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ABSTRACT

NOISE-AWARE INFERENCE
FOR DIFFERENTIAL PRIVACY

FEBRUARY 2020

GARRETT BERNSTEIN

B.Sc., CORNELL UNIVERSITY

M.Eng., CORNELL UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Daniel Sheldon

Domains involving sensitive human data, such as health care, human mobility,

and online activity, are becoming increasingly dependent upon machine learning

algorithms. This leads to scenarios in which data owners wish to protect the privacy of

individuals comprising the sensitive data, while at the same time data modelers wish

to analyze and draw conclusions from the data. Thus there is a growing demand to

develop effective private inference methods that can marry the needs of both parties.

For this we turn to differential privacy, which provides a framework for executing

algorithms in a private fashion by injecting specifically-designed randomization at

various points in the process. The majority of existing work proceeds by ignoring the

injected randomization, potentially leading to pathologies in algorithmic performance.

There is, however, a small body of existing work that performs inference over the

vi



injected randomization in an attempt to design more principled algorithms. This thesis

summarizes the subfield of noise-aware differentially private inference and contributes

novel algorithms for important problems.

Differential privacy literature provides a multitude of privacy mechanisms. We opt

for sufficient statistics perturbation (SSP), in which sufficient statistics, a quantity that

captures all information about the model parameters, are corrupted with random noise

and released to the public. This mechanism offers desirable efficiency properties in

comparison to alternatives. In this thesis we develop methods in a principled manner

that directly accounts for the injected noise in three settings: maximum likelihood

estimation of undirected graphical models, Bayesian inference of exponential family

models, and Bayesian inference of conditional regression models.
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CHAPTER 1

INTRODUCTION

Machine learning and probabilistic inference are pervasive aspects of our every day

world. Specifically of interest are applications in which machine learning relies on data

stemming from individual people. The curators or owners of sensitive data sets often

find themselves responsible for protecting the data, which, when improperly handled,

can violate the privacy of the individuals in the data. On the other hand, data modelers

wish to perform analyses on the data in order to draw important population-level

conclusions regarding the general behaviors and attributes of the individuals. This

leads to seemingly opposed goals: data owners prioritize protecting individual data,

whereas modelers prioritize leveraging individual data to perform analyses. Thus there

is a pressing need for private machine learning techniques that can achieve appropriate

tradeoffs.1 How can we derive useful population-level outcomes without compromising

the privacy of individuals?

This work relies on differential privacy, the dominant standard for private data

analysis [Dwork et al., 2006]. Differential privacy provides a guarantee to individuals:

The output of a differentially private algorithm is statistically nearly unchanged

if any single individual’s record is added to or removed from the input data set.

Thus, subject to the setting of privacy parameters, there is negligible risk to the

individual in allowing their data to be analyzed in this fashion. The general idea

of many privacy mechanisms is to carefully randomize an algorithm’s output by

1It may be the case that a single entity is both the data owner and modeler, in which case they
wish to perform privatized analyses on their own data to be fit for public release.
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calibrating the noise to the sensitivity of the function outputting a quantity dependent

on sensitive data. Sensitivity captures how much the output of a function depends on

any individual’s data in the worst case [Dwork et al., 2006]; higher sensitivity requires

more extreme randomization so that the (random) output does not depend too much

on any individual’s data. The randomization renders the noisy data safe for public

release; all subsequent calculations using the noisy data, known as post-processing,

are also safe [Dwork & Roth, 2014]. Perhaps surprisingly, public divulgence of the

use of the release mechanism and its parameters do not impair the privacy guarantee;

in fact, as we will see, specific knowledge of the release mechanism proves crucial in

developing noise-aware inference techniques.

The decade and a half since the seminal differential privacy paper [Dwork et al.,

2006] saw an early focus on developing privacy release mechanisms, and since the

field has taken hold, there has been a growing focus on developing private machine

learning methods for use on real world problems. Differential privacy has been applied

to many areas of machine learning, including, as a small sample, learning specific

models such as logistic regression [Chaudhuri & Monteleoni, 2009], support vector

machines [Rubinstein et al., 2009], and deep neural networks [Abadi et al., 2016];

privacy in general frameworks such as empirical risk minimization (ERM; Bassily et al.

[2014]; Chaudhuri et al. [2011]; Jain & Thakurta [2013]; Kifer et al. [2012]), gradient

descent [Wu et al., 2016], and parameter estimation [Smith, 2011b]; and theoretical

analysis of what can be learned privately, e.g., [Blum et al., 2005; Kasiviswanathan

et al., 2011]. These methods can often be simple and efficient, but a major drawback of

these works is the downstream analyses inherently ignore the randomization due to the

release mechanism, i.e. they are “noise-naive”, which potentially introduces pathologies

(e.g. calculations leading to negative variance) and hampers results (e.g. poor point

estimation accuracy). Ultimately, the output of the methods and mechanisms is used

2



directly in some downstream use case and thus is designed to be useful on its own,

which brings along any associated pathologies.

There is, however, a small subfield of “noise-aware” works in which probabilistic

inference methodologies are used in conjunction with the output of release mechanisms

in order to account for the randomization introduced by the mechanism. There are

two main advantages to this framework. First, noise-aware methods generally separate

the release mechanism and the technical analysis methodology into two components,

which can relieve the data owner of potentially unwanted analysis burdens and thus

lead to greater uptake of private methods. Second, and perhaps most importantly,

noise-aware methods are generally shown to outperform noise-naive methods and

thus prove to be more useful in practical settings, such as with smaller data sizes or

stricter privacy levels. The goal of this thesis is to add to the subfield of noise-aware

differentially private machine learning.

In the rest of this chapter we will introduce the concept of noise-aware inference,

review existing work in this field, and introduce the three technical chapters of this

thesis.

1.1 Noise-Aware Differentially Private Machine Learning
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Figure 1.1: Inference models.
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The noise-aware paradigm was first introduced by Williams & McSherry [2010]. In

the non-private setup in Figure 1.1a, the collection of individual data X is generated

from some model parameterized by θ and subsequently observed, with the goal of

then drawing conclusions about θ given the data X. In the private setup in Figure

1.1b, the individual data X is protected and instead a perturbed quantity z is made

publicly-available via a release mechanism. This latter setup can be thought of as a

latent variable model in which a privately released quantity is observed and the true,

unperturbed quantity of the original model is unobserved. In this way, the noise model

due to the release mechanism can be directly accounted for in a probabilistic inference

procedure, with the intent of producing more principled and higher-utility private

analyses. The key insight is that exposing the specifications of the release mechanism

does not harm the differential privacy guarantee. Knowledge of the mechanism defines

the conditional distribution p(z | X), which can be combined with the generative data

model, p(X | θ), to form the marginal likelihood, p(z | θ) =
∫
p(X | θ) p(z | X) dX.

With this likelihood we can perform analyses of interest regarding θ. The integral over

all data sets, however, is generally intractable. Thus the main technical development

required for novel noise-aware inferences is to form approximations of this integral

and obtain either a closed form or a tractable sampling procedure.

The model in Figure 1.1b encapsulates a broad range of machine learning models.

There are three main decisions to make in designing a private algorithm in this context.

First, which statistic of X do we wish to privatize? Second, with which mechanism

will we privately release that statistic as z? Third, what analyses or inferences do we

perform given z? While Williams & McSherry [2010] introduce this broad research

landscape of noise-aware inference, their technical contributions explored a small

swath of problem space as a proof of concept. In this thesis we develop noise-aware

methodology for sufficient statistics perturbation (SSP; Foulds et al. [2016]; McSherry

& Mironov [2009]; Vu & Slavkovic [2009]; Zhang et al. [2016]), in which noise is added
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to the sufficient statistics of a given model, which are a quantity that capture all

information about the model parameters [Fisher, 1922]. This setup, shown in Figure

1.1c, allows us to work directly with the sufficient statistics instead of the individual

data, which allows for the development of techniques leading to tractable and higher

utility noise-aware methods for a broad range of problem settings falling into the

exponential family.

1.2 Existing Noise-Aware Work

Here we review the limited existing noise-aware work before (and concurrent to)

this thesis.

1.2.1 Differentially Private Exponential Random Graphs

Karwa et al. [2014] focuses on privately fitting and estimating a wide class of

exponential random graph models (ERGMs), which model the structure of graphs with

statistics of the network and node attributes. The work assumes the covariate data

of each node is publicly available, e.g. personal characteristics, and the relationship

data between individuals is what needs to be protected with edge differential privacy.

Edge DP protects the addition or deletion of a single edge in a graph and guarantees

the distribution of outputs on two neighboring graphs is nearly identical. The work

uses randomized responses for edges as the release mechanism, which independently

perturbs the values of the network adjacency matrix.

The goal is then to develop inference procedures to analyze the privatized net-

work. The main challenge of MLE in ERGMs is the intractability of calculating the

normalizing constant due to needing to sum over all possible network configurations.

One solution is to approximate the normalizing constant using MCMC [Geyer &

Thompson, 1992], and Handcock & Gile [2010] explore how to do so when only a

sample of the network is observed. Karwa et al. [2014] adapts this idea to the case of
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when a perturbation of the network is observed due to a privacy mechanism. They

note a naive approach would be to use the perturbed network “as is” and thus ig-

nore the privacy mechanism. Instead they develop a method to include the privacy

mechanism in the model and perform MLE over the full likelihood. This leads to the

need to approximate a new normalizing constant involving the noise mechanism, for

which they introduce a second MCMC chain. They show quality of the model fit by

noise-aware method degrades much more gracefully than the naive method as privacy

level increases

1.2.2 Inference Using Noisy Degrees: Differentially Private β-Model and

Synthetic Graphs

Karwa et al. [2016] again focuses on edge DP for graphs, but in this work turns to the

β-model of random graphs. These are graphs with random edges whose distribution is

an exponential family model, for which the sufficient statistics are the degree sequence

of the graph. This work proves that releasing noisy sufficient statistics and using them

“as is” will often result in methodological failures. There is asymptotically at best a

50% chance a valid graph can be sampled from a perturbed degree sequence. They

also show the drastic rate of non-existence of MLE for the model when naively using

the perturbed sufficient statistics. Further, even a naive projection to the nearest valid

degree sequence results in hampered statistical performance. Those negative results

motivate their development of a noise-aware method which instantiates an estimation

of the latent true degree sequence. The proposed method is a modified Havel-Hakimi

“certifying” algorithm [Hakimi, 1962; Havel, 1955] that performs an L1 projection for

the perturbed degree sequence onto the marginal polytope, which results in a valid

degree sequence. They then show the resulting MLE is consistent and asymptotically

normal.
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1.2.3 Locally Private Bayesian Inference for Count Models

Concurrently to work done for this thesis, Schein et al. [2018] explores the problem

of local privacy for Bayesian inference for Poisson factorization, which is motivated by

problems such as topic modeling and community detection from email correspondences,

e.g. the Enron data set [Klimt & Yang, 2004]. The work uses the geometric mechanism

to achieve local privacy, which means only individuals have access to their unperturbed

data. The generative process of the combined Poisson factorization and release

mechanism can be written in multiple equivalent configurations. This enables careful

application of probabilistic distribution properties, namely relationships between

Poisson random variables with Skellam and Bessel random variables, allowing for

tractable posterior sampling via MCMC. Experiments show the point estimates due

to the noise-aware method outperforms the naive method in case studies on both

topic modeling and community detection. Interestingly, the noise-aware method

outperforms even the non-private method, indicating higher levels of robustness

towards generalization [Dwork & Lei, 2009].

1.3 Thesis Contributions

This thesis develops noise-aware methods by leveraging techniques enabled by

working directly with the sufficient statistics of a model. This release approach of

sufficient statistic perturbation (SSP) is desirable from a privacy perspective for a

number of reasons (see Section 2.1) but narrows the possible release mechanisms from

which to choose, namely the Laplace and Gaussian mechanisms [Dwork et al., 2006].

The question then is, how much utility do we lose by restricting our methods to this

choice of privately releasing sufficient statistics? SSP is most applicable in models

which have compact sufficient statistics. In such cases, existing work and results

in this thesis show that in fact even noise-naive SSP methods are very competitive

or even state of the art for many classes of models in comparison to other release

7



approaches. For example, for the problem of point estimation of unconditional family

models, Foulds et al. [2016] shows noise-naive SSP for exponential family models is

a consistent estimator and out performs one posterior sampling (OPS), and Wang

[2018] shows SSP for linear regression is competitive with OPS and significantly better

than the mechanisms of objective perturbation, subsample-and-aggregate, and noisy

stochastic gradient descent. In the Bayesian framework, Chapters 4 and 5 show that

even noise-naive SSP outperforms other approaches in producing correct posteriors

for unconditional and conditional exponential family models, respectively.

Another drawback of SSP is the need to “lock-in” a model for which to release the

sufficient statistics. This potentially limits the flexibility of downstream analyses, since

subsequently releasing sufficient statistics for a different model may require a larger

privacy budget. This thesis does not explore the problem of initial model selection, nor

the problem of efficiently releasing sufficient statistics to enable analyses of multiple

models, though these are interesting avenues for future research.

1.3.1 Differentially Private Learning of Undirected Graphical Models us-

ing Collective Graphical Models

Chapter 3 addresses the problem of privately learning parameters in discrete,

undirected graphical models with noise-aware inference. Graphical models are a central

tool in probabilistic modeling and machine learning. They pair expressive probability

models with algorithms that leverage the graphical structure for efficient inference

and learning. These tools allow a practitioner to posit a model for observed data, and

then fit parameters, assess model validity, and make predictions.

In this chapter we clarify the theory and practice of noise-naive maximum likelihood

estimation for undirected graphical models. We show that it learns better models than

existing state-of-the-art approaches, and in fact that it achieves the same asymptotic

mean-squared error as the non-private method. This motivates the use of conducting
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inference over noisy sufficient statistics. We do so using techniques from collective

graphical models (CGMs; Sheldon & Dietterich [2011]), which allow for efficient

inference over sufficient statistics of a graphical model given noisy observations thereof.

We then show that this more principled noise-aware approach is superior to competing

approaches in nearly all scenarios.

1.3.2 Differentially Private Bayesian Inference for Exponential Families

Chapter 4 develops the first fully noise-aware Bayesian method capable of producing

the correct private posterior for exponential family models. Exponential family models

include many of the most familiar parametric probability models, e.g. binomial,

exponential, and Gaussian. Previous work has Bayesian inference that ignores noise

due to the release mechanism [Dimitrakakis et al., 2014; Foulds et al., 2016; Geumlek

et al., 2017; Wang et al., 2015; Zhang et al., 2016].

In this chapter we develop technical approximations that allow for tractable

sampling from the correct posterior over noisy sufficient statistics. We also address

the challenge of privately releasing unbounded sufficient statistics, e.g. those of

the exponential distribution. We then show empirically that when compared with

competing methods, ours is the only one that provides properly calibrated beliefs

about model parameters in the non-asymptotic regime, and that it provides good

utility compared with other private Bayesian inference approaches.

1.3.3 Differentially Private Bayesian Linear Regression

Chapter 5 develops the first differentially private method to produce a full publicly-

available posterior for Bayesian linear regression. Linear regression is one of the most

widely used statistical methods, especially in domains where data comes from humans.

