameter is commonly referred to as the drift rate, as it 

describes the average speed at which evidence strength “drifts” away from the initial 

starting value over the course of a trial. The amount of evidence required for a specific 

response (i.e., the response threshold parameter b) is assumed to be constant across trials, 

as is the amount of time required for non-decisional processes necessary to give a 

response (e.g., planning and executing motor movements), which is given by the 

parameter T0. The model is described as being “linear” because it assumes that evidence 

is accumulated at a constant rate and this accumulation is  “ballistic” in the sense that 

once the starting points and drift rates are determined, the accumulation process has a
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deterministic conclusion. These characteristics can be contrasted with the assumption of 

random-walk fluctuations of evidence within a trial, made by models such as the drift-

diffusion model. However, the assumption of a linear and ballistic evidence accumulation 

process is made primarily for reasons of mathematical convenience and simulation 

studies have demonstrated that the LBA’s parameters are largely similar to those of the 

drift-diffusion model (Donkin, Brown, Heathcote, & Wagenmakers, 2011). 

Figure 5: Panel A: Example of the “Recall” vs “Can’t Recall” decision made on 
each test trial of the current experiment. Panel B: Schematic representation of a 

decision between the “Recall” and “Can’t Recall” alternatives as described by the 
LBA model. The accumulator that intersects the response threshold first is the 

chosen alternative, and the response time is the amount of time elapsed before the 
response threshold is met. In this example, the “Recall” accumulator reaches the 

threshold first, and is the response given on this simulated trial. 



25 

2.4 The LBA as applied to recall latencies 

In a typical application of the LBA model, the accumulators represent a small set 

of different possible response options: E.g., is the stimulus a word or a non-word (S. D. 

Brown & Heathcote, 2008), or is the stimulus moving to the right or the left (Forstmann 

et al., 2008). In contrast, the set of possible words to recall is vast. My assumption in 

using the LBA model to test the predictions of the PCR model is that the test-taker gives 

a “Recall’ response once they have recalled a particular word, but gives a “Can’t Recall” 

response once the convergent retrieval process stalls with no further change in the pattern 

of item feature activations. Thus, the goal of applying the LBA is to describe the nature 

of recall success versus recall failure generically, rather than describing recall of a 

particular word. With this goal in mind, the drift rate of the “Recall’ accumulator is 

predicted to increase as a function of prior successful recall practice (i.e., the benefits of 

successful test practice) whereas the drift rate of the “Can’t Recall” accumulator is 

predicted to increase as a function of prior recall failure (i.e., the cost of unsuccessful test 

practice). In addition, I use the LBA to test alternative accounts of the data, examining, 

for instance, whether the results are better explained by changes in the response 

thresholds versus changes in the drift rates (see Figure 5B).   

Trial to trial variability in the starting point of the evidence accumulation process 

is necessary to capture the fast errors that occur when speed is emphasized over accuracy 

(S. D. Brown & Heathcote, 2008). The parameter governing this starting point 

distribution, A, can also be utilized to represent bias towards a specific response 

alternative; an accumulator with starting points sampled from distributions with a larger 

A parameter will also have a higher mean starting point and thus start closer to the 



26 

response boundary on average. However, the A parameter is not typically used in this 

fashion, and most applications of the LBA model set the A parameter to the same value 

for all accumulators. The current situation is different because the choice behavior being 

modeled is not a simple stimulus classification. In the PCR model, the starting point of 

the convergent retrieval process is the set of features activated by the retrieval cues. If 

primary retrieval is very rapid, taking essentially the same duration on each trial, the 

starting point for the evidence accumulation process as measured by the LBA model 

might reflect the primary retrieval strength in response to the retrieval cues. Under this 

assumption, different values of the A parameter for different accumulators and 

experimental conditions are possible; according to the PCR model, primary retrieval 

should differ across conditions, corresponding to different starting points for convergent 

retrieval. Alternatively, if primary retrieval is itself a dynamic process, then primary 

retrieval and convergent retrieval will collectively serve to specify the drift rate. In this 

case, an LBA model that attempts to capture the data through variation in the starting 

point parameter will fail. 

Faster responding owing to a change in response bias can be distinguished from 

faster responding owing to a change in the retrieval process because each possibility 

produces a different change in the shape of the latency distribution. For instance, if drift 

rate for the recall accumulator increases, this will increase accuracy and decreases mean 

latency, and the nature of this decrease is a less variable, more normally distributed recall 

latency distribution. In other words, the convergence process happens more quickly, with 

greater reliability. If the recall threshold decreases, this also produces an increase in 

accuracy and decrease in mean latency. However, in this case, the recall latency 
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distribution becomes more exponentially shaped rather than normally shaped. For 

instance, with a sufficiently low recall threshold, on some trials the test-taker decides 

immediately to respond “Recall” (e.g., primary retrieval places the evidence above the 

threshold level), but failing this, it is still possible that a positive, but near-zero drift rate 

will take a long time to reach the threshold. In practice however, these differences are 

likely to be subtle, and so model comparison is used to determine which parameter 

changes provide the best account of the data. 

To characterize the nature of any changes in retrieval latency and accuracy, I fit 

several different LBA models, allowing only the A (starting point), v (drift rate) or b 

(decision boundary/threshold) parameter to vary between conditions, which instantiate 

different hypotheses about the effects of restudy and test practice. If the benefits of a 

practice recall test increase primary retrieval, this should increase the average evidence 

accumulation starting point, and the A parameter LBA model should provide the best 

account of the data. I also considered an alternative version in which primary retrieval 

affected the starting time of evidence accumulation (the T0 parameter), to examine the 

possibility that primary retrieval includes not only a strength component, but a latency 

component (the time before the onset of convergent retrieval) that may vary across items 

with different primary retrieval strengths. For instance, if primary retrieval activates 

relatively many features, it may be that that this step occurs more quickly as compared to 

a situation with weaker primary retrieval. If the benefits of a practice recall test occur 

because the participant is biased to quickly respond “recall” owing to a change in 

response bias, this should correspond to a decrease in the evidence threshold, and the b 

parameter LBA model should provide the best account of the data. Finally, as predicted 
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by the PCR model, if the benefits of a practice test increase the average rate of evidence 

accumulation during convergent retrieval, this should correspond to an increase in the 

drift rate, and the v parameter LBA model should provide the best account of the data. 

Furthermore, this should be true not only for faster recall after success on the practice test 

but also faster failure after failure on the practice test. Finally, several hybrid models 

were applied that allowed combinations of these parameters to vary across the 

experimental conditions. 

2.5 Summary of Experiment 1 

Faster correct recall following recall practice has been observed in several prior 

studies (Hopper & Huber, 2018; van den Broek et al., 2014), but to date, the effect of 

recall practice on the speed of recall failure has not been examined. The current study 

addresses this by examining the latency of recall/can’t recall judgments, replicating the 

finding that recall success results in faster recall success on a subsequent test and also 

testing the novel prediction of the PCR model that recall failure on a practice test results 

in faster recall failure on a subsequent final test. By including many trials per participant 

in each condition, a reaction time measurement model is applied, characterizing the 

nature of any on-average changes in latency to determine whether these effects reflect a 

change in drift rate rather than response bias, as expected if the latency change reflects a 

more rapid convergent retrieval process, rather than a meta-memory strategy to require 

less evidence to choose the ‘recall’ response. 
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2.6 Materials 

2.6.1 Participants 

Ten individuals were recruited from the University of Massachusetts Amherst 

community via electronic mailing lists and word of mouth. Participants were 

compensated at a rate of $15 per hour, plus a $5 bonus for showing up to each session. 

All participants completed all sessions, and were paid a total of $70. The relatively small 

sample size reflects an emphasis on collecting enough observations from each participant 

for participant-level model fitting. 

2.6.2 Materials 

Twelve hundred (1200) English words were used, with the constraint that each 

word had between four and 10 letters, and a word frequency between five and 200 uses 

per million words according to the SUBTLXUS corpus (Brysbaert & New, 2009). Words 

of a single conjugation were selected, and nouns were permitted to be either singular or 

plural with only one form or the other included in the stimulus set. From this pool, 600 

randomly determined word pairs were created, but these same word pairs were used for 

all participants. These word pairs were grouped into 25 lists of 24 pairs and the pairs 

within each lists were randomly assigned to the conditions for each subject, with the 

constraint that four pairs from each list were assigned to each of the six conditions. 

2.6.3 Procedure 

The experiment was administered over the course of four sessions on four 

consecutive days. During the first session, participants learned and practiced the first nine 

of the 24 word pair lists. One third of the pairs in each list were restudied, one third of the 
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pairs were given a practice cued recall test, and the remaining third were not practiced 

again after the initial study opportunity. Half of the words in each practice condition were 

given a final cued recall test immediately after the learning and practice phase for that 

list, with a brief distractor task (30 seconds of cumulative addition problems) interposed 

between the practice phase and the final test. The remaining half of the items were given 

a final cued recall test at the start of Session 2. For both immediate and delayed final 

tests, the order of items within each list was randomly shuffled. The delayed test was a 

test of multiple lists, and the test list was blocked by list, with the order of the tested lists 

the same as the order in which they were studied the previous day.  

Following the final test for items from Session 1, participants learned and 

practiced word pairs from eight new lists during Session 2. Just as in Session 1, word 

pairs were evenly divided between the three practice conditions (cued recall, restudy, and 

no practice), half of the word pairs in each condition received a final test immediately, 

and the remaining half were tested at the start of Session 3 the following day. Following 

the final test for items from Session 2, participants learned and practiced word pairs from 

the final eight lists during Session 3.  

Again, word pairs learned in Session 3 were evenly divided between the three 

practice conditions, half of the word pairs received a final test immediately, and the 

remaining half were tested during Session 4 the next day. No new pairs were learned 

during Session 4, thus the delayed final test concluded the experiment. A diagram 

outlining the schedule of learning and testing over the course of the four sessions is 

shown in Figure 6. This procedure yields a two by three within-subjects factorial design, 

fully crossing retention interval (immediate vs. delayed final test) with practice type 
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(cued recall, restudy, and no practice), with 100 final test trials per participant in each 

condition. 

 

During study and restudy trials, word pairs were presented on the computer screen 

for four seconds, with one word (the “cue” word) on the left, and the other word (the 

“target”) on the right. Test trials (practice and final) had two phases. First, participants 

were presented with the cue word alone, and had to report whether they could recall the 

missing target word, or whether they could not recall the missing word. Participants 

reported this decision by pressing keys on the keyboard (pressing the M key for 

“Remember” and the Z key for “Don’t Remember”). Participants were instructed to only 

press the “Remember” key when they absolutely knew what the missing word was and 

were ready to begin typing it in. If participants responded in the affirmative, they were 

asked to type in the correct word using the keyboard, and press the Enter key to confirm 

their response. There was a half second inter-stimulus interval between all types of trials 

(study, restudy and test trials).  

Figure 6: Outline of the experimental design, with the temporal structure of the 
sessions flowing left to right, and then top to bottom. 
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To maximize recall performance on the practice tests, the initial study phase and 

practice phase were intermixed. After every three new word pairs studied, the word pair 

studied four trials ago was practiced (i.e., restudied or given a cued recall test). Items 

assigned to the “No Practice” condition were skipped. If necessary, filler word pairs (i.e., 

pairs that were never practiced or given a final test) were inserted at the end of the list to 

maintain the lag-3 spacing between “true” pairs in the list. The maximum number of filler 

pairs that were inserted in any list was three.  

2.7 Results 

2.7.1 Scoring 

All latencies were measured as the duration between the onset of the cue word, 

and the key press indicating the recall/can’t recall decision. A trial was deemed correct 

only if the participant indicated they could recall the missing target word and 

subsequently typed the correct word. The accuracy of subsequent typed responses on 

trials where participants indicated they could recall the target were scored by a software 

routine that allowed for small misspellings (e.g., letter transposition, pluralization) to be 

labeled as correct. 

2.7.2 Statistical Analysis 

The percent of words correctly recalled in each condition is shown in the top 

panel of Figure 7. Differences in accuracy between conditions were assessed with a 

logistic mixed-effects regression model, using the lme4 (Bates, Mächler, Bolker, & 

Walker, 2015) and afex (Singmann, Bolker, Westfall, & Aust, 2018) packages for the R 

statistical computing environment (R Core Team, 2017). Practice type (restudy, cued 
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recall, and no practice) and retention interval (immediate vs. delayed final test), as well as 

their interaction, were included as fixed effects. The model also included random 

intercepts and slopes for participants in each condition, and random intercepts for each 

item. This random effects structure was reached by starting with the maximal random 

effects structure (i.e., random intercepts and slopes for both participants and items in each 

condition), removing terms from the random effects structure (beginning with the item 

component) until the model fitting routine was able to converge on stable parameter 

estimates (see Barr, Levy, Scheepers, & Tily, 2013).  

The significance of the fixed effects in the model were assessed using likelihood 

ratio tests3F

4. These tests indicated that the full model including both main effects of 

practice type and retention interval along with their interaction fit the data significantly 

better than the restricted model without a main effect of practice type (χ2(2) = 17.86, p < 

.001), better than the restricted model without a main effect of practice type (χ2(1) = 

30.73, p < .001), and better than the restricted model without a practice type by retention 

interval interaction (χ2(2) = 10.92, p = .004). The conclusion drawn from these model 

comparison tests is that there were significant differences in recall accuracy between the 

levels of each condition, as well as an interaction between the practice type and retention 

interval factors.  

From inspection of the top panel of Figure 7, it is clear that the main effect of 

retention interval reflects lower recall accuracy on the delayed final test. Differences in 

                                                 
4 All models compared using the likelihood ratio test were fit using the maximum 
likelihood method. The likelihood ratio test is known to be too liberal when the number 
of participants is low (Luke, 2017), but given that the accuracy effects reported here are 
regularly observed, the conclusions from this particular test are unlikely to be Type I 
errors. 
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Figure 7: Performance across conditions. Larger, darker points represent 
averages across participants. Smaller grey points represent observations from 

individual participants. Error bars represent +/- one standard error of the mean, 
estimated using the subject-normalized method of Morey (2008). Top Row: Recall 
accuracy on the final cued recall test.  Bottom Row: Average decision latency on 

the final cued recall test. Incorrect latencies reflect trials where participants 
indicated they could not recall the target item. Correct latencies reflect trials 

where participants could recall the target item, and subsequently provided the 
correct word as a response. 
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accuracy between practice types were assessed using Holm-Bonferroni corrected 

contrasts at each retention interval. In the immediate final test condition, accuracy in the 

no practice condition was significantly below both the restudy condition (z = -6.89, p < 

.001) and the test practice condition (z = -2.56, p = .01), while performance in the restudy 

condition was significantly higher than in the test practice condition (z = 3.61, p < .001). 

In the delayed final test condition, the relationship between the restudy and test practice 

conditions reversed, with the test practice condition displaying significantly higher 

accuracy than restudy (z = 2.37, p < .017). Accuracy in the no practice condition was still 

significantly below both the restudy condition (z = -3.52, p < .001) and the test practice 

condition (z = -6.06, p < .001) at the delayed final test.  

The decision latency for recall and can’t recall judgements is shown in the bottom 

panel of Figure 7. Trials where participants indicated they could recall the missing target 

word, and subsequently typed in the correct word were considered to be correct recall 

latencies, with latency determined by the time to press the “remember” key. Only trials 

where participants indicated they could not recall the missing target word in the 

decisional phase were treated as error latencies. Trials where participants indicated they 

could recall the target word, but failed to type in the correct word (7% of final test trials), 

and trials where recall decision latencies were over 10 seconds (5.8% of trials) were not 

analyzed. Together, these criteria excluded 11% of the data. 

Differences in recall decision latencies between conditions were assessed with a 

linear mixed-effects regression model, again using the lme4 and afex packages for the R 

statistical computing environment. Recall decision latencies were log transformed prior 

to analyses to meet the assumption of Gaussian residual variance in the regression model. 
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For ease of interpretability, correct and incorrect latencies were analyzed with separate 

regression models. Practice type and retention interval, as well as their interaction, were 

included as fixed effects in both models. Both models included random intercepts and 

slopes for participants in each condition, and both models were fit using the residual 

maximum likelihood (REML) method. 

The significance of the fixed effect components in each model were evaluated 

with an ANOVA using the Kenward-Roger approximation of the error degrees of 

freedom in all F-tests and follow up contrasts (Kenward & Roger, 1997). For the correct 

recall decision latencies, there was a significant main effect of practice, F(2, 6.46) = 8.24, 

p = .016), a significant main effect of retention interval F(1, 7.77) = 185.38, p < .001, but 

no interaction between retention interval and practice type, F(2, 5.89) = 0.74, p = .51). 

From the bottom right panel of Figure 7, it is clear that the main effect of retention 

interval reflects slower responding on the delayed final test for all practice types. 

Differences in correct recall decision latencies between practice type conditions were 

assessed using Holm-Bonferroni adjusted contrasts, collapsing over the retention interval 

factor. Correct responses in the no practice condition were significantly slower than in the 

test practice condition, t(7.6) = 4.21, p = .009, and slower than in the restudy condition, 

t(7.14) = 2.13, p = .069, though the difference narrowly missed the threshold of statistical 

significance at α = .05. Correct responses in the test practice condition were faster than in 

the restudy condition, t(7.61) = 2.72, p = .054), again narrowly missing the threshold of 

statistical significance. 

For the incorrect trial decision latencies (i.e., “Can’t recall” responses), there was 

no main effect of retention interval, F(1, 8.25) = 0.04, p = .84, though there was a 
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significant main effect of practice type, F(2, 4.73) = 6.89, p = .039, and a significant 

practice type by retention interval interaction, F(2, 4.56) = 8.10, p = .031). The nature of 

the interaction was investigated using Holm-Bonferroni adjusted contrasts between the 

practice types at each retention interval. There was no difference between the incorrect 

trial decision latencies for the no practice and restudy condition on the immediate final 

test, t(3.87) = .205, p = .84. However, incorrect trial decision latencies in the test practice 

condition were significantly faster than in both the no practice condition, t(6.37) = -4.56, 

p = .009, and the restudy condition t(4.6) = 3.74, p = .031. There was no difference in 

incorrect trial decision latencies between any of practice type conditions on the delayed 

final tests (all |𝑡𝑡| statistics < 1). Thus, the main effect and interaction observed in the F 

tests were driven by significantly faster “Cant’ Recall” responses in the test practice 

condition on the immediate final test. 

2.7.3 LBA Model Analysis. 

Six LBA models with different parameter constraints were applied to the recall 

decision latencies from the 10 participants individually. Four of these models assessed 

whether just one of the key parameters could capture the differences between conditions: 

1) Convergent retrieval, corresponding to the v parameter; 2) Primary retrieval, 

corresponding to the A parameter; 3) an alternative formulation of primary retrieval in 

which primary retrieval affected the starting time of evidence accumulation, 

corresponding to the T0 parameter; and 4) A metamemory change in the response 

threshold, corresponding to the b parameter. A fifth model allowing both primary 

retrieval and convergent retrieval was considered (both v and A), to examine whether 

primary retrieval might load onto the A parameter when the V parameter also varied. The 
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models allowing only A and to T0 vary between conditions performed poorly (were never 

the winners in model comparison), and the v and A model faired almost as poorly (was 

preferred only for a few subjects, and only when using the AIC measure of goodness of 

fit). Within the framework of the PCR model, this suggests that primary retrieval is a 

dynamic process, similar to convergent retrieval, in which case the drift rate parameter 

reflects the combined actions of primary and convergent retrieval. The sixth model 

allowed drift rate and boundary (v and b) to vary across conditions, in order to determine 

whether the predicted drift rate parameter value differences would still hold when 

allowing boundary to change as well. To preview the conclusion from this exercise, 

differences between practice conditions were always explained best by models with free 

drift rates, and the need for different response boundaries across conditions varied from 

participant to participant. 

All models set the drift rate variance parameter to a constant value (s = .5 for each 

accumulator). Unless otherwise specified, all models used a common parameter value 

across all conditions and all accumulators for each free parameter of interest (e.g., for 

most models, the same value for T0 was assumed for the recall and can’t recall 

accumulators in all conditions). Test trials for items recalled on the practice tests were 

modeled separately from test trials for items not recalled on the practice test. Thus, 

different parameters were allowed for these two types of items, effectively treating them 

as observations from separate conditions. This follows directly from the assumption of a 

bifurcated distribution in which the learning processes following successful recall 

practice are different than the learning from the failure to recall.  
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The “v Free” model allowed separate drift rate parameters (v0 and v1) for each 

accumulator in every condition (i.e., each combination of retention interval and practice 

type). Separate starting point parameters (A0 and A1) were fit for each accumulator, but 

these parameters were shared across all conditions. The boundary parameter for both 

accumulators was fixed to a constant value (b = 4) across all conditions. Note that this 

parameterization of the LBA model solves the scaling problem4F

5 by fixing the response 

boundary, rather than setting the sum of drift rates to a fixed constant, as is common in 

the response time modeling literature (Donkin, Brown, & Heathcote, 2009). This model 

included 19 free parameters per participant (four practice conditions − no practice, 

restudy, correct test practice and incorrect test practice − times two retention intervals 

times two accumulators equals 16 drift rate parameters, plus two starting point 

parameters and the non-decision time parameter). 

The “A Free” model allowed separate starting point parameters (A0 and A1) for 

each accumulator in every condition. Separate drift rate parameters (v0 and v1) were used 

for each accumulator at each retention interval, but these parameters were shared across 

all practice type conditions at each retention interval. The boundary parameter for both 

accumulators was fixed to a constant value (b = 4) across all conditions. In total, the “A 

Free” model allowed for 21 free parameters per participant. 

The “b Free” model allowed separate boundary parameters (b0 and b1) for each 

accumulator in every condition. Just as with the “A Free” model, separate drift rate 

                                                 
5 The parameters of the LBA and Diffusion models can be multiplied by a constant 
without changing the RT distributions. Fixing a single parameter makes the model 
identifiable and enables model comparison (analogous to coding a categorical predictor 
with K levels in a regression model using K-1 dummy coded variables). 
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parameters were used for each accumulator at each retention interval, but were shared 

across practice type conditions. The starting point distribution parameter for both 

accumulators was fixed at a constant value (A = 1.5) across all conditions. This model 

also allowed 21 free parameters per participant. 

The “T0 Free” model allowed separate non-decision time parameters for all racers 

and conditions. Like the “A Free” and “b Free” models, separate drift rate parameters 

were used for each accumulator at each retention interval, but were shared across practice 

type conditions. Similarly, each racer was allowed a free starting point parameter which 

was shared across retention interval and practice type conditions. The boundary 

parameter for both accumulators was fixed to a constant value (b = 4) across all 

conditions. In total, this model also 22 free parameters per participant. 

The “v and A Free” model, allowed separate drift rate parameters (v0 and v1) and 

starting point variability parameters (A0 and A1) for each accumulator in every condition. 

The boundary parameter for both accumulators was fixed to a constant value (b = 4) 

across all conditions. Similar to the “v and A Free” model, the “v and b Free” model 

allowed different boundary parameters (b0 and b1) for each accumulator across all 

conditions and different drift rate parameters (v0 and v1) for each accumulator across all 

conditions. Just as in the “b Free” model, the starting point parameter A was fixed at a 

constant value across all conditions (A = 1.5). Both of these models allowed 33 free 

parameters per participant.  

The actual number of free parameters used was lower than the maximum number 

possible for some participants because of variation in individual performance levels. For 

example, some participants failed to recall any items from the no practice condition on 
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the delayed final test, obviating the need for a drift rate parameter for fitting correct recall 

latencies from that condition. More generally, models were not fit to conditions where 

there were fewer than two observations per recall decision alternative. 

All models were fit to the data from individual participants separately, using the 

maximum likelihood method to estimate the best fitting model parameters. The rtdists 

package (Singmann, Brown, Gretton, & Heathcote, 2017) for the R statistical computing 

environment was used to compute the LBA model’s density, quantile, and cumulative 

distribution functions. Prior to estimating each model’s parameters, excessively long 

decision latencies (> 10 seconds) were removed, and trials with a decision latency in the 

most extreme 2.5% of the latency distribution (in both tails) were removed for each 

subject. These exclusion criteria resulted in the elimination of 9% of the trials. Model 

parameters that maximized the likelihood function were estimated using a box-

constrained gradient descent search algorithm. The goodness of fit for each of the six 

models was compared using both BIC (Bayesian Information Criterion; Schwarz, 1978) 

and AIC (Akaike Information Criterion; Akaike, 1974). The AIC and BIC are likelihood 

based statistics that impose a penalty on a model’s likelihood proportional to the number 

of free parameters to account for the flexibility afforded by each free parameter. The AIC 

and BIC differ in the degree of penalty applied, with AIC typically imposing a smaller 

penalty than the BIC, thus leading the AIC to favor more complex models than the BIC.  

The AIC and BIC for the best fitting parameters of each models are shown in 

Table 1.  

Using the AIC penalty for flexibility, the “v Free” was the favored model for 

participants 2 and 5, and the “v and A Free” model was favored for participant 10. The “v 
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and b Free” model was favored for participants 1, 3, 4, 6, 7, 8, and 9. When considering a 

simultaneous fit of all participants, the “v and b Free” model had the lowest total AIC of 

all six models (Σ AIC = 17856.72). The BIC penalty for flexibility tended to favor the 

single parameter models and the “b Free” model was preferred for participants 3, 8 and 9, 

while the “v Free” model was preferred for participants 1, 2, 4, 5, 7, and 10. When 

considering a simultaneous fit all participants, the “v Free” model provided the lowest 

total BIC over all subjects (Σ BIC = 18923.44).  

The difference in the complexity penalty imposed by the AIC and BIC measures, 

and thus their discrepancy when applied to these models, stems from the goal of each 

measure. The AIC assesses generalization (i.e., a frequentists test, predicting future data), 

whereas BIC is based on model selection (i.e., a Bayesian test of hypotheses based on the 

extant data). In the current case, if you sought the simplest explanation of the data (i.e., 

BIC), the behavior of most participants was best explained by changes in drift rate. 

Furthermore, across the entire dataset a change in drift rate was the clear winner under 

the BIC measure. However, if your goal was to predict future performance (i.e., AIC), 

using all possible mechanisms, including ones that captured a lower proportion of the 

variance in the data, using the model with freedom in both the drift and response 

boundaries would be the best choice for most participants. This model is also the clear 

winner when considering total AIC across the entire dataset. 

In summary, as predicted by the PCR model, a change in drift rate (convergent 

retrieval) is the most crucial aspect of these results, although there is evidence that 

response boundaries (response bias, such as with a change in metamemory) changed as 

well. Crucially, these are not mutually exclusive explanations and while the PCR model 
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predicted changes in convergent retrieval, it did not specify whether response bias might 

or might not change as well. 

Beyond quantitative assessment of the models, I examined the qualitative pattern 

of model fits and differences in best-fitting parameter values across experimental 

conditions to assess the behavior of the three best-fitting models (the “b Free”, “v Free” 

and “v and b Free” models). 

The “b Free” model was favored for participants 3, 8, and 9 under BIC and 

examination of these participants revealed that they had nearly perfect accuracy on the 

immediate final test (between 90% and 100% correct) and thus very small differences in 

accuracy between experimental conditions. However, this model qualitatively misfit the 

data from the other seven participants, with the best-fitting parameters producing better 

accuracy on the immediate final test in the no practice condition than the test practice 

condition. More specifically, to accommodate faster recall success after success on the 

practice test, the boundary for the “recall” accumulator was set lower, but this served to 

reduce accuracy (i.e., a negative testing effect not seen in the data). In summary, it 

appears that this model can only accommodate the data when practice test accuracy is 

nearly perfect and it incorrectly produces an accuracy deficit following test practice, 

making this an undesirable explanation of the results. 

A more plausible alternative is that different practice conditions produced 

different response biases as well as different rates of evidence accumulation. 

Corresponding to this alternative, “v and b Free” model was favored for seven of the ten 

subjects under the AIC statistic. Inspecting the fits of this model to data from individual 

participants showed that allowing free drift rate parameters in addition to the free 
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boundary parameters corrected the qualitative misfit of the “b Free” model, correctly 

producing an accuracy increase after test practice, as compared to the no practice 

condition. To understand which free parameters were important in capturing the data, I 

performed multiple contrasts on the best-fitting parameter values using paired samples t-

tests5F

6. Remarkably, the boundary parameter did not systematically differ between any 

pairs of practice conditions at either retention interval, for either accumulator. In general, 

all t statistics for comparisons amongst the boundary parameters were less than 1.87. 

Thus, while the b parameter may have been important for producing high quality fits of 

the data in general (as determined by AIC), it did not differ in a systematic manner across 

the conditions of interest. As such, it does not appear that response bias provides an 

adequate explanation of the highly reliable on-average retrieval latency effects seen in 

these data.  

Finally, consider the “v Free” model. The correlation between observed accuracy 

values and model accuracy values was very high for this model (r = .995), and the model 

captured the absolute accuracy rates observed for each practice type and retention 

interval, including the crossover interaction between the restudy and test practice 

condition across the two retention intervals. The specific parameter values for each 

subject under this model are reported in Table 2 and Table 3, respectively. In brief, this 

model captured all of the important accuracy trends in the data. 

To assess whether the “v Free” model captured the important retrieval latency 

effects, Figure 8 displays the joint quantile-probability plots for this model, showing the 

                                                 
6 Identical t-tests were also performed for the “v Free” model, and described in detail in 
the “Parameter Contrasts” section. 
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correspondence between the observed and predicted quantiles of the recall decision 

latency distributions in each condition. The joint quantile values were determined by 

estimating the response times associated with the .1, .3, .5, .7, and .9 quantiles of the 

conditional latency distribution for each response (i.e., conditioned on recalled or not-

recalled). So-called “defective” distributions (i.e., distributions that accumulate to the 

observed or predicted level of accuracy) were then produced by weighting these 

conditional quantiles by the predicted or observed accuracy level, depending whether the 

distribution being plotted was the model or the observed data. For example, assume the .7 

quantile of the “Recall” response conditional latency distribution was predicted to be 2.5 

seconds by the LBA model, and the total probability of responding “Recall” was 

predicted to be .6. Then, the joint quantile corresponding to a “Recall” response with a 

latency of 2.5 seconds would be .6 × .7 = .42. The joint quantiles values were calculated 

for each participant individually and averaged together to create the values plotted in 

Figure 8. 

In general, the model captured the shapes of the quantile functions in each 

condition reasonably well. One notable misfit is the long tail in the model’s behavior for 

the correct recall decision on the delayed final test. The model produced a longer tailed 

distribution of “Recall” responses as compared to the “Can’t Recall” responses, while the 

reverse is true in the observed data. However, the model was not fit to these quantile 

distributions and was instead fit to the raw trial-by-trial data (the quantiles are examined 

only as a way of assessing model behavior). If the model had been fit to the quantile 

distributions, it is likely that it would have produced a shorter tail in this situation, as 

dictated by the observed quantiles. More to the point, the delayed final test condition had 
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the most skewed distribution of correct recall latencies, with participants usually taking 

less than 4 seconds to respond, but occasionally taking around 10 to give a correct 

response. In a maximum likelihood fit of the trial-by-trial data, these outliers play a huge 

role, imposing a substantial penalty for parameter values that fail to place probability 

mass that covers these outliers.  

In contrast, a quantile function does not differentiate between a situation in which 

the slowest 10% of trials occur between 4 and 5 seconds versus one in which the 

penultimate 9% occurs between 4 and 5 seconds, with the last 1% at 9 seconds. Second, 

and perhaps more importantly, this qualitative misfit of the data represented a tiny 

fraction of the data (this was the condition with the worst accuracy, and so there is very 

little data to indicate the shape of the recall success latency distribution in this condition). 

Thus, the observed quantile function in this case is highly unreliable. Given that the 

model captures the study/test cross over interaction, and matches the recall decision 

latency distributions reasonably well, I am satisfied that the “v Free” model describes the 

data accurately enough to interpret its parameter values. 

2.7.4 Parameter Contrasts. 

 Because the model with different drift rate parameters in each condition was the 

most consistent winner, I conclude that an adequate description of the data requires 

different drift rates. As described earlier, the PCR model predicted that the drift rate for 

the correct (“Recall”) accumulator should be highest after successful test practice, and, 

furthermore that the drift rate for the incorrect (“Can’t Recall”) accumulator should be 
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highest after unsuccessful test practice. To test these predictions I compared the average 

drift rate parameters in the “v Free” model between all pairs of practice types at each 

Figure 8: LBA Model RT quantiles, together with empirical quantiles estimated 
directly from the observed data. The quantile values were estimated at the .1, .3, 
.5, .7, and .9 quantiles of the RT distributions. No quantile functions for correct 
“Recall” responses are presented for the delayed final test incorrect practice test 

condition because there were an insufficient number of responses for this 
situation. 
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retention interval condition using paired-samples two-sided t-tests (the mean values are 

plotted along the bottom row of Figure 9 for the “v Free” model). All p-values were 

corrected for multiple comparisons using the Holm-Bonferroni procedure, treating the 

contrasts for each drift rate parameter (v0 and v1) as separate families of tests6F

7. 

First, consider the “Can’t Recall” accumulator’s drift rate (v0), shown in the 

lower-left panel of Figure 9. Confirming the key predictions of the PCR model, the drift 

rate on the immediate test following incorrect test practice was greater than for the no 

practice condition, t(8) = 7.73, p < .001, and greater than for the restudy condition, t(9) = 

6.09, p = .001. None of the remaining comparisons reached statistical significance 

(minimum p-value = .17). No significant differences were found between any pairs of the 

“Can’t Recall” accumulator’s drift rate parameters for different practice types at the 

delayed final test. The correct test practice condition for the incorrect racer is not shown 

in Figure 9 considering that there were far fewer trials of this type and also to simplify 

the figure; a full report of these parameter values appears in Appendix A1. A larger drift 

rate parameter for “Can’t Recall” responses following a previous retrieval failure (i.e., an 

immediate test of the incorrect test practice condition) supports the PCR model’s 

prediction that the convergent retrieval process will stall more quickly following a prior 

                                                 
7 Some of the contrasts reported here have identical p values because of the mechanisms 
of the Holm-Bonferroni FWE rate correction. The sequential Holm-Bonferroni procedure 
tests hypothesis ordered by p values, from smallest to larger. The smaller p values tested 
first are subjected to more conservative correction than later tests. This means that one p 
value that was initially slightly smaller than another may become larger after both have 
been corrected, because of the difference in the correction factor applied to them. In order 
to prevent the rank order of the p-values from being distorted by the correction, the two 
p-values are both corrected to the larger of the two. 
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failure to recall. 