It is important to develop robust tools that can realize the benefits of regression

analyses but maintain the privacy of individuals. Existing work on differentially

private linear regression focuses on point estimation [Bassily et al., 2014; Dimitrakakis
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et al., 2014; Dwork & Smith, 2010; Foulds et al., 2016; Geumlek et al., 2017; Kifer

et al., 2012; Minami et al., 2016; Smith, 2008; Vu & Slavkovic, 2009; Wang, 2018;

Wang et al., 2015; Zhang et al., 2016] and only a few recent works address uncertainty

quantification of regression coefficients through confidence interval estimation [Sheffet,

2017] and hypothesis tests [Barrientos et al., 2019].

In this chapter we first show the noise-naive Bayesian method produces the correct

posterior only in larger data regimes. This motivates our development of inference

methods that properly account for the noise due to the privacy mechanism. We

develop MCMC-based techniques to sample from posterior distributions, as done for

exponential families in Chapter 4. A significant challenge relative to that chapter is

the need to form some assumption about the distribution over covariate data, since it

cannot be conditioned on as in non-private regression. The first noise-aware method

instantiates individuals, which scales the runtime with population size and requires

an explicit prior distribution for covariates. The second method marginalizes out

individuals and approximates the distribution over the sufficient statistics; it requires

weaker assumptions about the covariate distribution (only moments), and its running

time does not scale with population size. We perform a range of experiments to

show our noise-aware methods are as well or nearly as well calibrated as the non-

private method, and have better utility than the naive method. We demonstrate

using real data that our noise-aware methods quantify posterior predictive uncertainty

significantly better than naive SSP. We then conclude with a case study drawn from

the real problem of social mobility policy-making using sensitive census data.

1.4 Summary

The subfield of noise-aware inference has a limited number of existing works but

has shown great potential to enable differentially private machine learning for practical

problem settings in the real world. All previously discussed noise-aware works show,
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in their respective problem settings and with a variety of release mechanisms, that the

naive approach of ignoring noise due to the release mechanism leads to pathologies and

hampers performance on desired tasks. Karwa et al. [2014], Karwa et al. [2016], and

Chapter 3 do so for exponential random graph models, β-model random graphs, and

undirected graphical models, respectively. Williams & McSherry [2010], Schein et al.

[2018], Chapter 4, and Chapter 5 do so for Bayesian inference in logistic regression,

Poisson factorization, exponential family models, and linear regression, respectively.

The negative effects of ignoring noise range from lower accuracy, as in Chapter 3, to

the extreme of MLE non-existence, as in Karwa et al. [2016] and Chapter 3. These

effects are exacerbated in data settings where the randomization injected by the release

mechanism overwhelms the signal in the data, namely when the privacy guarantee is

strict or when the size of the population is small.

All works then go on to develop noise-aware methods that perform inference over

the release mechanism, which is shown to improve upon the negative noise-naive

results. By casting the privacy-preserving process as a latent variable problem and

instantiating the latent variable, the original problem setting’s model can be used with

the perturbed statistics projected to be valid statistics, e.g. MLE for the β-model

random graph with a valid degree sequence, or a Bayesian conjugate update with

projected sufficient statistics that lead to a positive variance. The main hurdle to do

so, as originally pointed out by Williams & McSherry [2010], is to make tractable

the integral over all data sets found within the marginal likelihood of the publicly-

released perturbed quantity. Each problem setting requires different insights to achieve

this goal, e.g. Schein et al. [2018] rewriting the geometric mechanism as a Skellam

distribution.

This thesis focuses on problems that fit into exponential family models, such that

the dimensions of the sufficient statistics do not grow with respect to the population

size. Chapter 3 uses the insight that the existing body of work on collective graphical
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models allows for tractable inference over sufficient statistics of a graphical model

given noisy observations. Chapters 4 and 5 turn to Bayesian inference as a natural

framework for expressing uncertainty in the face of noisy observations. The insight

that sufficient statistics of exponential family models and linear regression are sums

over individuals allows for normal approximations via the central limit theorem, and

an additional model augmentation of the Laplace mechanism into a scale mixture of

normals allows for a tractable sampling procedure.

The framework of noise-aware inference is applicable to a wide range of problem

settings and release mechanisms. All three chapters use the Laplace mechanism

but are easily adapted to the Gaussian mechanism. As a first step, further more

complicated mechanisms could potentially be tackled simply by the MCMC-based

method introduced in Chapter 5, as long as the generative model distribution can be

compatibly written with standard MCMC algorithms. As first observed by Williams

& McSherry [2010] a decade ago, probabilistic inference is a powerful tool that, hand

in hand with differential privacy, can be used to unlock a high level of utility in private

machine learning settings that would be otherwise unattainable.

1.5 Published Work

Not included in this thesis is previous work done on consistently estimating Markov

chains with noisy aggregate data. This work was motivated by the application of

continent-wide bird migration, in which the actions of individual birds are unobservable,

but noisy observations of the population counts of birds are available over time. The

work done also attempted to fit models using noisy sufficient statistics and eventually

led to the privacy work done in this thesis.

Below is a full list of publications by the author while in the PhD program at the

University of Massachusetts Amherst.
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CHAPTER 2

DIFFERENTIAL PRIVACY BACKGROUND

Differential privacy requires that an individual’s data has a limited effect on

an algorithm’s behavior. A data set X = x1:n := (x1, . . . , xn) consists of records

from n individuals, where xi is the data of the ith individual. We will assume n is

known. Differential privacy reasons about the hypothesis that one individual chooses

to remove their data from the data set, and their record is replaced by another one.1

Let nbrs(X) denote the set of data sets that differ from X by exactly one record—i.e.,

if X ′ ∈ nbrs(X), then X ′ = (x1:i, x
′
i, xi+1:n) for some i.

Definition 1 (Differential Privacy; Dwork et al. [2006]). A randomized algorithm A

satisfies ε-differential privacy if for any input X, any X ′ ∈ nbrs(X) and any subset of

outputs O ⊆ Range(A),

Pr[A(X) ∈ O] ≤ exp(ε)Pr[A(X ′) ∈ O].

The data owner can specify the level of privacy guarantee via a positive ε; smaller

values satisfy stricter privacy levels.

We achieve differential privacy by injecting noise into statistics that are computed

on the data. Let f be any function that maps datasets to Rd. The amount of noise

depends on the sensitivity of f . We drop the subscript f when it is clear from context.

1This variant assumes n remains fixed, which is sometimes called bounded differential privacy [Kifer
& Machanavajjhala, 2011].
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Definition 2 (Sensitivity). Let the l1-sensitivity of a function f for two specific data

sets, X and X ′, be Sf (X,X ′) = ‖f(X)− f(X ′)‖1. Then the l1-sensitivity of f is

∆f = max
X,X′∈nbrs(X)

Sf (X,X
′).

A release mechanism is an algorithm which has sensitive data as input, which

only trusted parties are allowed to observe, and privatized data as output, which is

allowed to be observed by any party. The ability of these release mechanisms to deliver

privacy guarantees to individuals hinges on the fact they their outputs are immune to

post-processing operations [Dwork & Roth, 2014]; if an algorithm A is ε-differentially

private, then any algorithm that takes as input only the output of A, and does not

use the original data set X, is also ε-differentially private.

2.1 Release mechanisms

There are a multitude of available differentially private release mechanisms in the

literature. All involve injecting randomization somewhere into the process such that

the influence of any one individual on the output is negligible. There are several

design choices to consider in order to learn accurate models under differential privacy.

It is critical to randomize the mechanism “just enough” to achieve the desired privacy

guarantee while minimizing the impact on the quality of the subsequently learned

model. There are two general considerations to account for in achieving that goal.

First, noise should be added at an “information bottleneck” so that as few quantities

as possible require perturbation, e.g. adding noise to summary statistics instead of to

individual data. Second, noise should be added at a location where sensitivity can be

calculated exactly, or at least tightly bounded, in order to add only as much noise as

needed to deliver the privacy guarantee. A consideration separate from model utility

is to design release mechanisms that would be simple for data owners to implement,

thus increasing potential uptake.
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Input perturbation, such as used by Schein et al. [2018] via the geometric mechanism,

enables local differential privacy. In this setup each individual perturbs their own

data before transmitting to a central data collector, e.g. cellphones sending a noisy

location to the server. A very desirable result of this form of privacy is the guarantee

that no entity but the individual has unfettered access to the individual’s data. The

drawback, however, is the amount of noise added to the “system” scales with the

number of individuals, which can hamper utility.

Output perturbation adds noise to the final learned model parameters [Dwork

et al., 2006]. This is appealing from the information bottleneck standpoint, but if

the learning algorithm is complex then it may be difficult to analyze the sensitivity

and thus coarse bounds are often relied upon. Indeed, general private learning

frameworks bound the sensitivity using quantities such as Lipschitz, strong-convexity,

and smoothness constants [Bassily et al., 2014; Wu et al., 2016] or diameter of the

parameter space [Smith, 2008], which may be loose in practice.

The exponential mechanism randomly samples from all possible outputs weighted

by an assigned utility function. One instantiation of this mechanism is one posterior

sampling (OPS; Dimitrakakis et al. [2014]; Foulds et al. [2016]; Wang et al. [2015];

Zhang et al. [2016]), which leverages the Bayesian inference framework to release

a limited number of samples from a perturbed posterior. This approach, however,

provides samples that do not correctly quantify beliefs of the model parameters.

In this thesis we take the approach of sufficient statistics perturbation (SSP; Foulds

et al. [2016]; McSherry & Mironov [2009]; Vu & Slavkovic [2009]; Zhang et al. [2016]),

in which noise is added to the sufficient statistics of a given model, which are a quantity

that capture all information about the model parameters [Fisher, 1922]. The two

most prevalent release mechanisms used for SSP are the Laplace mechanism Dwork

et al. [2006] and the Gaussian mechanism Dwork et al. [2006]. SSP has a number of

advantages. First, sufficient statistics are, by definition, an information bottleneck.
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Second, it is very easy to exactly analyze the sensitivity of sufficient statistics in

many models of interest; for example, the sufficient statistics of discrete, undirected

graphical models are contingency tables. Third, adding noise to sufficient statistics

prior to release is very simple, so it is reasonable to imagine adoption in practice, say,

by public agencies.

Definition 3 (Laplace Mechanism; Dwork et al. [2006]). Given a function f that

maps data sets to Rm, the Laplace mechanism outputs the random variable L(X) ∼

Lap
(
f(X),∆f/ε

)
from the Laplace distribution, which has density Lap(z;u, b) =

(2b)−m exp (−‖z − u‖1/b). This corresponds to adding zero-mean independent noise

ui ∼ Lap(0,∆f/ε) to each component of f(X).
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CHAPTER 3

PRIVATE UNDIRECTED GRAPHICAL MODELS

3.1 Introduction

Graphical models are a central tool in probabilistic modeling and machine learning.

They pair expressive probability models with algorithms that leverage the graphical

structure for efficient inference and learning. These tools allow a practitioner to posit

a model for observed data, and then fit parameters, assess model validity, and make

predictions. This chapter addresses the problem of privately learning parameters in a

widely used class of probabilistic models: discrete, undirected graphical models.

Previous work addresses private learning for directed graphical models [Zhang

et al., 2014, 2016]. Our problem of learning in undirected models, which are not

locally normalized, is more general and substantially harder computationally. Several

OPS approaches show that a single sample drawn from a posterior distribution is

differentially private [Dimitrakakis et al., 2014; Wang et al., 2015; Zhang et al., 2016].

This can be understood as applying the exponential mechanism to the log-likelihood

function, and can provide a point estimate for graphical model parameters [Zhang

et al., 2016]. To apply OPS, one must sample from the posterior over parameters,

p(Θ|X), which is straightforward for directed graphical models with conjugate priors,

but not in undirected models, where posteriors over parameters are usually intractable.

Foulds et al. [2016] and Zhang et al. [2016] also developed Bayesian methods using

Laplace noise-corrupted sufficient statistics to update posterior parameters. Similar

considerations apply to this approach, which matches ours in that it uses the same

data release mechanism, but, like OPS, requires conjugate priors and thus easily
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applies only to directed graphical models. Wang et al. [2015] also describe MCMC

approaches to draw many private samples from a posterior distribution; this is another

general framework that could apply to our problem, but, it relies on loose sensitivity

bounds and since we only request point estimates, it would waste privacy budget by

drawing many samples.

Because sufficient statistics of discrete, undirected graphical models are contingency

tables, our work connects to the well-studied problem of releasing differentially private

contingency tables [Barak et al., 2007; Hardt et al., 2012; Yang et al., 2012]. It is

not entirely clear, however, how to learn parameters of a graphical model with noisy

sufficient statistics. One option, which we will refer to as naive maximum likelihood

estimation (MLE), is to ignore the noise and conduct maximum-likelihood estimation

as if we had true sufficient statistics. This works reasonably well in practice, and is

competitive with or better than state-of-the-art general-purpose methods. In fact, we

will show that naive MLE is consistent and achieves the same asymptotic mean-squared

error as non-private MLE. However, at reasonable sample sizes the error due to privacy

is significant, and the approach has several pathologies (see also Yang et al. [2012]

and Karwa et al. [2014, 2016]), some of which make it difficult to apply in practice.

We therefore adopt a more principled approach of performing noise-aware inference

about the true sufficient statistics within an expectation–maximization (EM) learning

framework.

Thus the problem is how to conduct inference over sufficient statistics of a graphical

model given noisy observations thereof. This is exactly the goal of inference in collective

graphical models (CGMs; Sheldon & Dietterich [2011]), and we will adapt CGM

inference techniques to solve this problem. Put together, our results significantly

advance the state-of-the-art for privately learning discrete, undirected graphical models.

We clarify the theory and practice of naive MLE and show that it learns better models

than existing state-of-the-art approaches in most scenarios across a broad range of
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synthetic tasks, and in experiments modeling human mobility from wifi access point

data. We then show the more principled approach of conducting inference with CGMs

is superior to competing approaches in nearly all scenarios.

3.1.1 Problem statement

Our goal is to learn a probabilistic model p(x) from the data set X while protecting

the privacy of individuals. We will learn probability distributions p(x) that are

undirected discrete graphical models (also called Markov random fields [Koller &

Friedman, 2009]). These are defined by a set of local potential functions of the

form ψC(xC), where C ⊆ {1, . . . , T} is an index set or clique, xC is a subvector of x

corresponding to C, and ψC : X |C| → R+ assigns a potential value to each possible xC .

The probability model is p(x) = 1
Z

∏
C∈C ψC(xC) where C is the collection of cliques

that appear in the model, and Z =
∑

x

∏
C∈C ψC(xC) is the normalizing constant or

partition function. The graph G with node set V = {1, . . . , T} and edges between

any two indices that co-occur in some C ∈ C is the independence graph of the model;

therefore, each index set C is a clique in G.

For learning, it is most convenient to express the model in log-linear or exponential

family form as:

p(x;θ) = exp

{∑
C∈C

∑
iC∈X |C|

I{xC = iC}θC(iC)− A(θ)

}
. (3.1)

In this expression: I{·} is an indicator function; the variable iC ∈ X |C| denotes

a particular setting of the variables xC ; the parameters θC(iC) = logψC(iC) are

log-potential values; the vector θ ∈ Rd is the concatenation of all parameters; and

A(θ) = logZ(θ) is the log-partition function, with the dependence of Z on the

parameters now made explicit. Note that, for any θ ∈ Rd, the density is strictly

positive: p(x;θ) > 0 for all x. This is true because the potential values ψC(iC) are

strictly positive, so the log-potentials are finite.
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The goal is to learn parameters θ̂ from the data X in a way that is ε-differentially

private and such that p(x; θ̂) is as accurate as possible. We will measure accu-

racy as Kullback-Leibler divergence from an appropriate reference distribution [Kull-

back & Leibler, 1951]. In synthetic experiments, we will measure the divergence

D
(
p(·;θ)‖p(·; θ̂)

)
, where p(x;θ) is the true density. For real data, we will measure

the holdout log-likelihood Eq
[

log p(x; θ̂)
]
where q is the empirical distribution of the

holdout data, which is equal to a constant minus D
(
q‖p(·; θ̂)

)
.

The problem of privately selecting which cliques to include in the model (i.e.,

model selection or structure learning) is interesting but not considered in this thesis;

we assume the cliques C are fixed in advance by the modeler.

3.2 Approach

To develop our approach to privately learn graphical model parameters, we first

discuss standard concepts related to maximum-likelihood estimation for graphical

models.

Log-likelihood, sufficient statistics, marginals. From Eq. (3.1), the log-

likelihood L(θ) = log
∏N

i=1 p
(
x(i);θ

)
of the entire data set can be written as

L(θ) =

[∑
C∈C

∑
iC∈X |C|

nC(iC)θC(iC)

]
−NA(θ)

where nC(iC) =
∑N

i=1 I{x
(i)
C = iC} is a count of how many times the configuration

iC for the variables in clique C appears in the population. The collection of counts

nC =
(
nC(iC)

)
for all possible iC is the (population) contingency table on clique C.

Let n denote the vector concatenation of the contingency tables for all cliques. Then

we can rewrite the log-likelihood more compactly as
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L(θ) = f(n,θ) := θTn−NA(θ) (3.2)

The most common approach for parameter learning in graphical models is maximum

likelihood estimation: find the parameters θ̂ that maximize L(θ). The resulting

parameter vector θ̂ is a maximum-likelihood estimator (MLE). It is clear from Eq. (3.2)

that this problem depends on the data only through the contingency tables n. Indeed,

the clique contingency tables n are sufficient statistics of the model: they measure all

of the information from the data set X that is relevant for estimating the parameter

θ [Fisher, 1922].

The algorithmic approach for maximum-likelihood estimation in graphical models

is standard [Koller & Friedman, 2009], and we do not repeat the details here. However,

there are a few concepts that are important for our development. The marginals of a

graphical model are the marginal probabilities µC(iC) = p(xC = iC ;θ) for all cliques

C and configurations iC . Let µ be the vector concatenation of all marginals, and note

that µ = Eθ[n]/N . Similarly, let µ̂ = n/N be the data marginals—these are marginal

probabilities of the empirical distribution of the data.

Marginals play a fundamental role in estimation. First, note that we can divide

Eq. (3.2) by N to see that the MLE only depends on the data through the data

marginals µ̂. However, we leave L(θ) in the current form because it is more convenient

for the CGM development in Section 3.2.4. Second, it is well known that ∇θL(θ) =

N(µ̂− µ), so maximum likelihood estimation seeks to adjust θ so that the data and

model marginals match. Third, it can (almost) always succeed in doing so, even if the

data marginals do not come from a graphical model. More formally, letM be the

marginal polytope: the set of all vectors µ such that there exists some distribution

q(x) with marginal probabilities µ.

Proposition 1 ([Wainwright & Jordan, 2008]). For any µ in the interior ofM, there

is a unique distribution p(x;θ) with marginals µ, i.e., such that µ = Eθ[n]/N .
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Applying Proposition 1 to the data marginals µ̂ shows that if these belong to the

interior ofM, we may learn a distribution with marginals that match what we observe

in the data. Note that, while the distribution p(x;θ) is unique, the parameters θ are

not, because our model is overcomplete. If µ belongs toM but not the interior of

M, which occurs, for example, when some marginals are zero, the situation is more

complex: there is no (finite) θ ∈ Rd such that p(x;θ) has marginals µ.1 Similarly,

the MLE does not exist, meaning that its maximum is not attained for any finite

θ [Fienberg & Rinaldo, 2012; Haberman, 1973]. This issue will end up being significant

in our understanding of the naive MLE approach in the following section.

3.2.1 Noisy sufficient statistics

To use the Laplace mechanism to release noisy sufficient statistics we must first

determine a bound on the sensitivity of n, which is very easy to analyze and the

analysis is tight: the local sensitivity (see Definition 2 in Chapter 2 ) is the same for

all data sets.

Proposition 2. Let n(X) be the sufficient statistics of a graphical model with clique

set C on data set X. The local sensitivity of n is |C| for all inputs X. Therefore the

sensitivity of n is |C|.

See Appendix A.1 for proof.

So, a simple approach to achieve privacy is to release noisy sufficient statistics y

that are obtained after applying the Laplace mechanism:

yC(iC) = nC(iC) + Laplace
(
|C|/ε

)
(3.3)

1However, there is a sequence {θk} where θk ∈ Rd and lim
k→∞

Eθk [n]/N = µ.
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3.2.2 Positive results for naive MLE

How can we learn with noisy sufficient statistics y? A naive approach is to use y

in place of n in maximum-likelihood estimation, i.e., to find θ̂ to maximize f(y,θ).

The validity of this approach has been debated in the literature [Yang et al., 2012].

However, it is relatively easy to show that it behaves well asymptotically.

Proposition 3. Assume x(1), . . . ,x(N) are drawn iid from a probability distribution

with marginals µ. The marginal estimate µ̄C(iC) = 1
N
yC(iC) obtained from the noisy

sufficient statistics is unbiased and consistent, with mean squared error:

MSE
(
µ̄C(iC)

)
=
µC(iC)

(
1− µC(iC)

)
N

+
2|C|2

N2ε2
(3.4)

Now let θ̂ ∈ argmaxθ f(y,θ) be parameters estimated using the noisy sufficient

statistics y. If the true distribution p(x;θ) is a graphical model with cliques C, then

the estimated distribution p(x; θ̂) converges to p(x;θ).

See Appendix A.1 for proof.

3.2.3 Pathologies in naive MLE

Asymptotically, the noisy sufficient statistics behave as desired in terms of MSE:

the O(1/N) term, which is due to sampling error and not privacy, dominates for large

N . However, for practical settings of ε the O(1/N2) term, which is due to privacy, is

dominant until N becomes very large, due to the large constant 2|C|2/ε2. Figure 3.1

illustrates this issue. For large ε, the O(1/N) sampling error is dominant; however, for

smaller ε, the O(1/N2) privacy error term is dominant even for N approaching 107. 2

A second pathology is that the noise added for privacy destroys some of the

structure expected in the empirical marginals. The true data marginals µ̂ = n/N

2Note that Proposition 1 suggests that the MSE results for the estimated marginals µ̂ will carry
over to marginals of the learned model p(x; θ̂). However the situation is complicated by the fact that
µ̂ does not belong to the marginal polytope. Despite this, we observe in practice that the MSE of
the learned marginals follow the predictions of Proposition 3.
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Figure 3.1: Sample results on synthetic data illustrating behavior of naive MLE (see
Section 3.3.2 for experiment details). MSE of learned marginals vs population size N
on a chain model with T = 10, |X | = 10; reference lines indicate predicted slope for
O(1/N) and O(1/N2) error terms, respectively (the function c/Nd has slope −d on a
log-log plot)

belong to the marginal polytope: in particular, this means that each clique marginal

µ̂C is nonnegative and sums to one, and that clique marginals agree on common

subsets of variables. After adding noise, the pseudo-marginals µ̄ = y/N do not

belong to the marginal polytope: µ̄ may have negative values, and does not satisfy

consistency constraints. We find that a partial fix is very helpful empirically: project

the pseudo-marginal µ̄C for each clique onto the simplex prior to conducting MLE,

which can be done via a standard procedure [Duchi et al., 2008]. Let µ̃ be the

projected marginals. We now have that µ̃C is a valid marginal for each clique C, but

consistency constraints are not satisfied among cliques, and it is still the case that

µ̃ /∈M. Figure 3.2 illustrates the benefits of projection on the quality of the model

learned by Naive MLE.

A more significant pathology has to do with zeros in the projected marginals

µ̃, which are more prevalent than in true data marginals µ̂. This is because the

addition of Laplace noise creates negative values, which are then truncated to zero

during projection. As discussed following Proposition 1, zero values in the marginals

lead to non-existence of the MLE [Fienberg & Rinaldo, 2012; Haberman, 1973]. If
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Figure 3.2: Sample results on synthetic data illustrating behavior of naive MLE (see
Section 3.3.2 for experiment details). The effect of projecting marginals on performance
of naive MLE for an Erdős-Réyni graph with T = 10, |X | = 20, ε = 0.5.

µ̃C(iC) = 0, the likelihood increases monotonically as θC(iC) goes to negative infinity;

in other words, the model attempts to drive the learned marginal probability to zero.

Numerically, we can address this by regularization, e.g., adding λ‖θ‖2 to the objective

function for arbitrarily small λ > 0. However, we may still learn vanishingly small

marginal probabilities, which can lead to a very large KL-divergence between the true

and learned models. Figure 3.3 illustrates the effect of λ on KL-divergence with both

noisy sufficient statistics and true sufficient statistics. At high λ (strong regularization),

both methods underfit and yield poor KL divergence. Learning with true sufficient

statistics has no tendency to overfit; it achieves good performance for a broad range

of λ approaching zero. Naive MLE with noisy sufficient statistics overfits badly (to

zeros) for small λ, and must be tuned “just right” to achieve reasonable performance.

3.2.4 Collective Graphical Models

Since learning with noisy sufficient statistics “as-is” has several pathologies and

is less robust than maximum-likelihood estimation in the absence of privacy, we

investigate a more principled approach, which matches the data generating process:

We treat the true sufficient statistics n as latent variables, and learn θ to maximize
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Figure 3.3: Sample results on synthetic data illustrating behavior of naive MLE (see
Section 3.3.2 for experiment details). The effect of regularization on KL-divergence
for learning with and without privacy; chain model with T = 10, |X | = 10, ε = 0.1.

the marginal likelihood p(y;θ) =
∑

n p(n,y;θ). In this section, we will develop an

EM approach to accomplish this.

In EM, we need to conduct inference to compute E[n | y;θ] for a fixed value of

θ. This is the central problem of collective graphical models (CGMs) [Sheldon &

Dietterich, 2011]. Consider the joint distribution p(n,y;θ) = p(n;θ)p(y | n), which

we use to compute E[n | y;θ]. The noise mechanism p(y | n) arises directly from

the Laplace mechanism (see Eq. (3.3)). The distribution of the sufficient statistics,

p(n;θ), is known as the CGM distribution. It can be written in closed form when the

model is decomposable, i.e., the cliques C correspond to the nodes of some junction

tree T . Although decomposability is a significant restriction, let us assume that

such a tree T exists; we will use the exact results derived for this case to develop an

approximation for the general case. Let S be the set of separators of T , and let ν(S)

be the multiplicity of S ∈ S, i.e., the number of distinct edges (Ci, Cj) ∈ T for which

S = Ci ∩Cj . Under these assumptions, the CGM distribution has the form [Liu et al.,

2014]:
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p(n;θ) = h(n) · exp
(
f(n,θ)

)
,

h(n) = N ! ·

∏
S∈S

∏
iS∈X |S|

(
nS(iS)!

)ν(S)

∏
C∈C

∏
iC∈X |C|

nC(iC)!
· I{n ∈MZ

N}

The term exp
(
f(n,θ)

)
is the probability of an ordered data set X with sufficient

statistics n, as discussed previously. The term h(n) is a base measure that counts

the number of ordered data sets with sufficient statistics equal to n, and enforces

constraints on n. The integer-valued marginal polytope MZ
N is the set of all vectors n

that are sufficient statistics of some data set X of size N .

Exact inference in CGMs is intractable [Sheldon et al., 2013]. Therefore, it is

typical to relax the integrality constraint and apply Stirling’s approximation: log n! ≈

n log n−n. LetMN be the feasible set with the integrality constraint removed, which

is now just the standard marginal polytope scaled so that each marginal sums to N

instead of one.

Proposition 4 (Nguyen et al. [2016]; Sun et al. [2015]). For a decomposable CGM

with junction tree T , the following approximation of the CGM log-density for any

n ∈MN is obtained by applying Stirling’s approximation:

log p(n,y;θ) ≈ θTn−NA(θ) +H(n) + log p(y|n). (3.5)

Here, H(n) = −N
∑

x q(x) log q(x) is the entropy of the unique distribution q(x) =

p(x;θ) in the graphical model family with marginals equal to n/N .

See Appendix A.1 for proof.

Proposition 4 is the basis for approximate MAP inference problem in CGMs : find

n to maximize Eq. (3.5) and obtain an approximate mode of p(n | y;θ). Even though

our goal is to compute the mean E[n | y;θ], it has been shown that the approximate

mode, which is also a real-valued vector, is an excellent approximation to the mean for
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use within the EM algorithm [Sheldon et al., 2013]. Note that for non-decomposable

models, we will simply apply the same approximation as in Proposition 4, even though

an exact expression for the counting measure h(n), and therefore the correspondence

of log h(n) to an entropy H(n), is not known in this case. Then, after dropping the

term NA(θ) from Proposition 4, which is constant with respect to n, the approximate

MAP problem can be rewritten as:

n∗ ∈ argmax
n∈MN

θTn +H(n) + log p(y | n) (3.6)

This equation reveals a close connection to variational principles for graphical

models [Wainwright & Jordan, 2008]. It is identical to the variational optimization

problem for marginal inference in standard graphical models, except the objective has

an additional term log p(y|n), which is non-linear in n. Several message-passing based

algorithms have been developed to efficiently solve the approximate MAP problem.

For trees or junction trees, Problem (3.6) is convex as long as log p(y|n) is concave in

n (which is true in most cases of interest, such as Laplace noise) so it can be solved

exactly [Sun et al., 2015; Vilnis et al., 2015]. For loopy models, both the entropy H(n)

and the feasible setMN must be approximated [Nguyen et al., 2016].

Algorithm 1 shows pseudocode non-linear belief propagation (NLBP [Sun et al.,

2015]), which we select as our primary inference approach due to its simplicity. It

is a thin wrapper around standard BP, and can be applied to trees, in which case it

exactly solves Problem (3.6), or it can be applied to loopy graphs by using loopy BP

(LBP) as the subroutine, in which case it is approximate.

Our final EM learning procedure is shown in Algorithm 2. It alternates between

inference steps that solve the approximate MAP problem to find nt ≈ E[n | y; θt], and

optimization steps to re-estimate parameters given the inferred sufficient statistics nt.

See also Sheldon et al. [2013], Liu et al. [2014], and Sun et al. [2015].
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Algorithm 1 Non-Linear Belief Propagation (NLBP)
1: input: θ, y, damping parameter α > 0
2: while ¬ converged do
3: θ′ ← θ +∇n log p(y | n)

4: n′ ← STANDARD-BP
(
θ′
)

. Normalized to sum to N
5: n← (1− α)n + αn′

6: return: n

Algorithm 2 EM for CGMs
1: input: y
2: while ¬ converged do
3: nt ← NLBP(θt,y)

4: θt+1 ← argmaxθ θ
Tnt −NA(θ)

5: return: θt+1

3.3 Experiments

We conduct a number of experiments on synthetic and real data to evaluate the

quality of models learned by both naive MLE and CGM.