 

 Next, consider contrasts involving drift rates for the “Recall” accumulator on the 

final test, shown in the lower-right panel of Figure 9. All pairwise comparisons between 

the “Recall” accumulator drift rates (v1) for the different practice types on the immediate 

final test were statistically significant. The drift rate for the correct test practice condition 

was greater than the drift rate for the no practice condition, t(9) = 6.15, p < .001, and 

greater than the drift rate for the restudy condition t(9) = 4.42, p = .01. In turn, the drift 

rate for the restudy condition was greater than that of the no practice condition t(9) = 

Figure 9: Average drift rates across participants for each condition from the "v 
Free" (bottom row) and "v and b Free" models (top row). Error bars represent +/- 

one standard error of the mean within each condition. 
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6.77, p < .001, and greater than the incorrect test practice condition, t(4) = 4.38, p = .024. 

The drift for the incorrect test practice condition was the smallest of all, significantly less 

than that of the no practice condition t(4) = 3.63, p = .024, and the correct test practice 

conditions t(4) = 4.65, p = .024. The incorrect test practice condition is not shown in the 

figure considering that very few trials involved incorrect test practice followed by a 

correct final test; furthermore, contrasts involving the incorrect test practice condition 

have fewer degrees of freedom than the other contrasts because not all subjects produced 

correct responses on the immediate final test for pairs they failed to recall on the practice 

test. A similar pattern of contrasts was observed for the delayed final test conditions. For 

the delayed conditions, pairwise differences were found between the “Recall” 

accumulator drift rate parameters (v1) for the no practice, restudy and correct test practice 

conditions. The correct test practice drift rate was significantly greater than the drift rate 

for the restudy condition, t(8) = 2.67, p = .024, and significantly greater than the no 

practice condition, t(7) = 5.85, p = .024. The restudy condition drift rate was also 

significantly greater than the no practice condition drift rate, t(7) = 3.38, p = .024. 

In summary, both the mean latency results and the LBA modeling results support 

the predictions made by the PCR model that successful recall practice results in faster 

recall success on a final test, while, at the same time, recall failure during recall practice 

results in faster recall failure on a final test. Furthermore, these effects appear to reflect 

the retrieval process itself (drift rate) rather than a change in response bias. 

2.8 Discussion 

The PCR model learning rule specifies that directional associations are learned 

between already active features and subsequently activated features. This supports the 
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learning of associations between retrieval cues and the item in the case of initial study 

and restudy practice. In addition, this same process supports the learning of associations 

between the features representing an item, but only when item features become active in 

a gradual fashion, such as occurs during recall practice. Thus, the PCR model provides a 

novel mechanism for explaining the learning benefits of taking a practice test as 

compared to passive restudy. In support of this account, the current study confirmed that 

the faster recall latency observed following a practice test reflects the recall process itself 

rather than a metamemory response bias to hastily give a “Recall” response based on 

knowledge that the prior recall attempt was successful.  

However, the learning rule of the PCR model does not require complete retrieval 

success as a condition for strengthening intra-item associations. Thus, learning may take 

place even if the convergent retrieval process stalls without reaching full convergence 

(i.e., learning from the failure to recall). This is not learning in the colloquial sense of 

acquiring new information, but rather learning in the sense of changes in behavior that 

arise as the result of experience; in this case, what is learned is how not to recall the 

correct target item. If intra-item learning takes place even when retrieval fails, then 

subsequent retrieval attempts for the same item should reflect this learning in the same 

way as when retrieval is successful: faster recall (failure) latencies should be observed. 

The currently study confirmed this prediction both in terms of average failure latencies 

but also in terms of a change in the recall process itself rather than a metamemory 

response bias to hastily give “Can’t Recall” responses based on knowledge that the prior 

recall attempt failed. 
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Error latencies have proven useful for constraining theories of recognition 

memory (e.g., Cox & Shiffrin, 2017; Starns, 2014), but error latencies are rarely 

considered in the study of recall (although see Diller et al., 2001; and Nobel & Shiffrin, 

2001). One reason for this is that a typical recall task does not ask participants to indicate 

when they’ve failed to recall. Instead, most recall experiments give participants a fixed 

recall period, with the failure to recall indicated by the conclusion of this time period 

without recall. Instead, the current experiment asked participants to report whether they 

could, or could not, recall the missing target item when given the cue word. These 

responses are roughly similar to Judgments of Learning (T. O. Nelson & Dunlosky, 

1991), although in this case the judgment is immediately followed by typing in the 

answer if the ‘Recall option is chosen. The recall responses from this procedure 

replicated previous findings of faster recall following test practice from studies that used 

more traditional measures of recall latency (Hopper & Huber, 2018; van den Broek et al., 

2014). This correspondence suggests that participants performed the recall/can’t recall 

decision task in a similar fashion to a standard cued recall paradigm (that is, by recalling 

the target word before making a response). In addition, this technique confirmed the 

novel prediction of the PCR model that retrieval failures (i.e., the “Can’t Recall” 

decisions) would also be faster following recall failure on the practice test. A reaction 

time model of decision making (the LBA model) was applied to these data to determine 

whether test practice caused a change in the speed-accuracy tradeoff (i.e., a change in 

response bias) or whether it changed the retrieval process (i.e., drift rate). Comparisons 

between different LBA models identified that a change in drift rate provided the best 



53 

account of the data and, furthermore, the drift rate parameters reliably changed in the 

predicted manner. 

2.8.1 Caveats and Concerns 

The PCR model makes no prediction as to whether subjects will or will not adopt 

a metamemory strategy that adjusts decision thresholds for the recall/can’t recall 

decision. However, regardless of whether such a strategy is adopted, the PCR model 

predicts that drift rates will change. One subject was best fit by the “v and b Free” model 

as assessed by BIC and several others were fit best fit by this model as assessed by AIC, 

raising the possibility that there were biases and as well drift rate changes. As seen in the 

top two panels in Figure 9, the pattern of drift rates is nearly identical for this model as 

compared to the “v Free” model (comparing the top graphs to the corresponding bottom 

graphs). Thus, the drift rate results remain even when allowing for changes in the 

response boundary. A keen eye might note that the magnitude of the drift rate increase for 

the immediate final test “Can’t Recall” accumulator after failure on the practice test is 

reduced for the “v and b Free” model. This suggests that part of the on-average speed-up 

after recall failure on the practice test is indeed a metamemory decision strategy 

(although the drift rates still reliably changed). It is important to note however, that the “v 

and b Free” model may be too flexible as general model, as indicated by the higher total 

BIC measure, and by the finding that the threshold parameters did not reliable differ 

between conditions for this model. 

Another concern comes from consideration of item selection effects. The LBA 

model analyses separated the test practice condition into two pseudo-conditions based on 

success versus failure on the practice test. However, because this was a post-hoc 
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separation of the data, this may have introduced item selection effects (i.e., some items 

are more recallable than others in general, and these pseudo-conditions would select for 

easy versus hard items). I addressed this concern by directly comparing response 

latencies on the practice test to response latencies on the final test for two groups of 

items: items that were not recalled on both tests (i.e., failure - failure items) and items 

that were recalled on both tests (i.e., success-success items). Providing clear evidence 

against an item selection effect account of the Experiment 1 results, the average correct 

recall latency decreased by 1.22 seconds for a successful immediate final test as 

compared to the same items on a successful practice test (t(9) = 9.35, p < .001) and the 

average failure recall latency decreased by 3.93 seconds for recall failure on the 

immediate final test as compared to recall failure latency for the same items on the 

practice test (t(8) = 7.17, p < .001)7F

8. The results for the delayed final test are more 

complicated considering that considerable forgetting occurred over the course of 24 

hours, which is likely to make recall success slow (e.g., if asked to recall what you did 

the summer before last, you probably could, but it would take a while to remember) and 

at the same time make recall failure fast (e.g., if asked to recall your first birthday, you 

might immediately state that you can’t recall). Thus it is not surprising that the average 

correct recall latency increased by 1.15 seconds from practice test success to a delayed 

final test success (t(9) = 3.76, p = .005), and decreased by 2.14 seconds from practice test 

failure to a delayed final test failure (t(8) = 5.27, p < .001).  

To further investigate item selection effects, I applied the LBA model to the joint 

practice and final test data. As with the mean latency analysis, this was done for the 

                                                 
8 Paired t tests were performed on the log scale, to satisfy the assumption of normality. 
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correct-correct items and the failure-failure items, and so in this case the LBA was used 

only to describe the shape of the latency distribution, as determined by drift rate, and 

changes in drift rate from practice to final test, rather than also explaining accuracy 

(which was by definition perfect or zero for these two groups of items). The model 

included a unique starting point parameter A for each response type (success or failure) 

that was shared across test types, and a non-decision time parameter T0 that was shared 

across all response and test types. As with the mean latency results, the drift rate for the 

correct recall latency distribution increased by .85 from the practice test to the immediate 

final test (t(9) = 10.91, p < .001), while the drift rate for the correct recall latency 

distribution decreased by .22 from the practice test to the delayed final test (t(9) = 2.84, p 

= .019). The drift rate for the recall failure latency distribution increased by .75 from the 

practice test to the immediate final test (t(8) = 18.99, p < .001) and increased by .42 from 

the practice test to the delayed final test (t(8) = 3.95, p = .008). Thus, even if the pseudo-

conditions selected for different kinds of items, it still appears that recall success on the 

practice test led to faster recall success on an immediate final test whereas recall failure 

on the practice test led to faster recall failure on the immediate final test. 

The effect of a failed retrieval on subsequent performance has been examined at 

least once before in the context of the testing effect. Kornell, Klein, & Rawson (2015) 

had participants study weakly associated word pairs in preparation for two cued recall 

tests (i.e., practice and then a final test). The key comparison in their study was between 

two kinds of practice, both of which involved an initial presentation of the cue alone for a 

recall attempt of the target. In one condition, this initial recall attempt was followed by 

copying down the correct answer, regardless of recall success (i.e., this served as 
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feedback), while in the other condition, subjects were given a relatively easy fragment 

completion of the target after the initial recall attempt such that they could find the 

answer through their own retrieval processes rather than overt feedback. These conditions 

produced approximately equal final test performance, which was considerably better than 

other conditions that involved copying or fragment completion without first attempting 

recall based on the cue alone. However, study through fragment completion was better 

than copying in the absence an initial recall attempt. This pattern of results indicates that 

the practice test retrieval attempt is the key to effective learning, and that whether the 

correct answer is reached by recall success (fragment completion) or feedback (copying 

the target word) is inconsequential. In other words, there is a beneficial effect of recall 

failure if feedback is provided. 

These results are readily explained by the PCR model. According to the PCR 

model, intra-item learning requires an initial partial activation of the item followed by 

complete activation of the item, although this complete activation could be achieved 

either through convergent retrieval or through feedback. However, if there is no initial 

partial activation (i.e., if there is no initial retrieval attempt) then there is no intra-item 

learning. Thus, there is beneficial learning from recall failure if that failure is 

immediately followed with some form of feedback for the item. According to the PCR 

model, this partial activation might be for the word form itself (e.g., recalling that the first 

two letter of the correct answer) or it might be for the episodic conjunction created during 

study (e.g., recalling the mental image created in response to a word pair). In either case, 

if this partial activation is followed either by either full retrieval, or by feedback for the 
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correct answer, this will strengthen a directed pathway from the retrieval cues to the 

answer via this partial activation. 

2.8.2 Sequential Sampling Model and Recall Decisions.  

Experiment 1 includes a novel application of sequential sampling models, which 

are more typically used for decision making. Rather than a binary decision about a 

presented stimulus, participants judged the outcome of the retrieval process – whether it 

had identified the target word, or whether it had failed to recover the target. In this 

application of the LBA model, the mapping between the model parameters and 

psychological variables was slightly different than the typical choice situation. 

Specifically, the v parameter (drift rate) was interpreted as a measure of convergent 

retrieval strength (and possibly primary retrieval strength) whereas the b parameter 

(threshold) was interpreted in terms of the metamemory process dictating how readily to 

give up on the retrieval attempt (i.e., the stopping rule). At first glance, this application 

seems far afield from traditional decision making applications of these models. In light of 

this, it is worth revisiting the foundational concepts that led to the development of 

sequential sampling models. 

Ratcliff (1978) describes the theory and application of a diffusion model as 

applied to recognition memory. In doing so, he described the drift rate of the diffusion 

process (i.e., evidence accumulation) as reflecting the relatedness of the recognition 

probe to the contents of memory. This relatedness value was conceptualized as the 

outcome of a feature matching process between the probe and the contents of memory. 

Specifically, Ratcliff wrote “… probe and memory-set item features are matched one by 

one. A count is kept of the combined sum of the number of feature matches and non-
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matches, so that for a feature match, a counter is incremented, and for a feature non-

match, the counter is decremented. The counter begins at some starting value Z, and if a 

total of A counts are reached, the probe is declared to match the memory-set item …” 

(Ratcliff, 1978, p. 63). This interpretation of the evidence accumulation process is 

remarkably similar to the current application of the LBA model as a way of describing 

the accumulation of item features during the recovery process. 

Straying from the original Ratcliff diffusion model, this application of the LBA 

model also concerned the accumulation of evidence toward the decision to cease the 

recall attempt, with this potentially exhibiting different dynamics. For recall successes, 

the decision threshold is reached when the target item is recovered into awareness. For 

recall failures, several possibilities exist. In the domain of free recall, the decision to 

cease retrieval attempts is well described by a stopping rule based on the accumulated 

number of retrieval failures (Dougherty, Harbison, & Davelaar, 2014). Dougherty et al. 

hypothesized that each retrieval failure involved a new sample from the sample space of 

potential memories. However, in the case of cued recall, the sample space may play less 

of a role, such as indicated by the failure to find list-strength effects with cued recall even 

though such list-strength effects with spaced repetitions are found with free recall 

(Malmberg & Shiffrin, 2005; Wilson & Criss, 2017). Instead of accumulated failures in 

the sampling process, the accumulated failures that drive the decision to cease a cued 

recall attempt may be occurring within the recovery process. In other words, a participant 

may attempt to “read out” an item from the set of currently active features, and reach 

their “Can’t Recall” decision after some number of failures to name the pattern of 

features (which is likely to occur if the pattern is no longer converging). Alternatively, a 
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participant may be directly monitoring changes in the set of activated features, ceasing 

the retrieval attempt when this set has stabilized without convergence. The results of 

Experiment 1 are compatible with either explanation, and further experiments are 

necessary to understand the stopping rule utilized in cued recall tasks. 
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CHAPTER 3 

EXPERIMENT 2 

3.1 Semantic Cue Switching 

In Experiment 2, I explore the conditions under which generalization between 

retrieval cues does or does not occur following test practice. In other words: When, if 

ever, does practice recalling information given one prompt enhance the ability to recall 

that same information given a different prompt? Recently, Hopper and Huber (2018) 

investigated transfer between retrieval cues in a cued recall paradigm. In this experiment, 

participants learned to associate pairs of unrelated words; one word in each pair was 

designated the cue word and the other word was designated the target word, which was to 

be recalled when prompted with the cue word. Critically, each target word was associated 

with two cue words at the time of initial study (e.g., the word “Horse” could serve as the 

target word in two different pairs, “Desk – Horse” and “Plane – Horse”). Before 

participants were tested on their ability to recall each target word, they practiced some of 

the targets again, either by restudying or by taking a practice cued recall test. However, 

participants were only given practice with one of the target’s two cues (e.g., restudy 

“Desk – Horse”, but not “Plane – Horse”). On the final test, participants were prompted 

to recall each target word either with the cue word given during practice, or with the 

unpracticed cue. The results, displayed in Figure 10, showed that memory accuracy and 

recall latency were only different from a baseline condition of no practice when the same 

cue was used during both practice and final test. 

Why did the benefits of practice fail to transfer between cues? One simple 

explanation would be that both restudy of paired associates and cued recall practice 



61 

simply strengthen the cue to target association, and this specific association is irrelevant 

on a final test with a different cue. However, reducing the cause of the testing effect to 

stronger associations from the cue word to the target word is problematic, because the 

testing effect is strongest following free recall 

practice, a test format that specifically lacks explicit cues. The PCR model explains the 

lack of transfer between retrieval cues as a result of the two different retrieval cues 

activating two unique sets of item features. As mentioned previously, the PCR model 

assumes recall strengthens directional associations between the initially retrieved features 

(in primary retrieval) and subsequently retrieved features (in convergent retrieval). A 

Figure 10: Cued recall memory accuracy and recall latency results from Hopper 
and Huber (2018), Experiment 2. Error bars represent +/- 1 SEM of the 

difference from the baseline condition. Note that the baseline condition is 
duplicated across both rows of the figure in order to enable easier comparison 

between baseline and each experimental condition. 
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consequence of this property is that intra-item associations learned with one cue can fail 

to transfer to another cue. Because each cue is assumed to activate a set of features 

unique to the manner in which the target item is considered during encoding, each cue 

should also utilize a unique convergent retrieval pathway. However, strengthening one 

particular pathway need not strengthen another. For instance, compare the outcome of the 

retrieval attempt using Cue X in Figure 2B and the outcome of the retrieval attempt using 

Cue Y in Figure 2D. Despite learning from an earlier retrieval using Cue X, Cue Y 

cannot make use of the strengthened intra-item associations because it produces a 

different set of initially active features on the target than does Cue X. Thus, strengthened 

intra-item associations are only beneficial if the set of features activated in primary 

retrieval is consistent across retrieval attempts. 