3.3.1 Methods

We compare three algorithms: naive MLE, CGM, and a version of private stochastic

gradient descent (PSGD) due to Abadi et al. [2016]. PSGD belongs to a class of

general-purpose private learning algorithms that can be adapted to our problem,

including gradient descent or stochastic gradient descent algorithms for empirical risk

minimization [Abadi et al., 2016; Bassily et al., 2014; Chaudhuri et al., 2011; Jain

& Thakurta, 2013; Kifer et al., 2012] and the subsample-and-aggregate approach for

parameter estimation [Smith, 2011b]. We chose PSGD because it is a state-of-the-art

method and it significantly outperformed other approaches in preliminary experiments.

However, note that PSGD satisfies only (ε, δ)-differential privacy for δ > 0, which is

a weaker privacy guarantee than ε-differential privacy. We tune PSGD using a grid

search over all relevant parameters to ensure it performs as well as possible.
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(d) ε = 1.0

Figure 3.4: Results on synthetic data generated from first-order chains (top-row),
third-order chains (middle-row), and connected Erdős-Réyni random graphs (bottom-
row). Each column represents a different privacy level. Lower ε signifies stricter
privacy guarantees. The x-axis measures population size. The y-axis is KL divergence
from the true distribution.

3.3.2 Synthetic data

We evaluate three types of pairwise graphical models: first order chains, third-order

chains with edges between two nodes i and j if 1 ≤ |i − j| ≤ 3, and (connected)

Erdős-Réyni (ER) random graphs. We report results for graphs of 10 nodes, where

potentials on each edge are drawn from a Dirichlet distribution with concentration

parameter of one; results are similar for smaller and larger models, models with

different structures, and for different types of potentials. We vary data size N and

privacy parameter ε. For each setting of model type, N , and ε, we conduct 25 trials.

The trials are nested, with five random populations and five replications per population,

i.e.: ni ∼ p(n),yi,j ∼ p(y | ni) for i ∈ {1, . . . , 5}, j ∈ {1, . . . , 5}. We measure the

quality of learned models using KL divergence from the true distribution, and include
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Figure 3.5: Scatter plots for true vs. inferred values of all edge marginals in an ER
graph of 10 nodes with 20 states each.

for comparison two reference models: a random estimator and a non-private MLE

estimator. The random estimator is obtained by randomly generating marginals µ̄

and then learning potentials via MLE.

3.3.3 Results

Figure 3.4 shows the results for the two models (top: third-order chain, bottom:

ER) for different values of N and ε. CGM improves upon naive MLE for all models,

privacy levels, and population sizes. Recall that PSGD promises only (ε, δ)-differential

privacy. While δ is often assumed to be “cryptographically small”, e.g., O(2−N ), we set

δ to a relatively large value of δ = 1/N . Increasing δ weakens the privacy guarantee

but enables PGSD to run on a wider range of ε. However, even with this setting for

δ, some of the smaller values of ε are not attainable by PGSD and are omitted from

those plots.

Figure 3.5 shows a qualitative comparison of edge marginals of a single graph

learned by the different methods, compared with the true model marginals; it is

evident that CGM learns marginals that are much closer to both the true marginals

and those learned by the non-private estimator than naive MLE is able to learn. Naive
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MLE is the fastest method; CGM is approximately 4x/8x slower on third-order chains

and ER graphs, respectively, and PSGD is approximately 27x/40x slower.

3.3.4 Wifi data

We study human mobility data in the form of connections to wifi access points

throughout a highly-trafficked academic building over a twenty-one day period. We

treat each (user ID, day) combination as an “individual”, leading to 124,399 unique

individuals; with this data preparation scheme, the unit of protection is one day’s

worth of a user’s data. We discretize time by recording the location every 10 minutes,

and assign null if the user is not connected to the network. Our probability model

p(x) is a pairwise graphical model over hour-long segments. Therefore, we break each

individual’s data into 24 one-hour long segments.

An individual now contributes 24 records to each contingency table for the model

p(x). Therefore, the sensitivity is now 24 times the number of edges (cliques). However,

real data is typically sparse—i.e., an individual is typically observed only a small

number of times over the observation period. Therefore, to reduce the sensitivity,

the data is normalized prior to calculating sufficient statistics, in a fashion similar

to He et al. [2015]. Each user contributes a value of 1/K to each contingency table,

where K is the number of edges (xs, xt) for which the user’s values are not both null.

With this pre-processing in place, the sensitivity equals the number of edges in the

model. A trade-off of this technique is that we bias the model towards individuals with

fewer transitions, but we reduce the amount of noise by limiting sensitivity caused by

null–null transitions.

We reserve data from 25% of the individuals for testing. To compare different

approaches, we apply naive MLE, CGM, and PSGD to privately learn parameters of

a graphical model from the training set (75% of the data), with varying privacy levels.

We then calculate holdout log-likelihood of the learned parameters on the test set.
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Figure 3.6: Results for fitting a first-order chain on wifi data. The x-axis is privacy
level; lower ε signifies stronger privacy guarantees. The y-axis is holdout log-likelihood.

We again include a non-private method for reference, but in this case, all methods

perform better than the random estimator, so we do not show it.

Figure 3.6 shows the results for fitting a time-homogeneous chain model (edges

between adjacent time steps, every potential ψ(xt, xt+1) is the same, and the model

includes a node potential φ(x1) so it can learn a time-stationary model). As in the

synthetic data experiments, CGM improves upon naive MLE across all parameter

regimes, and performance improves with population size N and with weakening of

privacy (larger ε). Both methods outperform PSGD. Naive MLE is the fastest method;

CGM is approximately 15x slower, and PSGD is approximately 46x slower.
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CHAPTER 4

PRIVATE BAYESIAN INFERENCE FOR EXPONENTIAL
FAMILY MODELS

4.1 Introduction

There is a growing interest in private methods for Bayesian inference [Dimitrakakis

et al., 2014; Foulds et al., 2016; Geumlek et al., 2017; Wang et al., 2015; Zhang et al.,

2016]. In Bayesian inference, a modeler selects a prior distribution p(θ) over some

parameter, observes data x that depends probabilistically on θ through a model p(x | θ),

and then reasons about θ through the posterior distribution p(θ | x), which quantifies

updated beliefs and uncertainty about θ after observing x. Bayesian inference is a

core machine learning task and there is an obvious need to be able to conduct it in a

way that protects privacy when x is sensitive. Additionally, recent work has identified

surprising connections between sampling from posterior distributions and differential

privacy—for example, a single perfect sample from p(θ | x) satisfies differential privacy

for some setting of the privacy parameter [Dimitrakakis et al., 2014; Foulds et al.,

2016; Wang et al., 2015; Zhang et al., 2016].

An “obvious” way to conduct private Bayesian inference is to privatize the com-

putation of the posterior, that is, to design a differentially private algorithm A that

outputs y = A(x) with the goal that y ≈ p(θ | x) is a privatized representation of

the posterior. However, using y directly as “the posterior” will not correctly quantify

beliefs, because the Bayesian modeler never observes x, they observe y; their posterior

beliefs are now quantified by p(θ | y).

We will take a different approach to private Bayesian inference by specifying a

pairing of algorithms: The release mechanism A computes a private statistic y = A(x)
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of the input data; the inference algorithm P computes p(θ | y). These algorithms

should satisfy the following criteria:

• Privacy. The release mechanism A is differentially private. By the post-processing

property of differential privacy [Dwork & Roth, 2014], all further computations are

also private.

• Calibration. The inference algorithm P can efficiently compute or approximate the

correct posterior, p(θ | y) (see Section 4.4 for our process to measure calibration).

• Utility. Informally, the statistic y should capture “as much information as possible”

about x so that p(θ | y) is “close” to p(θ | x) (see Section 4.4 for our process to

measure utility).

Importantly, the release mechanism A is public, so the distribution p(y | x) is

known. Williams and McSherry first suggested conducting inference on the output of a

differentially private algorithm and showed how to do this for the factored exponential

mechanism Williams & McSherry [2010]; see also Karwa et al. [2014], Karwa et al.

[2016], Bernstein et al. [2017], and Schein et al. [2018].

This chapter focuses specifically on Bayesian inference when the private data

X = x1:n is an iid sample of (publicly known) size n from an exponential family model

p(x | θ). Exponential families include many of the most familiar parametric probability

models. We will adopt the straightforward Laplace mechanism (see Chapter 1.3),

where the sufficient statistics are corrupted with a random Laplace draw and the

subsequent noisy sufficient statistics y are released [Bernstein et al., 2017; Foulds et al.,

2016].

The technical challenge is then to develop an efficient general-purpose inference

algorithm P. One challenge is computational efficiency. The exact posterior p(θ |

y) ∝
∫
p(θ)p(x1:n | θ)p(y|x1:n)dx1:n integrates over all possible data sets [Williams

& McSherry, 2010], which is intractable to do directly for large n. We integrate

instead over the sufficient statistics s, which have fixed dimension and completely
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characterize the posterior; furthermore, since they are a sum over individuals, p(s | θ)

is asymptotically normal. We develop an efficient Gibbs sampler that uses a normal

approximation for s together with variable augmentation to model the Laplace noise

in a way that yields simple updates [Park & Casella, 2008].

A second challenge is that the sufficient statistics may be unbounded, which

makes their release incompatible with the Laplace mechanism. We address this by

imposing truncation bounds and only computing statistics from data that fall within

the bounds. We show how to use automatic differentiation and a “random sum” central

limit theorem to compute the parameters of the normal approximation p(s | θ) for

a truncated exponential family when the number of individuals that fall within the

truncation bounds is unknown.

Our overall contribution is the pairing of an existing simple release mechanism A

with a novel, efficient, and general-purpose Gibbs sampler P that meets the criteria

outlined above for private Bayesian inference in any univariate exponential family

or multivariate exponential family with bounded sufficient statistics.1 We show

empirically that when compared with competing methods, ours is the only one that

provides properly calibrated beliefs about θ in the non-asymptotic regime, and that it

provides good utility compared with other private Bayesian inference approaches.

We consider the canonical setting of Bayesian inference in an exponential family.

The modeler posits a prior distribution p(θ), assumes the data x1:n is an iid sample

from an exponential family model p(x | θ), and wishes to compute the posterior

p(θ | x1:n). An exponential family in natural parameterization has density

p(x | η) = h(x) exp
(
ηT t(x)− A(η)

)
,

1There are remaining technical challenges for multivariate models with unbounded sufficient
statistics that we leave for future work.
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where η are the natural parameters, t(x) is the sufficient statistic, A(η) =∫
h(x) exp

(
ηT t(x)

)
dx is the log-partition function, and h(x) is the base measure.

The density of the full data is

p(x1:n | η) = h(x1:n) exp
(
ηT t(x1:n)− nA(η)

)
,

where h(x1:n) =
∏n

i=1 h(xi) and t(x1:n) =
∑n

i=1 t(xi). Notice that once normalizing

constants are dropped, this density is dependent on the data only directly through

the sufficient statistics, s = t(x1:n).

We will write exponential families more generally as p(x | θ) to indicate the case

when the natural parameters η = η(θ) depend on a different parameter vector θ.

Every exponential family distribution has a conjugate prior distribution p(θ;λ)[Diaconis

& Ylvisaker, 1979] with hyperparameters λ. A conjugate prior has the property

that, if it is used as the prior, then the posterior belongs to the same family, i.e.,

p(θ | x1:n;λ) = p(θ;λ′) for some λ′ that depends only on λ, n, and the sufficient

statistics s. We write this function as λ′ = Conjugate-Update(λ, s, n); our methods

are not tied to the specific choice of conjugate prior, only that the posterior parameters

can be calculated in this form. See Section B.1 for a general form of Conjugate-Update.

Release algorithm: noisy sufficient statistics If privacy were not a concern,

the Bayesian modeler would simply compute the sufficient statistics s = t(x1:n) and

use them to update the posterior beliefs. However, to maintain privacy, the modeler

must access the sensitive data only through a randomized release mechanism A. As a

result, in order to obtain proper posterior beliefs the modeler must account for the

randomization of the release mechanism by performing inference.

We take the simple approach of releasing noisy sufficient statistics via the Laplace

mechanism, as in [Bernstein et al., 2017; Foulds et al., 2016; Zhang et al., 2016].

Sufficient statistics are a natural quantity to release. They are an “information

bottleneck”—a finite-dimensional quantity that captures all the relevant information
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about θ. The released value is y = A(x1:n) ∼ Lap(s,∆s/ε). Because s = t(x1:n) =∑n
i=1 t(xi) is a sum over individuals, the sensitivity is ∆s = maxx,x′∈Rd ‖t(x)− t(x′)‖1.

When t(·) is unbounded this quantity becomes infinite; we will modify the release

mechanism so the sensitivity is finite (Sec. 4.3).

4.2 Basic Inference Approach: Bounded Sufficient Statistics

The goal of the inference algorithm P is to compute p(θ | y). We first develop the

basic approach for the simpler case when t(x) is bounded, and then extend both A

and P to handle the unbounded case. The full joint distribution of the probability

model can be expressed as:

p(θ, s, y) = p(θ) p(s | θ) p(y | s),

where p(θ) = p(θ;λ) is a conjugate prior and the goal is to compute a representation

of p(θ | y) ∝
∫
s
p(θ, s, y)ds by integrating over the sufficient statistics.

We will develop a Gibbs sampler to sample from this distribution. There are two

main challenges. First, the distribution p(s | θ) is obtained by marginalizing over

the data sample x1:n, and is usually not known in closed form. We will address this

with an asymptotically correct normal approximation. Second, when resampling s

within the Gibbs algorithm, we require the full conditional distribution of s given

the other variables, which is proportional to p(s|θ)p(y | s). Care must be taken to

make it easy to sample from this conditional distribution. We address this via variable

augmentation. We discuss our approach to both challenges in detail below.

4.2.1 Normal approximation of p(s | θ)

The exact form of the sufficient statistic distribution p(s | θ) is obtained by

marginalizing over the data:
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p(s | θ) =

∫
t−1(s)

p(x1:n | θ)dx1:n, t−1(s) :=
{
x1:n : t(x1:n) = s

}
.

In general, the exact form of this distribution is not available. In some cases, it

is—for example if x ∼ Bernoulli(θ) then s ∼ Binomial(n, θ)—but even then it may

not lead to a tractable full conditional for s.

Properties of exponential families pave the way toward a general approach that

always leads to a tractable full conditional. By the central limit theorem (CLT),

because s =
∑

i t(xi) is a sum of iid random variables, it is asymptotically normal. It

can be approximated as p(s | θ) ≈ N (s;nµ, nΣ), where µ = E[t(x)] and Σ = Var[t(x)]

are the mean and variance of the sufficient statistic of a single individual. This

approximation is asymptotically correct: 1√
n
(s− nµ)

D−→ N (0,Σ) [Bickel & Doksum,

2015]. The quantities µ and Σ can be computed using well-known properties of

exponential families [Bickel & Doksum, 2015]:

µ = E[t(x)] =
∂

∂ηT
A(η), Σ = Var[t(x)] =

∂2

∂η∂ηT
A(η), (4.1)

where η = η(θ) is the natural parameter.