3.2 Overlap between Semantic Cues 

If it were possible for two different retrieval cues to activate the same set of item 

features, or a highly overlapping set of features, then generalization between retrieval 

cues would be possible according to the PCR model. Engineering such a situation in 

practice is challenging, because of the abstract nature of feature representations in the 

PCR model. Following the assumptions of previous models (e.g., Raaijmakers & Shiffrin, 

1981), the features of a to-be-retrieved item are presumed to include perceptual, 

semantic, phonological, or orthographic attributes of the episode. If these attributes are 

static (i.e., largely constant across different contexts and pairings), then the features of the 

memory representation should also be static, making the prospect for being able to 

engineer a situation where two retrieval cues activate overlapping features good. One 

possible technique to achieve this goal would be practicing retrieval using a second cue 
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word semantically related to the target word, in an effort to activate semantic features that 

would be common across each encounter with a target. 

The idea behind this technique is that semantic features may be encoded and in 

activated any situation. For example, if you needed to associate the unrelated words 

“Window” and “Dog” in a memory experiment, you might imagine a scenario that links 

elements of the two words together in some way, like imagining your dog looking at you 

sadly through your window as you leave for work (see Figure 11). Elements of your 

semantic knowledge about dogs would be used in generating this scenario (e.g. that they 

have strong bonds with their owners and do not enjoy long periods of time apart). Thus, 

one reasonable assumption is that generating this unique association between windows 

and dogs during study would help the cue word “Window” become associated with the 

semantic features of the item “Dog” in your memory. Among the set of words that could 

serve as another retrieval cue for “Dog”, a semantic associate should provide the best 

chance of activating the same semantic information again. For example, if you are 

prompted to recall a word with the cue “Puppy”, that cue will activate a set of features 

associated with your knowledge about dogs, and this set is likely to overlap with the 

features considered when encoding “Dog” with the unrelated cue “Window”. If recall of 

“Dog” is successful given the semantic cue “Puppy”, and intra-item associations are 

strengthened, the fact that the features activated in primary retrieval by both “Puppy” and 

“Window” are likely to overlap means that the intra-item associations just learned are 
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likely to benefit recall on the final test using the cue “Window”. 

 

However, it is entirely possible that the set of features used to encode the cue-

target pair are not largely static. Instead, the features of the encoded memory may include 

conjunctive attributes corresponding to the content as a pair, and the specific manner in 

which the pair is interpreted during study (see Criss & Shiffrin, 2004 for a similar 

proposal). Continuing the “Window” – “Dog” example, the novel conjunction formed 

(the image of your dog looking at you through a window) may be directly incorporated 

into the episodic memory trace, along with the features of the individual items. 

Window Dog-

Study (or Restudy) Cued Recall Practice

Window ??
Figure 11: Illustration of different directed associations that are learned when 
studying (or restudying) the word pair ‘Window – Dog (solid arrows) or when 

successfully recalling ‘Dog’ in response to the cue word ‘Window’ (dashed arrows). 
During initial study, a participant might create a mental image of a dog looking out 
a window, producing directed associations from these words to the mental image. 

Successful cued recall practice involves activation of the mental image in response to 
‘Window and then activation of ‘Dog’ in response to this mental image. According 

to the PCR memory model learning rule, this strengthens directed associations from 
this mental image to the word ‘Dog’ as well as directed associations from ‘Window’ 

to ‘Dog’. 
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Importantly, the features representing this conjunction would be independent of the 

features that might arise to represent a conjunction of, say, “Window” and “Bank”, or 

“Desk” and “Dog”. In this situation, a reasonable assumption is that although the features 

of the individual items are well-known prior to the experiment (e.g., both “Dog” and 

“Window” are well known), the particular conjunction is novel, and the pathways 

necessary for retrieval of “Dog” from “Window” may not be well-practiced. Thus, you 

may rely on using the cue word given on the test to activate the features representing the 

novel conjunction of the words, to in turn activate the features of the correct target word. 

In other words, the features representing the novel episodic conjunction of the cue and 

target formed during encoding are mediating recall, not associations between the cue and 

features of the target item itself.  

If features representing the novel episodic conjunction of the word pair form part 

of the memory trace, and are the features activated by the cue in primary retrieval, then it 

is likely that intra-item learning stemming from recall with practice another cue (no 

matter how related to the target) will fail to generalize back to the original cue. On the 

other hand, if associations between the cue and specific features of the target item itself 

(e.g., semantic features) are formed during study and are later used during primary 

retrieval, then it should be possible to observe generalization from recall practice with 

another cue than can activate the same features. Thus, examining semantic cue 

generalization in Experiment 2 provides a method of understanding some characteristics 

of the feature representations stored in memory and used for retrieval: are they static 

across episodes, representing just individual item attributes along with associations, or 
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are they dynamic, incorporating features to represent the idiosyncratic conjunctions 

unique to particular pairings and episodes? 

I performed a pilot study to investigate the possibility of transfer of learning from 

semantically related retrieval cues to unrelated cues. Participants studied lists of unrelated 

cue-target word pairs, and then immediately received either three rounds of restudy, cued 

recall practice, or no practice for each target, and took an immediate final cued recall test 

using the cues learned during initial study. The cue words given during practice were 

strong forward semantic associates of the target words (e.g., for a target word “Doctor”, 

the cues “Physician” “Nurse”,  and “Medicine” were used). Practice with these 

semantically associated cues is analogous to the “Other Cue” condition from Hopper and 

Huber (2018), only using a semantic cue rather than another independent episodic cue. 

Multiple rounds of practice with strong semantic associates were used because 1) using 

multiple strong cues would maximize recall during practice, even without exposure to the 

cue during the initial study phase, and 2) retrieving the target in response to many 

different retrieval cues would strengthen intra-item associations from a variety of 

possible primary retrieval starting points, thus increasing the chance of overlap between 

the features activated by the unrelated cue word and at least one of the semantically 

associated retrieval cues. 

The results of this pilot experiment showed generalization from cued recall 

practice with semantically related cues to the unrelated cues provided on the immediate 

final test (i.e., performance in the cued recall practice condition was above performance 

in the baseline no-practice condition). However, restudy practice produced an equivalent 

degree of transfer of learning between cues. A more fine-grained analysis of the practice 
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test data showed that final test performance was enhanced as long as the target was 

recalled in response to at least one of the three semantically related cues, but that 

recalling the target in response to two or three of the cues confer no additional 

performance benefits. Finding that restudy and cued recall practice both produced a 

transfer of learning between cues was a different result than previously obtained by 

Hopper and Huber; this prior study used only unrelated cues, where neither restudy or 

cued recall practice produced a transfer of learning between retrieval cues. Furthermore, 

the fact that restudy and test practice produced similar benefits suggests than semantic 

cue practice presents the opportunity for learning other associations then just intra-item 

associations. To further understand when practice with one retrieval cue transfers 

mnemonic benefits to others cues, Experiment 2 extends this pilot study to include 

several additional conditions. Instead of using a semantic cue for all practiced targets, 

half of practiced targets will be practiced with their original episodically associated (but 

semantically unrelated) cue word, and the other half will be practiced using a sematic 

cue. Furthermore, this experiment will also include a delayed final test condition; if 

transfer of learning from semantic retrieval cues to the unrelated retrieval cues occurs 

following test practice and is resistant to forgetting after a delay compared to restudy this 

would suggest that that the transfer of learning between cues stems from strengthened 

intra-item associations. 

3.3 Summary of Experiment 2 

Prior research has shown that practice recalling information given one cue does 

not enhance the ability to recall that same information given another random cue. The 

PCR model explains the lack of transfer between retrieval cues as a result of these cues 
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activating two unique sets of item features, reducing the mnemonic contributions of any 

intra-item associations learned from recall practice. However, if the retrieval cues used 

during the practice and final tests activate at least a partially overlapping set of target 

item features, then transfer of learning between cues should be possible. In Experiment 2, 

this overlap is sought be by practicing retrieval of target words from a cue-target pair 

learned during initial study using different cue words that are semantically related to the 

target word. This experiment will develop the PCR model by shedding light on the static 

or dynamic nature the feature representations stored in memory and used for retrieval. 

3.4 Methods 

3.4.1 Participants. 

94 participants from the University of Massachusetts Amherst were recruited 

from the undergraduate subject pool. Participants were randomly assigned to either the 

immediate or delayed final test condition when the experiment commenced. As a result, 

48 participants were assigned to the immediate final test condition, and 46 participants 

were assigned to the delayed final test condition. Participants were actively recruited until 

at least 45 individuals had participated in each retention interval condition. Once this goal 

was reached, recruitment ceased, but individuals with scheduled appointments were still 

allowed to participate. This planned sample size of 45 participants in each retention 

interval condition was chosen as to be comparable to the previous literature, and 

specifically Experiment 2 of Hopper and Huber (2018). Participants were compensated 

with two units of credit they could apply towards extra credit opportunities in 

undergraduate psychology classes. 
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3.4.2 Materials. 

120 English word triplets (consisting of a target word, a semantically related cue 

word and an unrelated cue word) were generated using a two-step process. In the first 

step, pairs of target words and semantically related cue words meeting specific criteria 

were selected from the USF word association norms database (D. L. Nelson, McEvoy, & 

Schreiber, 2004). The specific criteria were: 

1. All target words must have between four and 10 letters, and a word frequency 
between five and 200 uses per million words according to the SUBTLXUS 
corpus (Brysbaert & New, 2009). 

2. Each cue has a minimum forward associative strength of 0.2 to its target 
word8F

9. 
3. Each word in the combined set of cue words and target words is unique. 
4. Words use either their plural or singular form, but never both (e.g., “horse” and 

“horses” cannot both appear in the combined set of cues and targets). 

The top 120 word pairs with the highest forward associative strength between the cue 

word and the target word were chosen from this set. In the second step, 120 new words 

with a forward associative strength of zero to all the chosen targets were selected. Each of 

these 120 unrelated words will serve as the episodically associated cue for a randomly 

chosen target word, thus completing each triplet. As an example, a possible triplet could 

be “Toad” (the target), “Frog” (the semantic cue), and “Wall” (the unrelated cue). The 

same 120 word triplets were used as the stimulus materials for each subject. The word 

triplets were randomly divided into six lists of 20 for each participant. The experiment 

                                                 
9 The forward associative strength was determined using a free association task where 
participants were provided with cue words, and asked them to name all the words that 
come to mind in response to each cue. The value of the forward associative strength 
between a cue word and a response word was calculated the proportion of times that 
response was given to that specific cue word. For example, the cue word “bride” elicited 
the response “groom” 86.5% of the time, giving bride a forward associative strength to 
“groom” of .865. For more information, visit w3.usf.edu/FreeAssociation/Intro.html 
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was performed entirely on a desktop computer using MATLAB and the Psychophysics 

Toolbox. 

3.4.3 Procedure. 
A diagram outlining the entire experimental procedure for both groups of 

participants is shown below in Figure 12. Participants completed an initial study phase 

followed by a practice phase and a final test phase for each of the six lists. In the initial 

study phase, participants studied each individual target word together with its unrelated 

cue word for five seconds. The unrelated cue word and target word from each triplet were 

presented on the left and right sides of the screen, respectively (e.g., Wall – Toad). 

Participants were instructed to learn these pairings, and told they would need to recall the 

word on the right (the target word) when shown only the word on the left (the cue word) 

on a future test. 

The practice phase immediately followed the initial study phase for each list. 

Target words were randomly assigned to one of five practice conditions: unrelated cue 

test practice (UC-TP), unrelated cue restudy (UC-RS), semantic cue test practice (SC-

TP), semantic cue restudy (SC-RS), or no practice (control). The unrelated cue practice 

conditions may also be referred to as episodic cue practice conditions (the label 

“Unrelated Cue” describes how the cue word was chosen in the stimulus pool, while the 

label “Episodic Cue” describes how it was associated with the target word during the 

experiment). For target items assigned to receive test practice, participants were shown a 

cue word, and given 10 seconds to recall the correct target word from the initial study 

phase (i.e., cued recall practice). For target items in the unrelated cue test practice 

condition, the cue word shown was the same word seen with the target immediately prior 
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in the initial study phase (e.g., Wall – ____?). For target items in the semantic cue test 

practice condition, the cue word shown was the semantically related word selected from 

the USF word association norms (e.g., Frog – ____?). For target items assigned to be 

restudied, participants were shown a cue word on the left and the target word on the right 

for five seconds, just as in the initial study phase. For target items in the unrelated cue 

restudy condition, the cue word was the same word seen with the target immediately 

prior in the initial study phase (e.g., Wall – Toad). For target items in the semantic cue 

Figure 12: Schematic diagram of the procedure in Experiment 2. The upper 
portion of the figure depicts the methods of initial study, practice, and final 

testing for target items in each of the five practice conditions. The lower portion 
of the figure depicts the difference in final test timing between the immediate and 

delayed final test trials. 
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restudy condition, the cue word was the semantically related word selected from the USF 

word association norms (e.g., Frog – Toad). 

To help participants perform the correct retrieval task on each test trial (i.e., to 

recall the target word seen with the cue during the initial study phase, or recall a target 

word from the study list that is semantically related to the cue), the cue words were color-

coded during the practice phase. Cue words semantically related to the target word were 

colored green, and cue words unrelated to the target word (but paired with the target 

during initial study to form an episodic association) were colored red. These color codes 

were also used on restudy trials for consistency. Participants gave their responses on test 

trials with the computer keyboard, and were permitted to edit their responses on test trials 

by using the Backspace key before confirming them with the Enter key. No feedback was 

given about performance on practice test trials. Restudy trials and cued recall test practice 

trials were grouped into separate blocks of trials during the practice phase, and the order 

of these blocks was counterbalanced across subjects. The presentation order of the word 

pairs was randomized within each list, so that words were not practiced in the same order 

as during the initial study phase. 

After the practice phase, each target was given a final cued recall test using the 

unrelated cue word from the initial study phase as a probe. The timing of the final test 

varied between the immediate and delayed final test conditions. Participants in the 

immediate final test condition completed the final test for a given list immediately after 

practice for that list. Thus, they had six rounds of initial study, practice, and final test, in 

that order (e.g., study-practice-test for list one, followed by study-practice-test for list 

two, etc.). In the delayed final test condition, the final test will not occur until after all six 
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lists receive initial study and practice. Thus, participants had  six rounds of initial study 

and practice, and then one long final test covering all six lists (e.g., study-practice for lists 

one, two, three, etc., followed by the final test for list one, then the final test for list two, 

etc.). To maintain consistency with the immediate condition, the final test for each list in 

the delay condition was given in the same order the lists were studied in (i.e., the targets 

from list one were tested first, then the targets from list two, etc.). 

 As during the practice tests, participants were given 10 seconds to type in the 

missing target word using the computer’s keyboard, and were permitted to edit their 

responses by using the Backspace key before confirming them with the Enter key. The 

order in which the word pairs were tested was randomized within each list, so that the 

order of pairs on the final test will not be the same as in the initial study or practice 

phases. A 30 second break was given in between the final test for each list (i.e., after 

every 20 trials). The entire experiment lasted approximately 45 minutes.  

3.5 Results 

3.5.1 Scoring. 
Recall latencies were measured as the duration between the onset of the cue word, 

and the first key press of the word entered as the participant’s final response. The 

accuracy of each response was scored by a software routine that allowed for small 

misspellings (e.g., letter transposition, pluralization) to be labeled as correct. 

3.5.2 Statistical Analysis. 

Both the recall accuracy and latency data were analyzed using hierarchical 

Bayesian regression models. A logistic mixed-effects model was fit to the recall accuracy 
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data, and a linear mixed-effects model was fit to the recall latency data after log 

transforming the latencies. In both cases, practice type (episodic cue restudy, episodic cue 

test practice, semantic cue restudy, sematic cue test practice cued recall, and no practice) 

and retention interval (immediate vs. delayed final test), as well as their interaction, were 

included as fixed effects. The models also included a random intercept term for each 

participant. The rstanarm package for the R computing language (R Core Team, 2017; 

Stan Development Team, 2016) was used to estimate the posterior distributions of both 

models. 

A Gaussian probability distribution was used as the prior distribution for all 

regression coefficients in both models. The μ and σ parameters for these prior distribution 

were informed by estimates from two previous studies. The parameters for the prior 

distributions on the intercept, retention interval effect, episodic cue practice effects, and 

control condition were based on a mixed-effects model analysis of the data from Hopper 

and Huber (2018). The parameters for the semantic cue practice main effects were based 

on a mixed-effects model analysis of data from the pilot study described in the 

introductory section of this experiment. The estimated fixed effect coefficient values 

from these models were then used as the values for the μ parameters of the prior 

distributions in the current analysis. The standard errors of the fixed effect coefficient 

were used as the σ parameters, after multiplying by three to instantiate the assumption of 

additional uncertainty owing to a slightly different experimental design, stimuli set, and 

new sample of participants. Because neither of the previous experiments included a 

retention interval manipulation along with semantic cue practice (and thus, could not 

measure interactions between them), the default weakly informative prior distribution 
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was used for the semantic cue by retention interval interaction coefficients. The specific 

parameter values used for each coefficient’s prior distribution are reported in Table 3 and 

Table 7, for the accuracy and latency models respectively.9F

10  

Contrasts of the estimated recall accuracy and latency between conditions were 

performed using the emmeans R package (Lenth, 2018). Contrasts were computed by 

subtracting the distributions of posterior predicted values between conditions (on the log-

odds and log scale respectively), and examining whether the 95% Highest Density 

Interval (HDI) of this distribution contained zero. If zero was outside the HDI, the 

contrast was interpreted as evidence for a reliable difference. 