Note that we will not use this approximation for Gibbs updates of θ. Instead, we

will compute the conditional p(θ | s) using standard conjugacy formulas. In this sense,

we maintain two views of the joint distribution p(θ, s)—when updating θ, it is the

standard exponential family model, which leads to conjugate updates; when updating

s, it is approximated as p(θ)N (s;nµ, sΣ), which will lead to simple updates when

combined with a variable augmentation technique.

4.2.2 Variable augmentation for p(y | s)

We seek a tractable form for the full conditional of s under the normal approxima-

tion, which is the product of a normal density and a Laplace density:
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Algorithm 3 Gibbs Sampler, Bounded ∆s

1: Initialize θ, s, σ2

2: repeat
3: θ ∼ p(θ;λ′) where λ′ =

Conjugate-Update(λ, s, n)

4: Calculate µ = E[s] and Σ = Var[s] (e.g., use
Eq. (4.1))

5: s ∼ NormProduct (nµ, nΣ, y, diag(σ2))

6: 1/σ2
j ∼ InverseGaussian

(
ε

∆s|y−s| ,
ε2

∆2
s

)

Subroutine NormProduct
1: input: µ1,Σ1, µ2,Σ2

2: Σ3 =
(
Σ−1

1 + Σ−1
2

)−1

3: µ3 = Σ3

(
Σ−1

1 µ1 + Σ−1
2 µ2

)
4: return: N (µ3,Σ3)

p(s | θ, y) ∝ N (s;nµ, nΣ) Lap(y; s,∆s/ε).

A similar situation arises in the Bayesian Lasso [Park & Casella, 2008], and

we will employ the same variable augmentation trick. A Laplace random variable

z ∼ Lap(u, b) can be written as a scale mixture of normals by introducing a latent

variable σ2 ∼ Exp(1/(2b2)), i.e., the distribution with density 1/(2b2) exp (−σ2/(2b2)),

and letting z ∼ N (u, σ2). We apply this separately to each dimension of the vector y

so that:

σ2
j ∼ Exp

(
ε2

2∆2
s

)
, y ∼ N

(
s, diag(σ2)

)
.

4.2.3 The Gibbs sampler

After the normal approximation and variable augmentation, the generative process

is as shown in Figure 4.1. The final Gibbs sampling algorithm is shown in Algorithm 3.

Note that the update for θ is based on conjugacy in the exact distribution p(θ, s),

while the update for s uses the density of the generative process to the right, so that

p(s | θ, σ2, y) ∝ p(s | θ) p(y | σ2, s), which is a product of two normal densities

41



N (s;nµ, nΣ)N
(
y; s, diag(σ2)

)
∝ N (s;µs,Σs),

where µs and Σs are are defined in Algorithm 3 [Petersen & Pedersen, 2008].

The update for σ2 follows Park & Casella [2008]; the inverse Gaussian density

is InverseGaussian(x;m, v) =
√
v/(2πx3) exp (−v(x−m)2/(2m2x)). Full derivations

are given in Section B.2.

θ ∼ p(θ;λ)

s ∼ N (nµ, nΣ)

σ2
j ∼ Exp

(
ε2

2∆2
s

)
for all j

y ∼ N
(
s,diag(σ2)

)
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Figure 4.1: Full generative model

4.3 Unbounded Sufficient Statistics and Truncated Exponen-

tial Families

The Laplace mechanism does not apply when the sufficient statistics are unbounded,

because ∆s = maxx,y ‖t(x)− t(y)‖1 =∞. Thus, we need a new release mechanism A

and inference algorithm P. We present a solution for the case when x is univariate.

All elements of the solution can generalize to higher dimensions, except that one step

will have running time that is exponential in d; we leave improvement of this to future

work and focus on the simpler univariate case.

4.3.1 Release mechanism

Our solution is to truncate the support of the (now univariate) p(x | θ) to x ∈ [a, b],

where a and b are finite bounds provided by the modeler. If the modeler cannot select
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bounds a priori, they may be selected privately as a preliminary step using a variant

of the exponential mechanism (see PrivateQuantile in Smith [2011a]).2 Then, given

truncation bounds, the data owner redacts individuals where xi /∈ [a, b] and reports

the truncated sufficient statistics ŝ =
∑n

i=1 1[a,b](xi) · t(xi) where 1S(x) is the indicator

function of the set S. The sensitivity of ŝ is now ∆ŝ = maxx,y∈R ‖t̂(x)− t̂(y)‖1 where

t̂(x) = 1[a,b](x) t(x). An easy upper bound for this quantity is:

∆ŝ ≤
d∑
j=1

max
{

max
x∈[a,b]

|tj(x)|, max
x,y∈[a,b]

∣∣tj(x)− tj(y)
∣∣},

where tj(x) is the jth component of the sufficient statistics. See Section B.3 for

derivation. The bounds [a, b] will be selected so this quantity is bounded. The released

value is y ∼ Lap(ŝ,∆ŝ/ε).

4.3.2 Inference: truncated exponential family

Several new challenges arise for inference. The quantity ŝ is no longer a sufficient

statistic for the model p(x | θ), and we will need new insights to understand p(ŝ | θ)

and p(θ | ŝ). Since ŝ is a sum over individuals where xi ∈ [a, b], it will be useful to

examine the probability of the event x ∈ [a, b] as well as the conditional distribution

of x given this event. To facilitate a general development, assume a generic truncation

interval [v, w], not necessarily equal to [a, b]. Let F (x; θ) =
∫ x
−∞ p(x | θ)dx be

the CDF of the original (univariate) exponential family model. It is clear that

Pr(x ∈ [v, w]) = F (w; θ)− F (v; θ). The conditional distribution of x given x ∈ [v, w]

is a truncated exponential family, which, in its natural parameterization is:

2Selecting truncation bounds will consume some of the privacy budget and modify the release
mechanism A. We do not consider inference with respect to this part of the release mechanism.
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p̂(x | η) = 1[v,w](x)h(x) exp
(
ηT t(x)− Â(η)

)
, Â =

∫ w

v

h(x) exp
(
ηT t(x)

)
dx.

(4.2)

Note that this is still an exponential family model (with a modified base measure),

and all of the standard results apply, such as the existence of a conjugate prior and

the formulas in Eq. (4.1) for the mean and variance of t(x) under the truncated

distribution.

4.3.3 Random sum CLT for p(ŝ | θ)

We would like to again apply an asymptotic normal approximation for ŝ, but we

do not know how many individuals fall within the truncation bounds. The “random

sum CLT” of Robbins [1948] applies to the setting where the number of terms in the

sum is itself a random variable. The sum can be rewritten as ŝ =
∑N

k=1 t(xik), where

{i1, . . . , iN} is the set of indices of individuals with data inside the truncation bounds,

i.e., the indices such that xik ∈ [v, w]. The number N is now a random variable

distributed as N ∼ Binom(n, q), where q = F (w; θ)− F (v; θ).

Proposition 5. Let µ̂ = Ep̂[t(x)] and Σ̂ = Varp̂[t(x)] be the mean and variance of t(x)

in the truncated exponential family. Then ŝ =
∑N

k=1 t(xik) is asymptotically normal

with mean and variance:

m := E[ŝ] = E[N ]µ̂ = nqµ̂,

V := Var(ŝ) = E[N ]Σ̂ + Var[N ]µ̂µ̂T = nqΣ̂ + nq(1− q)µ̂µ̂T .

Specifically, 1√
n

(
ŝ−m

) D−→ N (0, Σ̄) as n→∞, where Σ̄ = V/n = qΣ̂ + q(1− q)µ̂µ̂T .

Proof. Each term of the sum has mean µ̂ and variance Σ̂, and the number of terms is

N ∼ Binom(n, q). The result follows from Robbins [1948].

4.3.4 Computing µ̂ and Σ̂ by automatic differentiation (autodiff)

To use the normal approximation we need to compute µ̂ and Σ̂.
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Lemma 1. Let p(x | θ) be a univariate exponential family model and let p̂(x | θ) be

the corresponding exponential family model truncated to generic interval [v, w]. Then

µ̂ = Ep̂[t(x)] = Ep[t(x)] +
∂

∂ηT
log
(
F (w; η)− F (v; η)

)
(4.3)

Σ̂ = Varp̂[t(x)] = Varp[t(x)] +
∂2

∂η∂ηT
log
(
F (w; η)− F (v; η)

)
(4.4)

Proof. It is straightforward to derive from Eq. (4.2) that Â(η) = A(η)+log
(
F (w; η)−

F (v; η)
)
. The result follows from applying Eq. (4.1) to this expression for Â(η). See

Section B.1 for derivation of Â(η) and proof of this lemma.

We will use Equations (4.3) and (4.4) to compute µ̂ and Σ̂ by using autodiff to

compute the desired derivatives. If the mean and variance Ep[t(x)] and Varp[t(x)] of

the untruncated distribution are not known, we can apply autodiff to compute them

as well using Eq. (4.1).

When x is multivariate, analogous expressions can be derived for µ̂ and Σ̂. The

adjustment factors will include multivariate CDFs, with a number of terms that grow

exponentially in d. This is currently the main limitation in applying our methods to

multivariate models with unbounded sufficient statistics.

4.3.5 Conjugate updates for p(θ | ŝ)

The final issue is the distribution p(θ | ŝ), which is no longer characterized by

conjugacy because ŝ are not the full sufficient statistics. We again turn to variable

augmentation. Let ŝ` =
∑n

i=1 1[−∞,a]t(xi) and ŝu =
∑n

i=1 1[b,∞]t(xi) be the sufficient

statistics for the individuals that fall in the lower portion [−∞, a] and upper portion

[b,∞] of the support of x, respectively. We will instantiate ŝ` and ŝu as latent variables

and model their distributions using the random sum CLT approximation from Prop. 5

and Lemma 1 (but with different truncation bounds). Let ŝc = ŝ be the sufficient

statistics for the “center” portion, and define the three truncation intervals as
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Algorithm 2 Gibbs Sampler, Unbounded ∆s

1: Initialize θ, ŝ, σ2, a, b

2: [v`, w`]← [−∞, a]

3: [vc, wc]← [a, b]

4: [vu, wu]← [b,∞]

5: repeat
6: mr,Vr ← RS-CLT(θ, vr, wr) for r ∈ {`, c, u}
7: m′c,V

′
c ← NormProduct

(
mc,Vc, y, diag

(
σ2
))

8: s ∼ N (m` + m′c + mu,V` + V′c + Vu)

9: θ ∼ p(θ;λ′) where λ′ =
Conjugate-Update(λ, s, n)

10: Recalculate mc and Vc, then draw ŝc ∼
N (mc,Vc)

11: 1/σ2
j ∼ InverseGaussian

(
ε

∆ŝ|y−ŝc| ,
ε2

∆2
ŝ

)
12: until

Algorithm 3 RS-CLT
1: input: θ, v, w

2: q ← F (b;w)− F (a; v)

3: µ̂, Σ̂ ← autodiff of Eqns. 4.3,
4.4

4: m← nq

5: V← nqΣ̂ + nq(1− q)µ̂µ̂T

6: return: m,V

[v`, w`] = [−∞, a] (4.5)

[vc, wc] = [a, b] (4.6)

[vu, wu] = [b,∞]. (4.7)

The full sufficient statistics are equal to s = ŝ` + ŝc + ŝu. Conditioned on all other

variables, each component is multivariate normal, so the sum s is also multivariate

normal. We can therefore sample s and then sample from p(θ | s) using conjugacy.

We will also need to draw ŝc separately to be used to update σ2.

4.3.5.1 The Gibbs sampler

The (approximate) generative process in the unbounded case is:
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θ ∼ p(θ;λ),

ŝr ∼ N
(
mr, Vr), for r ∈ {`, c, u} where mr,Vr = RS-CLT(θ, vr, wr)

σ2
j ∼ Exp

(
ε2

2∆2
ŝ

)
for all j ,

y ∼ N
(
ŝc, diag(σ2)

)
.

The Gibbs sampler to sample from this distribution is given in Algorithm 2. Note

that in Line 8 we employ rejection sampling in which sufficient statistics are sampled

until the values drawn are valid for the given data model, e.g., s must be positive

for the binomial distribution. The RS-CLT algorithm to compute parameters of the

random sum CLT is shown in Algorithm 3.

4.4 Experiments

We design experiments to measure the calibration and utility of our method for

posterior inference. We conduct experiments for the binomial model with beta prior,

the multinomial model with Dirichlet prior, and the exponential model with gamma

prior. The last model is unbounded and requires truncation; we set the bounds to

keep the middle 95% of individuals, which is reasonable to assume known a priori for

some cases, such as modeling human height.

4.4.1 Methods

We run our Gibbs sampler for 5000 iterations after 2000 burnin iterations (see

Section B.5 for convergence results), which we compare to two baselines. The first

method uses the same release mechanism as our Gibbs sampler and performs conjugate

updates using the noisy sufficient statistics [Foulds et al., 2016; Zhang et al., 2016].

This method converges to the true posterior as n→∞ because the Laplace noise will

eventually become negligible compared to sampling variability [Foulds et al., 2016].

However, the noise is not negligible for moderate n; we refer to this method as “naive”.
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For truncated models we allow the naive method to “cheat” by accessing the noisy

untruncated sufficient statistics s. Thus the method is not private, and receives strictly

more information than our Gibbs sampler, but with the same magnitude noise. This

allows us to demonstrate miscalibration without highly technical modifications to the

baseline method to be able to deal with truncated sufficient statistics.

The second baseline is a version of the one-posterior sampling (OPS) mecha-

nism [Foulds et al., 2016; Wang et al., 2015; Zhang et al., 2016], which employs

the exponential mechanism [McSherry & Talwar, 2007] to release samples from a

privatized posterior. We release 100 samples using the method of [Foulds et al., 2016],

each with εops = ε/100, such that the entire algorithm achieves ε-differential privacy.

Private MCMC sampling [Wang et al., 2015] is a more sophisticated method to release

multiple samples from a privatized posterior and could potentially make better use of

the privacy budget; however, private MCMC will also necessarily be miscalibrated,

and only achieves the weaker privacy guarantee of (ε, δ)-differential privacy for δ > 0,

so would not be directly comparable to our method. OPS serves as a suitable baseline

that achieves ε-differential privacy. We include OPS only for experiments on the

binomial model, for which it requires the support of θ to be truncated to [a0, 1− a0]

where a0 > 0. We set a0 = 0.1.

We also include a non-private posterior for comparison, which performs conjugate

updates using the non-noisy sufficient statistics.

4.4.2 Evaluation

We evaluate both the calibration and utility of the posterior. For calibration we

adapt a method of Cook et al. [2006]: the idea is to draw iid samples (θi, xi) from the

joint model p(θ)p(x | θ), and conduct posterior inference in each trial. Let Fi(θ) be

the CDF of the true posterior p(θ | xi) in trial i. Then we know that Ui = Fi(θi) is

uniformly distributed, because θi ∼ p(θ | xi) (see Section B.4). In other words, the
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actual parameter θi is equally likely to land at any quantile of the posterior. To test

the posterior inference procedure, we instead compute Ui as the quantile at which

θi lands within a set of samples from the approximate posterior. After M trials of

the whole procedure we test for uniformity of U1:M using the Kolmogorov-Smirnov

goodness-of-fit test [Massey Jr., 1951], which measures the maximum distance between

the empirical CDF of U1:M and the uniform CDF; lower values are better and zero

corresponds to perfect uniformity. We also visualize the empirical CDFs to assess

calibration qualitatively.