The observed proportion of correctly recalled words in each condition is shown in 

the top panel of Figure 13, and the proportion of correctly recalled words in each 

condition estimated by the model is reported in Table 4. First, accuracy differences 

between practice conditions were assessed at each retention interval (see Table 5 for a 

numerical summary of all practice condition contrasts). All practice conditions produced 

higher recall accuracy than the baseline no practice condition, at both retention intervals. 

On the immediate final test, episodic cue restudy produced the highest recall accuracy 

(Mdn = 79.6%), reliably greater than restudy with a semantically related word (Mdn = 

63.1%) and test practice with the same episodically related cue word provided on the 

final test (Mdn = 55.8%). Semantic cue restudy, which produced the second highest 

accuracy on the immediate final test, was reliably greater than accuracy in both the 

                                                 
10 While using informed priors is always advisable, it made little difference in this case. 
The models described in this section led to the same qualitative conclusions as models 
with the same structure but using the default weakly informative prior distribution N(0, 
2.5) for all parameters. 
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episodic and semantic cue test practice condition (Mdn = 57.0%). The two forms of test 

practice (semantic cue and episodic cue) produced nearly identical performance on the 

final test.  

Overall recall accuracy dropped sharply over the retention interval, but the rank 

order of the practice conditions on the delayed final test was mostly similar to that of the 

immediate final test. The episodic cue test practice condition was the single exception, 

which now showed the highest recall accuracy of all practice conditions. Importantly, the 

relationship between the episodic cue restudy and the episodic cue test practice 

conditions reversed, with episodic cue test practice now producing higher accuracy (Mdn 

= 39.2%) than episodic cue restudy (Mdn =37.9%). This reliable cross-over interaction 

reflects the classic “testing effect” (see Table 6 for a numerical summary of the 

interaction contrasts). Thus, testing produced superior retention relative to restudy, at 

least when using the same retrieval cues during both practice and final testing.  

Further interaction contrasts demonstrate that the retention benefits from test practice 

were highly specific. Unlike episodic cue restudy and test practice, no interaction was 

found involving the semantic cue restudy and semantic cue test practice conditions. 

Instead, accuracy in the semantic cue restudy condition (Mdn = 63.1% for the immediate 

final test, Mdn = 29.5% for the delayed final test) was consistently greater than in the 

semantic cue test practice condition (Mdn = 57.0% on the immediate final test, Mdn = 

26.1% on the delayed final test). A direct comparison between the two types of test 

practice (episodic cue and semantic cue) further demonstrate their differential effects. 

Semantic cue and episodic cue test practice produced nearly identical recall accuracy on 
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the immediate final test (Mdn = 57.0% and Mdn = 55.8%, respectively), but they greatly 

diverged on the delayed final test, with accuracy in the episodic cue test practice 

condition remaining relatively high (Mdn = 39.2%) and accuracy in the semantic cue test 

practice condition dropping down more sharply (Mdn = 26.1%). The divergence of the 

semantic and episodic cue test conditions, and the lack of cross-over between the two 

Figure 13: Recall accuracy and latency from Experiment 2. Error bars represent 
95% confidence intervals calculated using the subject-normalized method of 

Morrey (2008). 
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semantic cue conditions, show that realizing the retention benefits of test practice 

depends on using the same retrieval cues on the final test as during practice. 

The average recall latency for correctly recalled words in each condition is 

shown in the bottom panel of Figure 13, and the median recall latency in each condition 

estimated by the model is reported in Table 8. First, recall latencies were compared 

across practice conditions at each retention interval. Mirroring the recall accuracy results, 

active practice produced faster recall than the baseline no practice condition, at both 

retention intervals. However, practice conditions that produced more accurate recall did 

not always produce faster recall. Episodic cue test practice produced the fastest recall 

(Mdn = 1.51s), followed by episodic cue restudy (Mdn = 1.66s), semantic cue restudy 

(Mdn = 1.78s) and semantic cue test practice (Mdn = 1.85) in turn. All pairs of these 

conditions were reliably different, with the exception of the semantic cue test practice and 

semantic cue restudy conditions. 

Correct recall latency slowed over the retention interval, but the pattern of 

latencies across conditions on the delayed final test was similar to the immediate final 

test. Again, the episodic cue test practice produced the fastest recall (Mdn = 1.96s), 

followed by episodic cue restudy (Mdn = 2.17). The semantic cue restudy and semantic 

cue test practice conditions reversed rank order at the delayed final test, with a median 

recall latency of 2.26s for semantic cue test practice and a median recall latency of 2.36s 

for semantic cue restudy. The interaction between the two semantic cue practice 

conditions and the retention interval narrowly reached the established criterion for 
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reliability, with the HDI of the interaction contrast excluding zero by a margin of .001. 

No other interactions between practice types and retention interval occurred10F

11.  

3.6 Discussion. 

 All tests do not produce the same learning – this is the certain conclusion from 

Experiment 2. In terms of final test recall accuracy, retention was only enhanced when 

the same retrieval cue was provided for both the practice test and final test. This can be 

clearly seen in Figure 13, where only the episodic cue test practice condition shows a 

different slope across the immediate and delayed final tests. When a word semantically 

related to the target word was given as a retrieval cue on the practice test, forgetting over 

the course of the retention interval followed a similar trend as both restudy conditions. 

The consistency of the advantage for restudy over testing when practicing with the 

semantically related cue (rather than given the same cue provided on the final test) 

indicates that consistent retrieval cues are necessary to realize the retention benefits of 

test practice does. In other words, it appears the retention benefits of retrieval do not 

generalize across item-level retrieval cues. 

 The conclusions from the analysis of the recall latency data were similar. 

Not surprisingly, recall was faster whenever the same cue word was provided during the 

practice phase and final test phases. Among these episodic cue conditions, test practice 

produced faster recall than restudy at both retention intervals. No such consistency was 

seen among the semantic cue practice conditions, and in fact, the latency relationship 

between the semantic cue restudy and semantic cue test practice conditions reversed over 

                                                 
11 For completeness, Table 10 summarizes the recall latency interaction contrasts 
examined. 



80 

the retention interval. However, there is no clear theoretical explanation reason for such 

an interaction, and an interaction involving recall latency changes over time has not been 

seen any previous published studied (Hopper & Huber, 2018; van den Broek et al., 2014). 

Because of this, and because of this interaction’s extremely narrow margin of 

significance, I believe it is prudent to regard it as spurious. Thus, semantic cue practice 

(restudy or testing) do not appear to have to produce different impacts on recall latency 

when the final test uses another item-level cue. 

 These results replicate the findings of Hopper and Huber (2018), further 

bolstering the conclusion that learning from tests is cue-specific in practice. The 

mechanisms of the PCR model allow for generalization across item-level retrieval cues to 

occur in theory, but achieving this generalization requires that both retrieval cues are 

associated with overlapping sets of item features, and this overlap appears difficult to 

achieve. These results, along with the earlier results of Hopper and Huber (2018), are 

consistent with the idea that memory representations for episodes with multiple items are 

more than the sum of their individual features. Unique or “emergent” features that are 

specific the conjunction of the items, and independent of the features defining their 

individual constituents, have been used to explain differences between single item and 

associative recognition in computational models of memory (Eich, 1985; Murdock, 1982, 

1993). More recently, this assumption of emergent associative information has been 

included in an extension of the REM model (Criss & Shiffrin, 2004, 2005) to account for 

a lack of interference in associative recognition between pairs of items that shared one 

member in common, but whose second member came from a different class of material 

(e.g., studying the word “Traffic” paired with the image of a face did not impair 
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recognition of a word-word pair like “Traffic” – “Oxen”). Criss and Shiffrin (2005) also 

demonstrated that single item recognition performance for an item that was repeated 

across pairs did not depend on the type of pair the item belonged to (i.e., repeating an 

item across two word-word pairs did not differ from when the item was repeated across a 

word-word pair and a word-face pair), indicating the some stable, item-specific 

information is also encoded along with the emergent pair representation. 

The use of either emergent pair-specific features, or stable item-specific features, 

to drive retrieval can explain the lack of generalization observed across semantic and 

episodic cues in Experiment 2. While the episodically associated cues relied on activating 

the emergent associative features as the starting point in primary retrieval, the 

semantically related cues may have relied on activating the stable, item-specific features, 

to enable retrieval of the target, because these are the semantic features they share in 

common with the target word. Because the pair-specific features and the item-specific 

features represent distinct groups, convergent retrieval learning beginning from one set of 

features will not benefit the convergent retrieval process when it begins from another set. 

Thus, while the results of Experiment 2 represents “null” results in terms of cue 

generalization, they provide guidance for theory and model development. Future 

computational implementations of the PCR model should incorporate the assumption of 

both emergent pair-specific features and stable item-specific features when encoding 

multiple items into a memory representation. 

Presumably, the semantic cues also activated the features of other items in 

memory that were not among the words initially studied (e.g., “Puppy” will also activate 

semantically related competitors to “Dog”, like “Kitten”). Paring down any activated 
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semantic competitors to enable retrieval of the correct item from the studied list would 

require the joint use of a temporal context cue. Using a temporal context cue to filter the 

list of semantic associates activated on the practice test may also explain why recall was 

slightly above baseline in both the semantic cue test practice conditions of this 

experiment, while recall was equal to the baseline condition in both the analogous “Other 

Cue” conditions of Hopper and Huber (2018). In this prior study, using a temporal 

context cue would not have been beneficial to performance, as the temporal context cue 

would be equally associated with the correct target word as with all the other competing 

words from the list. In that situation, using the item-specific cue would provide the most 

discriminative information. While it is true that the temporal context cue would be 

equally associated with the target word (i.e., “Dog”) as with all the other competing 

words from the studied list in the current experiment as well, in this situation it proves 

extremely useful in conjunction with the semantic cue; the target with an association to 

both the semantic cue and the temporal context cue will always be the correct one to 

recall. If participants did use information from the temporal context jointly with the 

semantic cue in the practice phase of Experiment 2, this would produce a strengthened 

association with the temporal context cue information and any retrieved item. Because of 

the (at least partial) consistency between temporal context at both the immediate and final 

tests, having a strengthened association between the temporal context cue and the target 

item would improve retrieval on the final test relative to baseline (because baseline items 

have no opportunity for such additional learning during the practice phase). 

A competing theoretical account of retrieval-based learning proposed by Rickard 

and Pan (2017) provides an alternative explanation for the cue-specific benefits of test 
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practice observed here and elsewhere (Hopper & Huber, 2018; Pan et al., 2016; Pan, 

Wong, Potter, Mejia, & Rickard, 2015). The claim of the “Dual Memory” theory is that 

restudy and test strengthen different memory traces; restudy is assumed to strengthen the 

memory trace formed during initial study, while retrieval both strengthens the initial trace 

(on which practice test retrieval is based) and encodes a new, separate test memory trace. 

This account can be seen a more specific version of the Bifurcation model (i.e., the 

reason the total memory strength increases more for retrieved items than studied items is 

because retrieved items can draw on the strength of two memories instead of one). The 

new test trial memory has two components: cue memory, an episodic encoding of the 

retrieval cue in a retrieval context, and an association between this cue memory and the 

correct response. Thus, any learning about the correct response is cue-specific. The Dual 

Memory account, which assumes retrieval encodes a new memory trace, directly 

conflicts with the PCR model, which assumes retrieval strengthens an existing memory 

trace. It is difficult to discriminate between multiple and single trace theories (as they 

often make similar predictions) but as developed further in the general discussion, the 

Dual Memory and PCR accounts of retrieval based learning may be able to be contrasted 

by examining the effects of retrieval on other memory effects, such as the list-strength 

effect in recognition. 
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CHAPTER 4 

EXPERIMENT 3 

4.1 Visually Guided Convergent Retreival 

Under the PCR model, recall enhances retention and subsequent recall latency 

relative to restudy opportunities because an item’s features gradually become active in a 

staged manner during retrieval, resulting in stronger associations between these features 

that can be leveraged during future retrieval attempts. The intra-item learning that 

putatively takes place following recall is an emergent property of the model’s assumption 

that retrieval cues partially activate items in memory during recall attempts, and that 

directional associations are strengthened between features when they become active in 

sequence. However, learning associations between the features of an item is not 

necessarily limited to taking place during recall; the circumstances of a recall tests merely 

present an opportunity to do so. A unique prediction of the PCR model is that if strong 

associations between the item features necessary for recall can be formed during 

encoding, retention and recall latency should be enhanced relative to traditional study, 

even without engaging in an explicit recall task. 

Experiment 3 tests this prediction using visual stimuli, which have more 

concretely definable features than purely verbal stimuli. In Experiment 3, participants 

studied images of common objects by viewing the whole object, or being shown an 

accumulation of individual features from the object in rapid sequence. After the learning 

phase, participants were be tested on their ability to recall the name of each object when 

prompted with one of the object’s features. The PCR model predicts that experiencing the 

individual features from the object in rapid sequence will lead to stronger associations 
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between the features than restudying the whole image, promoting better long term 

retention and faster recall of the details necessary to recall the object. 

4.2 Methods 

4.2.1 Participants 

The participants were 72 individuals from the University of Massachusetts 

Amherst, all recruited from the undergraduate subject pool.  Of the 72 recruited 

participants, 65 returned for the second session of the experiment. Participants who 

completed both sessions received two credits that could be applied either toward extra 

credit opportunities in undergraduate psychology classes, while those who completed just 

the first session received only one credit 

4.2.2 Materials 

A total of 120 photographic images of common objects (e.g., a tea kettle, a 

cardboard box, a bike, a chair) were converted to a greyscale color pallet. All objects 

were displayed alone in the image against a white background. During the experiment, all 

images were displayed foveally at size of 512 by 512 pixels. Some images were resized 

downward to the desired resolution, but no images were enlarged from lower resolutions. 

The stimuli used in the experiment can be viewed and downloaded from 

https://github.com/cMAP-CEMNL/VGCR_experiment/tree/master/stimuli.Images were 

divided up into the cells of a three by three grid, thus defining nine visual features for 

each object. An important criteria for selecting the set of images used in this experiment 

was how much of the 512 by 512 image was taken up by the object, and how evenly 

distributed the object was throughout the 512 by 512 image. Specifically, it was required 

https://github.com/cMAP-CEMNL/VGCR_experiment/tree/master/stimuli
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that the object occupy at least 25% of the pixels in each cell. For example, an object such 

as a hockey stick or a sword would be eliminated using this criteria. This requirement 

serves to minimize heterogeneity between the visual information provided by the content 

of each cell of a given object (e.g., preventing the object from being entirely revealed by 

three of the cells, while the remaining six are empty). 

4.2.3 Procedure 

Each of the 120 objects was randomly assigned to one of three viewing 

conditions: whole object study, “guided convergent retrieval” (GCR) practice, or no 

practice (to serve as a baseline control condition). In the whole object study condition, the 

objects were presented on the screen for 2.25 seconds. In the GCR condition, objects 

appeared on the screen gradually over time in a staged fashion, with a total presentation 

time of 2.25 seconds also. After presenting the object, the name of the object was 

presented alone on screen for two seconds in both the whole object and GCR conditions. 

In the GCR condition, the object was revealed gradually by dividing it into nine 

equally sized, non-overlapping portions (i.e., a three by three grid) that together covered 

the entirety of the image (these portions will hereafter be referred to as “features”). These 

object features were shown one at a time, in the same position on the screen it would 

occupy if the complete object were being displayed.  The order in which each object 

feature appeared in the GCR condition was intentionally specific. The first feature to 

appear was selected based on data from a stimuli naming pilot study, where participants 

viewed three features from each of the 120 objects, and attempted to name the object the 

feature came from each time (having never viewed the entire object itself). For each 

object, the feature with the lowest naming accuracy in the pilot study was chosen to be 
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the first feature displayed in the GCR condition. The selection method was important 

because this feature also served as the retrieval cue during the test phase, and using 

features with inherently high naming accuracy would potentially introduce ceiling effects 

that obscure differences between the practice methods. After the first object feature 

appeared, the next feature to appear was always adjacent. For example, if the top-left 

feature in the three by three grid was the first feature to appear, the second to appear 

would either be the top-middle or middle-left feature. This “adjacent feature” rule applied 

to all subsequent features, and each feature was displayed for 250 ms. before the next 

feature appeared, for a total trial length of 2.25 seconds. A diagram demonstrating format 

of the GCR condition is shown Figure 14.  

Participants were exposed to the 40 GCR practice items and the 40 whole object 

study items in random order. After all participants were exposed to all 80 items, they 

received a second round of exposure to all of the items, in another random order. After 

the exposure phase, participants were given a cued recall naming test. For half the items 

in each practice condition, the test phase occurred after a one minute math distractor task 

(calculating a cumulative sum of 6 numbers between one and nine) following the 

exposure phase. This condition is hereafter referred to as the immediate test condition. 

For the remaining items, the test phase occurred in a second session (hereafter referred to 

as the delayed test condition). The delayed test occurred the day following the exposure 

phase (approximately 24 hours after the first session). Objects were randomly assigned to 

the immediate and delayed test conditions.  
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On the cued recall test (as shown in Panel B of Figure 13), participants were 

shown a single feature from each object as a cue (i.e., one of the object’s nine equally 

Guided Convergent
Retrieval Condition

Whole Object 
Study Condition

What object does this part come from?