Higher utility of a private posterior is indicated by closeness to the non-private

posterior, which we measure with maximum mean discrepancy (MMD), a kernel-

based statistical test to determine if two sets of samples are drawn from different

distributions [Gretton et al., 2012]. Given m i.i.d. samples (p, q) ∼ P ×Q, an unbiased

estimate of the MMD is

MMD2(P,Q) =
1

m(m− 1)

∑m

i 6=j
(k(pi, pj) + k(qi, qj)− k(pi, qj)− k(pj, qi)) ,

where k is a continuous kernel function; we use a standard normal kernel. The higher

the value the more likely the two samples are drawn from different distributions.

4.4.3 Results

Figure 4.2 shows the results for three models and varying n and ε. Our method

(Gibbs) achieves the same calibration level as non-private posterior inference for all

settings. The naive method ignores noise and is too confident about parameter values

implied by treating the noisy sufficient statistics as true ones; it is only well-calibrated

with increasing n and ε when noise becomes negligible relative to population size.

OPS is not calibrated because it samples from an over-dispersed version of p(θ | x).

Figure 4.3 shows the empirical CDF plots for n = 1000 and ε = 0.01. Our method

and the non-private method are both perfectly calibrated. The naive method’s over-
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Figure 4.2: Calibration as Kolmogorov-Smirnov statistic vs. number of individuals at
ε = [0.01, 0.10] for binomial, multinomial, and exponential models.

confidence in the wrong sufficient statistics causes its posterior to usually be too tight

at the wrong value; thus the true parameter always lies in a tail of the approximate

posterior, so too much mass is placed near 0 and 1. OPS shows the opposite behavior:

its posterior is always too diffuse, so the true parameter lies close to the middle. For

multinomial we show measures only for the parameter of the first category, but results

hold for all categories.
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Figure 4.3: Empirical CDF plots at (n = 1000; ε = 0.01) for binomial, multinomial,
and exponential models.
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Figure 4.4 shows the MMD test statistic between each method and the non-private

posterior, used as a measure of utility. Our method consistently achieves utility at

least as good as the naive method for binomial and multinomial models. We omit

OPS, which is never calibrated. For the exponential model (not shown) we did not

obtain conclusive utility comparisons due to the lack of a naive baseline that properly

handles truncation; the “cheating” naive method from our calibration experiments

sometimes attains higher utility than our method, and sometimes lower, but this

comparison is not meaningful because it receives strictly more information.
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Figure 4.4: Utility as MMD with non-private posterior vs. number of individuals at
ε = [0.01, 0.10] for binomial and multinomial models.
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CHAPTER 5

PRIVATE BAYESIAN LINEAR REGRESSION

5.1 Introduction

Linear regression is one of the most widely used statistical methods, especially

in the social sciences [Agresti & Finlay, 2009] and other domains where data comes

from humans. It is important to develop robust tools that can realize the benefits

of regression analyses but maintain the privacy of individuals. Existing work on

differentially private linear regression focuses on frequentist approaches. A variety of

privacy mechanisms have been applied to point estimation of regression coefficients,

including sufficient statistic perturbation (SSP) [Foulds et al., 2016; Vu & Slavkovic,

2009; Wang, 2018; Zhang et al., 2016], posterior sampling (OPS) [Dimitrakakis et al.,

2014; Geumlek et al., 2017; Minami et al., 2016; Wang, 2018; Wang et al., 2015; Zhang

et al., 2016], subsample and aggregate [Dwork & Smith, 2010; Smith, 2008], objective

perturbation [Kifer et al., 2012], and noisy stochastic gradient descent [Bassily et al.,

2014]. Only a few recent works address uncertainty quantification through confidence

interval estimation [Sheffet, 2017] and hypothesis tests [Barrientos et al., 2019] for

regression coefficients.

We develop a differentially private method for Bayesian linear regression. A

Bayesian approach naturally quantifies parameter uncertainty through a full posterior

distribution and provides other Bayesian capabilities such as the ability to incorporate

prior knowledge and compute posterior predictive distributions. Existing approaches

to private Bayesian inference include OPS (see above), MCMC [Wang et al., 2015],

and SSP [Bernstein & Sheldon, 2018; Foulds et al., 2016], but none provide a fully
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satisfactory approach for Bayesian regression modeling. OPS does not naturally

produce a representation of a full posterior distribution. MCMC approaches incur

per-iteration privacy costs and satisfy only approximate (ε, δ)-differential privacy.

SSP is more promising, since perturbed sufficient statistics can be used in conjugate

updates to obtain parameters of full posterior distributions. However, Chapter 4

demonstrated (for unconditional exponential family models) that naive SSP, which

ignores noise introduced by the privacy mechanism, systematically underestimates

uncertainty at small to moderate sample sizes. We show that the same phenomenon

holds for Bayesian linear regression: naive SSP produces private posteriors that are

properly calibrated asymptotically in the sample size, but for realistic data sets and

privacy levels may need very large population sizes to reach the asymptotic regime.

This motivates our development of Bayesian inference methods for linear regression

that properly account for the noise due to the privacy mechanism [Bernstein &

Sheldon, 2018; Bernstein et al., 2017; Karwa et al., 2014, 2016; Schein et al., 2018;

Williams & McSherry, 2010]. We leverage a model in which the data and model

parameters are latent variables, and noisy sufficient statistics are observed, and then

develop MCMC-based techniques to sample from posterior distributions, as done for

exponential families in [Bernstein & Sheldon, 2018]. A significant challenge relative

to prior work is the handling of covariate data. Typical regression modeling treats

only response variables and parameters as random, and conditions on covariates. This

is not possible in the private setting, where covariates must be kept private and

therefore treated as latent variables. We therefore require some form of assumption

about the distribution over covariates. We develop two inference methods. The first

includes latent variables for each individual; it requires an explicit prior distribution

for covariates and its runtime scales with population size. The second marginalizes

out individuals and approximates the distribution over the sufficient statistics; it

requires weaker assumptions about the covariate distribution (only moments), and its
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running time does not scale with population size. We perform a range of experiments

to measure the calibration and utility of these methods. Our noise-aware methods

are as well or nearly as well calibrated as the non-private method, and have better

utility than the naive method. We demonstrate using real data that our noise-aware

methods quantify posterior predictive uncertainty significantly better than naive SSP.

We then conclude with a case study drawn from the real problem of state-wide budget

allocation using sensitive census data predictions.

We start with a standard (non-private) linear regression problem. An individual’s

covariate or regressor data is x ∈ Rd and the dependent response data is y ∈ R. We

will assume a conditionally Gaussian model y ∼ N (θTx, σ2), where θ ∈ Rd are the

regression coefficients and σ2 is the error variance. An intercept or bias term may be

included in the model by appending a unit-valued feature to x. The goal, given an

observed population of n individuals, is to obtain a point estimate of θ. The population

data can be written as X ∈ Rn×d, where each row corresponds to an individual x, and

y ∈ Rn. The ordinary least squares (OLS) solution is θ̂ =
(
XTX

)−1
XTy [Rencher,

2003].

p(θ, σ2 | X,y) = NIG(µn,Λn, an, bn) (5.1)

µn =
(
XTX + Λ0

)−1 (
XTy + µT

0 Λ0

)
Λn = XTX + Λ0

an = a0 +
1

2
n

bn = b0 +
1

2

(
yTy + µT

0 Λ0µ0 − µT
nΛnµn

)

In Bayesian linear regression the parameters θ and σ2 are random variables with a

specified prior distribution. The conjugate priors are p(σ2) = InverseGamma(a0, b0)

and p(θ | σ2) = N (µ0, σ
2Λ−1

0 ), which defines a normal-inverse gamma prior distri-
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bution: p(θ, σ2) = NIG(µ0,Λ0, a0, b0). Due to conjugacy of the prior distribution

with the likelihood model, the posterior distribution, shown in Equation (5.1), is also

normal-inverse gamma [O’Hagan & Forster, 1994].

Let t(x, y) := [vec(xxT ), xy, y2] for an arbitrary individual. Then the sufficient

statistics of the above model are s := t(X,y) =
∑

i t
(
x(i), y(i)

)
=
[
XTX, XTy, yTy

]
.

These capture all information about the model parameters contained in the sample

and are the only quantities needed for the conjugate posterior updates above [Casella

& Berger, 2002].

5.2 Private Bayesian Linear Regression

The goal is to perform Bayesian linear regression in an ε-differentially private

manner. We ensure privacy by employing sufficient statistic perturbation (SSP) [Foulds

et al., 2016; Vu & Slavkovic, 2009; Zhang et al., 2016], in which the Laplace mechanism

is used to inject noise into the sufficient statistics of the model, making them fit for

public release. The question is then how to compute the posterior over the model

parameters θ and σ2 given the noisy sufficient statistics. We first consider a naive

method that ignores the noise in the noisy sufficient statistics. We then consider more

principled noise-aware inference approaches that account for the noise due to the

privacy mechanism.

5.2.1 Privacy mechanism

Using the Laplace mechanism to release the noisy sufficient statistics z results in

the model shown in Figure 5.1. This is the same model used in non-private linear

regression except for the introduction of z, which requires the exact sufficient statistics

s to have finite sensitivity. A standard assumption in literature [Awan & Slavkovic,

2018; Sheffet, 2017; Wang, 2018; Zhang et al., 2012] is to assume x and y have known

a priori lower and upper bounds, (ax, bx) and (ay, by), with bound widths wx = bx−ax
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Figure 5.1: Private regression model.

(assuming, for simplicity, equal bounds for all covariate dimensions) and wy = by − ay,

respectively. We can then reason about the worst case influence of an individual on

each component of s =
[
XTX,XTy,yTy

]
, recalling that s =

∑
i t(x

(i), y(i)), so that[
∆(XTX)jk , ∆(Xy)j , ∆y2

]
=
[
w2

x, wxwy, w
2
y

]
. The number of unique elements1 in s is

[d(d+ 1)/2, d, 1], so ∆s = w2
xd(d+ 1)/2 + wxwyd+ w2

y. The noisy sufficient statistics

fit for public release are z =
[
zi ∼ Lap(si,∆s/ε) : si ∈ s

]
.

5.2.2 Noise-naive method

Previous work developed methods to obtain OLS solutions via SSP by ignoring

the noise injected into the sufficient statistics [Awan & Slavkovic, 2018; Sheffet, 2017;

Wang, 2018]. One corresponding approach for Bayesian regression is to naively replace

s in Figure 5.1 with the noisy version z and then perform the conjugate update in

Equation (5.1). This noise-naive method (Naive) is simple and fast, and we empirically

show in Section 4.4 that it produces an asymptotically correct posterior.

5.2.3 Noise-aware inference

Instead of ignoring the noise introduced by the privacy mechanism, we pro-

pose to perform inference over the noise in the model in Figure 5.1 in order to

produce correct posteriors regardless of the data size. The biggest change from

1Note that XTX is symmetric.
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non-private to private Bayesian linear regression is that due to privacy constraints

we can no longer condition on the covariate data X. The non-private posterior

is p(θ, σ2|X,y) ∝ p(θ, σ2) p(y|X,θ, σ2) while the private posterior is p(θ, σ2|z) ∝∫
p(X)p(θ, σ2) p(y|X,θ, σ2) p(z|X,y) dX dy (see derivations in supplementary mate-

rial). The private posterior contains the term p(X), which means that in order to

calculate it we need to know something about the distribution of X!

Given an explicitly specified prior p(X), we can perform inference over the model

in Figure 5.1 using general-purpose MCMC algorithms. We use the No-U-Turn

Sampler [Hoffman & Gelman, 2014] from the PyMC3 package [Salvatier et al., 2016],

and call this method noise-aware individual-based inference (MCMC-Ind). This approach

is simple to implement using existing tools but places a substantial burden on the

modeler relative to the non-private case by requiring an explicit prior distribution

p(X), with poor choices potentially leading to incorrect inferences. Additionally,

because MCMC-Ind instantiates latent variables for each individual, its runtime scales

with population size and it may be slow for large populations.

5.2.4 Sufficient statistics-based inference

An appealing possibility is to marginalize out the variables X and y representing

individuals and instead perform inference directly over the latent sufficient statistics

s. The joint distribution is p(θ, σ2, s, z) = p(θ, σ2) p(s | θ, σ2) p(z | s). The goal is to

compute a representation of p(θ, σ2 | z) ∝
∫
s
p(θ, σ2, s, z) ds by integrating over the

sufficient statistics. Because this distribution cannot be written in closed form we

develop a Gibbs sampler to sample from the posterior as done by Bernstein & Sheldon

[2018] for unconditional exponential family models. This requires methods to sample

from the conditional distributions for both the parameters (θ, σ2) and the sufficient

statistics s given all other variables. The full conditional p(θ, σ2 | s) for the model

parameters can be computed and sampled using conjugacy, exactly as in the non-
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private case. The full conditional for s factors into two terms: p(s | θ, σ2, z) ∝ p(s |

θ, σ2) p(z | s). The first is the distribution over sufficient statistics of the regression

model, for which we develop an asymptotically correct normal approximation. The

second is the noise model due to the privacy mechanism, for which we use variable

augmentation to ensure it is possible to sample from the full conditional distribution

of s.

5.2.4.1 Normal approximation of s

The conditional distribution over the sufficient statistics given the model parameters

is

p(s | θ, σ2) =

∫
t−1(s)

p
(
X,y | θ, σ2

)
dX dy, t−1(s) :=

{
X,y : t(X,y) = s

}
.

The integral over t−1(s), all possible populations which have sufficient statistics s, is

intractable to compute. Instead we observe that the components of s =
∑

i t(x
(i), y(i))

are sums over individuals. Therefore, using the central limit theorem (CLT), we

approximate their distribution as p(s | θ, σ2) ≈ N (s;nµt, nΣt), where µt = E[t(x, y)]

and Σt = Cov (t(x, y)) are the mean and covariance of the function t(x, y) on a

single individual, This approximation is asymptotically correct, i.e., 1√
n
(s− nµt)

D−→

N (0,Σt) [Bickel & Doksum, 2015]. We write the conditional distribution as

s | · ∼ N (nµt, nΣt),

µt =
[
E
[
vec(xxT )

]
,E [xy] ,E

[
y2
]]
, (5.2)

Σt =


Cov

(
vec(xxT )

)
Cov

(
vec(xxT ),xTy

)
Cov

(
vec(xxT ), y2

)
Cov

(
xy, vec(xxT )

)
Cov (xy) Cov (xy, y2)

Cov
(
y2, vec(xxT )

)
Cov (y2,xy) Var (y2)

 . (5.3)
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The components of µt and Σt can be written in terms of the model parameters

(θ, σ2) and the second and fourth non-central moments of x as shown below, where

we have defined ηij := E [xixj], ηijkl := E [xixjxkxl], and ξij,kl := Cov (xixj, xkxl) =

ηijkl−ηijηkl. Full derivations can be found in the supplementary material. We call this

family of methods Gibbs-SS. To use this normal distribution for sampling, we need

the parameters (θ, σ2) and the moments ηij, ηijkl, and ξij,kl. The current parameter

values are available within the sampler, but the modeler must provide estimates for the

moments of x, either using prior knowledge or by (privately) estimating the moments

from the data. We discuss three specific possibilities in Section 5.2.4.4.