____________ ?

Test Probe

…

A

B

Figure 14: A schematic diagram of the procedure in Experiment 3. Panel A demonstrates 
the two types of encoding conditions used during the learning phase, and Panel B 

demonstrates a sample trial from the memory test given following the learning phase. 
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sized non-overlapping portions). The feature’s spatial location was preserved during 

testing (i.e., it was positioned on the screen in the same location as it would normally 

occupy if the entire object was presented). Participants responded to the feature cue by 

typing in the name of the object the feature came from (e.g., typing in “bike” if they 

remember that the feature shown was part of a bicycle). Participants were permitted to 

edit their responses by using the Backspace key before confirming them with the Enter 

key.  

4.3 Results. 

4.3.1 Scoring 

Recall latencies were measured as the duration between the onset of the cue 

feature, and the first key press of the word entered as the participant’s final response. For 

many of the objects, several synonyms were accepted as correct identifications (e.g., 

“speakers”, “bass speaker” and “amp” were all accepted as possible names for the image 

showing a large audio speaker). The full list of accepted names can be viewed at 

github.com/cMAP-CEMNL/VGCR_analysis/blob/master/Stimuli/object_names.csv. The 

accuracy of each response was scored by a software routine that allowed for small 

misspellings (e.g., letter transposition, pluralization) to be labeled as correct. 

4.3.2 Statistical Analysis 

 
Differences in accuracy and recall latency between conditions were assessed with 

a mixed-effects regression models, using the lme4, afex, and emmeans packages for the R 

statistical computing environment. The model of naming accuracy utilized a logistic link 

https://github.com/cMAP-CEMNL/VGCR_analysis/blob/master/Stimuli/object_names.csv
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function, while the model of naming latency utilized a logarithmic transformation of the 

observed response times in to meet the assumption of homoscedastic Gaussian residual 

variance in the regression model. Both models were fit by minimizing the residual 

maximum likelihood (REML). Practice type (whole object study, GCR study, and no 

practice) and retention interval (immediate vs. delayed final test) factors, as well as their 

interaction, were included as fixed effects in both the accuracy and latency models.  

Both models also included random intercepts for each participants and object in 

the experiment. This random effects structure was reached by starting with the maximal 

random effects structure (i.e., random intercepts and slopes for both participants and 

items in each condition), and removing terms from the random effects structure 

(beginning with the item component) until the model fitting routine was able to converge 

on stable parameter estimates11F

12. For the regression model of accuracy, main effects were 

assessed using likelihood ratio tests, and contrasts were performed using Holm-

Bonferroni corrected Wald tests. For the regression model of latency, main effects were 

assessed with ANOVA using the Kenward-Roger approximation of the error degrees of 

freedom, and contrasts were performed using Holm-Bonferroni corrected t-tests (also 

using the Kenward-Roger degrees of freedom approximation). 

Figure 15 shows the average naming accuracy observed in each experimental 

condition. As expected, baseline naming accuracy for unpracticed objects was low, 

                                                 
12 The naming latency model was able to estimate random slopes for each participant, but 
not while also include random item effects in the model. On the other hand, the accuracy 
model was never able to estimate per-participans slopes, regardless of whether item-
effects were included in the model. I decided use the naming latency responses model 
with per-object intercepts over the model with per-participant slopes in order to have 
comparable structures between latency and accuracy models, and because of the high 
variability in naming accuracy across different objects. 
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averaging approximately 8% across both the immediate and delayed tests. Exposure to 

the object during the learning phase clearly had a large effect on naming accuracy, with 

average naming accuracy for practiced objects jumping up to near 50% across both the 

immediate and delayed tests. Likelihood ratio tests indicated significant main effects of 

retention interval (χ2(1) = 36.99, p < .0001) and practice method (χ2(2) = 1928.57, p < 

.0001), as well as an interaction between retention interval and practice method (χ2(2) = 

34.57, p < .0001).  
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Figure 15: Object naming accuracy in Experiment 3. Error bars represent 95% 
confidence intervals calculated using the subject-normalized method of Morrey 

(2008). 
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The nature of this interaction was investigated using interaction contrasts (i.e., 

differences of differences between experimental conditions). Reported in Table 11, these 

contrasts revealed that the interaction was driven by a decrease in naming accuracy for 

both practice conditions over the retention interval, combined with a minimal increase in 

naming accuracy for the baseline no practice condition across the retention interval. In 

other words, the difference between the whole object study condition and the baseline 

condition decreased over the retention interval, as did the difference between the guided 

convergent retrieval condition and the baseline condition. This interaction simply 

demonstrates that forgetting took place for practiced objects, while no forgetting took 

place for unpracticed objects, which is to be expected: forgetting should only take place 

when there is initial practice and learning that can be forgotten.  

The interaction contrasts also indicated that difference between the whole object 

study condition and the guided convergent retrieval condition did not change over the 

course of the retention interval; in other words, there was no interaction between the two 

methods of practice. Differences between the two conditions were further examined using 

contrasts collapsing over the effect of retention interval. This contrast showed that guided 

convergent retrieval practice produced higher accuracy than whole object study (z = 

4.739, p < .0001). 

Figure 16 shows the average naming latency observed for trials in each 

experimental condition where the object’s name was successfully recalled. The low 

naming accuracy for baseline unpracticed items was complemented by extremely long 

naming latencies. But whereas naming accuracy for baseline unpracticed items was stable 

across the immediate and delayed final test conditions, naming latency for these items 
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sped up greatly between the immediate and delayed final tests. Naming latency for 

practiced items were much faster overall, but showed the opposite pattern over the 

retention interval, slowing down as time passed between study and test. 

The ANOVA indicated a significant main effect of practice condition (F(2, 

2659.45) = 121.43, p < .0001), no main effect of retention interval (F(1, 2657.7) = 0.01, p 

= .93), but a significant interaction between practice condition and retention interval 

(F(2, 2635.57) = 10.42, p < .0001). Interaction contrasts were performed to investigate 

the nature of this interaction. As shown in Table 12, this interaction was driven by the 

convergence of the baseline condition with the two practice conditions: the difference in 

naming latency between the whole object study condition and the baseline condition 

decreased over the retention interval, as did the difference between the guided convergent 

retrieval condition and the baseline condition. On the other hand, the two practice 

conditions showed the opposite qualitative pattern. The whole object study condition and 

the guided convergent retrieval condition produced nearly identical naming lantencies for 

objects tested on the immediate test, but naming latency slowed down more over the 

retention interval for objects in the whole object study condition than the guided 

convergent retrieval condition. While this diference of differences did not reach the 

threshold of statistical significance, the data show a qualitatively different relationship 

between the latencies in each practice condition on each test. Thus, futher comparisons 

contrasts between the whole object study condition and the guided convergent retrieval 

condition were performed both using contrasts where estimates were collapsed over the 

retention interval, as well as with contrasts of the two conditions separately at each 

retention interval. 
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When comparing the whole object study condition and the guided convergent 

retrieval condition at the immediate final test, there is clearly no difference in mean 

naming latency, a conclusion corroborated by a null contrast (t(2650.1) = 0.405, p = 

0.68). At the delayed final test responses to objects in the whole object study condition 

were about 8% slower than to objects in the guided convergent retrieval condition, and 

this difference reached the threshold of statistical significance (t(2635.650) = 2.41, p = < 

.01). A second contrast of these two conditions, this time collapsing over the retention 

interval, indicated a smaller mean difference (about 4% slower in the whole object study 
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Figure 16: Object naming latency for trials in Experiment 3 where the object was 
correctly identified. Error bars represent 95% confidence intervals calculated 

using the subject-normalized method of Morrey (2008). 
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condition than in the guided convergent retrieval condition) that also reached the level of 

statistical significance (t(2645.2) = 2.106, p < .05). 

4.4 Discussion 

The results of Experiment 3 confirm a counter-intuitive prediction of the PCR 

model – a method of study that provides less overall exposure, but where information 

unfolds sequentially, can produce better performance than a standard “free study” 

method. Objects studied using the guided convergent retrieval method, where object 

features were revealed one at time, produced faster and more accurate recall than when 

participants were allowed to study the whole object. This effect is predicted by the 

mechanism of the PCR model that explains better retention of information after retrieval 

than after restudy, convergent retrieval learning. Convergent retrieval learning (i.e., intra-

item learning) is assumed to occur when the features representing a memory become 

active in a staged, sequential manner. Here, the same mnemonic benefits seen after a 

practice test were achieved by engineering the same process of staged, sequential 

activation to occur during the study phase, rather than relying on retrieval during a 

memory test to induce it. 

While this experiment was inspired by a theory explaining what is learned from 

retrieval, and the experimental paradigm was successful at inducing retrieval-like 

mnemonic benefits, the pattern of recall accuracy here doesn’t match what is typically 

seen in an experiment that contrasts retrieval practice with restudy practice. In typical 

“testing effect” experiments, a crossover interaction between retention interval and 

practice method is observed (e.g., see Figure 1, Figure 7 and Figure 12); restudy produces 

higher accuracy in the short term, while retrieval practice produces higher accuracy in the 



96 

long term. In Experiment 3 however, guided convergent retrieval practice (specifically 

designed to mimic learning from a test) produced better accuracy than whole object study 

at both retention intervals. The reason for this consistent advantage, rather than a 

temporally graded one, relates back to the bifurcated distribution model discussed in the 

introduction. In a typical retrieval practice experiment, accuracy on the practice test is 

less than perfect, meaning learning takes place for some items (the retrieved ones), but 

not for others (the unretrieved ones). Because restudy is free to strengthen all items in 

that condition, it takes time for the difference in memory strength to be revealed by 

forgetting. In this experiment, no such bifurcation takes place because guided convergent 

retrieval practice is applied equally to each object in that condition. Thus, without the 

performance-based bifurcation, accuracy is higher for all such items at both the 

immediate and delayed final test. 

When introducing and explaining the PCR model, the features of the memory 

representations are abstract units, assumed to represent perceptual, semantic, 

phonological, or orthographic attributes and conjunctions of a to-be-remembered episode. 

In this experiment, a more concrete definition of the features needed for recall is used, 

operationalizing them as different parts of the studied objects. Thus, arguing that the 

results of Experiment 3 are accounted for by the intra-item learning mechanism that is 

proposed in the PCR model is to assume that visual objects are decomposed into 

representations of distinct parts, and that associations between these representations can 

be learned. This assumption is supported theoretically by hierarchical memory models 

(e.g., Cowell, Bussey, & Saksida, 2006) that assume processing of visual information 

proceeds along a continuum, starting with representations of simple visual features, to 
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feature conjunctions, to object identity, and all the way to associations of the visual 

information with episodic contexts. These models include representations of object parts 

that lie intermediate between simple features and identity, and hold that associations 

between these parts can be learned and used to retrieve other visual object knowledge at 

the same level in the hierarchy.  

Supporting this account of visual memory, Sadil, Potter, Huber, & Cowell (2019) 

demonstrated a behavioral dissociation between knowledge about an object’s visual 

details and knowledge of the object’s identity. In this experiment, participants studied 

images of objects under Continuous Flash Suppression (CFS, a stimulus presentation 

technique which prevents visual information from reaching awareness) and studied the 

names of other objects under normal viewing conditions12F

13. Later, they were tested on 

their memory for these objects in two ways. One test was a two-alternative matching test, 

in which participants saw two pairs of object parts, and had to judge which pair contained 

parts from the same object and which pair contained parts from two different objects. In 

the second test, participants were shown a single part from an object (which had either 

been studied under CFS, or whose name had been studied) and had to name the object the 

part came from (similar to the test administered here in Experiment 3). Participants were 

more accurate at discriminating the correctly paired parts from the incorrectly paired 

parts in the matching task when the object was studied under CFS as compared to when 

the object’s name was studied, but were better able to report the object’s identity from a 

single part after studying just the object’s name than after studied the object itself under 

                                                 
13 Studying the objects under CFS was necessary to allow specifically visual 
representations to be formed, but prevent the participant from consciously encoding the 
object’s identity. 
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CFS. A state-trace analysis (Bamber, 1979) of accuracy in the matching task and the 

naming task using a hierarchical Bayesian model provided strong evidence that multiple 

processes were necessary to explain the results: one for the part-to-part associations and 

one for the part-to-identity associations. In other words, participants were able to learn 

which object parts went together independently of learning what the object was. 

These findings support the idea that guided convergent retrieval practice helped 

participants learn associations between the object’s visual features, which could be 

leveraged to pattern-complete the visual object when prompted with a single feature on 

the final test. Once the complete visual details of the object were retrieved, they could 

then retrieve a name for the well-known object. Such a retrieval process (i.e., retrieving 

visual details, then retrieving a name) may also explain the reason why recall accuracy 

was consistently different between the whole object study condition and the guided 

retrieval convergent retrieval condition, but recall latencies were not. If participants were 

better able to retrieve the complete visual details of an object, they would also be more 

likely to be able to recall a name for it (i.e., you can name the object only after you “see” 

it).  However, neither condition gave participants experience retrieving the names of 

objects. If retrieving the visual details of the object was a relatively fast process (i.e., 

explained a relatively small proportion of the overall variability in naming latency) while 

retrieving a name for the object was a relatively slow process, (i.e., explained a relatively 

large proportion of the overall variability in naming latency), then variability in retrieval 

speed for the verbal label for the object could easily overshadow any difference in the 

speed of visual information retrieval, making it difficult to detect a reliable difference in 

the speed of recall. However, this explanation is admittedly post-hoc. The PCR model 
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itself predicts that the speed of retrieval should be increased when intra-item learning 

takes place, and observing this speed-up should not directly depend on the retention 

interval. While it is true that the statistical model indicated that there was no interaction 

between the two practice conditions and retention interval (allowing the conclusion that 

the relationship between the whole object study condition and the guided retrieval 

convergent retrieval condition were stable and different over time, as predicted by the 

PCR model), the strong similarity of the recall latencies from these conditions on the 

immediate final test was not an a priori prediction. This relationship should be 

investigated further with paradigms that do not require explicit naming, such as the two-

alternative matching judgment used by Sadil et al. (2019), to avoid any confound from 

retrieving verbal labels. 

There remains one caveat to the conclusions from this experiment, related to cue 

exposure at the onset of study for each item. In the guided retrieval convergent retrieval 

condition, the object feature that was initially displayed to begin the sequence of 

unfolding features was the same feature given as the retrieval cue on the test. This was 

done for principled reasons: the PCR model assumes directional associations are learned 

during convergent retrieval, and taking advantage of these associations requires the same 

“start pointing” be activated on both tests. Thus, the feature beginning the cascade that 

reveals the object is the “starting point” and intra-item learning should be evident when 

this feature is used to cue retrieval. However, this procedure also provided 250 ms. of 

exposure to the retrieval cue alone, which was not provided in the whole object study 

condition. Participants did not know that this feature would serve as the retrieval cue on 

the final test, as the experiment was not blocked into lists, and study trials for all items in 
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the experiment were completed before any test trials were administered. Still, the 

possibility exists that participants had more accurate memory in the guided retrieval 

convergent retrieval condition because of their brief exposure to the retrieval cue alone. 

Addressing this potential methodological issue is challenging, because it is difficult to 

strongly test the PCR model’s predictions about this very situation (i.e., retrieval 

beginning from a specific point of partial activation) while keeping all presentation 

duration and formats the same. For example, one might address this problem of 

differential cue exposure by displaying the cue feature alone just before the object in the 

whole object study condition. However, this format (cue  whole object) may induce the 

very kind of pattern completion learning (i.e., going from part to whole) that is meant to 

be contrasted with study/restudy, and produce a null result where it is impossible to tell 

whether both conditions induced intra-item learning, or neither did. Future follow-up to 

this study should investigate accuracy in this task based on seeing just the cue alone, as 

well as the directionality assumption of the PCR model; if directionality of intra-item 

learning is not a hard requirement, then other features than the one that begins the 

unfolding sequence could be used as retrieval cues instead. 

CHAPTER 5 

GENERAL DISCUSSION 

5.1 Summary of Findings 

The Primary and Convergent Retrieval model of recall builds on the assumption 

made by most memory models that recall is a two-stage process. An initial stage (primary 

retrieval) uses context and any other cues provided to specify a search set of possible 

memories, followed by a second process (convergent retrieval), which attempts to fill in 



101 

any missing pieces (i.e., pattern completion) for a specific memory within the search set. 

However, unlike previous memory models, the PCR model proposes learning processes 

that are unique to this second stage of recall. More specifically, by adopting a feature-

based representation of items in memory and by assuming that feature-to-feature 

associations are directional and learned following the temporal order in which features 

become active, the PCR model predicts that recalling an item will strengthen associations 

between the features of that item. This intra-item learning does not occur with study of an 

item because the item’s features are presented all at once with study. Because this intra-

item learning is about the item, rather than the association between context and item, it 

predicts that the benefits of recall practice will reduce the rate of forgetting, to the extent 

that forgetting occurs because of context change. Thus, the PCR model provides a 

mechanistic explanation of the classic “testing effect”. 

Along with further specifying the recovery process, and nature of learning 

specific to recovery, the PCR model specifies the dynamic time course of recall. It 

predicts that recall latency is determined not only by the efficacy of retrieval cues, but by 

the unfolding of the convergent retrieval process. As a result of intra-item learning, it 

both more likely that an item will be recalled on future memory tests, and recalling the 

item should take less time (i.e., convergence occurs in fewer time steps). Previous 

research has confirmed this prediction, showing that retrieval practice produces faster 

recall latencies than restudy at both immediate and delayed final tests (Hopper & Huber, 

2018; van den Broek et al., 2014). Critically, accuracy and latency changes dissociate on 

an immediate final test when comparing the effects of restudy versus a practice recall 

test, as predicted by the PCR model: restudy primarily increases memory accuracy 
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relative to baseline, whereas test practice primarily decreases retrieval latency. This 

supports the idea that retrieval practice produces qualitatively different learning than 

restudy practice, which takes the form of strengthened intra-item associations in the PCR 

model.  