E [xiy] =
∑
j

θjηij

E
[
y2
]

= σ2 +
∑
i,j

θiθjηij

Cov (xixj, xky) =
∑
l

θlξij,kl

Cov
(
xixj, y

2
)

=
∑
k,l

θkθlξij,kl

Cov (xiy, xjy) = σ2ηij +
∑
k,l

θkθlξij,kl

Cov
(
xiy, y

2
)

=
∑
j,k,l

θjθkθlξij,kl + 2σ2
∑
j

θjηij

Var
(
y2
)

= 2σ4 +
∑
i,j,k,l

θiθjθkθlξij,kl

+ 4σ2
∑
i,j

θiθjηij

Once again, more modeling assumptions are needed than in the non-private case,

where it is possible to condition on x. Gibbs-SS requires milder assumptions (second

and fourth moments), however, than MCMC-Ind (a full prior distribution).

59



θ, σ2 ∼ NIG(θ, σ2;µ0,Λ0, a0, b0)

s ∼ N (nµt, nΣt)

ω2
j ∼ Exp

(
ε2

2∆2
s

)
for all j

z ∼ N
(
s, diag(ω2)

)
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Figure 5.2: Full generative model.

5.2.4.2 Variable augmentation for p(z | s)

The above approximation for the distribution over sufficient statistics means the full

conditional distribution involves the product of a normal and a Laplace distribution,

p(s | θ, z) ∝ N (s;nµt, nΣt) · Lap(z; s,∆s/ε).

It is unclear how to sample from this distribution directly. A similar situation arises in

the Bayesian Lasso, where it is solved by variable augmentation [Park & Casella, 2008].

Bernstein & Sheldon [2018] adapted the variable augmentation scheme to private

inference in exponential family models. We take the same approach here, and represent

a Laplace random variable as a scale mixture of normals. Specifically, l ∼ Lap(u, b) is

identically distributed to l ∼ N (u, ω2) where the variance ω2 ∼ Exp (1/(2b2)) is drawn

from the exponential distribution (with density 1/(2b2) exp (−ω2/(2b2))). We augment

separately for each component of the vector z so that z ∼ N
(
s, diag(ω2)

)
, where

ω2
j ∼ Exp

(
ε2/(2∆2

s)
)
. The augmented full conditional p(s | θ, z, ω) is a product of two

multivariate normal distributions, which is itself a multivariate normal distribution.

5.2.4.3 The Gibbs sampler

The full generative process is shown in Figure 5.2, and the corresponding Gibbs sam-

pler is shown in Algorithm 7. The update for ω2 follows Park & Casella [2008]; the in-

verse Gaussian density is InverseGaussian(w;m, v) =
√
v/(2πw3) exp (−v(w −m)2/(2m2w)).
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Algorithm 7 Gibbs Sampler
1: Initialize θ, σ2, ω2

2: repeat
3: Calculate µt and Σt via Eqs. (5.2) and (5.3)
4: s ∼ NormProduct (nµt, nΣt, z, diag(ω2))

5: θ, σ2 ∼ NIG(θ, σ2;µn,Λn, an, bn) via Eqn. (5.1)

6: 1/ω2
j ∼ InverseGaussian

(
ε

∆s|z−s| ,
ε2

∆2
s

)
for all j

Subroutine NormProduct
1: input: µ1,Σ1,µ2,Σ2

2: Σ3 =
(
Σ−1

1 + Σ−1
2

)−1

3: µ3 = Σ3

(
Σ−1

1 µ1 + Σ−1
2 µ2

)
4: return: N (µ3,Σ3)

Note that the resulting s drawn from p(s | µt,Σt, ω
2) may require projection onto the

space of valid sufficient statistics. This can be done by observing that if A = [X,y]

then the sufficient statistics are contained in the positive-semidefinite (PSD) matrix

B = ATA. For a randomly drawn s, we project if necessary so the corresponding B

matrix is PSD.

5.2.4.4 Distribution over X

As discussed above, Gibbs-SS requires the second and fourth population moments

of x to calculate µt and Σt. We propose three different options for the modeler to

provide these and discuss the algorithmic considerations for each. Because we include

the unit feature in x we can restrict our attention to the fourth moment E [x⊗4], which

includes the second moment as a subcomponent.

• Private sample moments (Gibbs-SS-Noisy)

The first option is to estimate population moments privately by computing the

fourth sample moments from X and privately releasing them via the Laplace

mechanism. The sensitivity of the estimate for ηijkl is w4
x, and for d = 2
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there are D = 5 unique entries, for a total sensitivity of Dw4
x. This approach

requires splitting the privacy budget between the release mechanisms for sufficient

statistics and moments, which we do evenly. We do not perform inference over the

noisy sample moments, which may introduce some miscalibration of uncertainty.

Pursuing this additional layer of inference is an interesting avenue for future

work.

• Moments from generic prior (Gibbs-SS-Prior)

A second option is to propose a prior distribution p(x) and obtain population

moments directly from the prior, either through known formulas or from Monte

Carlo estimation. This approach does not access the individual data and does

not consume any privacy budget, but requires proposing a prior distribution

and computing the fourth moments of x (once) for that distribution.

• Hierarchical normal prior (Gibbs-SS-Update)

A final option is to perform inference over the data moments by specifying an

individual-level prior p(x) and then marginalizing away individuals, as we did for

the regression model sufficient statistics. We propose a hierarchical normal prior,

as shown in Figure 5.3a, which is more dispersed than a normal distribution

and allows the modeler to propose vague priors, but still permits attainable

conditional updates. The data x is normally distributed: x ∼ N (µx, τ
2), with

parameters drawn from the normal-inverse Wishart (NIW) conjugate prior

distribution, µx, τ
2 ∼ NIW(µ′0,Λ

′
0,Ψ

′
0, ν
′
0). After marginalizing individuals, the

latent quantities are the sufficient statistics XXT (which includes the sample

mean and covariance because of the unit feature). For fixed parameters (µx, τ
2)

the distribution p(x) is multivariate normal, and we calculate its fourth moments

as the fourth derivative (via automatic differentiation) of its moment generating

function.
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However, we introduced the new latent variables µx and τ 2 into the full model

(see Figure 5.3a) and must now derive conditional updates for them within

the Gibbs sampler. Naively marginalizing X and y from the full model in

Figure 5.3a would cause both (µx, τ
2) and (θ, σ2) to be parents of s and thus not

conditionally independent given s—this would require their updates to be coupled

and we could no longer use simple conjugacy formulas for each component of

the model. To avoid this issue, we reformulate the joint distribution represented

as in Figure 5.3b. The justification for this is as follows. Because XTX is a

sufficient statistic for p(X) under a normal model, we can encode the generative

process either as (µx, τ
2) → X → XTX or as (µx, τ

2) → XTX → X. In

general, the latter formulation would require an arrow from (µx, τ
2) to X; this

drops precisely because XTX is a sufficient statistic [Casella & Berger, 2002].

Then, upon marginalizing X and y, we obtain the model in Figure 5.3c. The

two sets of parameters are now conditionally independent given the sufficient

statistics s, and can be updated independently as standard conjugate updates.
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Figure 5.3: (a) Private Bayesian linear regression model with hierarchical normal
data prior. (b) Alternative data model configuration and (c) with individual variables
marginalized out.
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5.3 Experiments

We design experiments to measure the calibration and utility of the private methods.

Calibration measures how close the computed posterior is to p(θ, σ2|z), the correct

posterior given noisy statistics. Utility measures how close the computed posterior is

to the non-private posterior p(θ, σ2|s).

5.3.1 Methods

The noise-aware individual-based method (MCMC-Ind) is implemented using PyMC3 [Sal-

vatier et al., 2016]; it runs with 500 burnin iterations and collects 2000 posterior samples.

The three flavors of noise-aware sufficient statistic-based methods use noisy sample mo-

ments (Gibbs-SS-Noisy), use moments sampled from a data prior (Gibbs-SS-Prior),

and use an updated hierarchical normal prior (Gibbs-SS-Update); all three collect

20000 posterior samples after 5000 and 20000 burnin iterations for n ∈ [10, 100] and

n = 1000, respectively. We compare against the baseline noise-naive method (Naive)

and the non-private posterior (Non-Private); both collect 2000 posterior samples.

5.3.2 Evaluation on synthetic data

Evaluation measures. We adapt a method of Cook et al. [2006] to measure cal-

ibration. Consider a model p(β,w) = p(β)p(w|β). If (β′,w′) ∼ p(β,w), then, for

any j, the quantile of β′j in the true posterior p(βj|w′) is a uniform random variable.

We can check our approximate posterior p̂ by computing the quantile uj of β′j in

p̂(βj|w′) and testing for uniformity of uj over M trials. We test for uniformity using

the Kolmogorov-Smirnov (KS) goodness-of-fit test [Massey Jr., 1951]. The KS-statistic

is the maximum distance between the empirical CDF of uj and the uniform CDF;

lower values are better and zero corresponds to perfect uniformity, meaning p̂ is exact.

While this test is elegant, it requires that parameters and data are drawn from the

model used by the method. We use θ, σ2 ∼ NIG
(
[0, 0], diag

([
.5

20−1
, .5

20−1

])
, 20, .5

)
. In

addition, for Gibbs-SS-Prior and Gibbs-SS-Update, the test requires the covariate
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data be drawn from the data prior used by the methods. We specify µx, τ
2 ∼

NIW(0, 1, 1, 50) and x ∼ N (µx, τ
2). These ensure at least 95% of x and y values are

within [−1, 1]. We compute sensitivity assuming data bounded in this range but do not

actually truncate data outside the bounds in order to avoid changing the generative

process (a limitation of the evaluation method, not the inference routine).

For each combination of n and ε we run M = 300 trials. We qualitatively assess

calibration with the empirical CDFs, which is also the quantile-quantile (QQ) plot

between the empirical distribution of uj and the uniform distribution. A diagonal line

indicates thats uj is perfectly uniform.

Between two calibrated posteriors, the tighter posterior will provide higher utility.2

We evaluate utility as closeness to the non-private posterior, which we measure with

maximum mean discrepancy (MMD), a kernel-based statistical test to determine if

two sets of samples are drawn from different distributions [Gretton et al., 2012]. Given

m i.i.d. samples (p, q) ∼ P ×Q, an unbiased estimate of the MMD is

MMD2(P,Q) =
1

m(m− 1)

∑m

i 6=j
(k(pi, pj) + k(qi, qj)− k(pi, qj)− k(pj, qi)) ,

where k is a continuous kernel function; we use a standard normal kernel. The higher

the value the more likely the two samples are drawn from different distributions,

therefore lower MMD between Non-Private and the method indicates higher utility.

We measure method runtime as the average process time over the 300 trials. Note

that PyMC3 provides parallelization; we report total process time across all chains for

MCMC-Ind.

Results. Calibration results are shown in Figure 5.4. The QQ plot for n = 10

and ε = 0.1 is shown in Figure 5.5. Coverage results for 95% credible intervals are

shown in Figure 5.6. All four noise-aware methods are at or near the calibration-level

2Note that the prior itself is a calibrated distribution.
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of the non-private method, and better than Naive’s calibration, regardless of data

size. As expected, Gibbs-SS-Noisy suffers slight miscalibration from not accounting

for the noise injected into the privately released fourth data moment. There is

slight miscalibration in certain settings and parameters for Gibbs-SS-Prior due to

approximations in the calculation of multivariate normal distribution fourth moments

from a data prior. Utility results are shown in Figure 5.7; the noise-aware methods

provide at least as good utility as Naive. Run time results are shown in Figure

5.8; MCMC-Ind scales with increasing population size while the Gibbs-SS methods,

Naive, and Non-Private remain constant. Accordingly, we do not include results for

MCMC-Ind for n = 1000 as its run time is prohibitive in those settings.
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Figure 5.4: Calibration vs. n (for ε = 0.1) and vs. ε (for n = 10).
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Figure 5.5: QQ plot for n = 10 and ε = 0.1.
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Figure 5.6: 95% credible interval coverage.

5.3.3 Predictive posteriors on real data

We evaluate the predictive posteriors of the methods on a real world data set

measuring the effect of drinking rate on cirrhosis rate.3 We scale both covariate and re-

sponse data to [0, 1]. There are 46 total points, which we randomly split into 36 training

examples and 10 test points for each trial. After preliminary exploration to gain domain

knowledge, we set a reasonable model prior of θ, σ2 ∼ NIG
(
[1, 0], diag([.25, .25]), 20, .5

)
.

We draw samples θ(k), σ2
k from the posterior given training data, and then form the

posterior predictive distribution for each test point yi from these samples. Figure

5.9 shows coverage of 50% and 90% credible intervals on 1000 test points collected

over 100 random train-test splits. Non-Private achieves nearly correct coverage,

with the discrepancy due to the fact that the data is not actually drawn from the

3http://people.sc.fsu.edu/~jburkardt/datasets/regression/x20.txt
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Figure 5.7: Utility as MMD to non-private posterior.
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Figure 5.8: Method runtimes for ε = 0.1.

prior. Gibbs-SS-Noisy achieves nearly the coverage of Non-Private, while Naive

is drastically worse in this regime. We note that this experiment emphasizes the

advantage of Gibbs-SS-Noisy not needing an explicitly defined data prior, as it only

requires the same parameter prior that is needed in non-private analysis.

5.4 Social Mobility Case Study

In this section we conduct a case study in order to explore the application of

our regression methods to a real world problem. We hope this will serve as useful

documentation for future researchers attempting to transition privacy-based algorithms

from synthetic to real problem settings.

We follow the work done by Opportunity Insights as part of their Opportunity

Atlas project to analyze census data in a private fashion in order to aid policy-
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Figure 5.9: Coverage for predictive posterior 50% and 90% credible intervals.

making in regards to social mobility [Chetty & Friedman, 2019]. Research has shown

that the census tract (neighborhood) in which a child grows up has a large effect

on the adulthood outcomes such as college attendance, income, and incarceration

rates [Peter Bergman, 2019]. Identifying “high opportunity” vs. “low opportunity”

tracts is an important step in social mobility research and policy intervention, such

as in programs to allow low-income families to fully benefit from housing voucher

programs [Peter Bergman, 2019].

Opportunity Insights identifies the opportunity level of a tract in the following

(simplified) manner. From census and tax record data, individual adults are grouped

into the tract in which they grew up. 4 Their adulthood income percentile rank (kir)

is then paired with the individuals’ family income level during their childhood (pir).

Example scatter plots of this data are shown for two tracts in Figure 5.10. Despite

both tracts having a wide spread of parental income, children growing up in the tract

on the right have much higher adulthood income. To quantify this effect for use in

policy making, a regression line on the data is formed and the value of kir is used at

pir = 0.25 5. Tracts can then be ranked by these kir values. To ensure individual

4The general assumption is made that the opportunity level of a tract does not significantly
change over time, although the potential for this is accounted for in Opportunity Insight’s analyses.

5pir = 0.25 is denoted to be a low-income percentile
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privacy, Opportunity Insights wishes to develop private regression methods such that

the private rankings are as close as possible to the non-private rankings, with higher

emphasis placed on maintaining rankings in the top and bottom tenth percentiles.
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Figure 5.10: Scatter plots of adulthood income rank vs. family income rank as a child
for two tracts.

We first run experiments to examine the effectiveness of our methods to quantify

uncertainty in estimating the value of kir at pir = 0.25. We also study point

estimates extracted from the posteriors, along with point estimates from the method

due to Chetty & Friedman [2019] (OI), which uses output perturbation. We note that

OI is not fully differentially private, goes to extreme measures to bound sensitivity,

and produces a limited number of point estimates, whereas we seek a general purpose

method that can make predictions at all pir.