The three experiments reported here were designed to seek further evidence that 

the learning unique to retrieval is in fact strengthened feature-to-feature associations that 

are used during recovery. To do this, I tested behavioral predictions derived from the 

specific assumptions of the PCR model: when information is gradually activated, and 

when similar information is initially active during both practice and final test, recall 

accuracy should be increased and recall latency should be decreased. Experiment 1 tested 

the prediction that learning from testing applied to unretrieved and retrieved items alike, 

finding support for this prediction in the form of faster recall failures as well as faster 

recall successes after test practice. Experiment 2  demonstrated that learning from testing 

is specific to the cues used during recall practice, suggesting that associative information 

unique to the episodic conjunctions formed during study are a critical component of the 

features stored in memory traces. Experiment 3 shows that gradual unfolding of 

information produces better learning and retention than longer traditional study, 

confirming a counterintuitive prediction of the PCR model’s intra-item learning 

mechanism. These results support the PCR model account of retrieval-based learning, 

and provide further information to guide future model developments. 
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5.2 Competing Accounts of Retrieval Practice Learning 

The PCR model is far from the first explanation of learning from recall practice. 

In this final section, I discuss the differences between the PCR model and other theories, 

as well as their similarities. 

5.2.1 Transfer-appropriate Processing. 

One of the oldest explanations of learning from recall practice is transfer-

appropriate processing (Morris, Bransford, & Franks, 1977). Transfer-appropriate 

processing is a general learning principle, stating that performance will be better to the 

extent that the processes recruited during learning are the same as the processes necessary 

on a later test. This principle explains why a recall practice test is more effective than 

restudy in preparation for a later recall test – recalling requires recall processes, therefore 

utilizing recall processes during learning is optimal. Despite its intuitive and common 

sense appeal, transfer-appropriate processing remains descriptive, failing to indicate the 

nature of the processes involved in retrieval. Furthermore, systematic comparisons 

between different kinds of practice and different kinds of final tests failed to support 

transfer-appropriate processing as an all-encompassing explanation for the benefits of 

practice tests (Carpenter and DeLosh, 2006; also see Glover, 1989). Nevertheless, the 

principle of transfer-appropriate processing assuredly applies in many situations, and the 

PCR model itself can be seen as a specific implementation of transfer-appropriate 

processing by proposing that the act of successful convergent retrieval lends itself (via 

intra-item learning) to subsequent convergent retrieval success. 
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5.2.2 Effortful Retrieval 

Similar to transfer-appropriate processing, the theory of effortful retrieval is also a 

general learning principle. This principles states that the degree of learning from a 

practice test is determined by the difficulty of retrieval, with difficult but ultimately 

successful retrieval producing greater learning (Bjork, 1975). In general, this principle is 

well supported in the literature on testing effects. For example, Carpenter and DeLosh 

(2006) found that free recall practice tests produced the best final test performance, 

regardless of final test format (in contradiction to transfer-appropriate processing). This 

result follows from the principle of effortful retrieval because free recall is more 

difficult/effortful than cued recall or recognition (i.e., cued recall and recognition provide 

more cues to aid retrieval). Other studies have manipulated the spacing between initial 

encoding and practice tests, seeking to make the practice tests more difficult but 

nevertheless successful (Karpicke & Roediger, 2007; Pyc & Rawson, 2009). As predicted 

by the principle of effortful retrieval, these studies found that longer retention intervals 

between initial encoding and the practice test enhanced the magnitude of the testing 

effect. A meta-analysis of testing effect studies reported evidence for retrieval effort as a 

moderator of the testing effect, due in large part to the greater magnitude of testing 

effects when the practice test uses a relatively difficult format, such as free recall, as 

opposed to a recognition practice test (Rowland, 2014). 

As with transfer-appropriate processing, the principle of effortful retrieval is 

descriptive, failing to specify why greater effort results in more learning. Bjork and 

Bjork’s (1992) theory of disuse represents one possible model instantiation of a retrieval 

effort theory. Under this theoretical account, an item’s memory strength is multifaceted: 
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memories have separate retrieval strength (representing the memory’s current 

accessibility) as well as a storage strength (representing the degree to which the item is 

well-learned or engrained in memory over the long term). A memory’s current retrieval 

strength determines the probability of recalling the memory whereas a memory’s storage 

strength moderates changes to its retrieval strength. More specifically, higher storage 

strength potentiates increases in retrieval strength (learning), and slows the decline of 

retrieval strength over time (forgetting). Studying and successful retrieval are thought to 

increment both an item’s retrieval and storage strength. However, for two items with 

equal storage strength but different retrieval strengths, the item that with a lower retrieval 

strength receives a greater increment to its retrieval strength as a result of successful 

retrieval. Thus, the theory has an account of why greater learning occurs from difficult 

retrieval: an item that is difficult to recall is one with low retrieval strength, which in turn 

allows for greater learning. 

The PCR model shares several characteristics with the theory of disuse. Like the 

theory of disuse, the PCR model assumes that an item’s memory strength is multifaceted, 

including both primary retrieval (i.e., the quantity and quality of its associations with the 

current retrieval cues, which is analogous to retrieval strength) and convergent retrieval 

(i.e., the quantity and quality of the associations between the features of the item, which 

is analogous to storage strength). Also, similar to the theory of disuse’s assumption that 

storage and retrieval strength can be separately altered, the PCR model assumes separate 

learning for primary retrieval and convergent retrieval. Although the PCR model does not 

define ‘difficulty’ or ‘effort’, it is reasonable to assume that a convergent retrieval 

process taking more time steps will give rise to a phenomenological experience of greater 
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effort/difficulty. With more time steps to convergence, it follows from PCR’s learning 

assumptions that more intra-item learning occurs; there will be more specific pairwise 

instances of one feature being active before another. According to the PCR model, this 

multi-step effortful retrieval is more likely to occur for items with initially poor intra-item 

associations (similar to the theory of disuse’s assumption of greater learning for items 

with initially low retrieval strength). From this perspective, the PCR model could be 

viewed as a detailed instantiation of the theory of disuse by specifying the feature-to-

feature learning and retrieval processes that underlie difficulty and different kinds of 

memory strengths. By considering these processes in greater detail, the PCR model 

makes specific predictions regarding recall latencies (in the theory of disuse, it is unclear 

which memory strength maps onto latency). 

5.2.3 Dual Memory. 

As mentioned in the discussion of Experiment 2, the Dual Memory theory holds 

that the difference between learning from restudy and learning from retrieval lies in 

which memory traces are strengthened/created. Restudy is assumed to strengthen the 

memory trace formed during initial study, while retrieval both strengthens the initial trace 

(on which practice test retrieval is based) and encodes a new, separate test memory trace. 

Thus, there is greater retention for retrieved items relative to restudy because there are 

two memory traces to rely of for those items, instead of just one. The Dual Memory 

theory shares some similarities with the theory of disuse, in that it holds that restudy and 

test have qualitative distinct effects on memory (rather retrieval just being a more 

effective form of restudy). However, it is different in that it holds there are distinct 

memory traces for study and test episodes, rather than there being two distinct memory 
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strength values affected by study and retrieval. The Dual Memory account directly 

conflicts with the PCR model, which assumes retrieval strengthens an existing memory 

trace. Memory models commonly assume repeated exposure to an item strengthens a 

single memory trace rather than encoding multiple traces, though there are successful 

exceptions to this rule (Hintzman, 1988). In general, it is difficult to distinguish multiple 

trace models from single trace models because they make such similar predictions 

(Atkinson & Shiffrin, 1965; Humphreys, Pike, Bain, & Tehan, 1989). In support of the 

idea that test practice encodes a new memory with qualitatively different structure than 

initial study, Rickard and Pan (2017) cite evidence showing that when keyword 

mediators presented during the learning of foreign vocabulary pairs are used in a lexical 

decision task given immediately after a translation practice trial, there is evidence of 

priming (i.e., faster lexical decision response times) when they are tested after a few 

translation practice trial but not after many trials. They argue this shows support for a 

shift from relying on the study memory (which includes the keyword mediator) to 

perform translation, to relying on the test memory (which enables translation via a direct 

cue-response association). Pan and Rickard also argue that changes to the recall latency 

distribution for retrieval of word triplets from a single power-law distribution to a 

mixture of power-law distributions reflects a change in reliance on study memory to 

reliance on test memory. The PCR model would explain this change as reflecting learning 

in the convergent retrieval learning process, and it is likely that a formal modeling 

approach would be required to distinguish these two accounts of the response time 

changes. 
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There may also be other qualitative ways to discriminate between these two 

accounts, for example, by examining the effects of retrieval practice on other memory 

effects, such as the list-strength effect in recognition. In recognition memory, a somewhat 

counter-intuitive finding has been that mixing together strongly encoded items with 

weakly encoded items on the same test list doesn’t reduce recognition performance for 

the weak items (or enhance recognition performance for the strong items) relative to 

when the list is composed solely of strongly or weakly encoded test items. At the time, 

this finding of a so-called “null list strength effect” presented a fundamental challenge to 

existing memory models (Shiffrin, Ratcliff, & Clark, 1990). The REM model, developed 

in response to this challenging finding, accounted for the null list strength effect via a 

differentiation mechanism: strengthening an item in memory increased its dissimilarity to 

other words (such as the lures used on a recognition test), which prevented overall 

memory activation from becoming increasingly noisy (i.e., variable) with repeated study 

(Shiffrin & Steyvers, 1997). An important part of the REM model’s differentiation 

mechanism was that learning from all strengthening operations (such as additional study 

time or study opportunities) were stored in the same memory trace. Without this single 

trace assumption, strengthening operations would function in a similar fashion as adding 

more and more items to the studied list, a manipulation which does consistently reduce 

recognition performance (i.e., a list-length effect)13F

14. Though the following prediction will 

                                                 
14 There is at least some flexibility in the REM model’s ability to produce a null list-
strength effect when storing new traces as opposed to strengthening existing traces. 
Shiffrin and Steyvers (1997) explored using study-phase retrieval success as a 
mechanism for deciding whether to update an existing trace or store a new on in their 
REM.3 simulations. This implementation stored new traces infrequently (i.e., retrieval of 
an existing trace to update was usually successful), and was still able to produce a null 
list strength effect consistent with the observed data. 
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depend on the precise nature of the cue-response association that Pan and Rickard have 

suggested, the general proposal that a test trial encodes a new memory trace would 

predict that interspersing retrieval practice between a studying a list of mixed strong and 

weak items and a final recognition test may be able to induce a positive list-strength 

effect. The PCR model predicts that retrieval practice would not affect the list-strength 

effect in recognition differently than restudy, because it is assumed the intra-item 

associations are not used to support recognition decisions, and thus strengthening them 

would not impact recognition performance. 

5.2.4 Elaborative Retrieval. 

The elaborative retrieval hypothesis holds that retrieval enhances subsequent 

memory because it affords the opportunity to elaborate on the relationship between the 

current retrieval cues and the target item in memory (Carpenter, 2009, 2011; Carpenter & 

Yeung, 2017). Specifically, the theory proposes that during testing, participants activate 

cue-relevant information (e.g., semantic associates of the retrieval cues and the target 

word), and that activation of this information is beneficial because it enhances later 

access to the target item. Restudy and less effortful test practice formats (e.g., 

recognition) do not induce semantic elaboration, so the benefits from these practice 

methods are less pronounced. 

The PCR model and the elaborative retrieval hypothesis are similar in some ways, 

but critically differ in other ways. One on hand, both theories propose that recall practice 

provides the opportunity to enhance a retrieval pathway that is not used with restudy, and 

both theories hold than this can involve semantic information relating the cue and target. 

On the other hand, they differ as to the locus of learning that leads to recall practice 
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benefits. According to the elaborative retrieval hypothesis, the retrieval pathway unique 

to recall practice is through associations with other distinct items in memory whereas the 

PCR model assumes that the pathway unique to recall practice is between different 

features within the item. 

To date, the elaborative retrieval hypothesis has not been applied to recall latencies. 

Intuitively, it might seem that retrieval via associations with other items in memory 

would be slower rather than a faster. However, this only follows if retrieval is a serial 

process, going from retrieval cues to other items in memory, and finally to the desired 

target item. If retrieval is instead a parallel process, these elaborated associations with 

other items in memory may provide a collaborative boost, with rapid convergence on the 

target. The proposal that test practice with specific cues promotes retrieval paths via 

semantic associates is compatible with the results from the other-cue conditions in 

Experiment 2, which failed to produce transfer effects. However, other studies have 

pointed out problems with the elaborative retrieval hypothesis. For instance, having 

participants overtly generate associates in response to a retrieval cue reduces accessibility 

of a particular target rather than making retrieval easier (Watkins & Watkins, 1975). 

Furthermore, attempts to measure and induce elaboration during practice have failed to 

find a positive relationship between the amount of elaboration and subsequent retention 

(Lehman & Karpicke, 2016). 

5.2.5 Episodic Context 

Another recently proposed explanation of learning from retrieval practice appeals to the 

effects of updating of stored contextual representations during testing. According to the 

episodic context account, tests produce better long term retention than restudy because 
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recall causes the context representations associated with the retrieved information to be 

updated with features of the test context, adding to the features of the study context, and 

pre-experimental context (Karpicke, Lehman, & Aue, 2014; Lehman, Smith, & Karpicke, 

2014). This updating benefits retrieval in several ways. Because retrieved items are 

updated to reflect the context of the practice test, they are stored with a context that is 

more similar to the context of the final test, facilitating retrieval. This updating also 

increases the diversity of the contextual features associated with tested item, increasing 

the chances that a future contextual state (e.g., on a delayed final test) will overlap with it 

and activate the item again. If this updating does not occur with restudy, the context 

associated with studied items with be both less diverse and more similar to the past than 

the present, causing weaker retention following restudy than retrieval practice. This 

account has the advantage of being well-integrated with established theories of memory 

retrieval, building upon existing retrieved context models which successfully explain 

organizational patterns of free recall behavior (Howard & Kahana, 2002; Lehman & 

Malmberg, 2013; Polyn, Norman, & Kahana, 2009). None of its assumptions about 

contextual associations, contextual reinstatement, or contextual updating are particularly 

controversial or new, and in general, should be appreciated for providing a coherent 

explanation for how many different memory processes that have been previously 

proposed could be combined to explain retrieval-based learning. However, I perceive a 

potentially serious complication for this theory as it has been put forth so far: the 

computational models from which its assumptions about contextual updating are derived 

assume that contextual updating occurs during study, while this account holds that 

contextual updating explains the unique difference between restudy and testing. 



112 

Furthermore, the assumptions about contextual updating during study are central 

mechanisms within these families of models. For example, the Temporal Context Model 

(TCM; Howard & Kahana, 2002) relies upon the updating of the current context with the 

pre-experimental context features associated with each item to account for the asymmetry 

in transitions between the serial positions of recalled items (i.e., forward transitions are 

more likely than backwards transitions). Still, this problem is not necessarily fatal for the 

episodic context account. The updating assumptions could be relaxed to allow the degree 

of updating during restudy and test to simply be weighted differently, or by assuming that 

the onset of the practice test induces a sharp context shift, meaning that contextual 

diversity is improved for recalled items relative to restudied items. It remains to be seen 

whether relaxing these assumptions will cause the model to sacrifice the ability to explain 

prior organization effect (like the transition probabilities) in order to accommodate the 

testing effect. 

The retrieved context account and the PCR model fundamentally differ in their 

assumed learning mechanisms. Under the retrieved context account, retrieval practice 

results in a better match between the target memory and the context cues used on the final 

test. Within the PCR model, this is akin to enhanced primary retrieval (i.e., associations 

between context and item features) rather than convergent retrieval (i.e., association 

between item features and other item features). The retrieved context account predicts 

faster retrieval latencies after successful test practice, but for different reasons than the 

PCR model. Under the retrieved context account, retrieval latencies are reduced because 

the item is more likely to be sampled due to a having a smaller search set of contextually 

appropriate memories (Lehman, Smith, & Karpicke, 2014; Rohrer & Wixted, 1994b, 
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1993). In contrast, the PCR model assumes that latencies are reduced because of a change 

in the recovery process (i.e., convergent retrieval in PCR) rather than the sampling 

process (i.e., primary retrieval in PCR). Hopper and Huber (2018) compared these 

accounts by considering the benefits of cued recall practice, finding that practice with the 

same cue as the final test produced a latency benefit whereas no benefits were found for 

cued recall practice with a different cue than the one used on the final test, despite a 

shared context between practice and final tests. This lack of transfer is difficult to 

reconcile with the retrieved context account unless the learning mechanism underlying 

the benefits of cued recall practice is different than the learning mechanism underlying 

the benefits of free recall practice. It is also difficult to explain why restudy (an operation 

which should increase the size of a memory search set under nearly any theoretical 

perspective) does not slow recall latencies after restudy despite increasing accuracy 

(Hopper & Huber, 2018). Comparisons of the PCR model and the episodic context 

account will require further investigation of free recall latencies (e.g., consideration of 

latency distributions, manipulations of list-length, etc.) to determine whether test practice 

primarily influences the sampling process or the recovery process.  
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TABLES 

Table 1: AIC and BIC goodness of fit statistics for the six LBA models applied to 
each participant. The model with the lowest BIC/AIC is the most preferred model, 

and is denoted for each participant with an asterisk. 
 

Subject Statistic v Free A Free b Free T0 Free v & A Free v & b Free 

1 
AIC 1611.18 1718.87 1652.6  1706.9 1610.10 *1565.42 
BIC *1679.11 1795.30 1729.05 1787.5 1724.74 1680.06 

2 
AIC *1592.39 1653.47 1638.18 1644.4 1594.49 1605.52 
BIC *1655.09 1724.53 1709.24 1719.6 1698.99 1710.02 

3 
AIC 1646.47 1661.62 1614.60 1660.7 1655.94 *1613.71 
BIC 1701.64 1725.28 *1678.27 1728.5 1745.06 1702.84 

4 
AIC 2042.22 2119.18 2060.09 2101.1 2037.25 *2014.05 
BIC *2116.66 2201.89 2142.80 2188.0 2165.46 2142.26 

5 
AIC *1890.13 1991.22 1958.48 1980.3 1901.27 1917.19 
BIC *1959.21 2068.93 2036.19 2062.3 2017.83 2033.75 

6 
AIC 1969.69 2075.32 1901.01 2046.7 1954.51 *1830.97 
BIC 2039.59 2153.44 1979.13 2128.9 2073.74 *1950.21 

7 
AIC 1890.10 1996.22 1923.43 1982.4 1888.92 *1850.15 
BIC *1962.05 2076.64 2003.85 2067.0 2011.66 1972.89 

8 
AIC 1982.94 2018.70 1907.33 2020.8 1977.62 *1885.32 
BIC 2050.08 2094.24 *1982.87 2100.5 2090.92 1998.63 

9 
AIC 1591.67 1584.60 1542.02 1586.0 1561.47 *1511.76 
BIC 1656.08 1657.06 *1614.48 1662.5 1670.17 1620.46 

10 
AIC 2026.30 2054.72 2090.41 2043.4 *2015.20 2062.61 
BIC *2103.92 2140.95 2176.64 2134.0 2148.86 2196.28 

Total 
AIC 18243.09 18873.92 18288.17 18773.0 18196.76 *17856.72 
BIC *18923.44 19638.26 19052.51 19579.4 19347.44 19007.40 
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 Immediate Test  Delayed Test 

Sub. Drift 
Rate None Restudy 

Test 
Practice, 
Incorrect 

Test 
Practice, 
Correct 

None Restudy 
Test 

Practice, 
Incorrect 

Test 
Practice, 
Correct 

1 
v0 0.670 0.393 1.514 - 1.288 1.169 1.593 0.885 
v1 1.326 1.812 - 2.161 0.399 0.636 - 1.216 

2 
v0 0.623 0.162 1.625 - 1.287 1.271 1.178 1.322 
v1 1.010 1.593 -0.190 2.070 - - - -0.309 

3 
v0 - - - - 1.083 1.001 1.110 1.039 
v1 1.830 2.104 - 1.920 -0.315 0.341 - 0.142 

4 
v0 0.510 0.206 0.792 -0.089 0.859 0.624 0.780 0.489 
v1 0.672 1.207 -1.558 1.999 -1.715 -1.854 - -0.066 

5 
v0 1.009 0.805 2.034 -0.237 1.098 1.229 1.568 0.837 
v1 1.058 1.286 - 2.278 - -0.752 - -0.361 

6 
v0 0.351 0.285 1.602 - 0.627 0.510 0.726 0.456 
v1 0.801 1.559 -0.027 2.433 -1.489 -0.266 - -0.029 

7 
v0 -0.029 -0.907 1.552 -0.268 1.289 0.883 1.500 0.524 
v1 1.102 1.548 - 1.989 -1.113 -0.157 - 0.389 

8 
v0 0.411 0.440 1.681 - 0.712 0.684 0.792 0.693 
v1 1.306 1.571 - 1.988 -0.758 -0.520 - 0.306 

9 
v0 -0.796 - 0.373 - 0.319 0.289 0.246 -0.021 
v1 1.484 1.699 0.917 1.946 -1.124 -0.152 - 0.380 

10 
v0 0.704 0.678 1.295 0.398 1.322 1.275 1.282 1.210 
v1 0.875 1.102 0.202 1.466 -0.398 -0.059 - -0.128 
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Table 2: Best fitting starting point variability and non-decision time parameters for 
the “v Free” model. The 0 and 1 subscripts refer to the “Can’t Recall” (incorrect) 

and “Recall” (correct) accumulators, respectively. The b and s parameters were set 
to constant values of 4 and .5, respectively. 

Subject A0 A1 T0 

1 2.48 2.41 0.00 

2 3.80 3.36 0.91 

3 0.00 2.96 0.29 

4 3.46 3.79 0.48 

5 3.70 3.33 0.68 

6 0.00 3.67 0.71 

7 3.77 3.66 0.75 

8 0.00 2.89 0.00 

9 2.58 2.77 0.00 

10 3.30 2.71 0.01 
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Table 3: Prior distributions for recall accuracy regression coefficients on the log-
odds scale. Priors are appropriate for a regression using sum-coded dummy 

regressors with the delayed final test and no practice conditions set as the reference 
levels. 

 
Parameter Prior Distribution Source 

Intercept 
(Grand Mean) ~𝑁𝑁 �

𝜇𝜇 = 0.268
𝜎𝜎 = 0.393

� Hopper & Huber, 2018 

Retention Interval 
(Immediate Condition) ~𝑁𝑁 �

𝜇𝜇 = 0.837
𝜎𝜎 = 0.393

� Hopper & Huber, 2018 

Episodic Cue  
Restudy ~𝑁𝑁 �

𝜇𝜇 = 0.635
𝜎𝜎 = 0.156

� Hopper & Huber, 2018 

Semantic Cue Restudy ~𝑁𝑁 �
𝜇𝜇 = 0.252
𝜎𝜎 = 0.126

� Dissertation Pilot Study 

Episodic Cue Test ~𝑁𝑁 �
𝜇𝜇 = −0.008
𝜎𝜎 = 0.141

� Hopper & Huber, 2018 

Semantic Cue Test ~𝑁𝑁 �
𝜇𝜇 = 0.142
𝜎𝜎 = 0.122

� Dissertation Pilot Study 

Episodic Cue Restudy × 
Immediate Final Test ~𝑁𝑁 �

𝜇𝜇 = 0.406
𝜎𝜎 = 0.126

� Hopper & Huber, 2018 

Semantic Cue Restudy × 
Immediate Final Test ~𝑁𝑁 �

𝜇𝜇 = 0
𝜎𝜎 = 2.5

� 
Weak Prior 

(rstan default) 

Episodic Cue Test  × 
Immediate Final Test ~𝑁𝑁 �

𝜇𝜇 = −0.354
𝜎𝜎 = 0.126

� Hopper & Huber, 2018 

Semantic Cue Test × 
Immediate Final Test ~𝑁𝑁 �

𝜇𝜇 = 0
𝜎𝜎 = 2.5

� 
Weak Prior 

(rstan default) 
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Table 4: Posterior probabilities of recall for each condition in Experiment 2. 
 

Final Test Practice Type Median 
Proportion Correct 95% HDI Bounds 

Immediate 

Episodic Cue Restudy 0.796 [0.742, 0.848] 

Semantic Cue Restudy 0.631 [0.555, 0.703] 

Semantic Cue Test 0.570 [0.493, 0.647] 

Episodic Cue Test 0.558 [0.478, 0.637] 

No Practice 0.473 [0.397, 0.557] 

Delay 

Episodic Cue Restudy 0.379 [0.298 0.457] 

Semantic Cue Restudy 0.295 [0.229, 0.367] 

Semantic Cue Test 0.261 [0.198, 0.327] 

Episodic Cue Test 0.392 [0.314, 0.474] 

No Practice 0.213 [0.157, 0.273] 
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Table 5: Contrasts of recall accuracy between practice conditions at each retention 
interval in Experiment 2. 

 

Final Test Contrast 
Median 

Log-odds 
Difference 

95% HDI Bounds 

Immediate 

Semantic Cue Restudy – Episodic 
Cue Restudy -0.824 [-1.003, -0.644] 

Semantic Cue Test – Semantic Cue 
Restudy -0.255 [-0.429, -0.088] 

Episodic Cue Test – Semantic Cue 
Test -0.047 [-0.222, 0.111] 

Episodic Cue Test – Episodic Cue 
Restudy -1.124 [-1.306, -0.942] 

No Practice – Episodic Cue Test -0.341 [-0.515, -0.175] 

No Practice – Semantic Cue Test -0.386 [-0.547, -0.207] 

No Practice – Semantic Cue Restudy -0.642 [-0.825, -0.472] 

No Practice – Episodic Cue Restudy -1.467 [-1.658, -1.287] 

Delay 

Semantic Cue Restudy –Episodic 
Cue Restudy -0.376 [-0.556, -0.200] 

Semantic Cue Test – Semantic Cue 
Restudy -0.171 [-0.354, 0.003] 

Episodic Cue Test – Semantic Cue 
Test 0.604 [0.417, 0.780] 

Episodic Cue Test – Episodic Cue 
Restudy 0.056 [-0.118, 0.239] 

No Practice – Episodic Cue Test -0.868 [-1.071, -0.675] 

No Practice – Semantic Cue Test -0.263 [-0.473, -0.069] 

No Practice – Semantic Cue Restudy -0.436 [-0.637, -0.245] 

No Practice – Episodic Cue Restudy -0.813 [-1.020, -0.623] 
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Table 6: Interaction contrasts of recall accuracy in Experiment 2. SC-TP = 
Semantic Cue Test Practice condition, SC-RS = Semantic Cue Restudy condition, 
EC-TP = Episodic Cue Test Practice condition, EC-RS = Episodic Cue Restudy 

condition. The “Imm” and “Del” subscripts refer to the immediate and delayed final 
test conditions, respectively. 

 

Interaction Contrast Median Log-odds 
Difference 

95% HDI 
Bounds 

(SC-TPImm – SC-RSImm) – 
(SC-TPDel – SC-RSDel) 

-0.082 [-0.327, 0.174] 

(EC-TPImm – EC-RSImm) – 
(EC-TPDel – EC-RSDel) -1.181 [-1.439, -0.933] 

(EC-TPImm – SC-TPImm) – 
(EC-TPDel – SC-TPDel) -0.651 [-0.880, -0.391] 
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Table 7: Prior distributions for recall latency regression coefficients on the natural 
log scale. Priors are appropriate for a regression using sum-coded dummy 

regressors with the delayed final test and no practice conditions set as the reference 
levels. 

 

Parameter Prior Distribution Source 

Intercept 
(Grand Mean) ~𝑁𝑁 �

𝜇𝜇 = 0.632
𝜎𝜎 = 0.066�

 Hopper & Huber, 2018 

Retention Interval 
(Immediate Condition) ~𝑁𝑁 �

𝜇𝜇 = −0.213
𝜎𝜎 = 0.066 � Hopper & Huber, 2018 

Episodic Cue  
Restudy ~𝑁𝑁 �

𝜇𝜇 = −0.015
𝜎𝜎 = 0.033 � Hopper & Huber, 2018 

Semantic Cue Restudy ~𝑁𝑁 �
𝜇𝜇 = −0.046
𝜎𝜎 = 0.036 � Dissertation Pilot Study 

Episodic Cue Test ~𝑁𝑁 �
𝜇𝜇 =  −0.171
𝜎𝜎 = 0.033 � Hopper & Huber, 2018 

Semantic Cue Test ~𝑁𝑁 �
𝜇𝜇 = −0.046
𝜎𝜎 = 0.036 � Dissertation Pilot Study 

Episodic Cue Restudy × 
Immediate Final Test ~𝑁𝑁 �

𝜇𝜇 = 0.006
𝜎𝜎 = 0.033�

 Hopper & Huber, 2018 

Semantic Cue Restudy × 
Immediate Final Test ~𝑁𝑁 �

𝜇𝜇 = 0
𝜎𝜎 = 2.5�

 Weak Prior 
(rstan default) 

Episodic Cue Test  × 
Immediate Final Test ~𝑁𝑁 �

𝜇𝜇 = −0.032
𝜎𝜎 = 0.033 � Hopper & Huber, 2018 

Semantic Cue Test × 
Immediate Final Test ~𝑁𝑁 �

𝜇𝜇 = 0
𝜎𝜎 = 2.5�

 Weak Prior 
(rstan default) 
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Table 8: Posterior recall latency for each condition in Experiment 2. 
 

Final Test Practice Type Median log-scale 
Recall Latency 

95% HDI 
Bounds 

Immediate 

Episodic Cue Restudy 0.507 [0.431, 0.576] 

Semantic Cue Restudy 0.579 [0.505, 0.654] 

Semantic Cue Test 0.617 [0.541, 0.692] 

Episodic Cue Test 0.413 [0.335, 0.485] 

No Practice 0.718 [0.642, 0.796] 

Delay 

Episodic Cue Restudy 0.775 [0.692, 0.851] 

Semantic Cue Restudy 0.861 [0.783, 0.945] 

Semantic Cue Test 0.817 [0.738, 0.902] 

Episodic Cue Test 0.673 [0.599, 0.755] 

No Practice 0.976 [0.893, 1.067] 
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Table 9: Contrasts of recall latency between practice conditions at each retention 
interval in Experiment 2. 

 

Final Test Contrast 
Median 

Log-scale 
Difference 

95% HDI 
Bounds 

Immediate 

Semantic Cue Restudy — Episodic Cue Restudy 0.072 [0.026, 0.114] 

Semantic Cue Test — Semantic Cue Restudy 0.037 [-0.009, 0.083] 

Episodic Cue Test — Semantic Cue Test -0.204 [-0.250, -0.159] 

Episodic Cue Test — Episodic Cue Restudy -0.094 [-0.137, -0.049] 

No Practice — Episodic Cue Test 0.305 [0.253, 0.354] 

No Practice — Semantic Cue Test 0.102 [0.050, 0.152] 

No Practice — Semantic Cue Restudy 0.139 [0.089, 0.190] 

No Practice — Episodic Cue Restudy 0.211 [0.165, 0.261] 

Delay 

Semantic Cue Restudy — Episodic Cue Restudy 0.087 [0.030, 0.143] 

Semantic Cue Test — Semantic Cue Restudy -0.044 [-0.108, 0.018] 

Episodic Cue Test — Semantic Cue Test -0.144 [-0.204, -0.086] 

Episodic Cue Test — Episodic Cue Restudy -0.102 [-0.158, -0.049] 

No Practice — Episodic Cue Test 0.303 [0.239, 0.365] 

No Practice — Semantic Cue Test 0.159 [0.091, 0.230] 

No Practice — Semantic Cue Restudy 0.115 [0.044, 0.179] 

No Practice — Episodic Cue Restudy 0.201 [0.138, 0.266] 
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Table 10: Interaction Contrasts of recall latency in Experiment 2. SC-TP = 
Semantic Cue Test Practice condition, SC-RS = Semantic Cue Restudy condition, 
EC-TP = Episodic Cue Test Practice condition, EC-RS = Episodic Cue Restudy 

condition. The “Imm” and “Del” subscripts refer to the immediate and delayed final 
test conditions, respectively. 

 

Interaction Contrast Median Log-scale 
Difference 

95% HDI 
Bounds 

(EC-RSImm – EC-TPImm) – 
(EC-RSDel – EC-TPDel) -0.007 [-0.077, 0.060] 

(SC-RSImm – SC-TPImm) –  
(SC-RSDel – SC-TPDel) -0.082 [-0.161, -0.001] 

(SC-TPImm – EC-TPImm) –  
(SC-TPDel – EC-TPDel) 0.060 [-0.018, 0.133] 
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Table 11: Interaction contrasts of naming accuracy in Experiment 3. N, S, and GCR 
condition abbreviations stand for No Practice, Whole Object Study, and Guided 

Convergent Retrieval, respectively.  The “Imm” and “Del” subscripts refer to the 
immediate and delayed test conditions, respectively. P-values are adjusted using the 

Holm-Bonferroni method for 3 tests. 
 

Contrast Log-Odds 
Difference  

Standard 
Error Z P value 

(NImm - SImm) – 
(NDel – SDel) -1.076 0.192 -5.602 < .0001 

(NImm - GCRImm) – 
(NDel – TDel) -1.026 0.191 -5.367 < .0001 

(SImm - GCRImm) – 
(SDel – GCRDel) 0.050 0.137 0.362 0.7171 
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Table 12: Interaction contrasts of naming latency in Experiment 3. N, S, and GCR 
condition abbreviations stand for No Practice, Whole Object Study, and Guided 

Convergent Retrieval, respectively.  The “Imm” and “Del” subscripts refer to the 
immediate and delayed test conditions, respectively. P-values are adjusted using the 

Holm-Bonferroni method for 3 tests. 

Contrast Log-Scale 
Difference 

Standard 
Error t statistic P value 

(NDel – SDel) –  
(NImm - SImm) -0.368 0.081 t(2633.8) = -4.55 < .0001 

(NDel – TDel) – 
(NImm - GCRImm) -0.300 0.080 t(2631.7) = -3.74 < .001 

(SDel – GCRDel) – 
(SImm - GCRImm) 0.068 0.043 t(2638.4) = 1.58 0.113 
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