5.4.1 Data

We note the data is in fact synthetic, but stress that it was simulated by Opportunity

Insights to match the real data with high fidelity and allow for external analyses on

protected internal data. We focus on the data for a single state, Illinois. There are

3108 tracts (neighborhoods) with a long-tailed distribution of size from 20 to 446

individuals. Both pir and kir are pre-scaled to the range [0, 1]. In line with current
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best practice in regards to this data set, we throw out 363 tracts in which the 50th

percentile of the tract’s kir is below 0.1 or above 0.9.

5.4.2 Methods

All of the included Bayesian linear regression methods require a model prior. After

preliminary exploration to gain domain knowledge, we set a model prior that reasonably

matches the general trend of tract data: θ, σ2 ∼ NIG
(
[.1, .5], diag([.001, .001]), 1000, .5

)
.

Non-Private, Naive, and Gibbs-SS-Noisy need no further setup. Gibbs-SS-Update

requires a data prior, which we specify to be centered and generally weak as µx, τ
2 ∼

NIW(.5, 1, 1, 50). The Gibbs-SS methods collect 20000 posterior samples after 5000

burnin iterations; Non-Private and Naive generate 2000 samples. Given the model

parameter posterior samples we then draw samples of kir at pir = 0.25 to form the

predictive posterior. We take the predictive posterior mean as the method’s point

estimate.

We also include the method due to Chetty & Friedman [2019], denoted as OI, which

uses output perturbation: it calculates the ordinary least squares (OLS) coefficients

via non-private regression of a tract and then releases a single noisy point estimate of

the predicted kir at pir = 0.25. The method tightly bounds local sensitivity of the

released coefficient by using state-wide statistics.

5.4.3 Experiments

We run experiments to investigate the uncertainty quantification of the private

Bayesian methods in addition to the point estimation in relation to the use case of

ranking tracts. Because this is “real” data we do not have ground truth, therefore

we compare the private method point estimates to Non-Private. After an analysis

following Abowd & Schmutte [2019], the analyses in Chetty & Friedman [2019] are

performed at ε = 4, which we center around in these experiments. Figure 5.11 shows

90% credible intervals at pir = 0.25 overlaid on a scatter plot of the tract data for
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three tracts of varying sizes. Figure 5.12 shows a scatter plot of the Gibbs-SS-Update

2745 tract point estimates vs. the Non-Private point estimate, overlaid on 90% and

50% credible intervals. Figure 5.13 shows coverage for private 90% and 50% credible

intervals with respect to the Non-Private point estimate. The next experiments all

focus solely on private point estimate error with respect to the Non-Private point

estimate. Figure 5.14 shows the average mean absolute error vs. ε, and Figure 5.15

shows a scatter of residuals vs. tract size. Figure 5.16 shows a confusion matrix

depicting the use case of state-wide budgeting based on ranking of tract kir point

estimates at pir = .25; we turn this problem into a classification task by labeling

tracts with their decile membership.
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Figure 5.11: Predictive posterior 90% credible intervals and point estimate at pir = .25
for ε = 4 overlaid on scatter plot of kir vs. pir for county-tract combos 167-2000,
201-3705, and 31-816100.

5.4.4 Discussion

Here we discuss the experimental results, as well as considerations and lessons

learned when applying our methods to a real world problem. We first focus on the

credible interval results. As expected, in Figure 5.11 the Non-Private 90% credible

intervals nicely encapsulate the full height of the true scatter data while not being

overly loose, while the Naive credible interval is drastically biased and overly tight so

that very little if any of the scatter data lies within the range. The Gibbs-SS-Update

credible intervals are significantly looser than those of Non-Private and are less biased
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Figure 5.13: Predictive posterior credible interval coverage for Non-Private mean vs.
ε.

than those of Naive, and thus while they are not exactly centered on the data they

still encapsulate the full height of the scatter data. This trend can be seen at the

state-wide scale in Figure 5.12 where the Gibbs-SS-Update credible intervals generally

follow the diagonal line and stay in step with the Non-Private point estimate. As

expected they become tighter with increasing ε. We quantitatively summarize the

credible interval performance with coverage analysis with respect to the Non-Private

point estimate. Figure 5.13 shows that the Gibbs-SS-Update and Gibbs-SS-Noisy

coverage are reasonably close to the target coverage rate regardless of ε, whereas the

Naive coverage only improves with higher ε. We note that the model parameters
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Figure 5.14: Predictive point estimate mean absolute error against Non-Private point
estimate.

and data are not necessarily drawn from our specified prior, and the Non-Private

point estimate is not necessarily the truth, so we do not expect the private methods’

coverages to exactly achieve the specified level.

Visual inspection of the Non-Private credible intervals encapsulating the data

qualitatively confirms the model prior is reasonably chosen. It is then clear that, as in

synthetic experiments, ignoring the noise due to the privacy mechanism drastically

hurts uncertainty quantification at stricter privacy levels. Due to the nature of

these experiments without ground truth, we cannot definitively say that performing

inference over the noise mechanism delivers perfect uncertainty quantification, but we

can confidently say the noise-aware methods perform much better.

The second aspect to examine is the methods’ point estimation capabilities, which

is more in line with the existing regression work and the analyses done in Chetty &

Friedman [2019]. We can qualitatively examine the point estimate scatter plot in

Figure 5.12 and see the points are clustered on the diagonal, becoming tighter as ε

increases, which is quantitatively confirmed in Figure 5.14. It is interesting to note

that while we would not necessarily expect the noise-aware Gibbs-SS methods to have
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Figure 5.15: Gibbs-SS-Update predictive point estimate residual against Non-Private
point estimate vs. tract size.

better point estimates than Naive, they do in fact perform significantly better. One

conjecture is that noise-naive regression leads to biased estimates, whereas noise-aware

regression better handles perturbed sufficient statistics that do not satisfy model

requirements Figure 5.15 shows the same decreasing point estimation error vs. sample

size trend as in Figure 3.4; interestingly the rate changes favorably as ε increases.

The final use case is to produce a ranking of tracts, to be used in budget allocation.

The goal is for the private methods to produce a ranking as close to the non-private

ranking as possible, with emphasis placed on the top and bottom deciles. Figure 5.16

shows the confusion matrix for Gibbs-SS-Update, which is diagonal heavy, as desired.

Even more promising is that the top and bottom deciles are almost fully contained

with the two top and bottom deciles, respectively, indicating relatively minimal loss

due to privacy in the ranking problem of interest.
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

This dissertation coalesces and expands the field of private noise-aware inference.

Differential privacy, the dominant privacy framework over the past decade and a half,

allows for the collection and analysis of sensitive human data while at the same time

balancing the need to protect individual privacy. There has been significant work on

mechanisms and methods to release privatized statistics in this setting. The majority

of these methods, however, are noise-naive and do not account for the randomization

required to deliver the privacy guarantee and thus produce lower quality analyses that

may not be useful in practical data settings. Noise-aware inference, first introduced

by Williams & McSherry [2010], addresses this problem by performing inference over

both the data and noise models in a principled fashion. This approach has been shown

to produce higher quality and more practical results in comparison to noise-naive

methods. We develop several methods as contributions to the field of private noise-

aware inference. We specifically use sufficient statistics perturbation (SSP), allowing

us to leverage properties of sufficient statistics in exponential family models in order

to achieve tractable and effective approximations.

6.1 Review of contributions

Chapter 3 focuses on point estimation in undirected graphical models, for which we

show the existing noise-naive SSP method is asymptotically consistent at the same rate

as the non-private method, but that ignoring the noise due to the release mechanism

requires ad hoc data patching and sensitive tuning of regularization parameters. We
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then develop a noise-aware expectation-maximization (EM) algorithm based on the

collective graphical models (CGM; Sheldon & Dietterich [2011]) framework to account

for the noise and show that it produces higher quality point estimates than competing

methods. We also find similar results in a case-study on learning human mobility

patterns based on wifi device traces.

Chapter 4 focuses on Bayesian inference in unconditional exponential family models.

We show the existing noise-naive methods produce the correct private posterior only

in asymptotically large data settings. We then develop a Gibbs sampler-based method

that is able to produce the correct private posterior regardless of data regime. The

main technical contribution is to develop a tractable conditional distribution over

sufficient statistics, which are a sum over iid individuals, by leveraging the central

limit theorem (CLT) approximation. This further requires a model augmentation

technique to enable closed-form sampling from the product of the subsequent sufficient

statistics and noise distributions.

Chapter 5 focuses on Bayesian linear regression. There is significant existing work

for frequentist linear regression, but we are the first to show results for a fully Bayesian

noise-naive method that produces a publicly-available posterior. That posterior is

only asymptotically correct, however, which motivates the development of noise-aware

methods. This requires overcoming non-trivial technical hurdles, the largest being that

while the non-private regression problem can condition on the individual covariate

and response data, private regression cannot. This means that in order to do inference

over the noise mechanism we need to introduce some assumptions about the covariate

data. We first introduce an MCMC-based sampling method that, while it produces the

correct posterior, requires an explicit data prior and instantiates individuals so that its

runtime scales with the population size. We then extend the Gibbs sampling framework

from the previous chapter to the regression setting. This allows for more efficient

inference over the sufficient statistics as well as more flexibility in making assumptions
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about the data. We develop three flavors of the Gibbs sampler that obtain assumptions

from different sources, each with their own advantages and drawbacks. The produced

posteriors are as or nearly as correct as the non-private method regardless of data

regime. We conclude with a case study on the problem of social mobility with real

world data from an economic non-profit organization.

6.2 Future directions

We see a number of potential directions for future work.

6.2.1 Model selection

In order to perform sufficient statistics perturbation, the choice of model must be

in hand so that we know what sufficient statistics need to be released. The work in this

thesis assumes we have already chosen a model. But if one were to use these methods

in a real world setting, one would have to go through a model selection process. This

would presumably require some initial exploration of the sensitive data, which would

in and of itself use some of the privacy budget. What approaches would choose the

best model while still effectively using the privacy budget?

6.2.2 Point estimation

Chapters 4 and 5 focus on Bayesian inference, but social scientists tend to focus

first on point estimation for use in real world problems. While we briefly touched

upon point estimation for the social mobility case study in Section 5.4, a more-in

depth study is needed to assess which algorithms are most practical in terms of point

estimates for unconditional exponential family models and for linear regression. Point

estimates can be obtained from a posterior, and there is also potential to develop

noise-aware MLE methods (as in Chapter 3).
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• Noise-aware SSP vs. noise-naive SSP The effectiveness of noise-aware

point estimates must be more thoroughly compared to the corresponding noise-

naive methods. All noise-aware methods developed in this work can employ

the corresponding noise-naive method as an initialization, i.e. using the noisy

sufficient statistics for MLE and conjugate updates in Chapter 3 and in Chapters

4 and 5, respectively. With each subsequent iteration, the noise-aware infer-

ences potentially improve upon the noise-naive initialization, but as long as

close approximations are used to enable noise-aware inference and as long as

priors are relatively informative then there should be no deterioration from the

initialization. Therefore we conjecture that noise-aware inference should produce

point estimates that are at least as good as those produced by noise-naive

methods using the corresponding release mechanism, especially in the smaller

data regimes where noise-naive methods have been shown to not perform well.

• SSP vs. other release mechanisms In this thesis we have focused specif-

ically on developing inference algorithms for noise-aware inference when SSP

is the release algorithm. Since SSP has been observed to give state-of-the-art

point estimation performance in a number of models (Chapter 3, Chapter 4,

Foulds et al. [2016]; Wang [2018]), we expect that noise-aware Bayesian infer-

ence via SSP is competitive or better in terms of point estimation for these

problems against other release mechanisms, but this requires further empirical

exploration. Could SSP-based methods be outperformed by methods leveraging

more suitable release mechanisms? Initial work on this question leads us to

conjecture that in general, the more the release mechanism is specialized to-

wards the specific problem at hand, the better the resulting point estimates. In

Chapter 3 our SSP-based method is designed specifically with point estimation

in undirected graphical models in mind, and it outperforms the state-of-the-art

general-purpose private stochastic gradient descent method (PSGD; Abadi et al.
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[2016]). Likewise, in Section 5.4 where the problem is to make a regression

prediction at a specific x value, the output perturbation-based OI method goes

to great lengths to minimize sensitivity of that one released point estimate and

subsequently outperforms the more general Bayesian methods which are designed

to produce posteriors and thus point estimates at any x value. The corollary to

this conjecture is that in designing and choosing methods, one must balance the

trade-offs between point estimation quality and applicability to more generalized

problems.

• Noise-aware inference for other release mechanisms If SSP may not

be the most suitable release mechanism for a given problem, can we develop

noise-aware inference algorithms for a broader class of release mechanisms, or

even very general purpose inference routines, so that we have the option of

adding noise awareness to the best existing algorithms for individual problems?

SSP importantly allows us to leverage approximations that lead to tractable yet

effective methods, e.g. the CLT approximation for sufficient statistics as sums

over iid individuals, so equivalent tricks would need to be developed for other

release mechanisms.

6.2.3 More complex models

For what other models can we develop noise-aware inference methods? More specif-

ically, in what settings does noise-aware inference provide state-of-the-art performance,

and in what settings are noise-naive methods as good as possible? Of specific interest

would be unbounded multivariate exponential family models, generalized linear models,

and logistic regression.
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APPENDIX A

CHAPTER 3: UNDIRECTED GRAPHICAL MODELS

A.1 Extra Proofs

A.1.1 Proof of Proposition 2

Proof. It is well known that the local sensitivity of any contingency table with respect

to our definition of nbrs(X) is one. This is easy to see from the definition of nC

following Eq. (3.2): each individual contributes a count of exactly one to each clique

contingency table. Since there are |C| tables, the local sensitivity is exactly |C| for all

data sets, and, therefore, the sensitivity is the same.

A.1.2 Proof of Proposition 3

Proof. Note that nC(iC) is a sum ofN iid indicator variables, so nC(iC) ∼ Binomial
(
N,µC(iC)

)
,

and Var
(
nc(iC)

)
= NµC(iC)

(
1− µC(iC)

)
. Now let z ∼ Laplace(|C|/ε) and write:

µ̄C(iC) =
1

N

(
nC(iC) + z

)
Recall that E[z] = 0 and Var(z) = 2|C|2/ε2. We see immediately that E[µ̄C(iC)] =

E
[
nC(iC)/N

]
= µC(iC). Therefore, the estimator is unbiased and its mean-squared

error is equal to its variance. Since nC(iC) and z are independent, we have:

Var
(
µ̄C(iC)

)
=

Var
(
nC(iC)

)
N2

+
Var(z)

N2

=
µC(iC)

(
1− µC(iC)

)
N

+
2|C|2

N2ε2
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The fact that p(x; θ̂) converges to p(x;θ) follows from Proposition 1 and the

consistency of the marginals, as long as the true marginals µ lie in the interior of

the marginal polytopeM. However, this is guaranteed because the true distribution

p(x;θ) is strictly positive.

A.1.3 Proof of Proposition 4

Proof. After applying Stirling’s approximation to log p(n;θ) we obtain [Nguyen et al.,

2016]:

log h(n) ≈ H(n) = N logN +
∑
C∈C

ĤC −
∑
S∈S

ν(S)ĤS (A.1)

where we define ĤA = −
∑

iA∈X |A| nA(iA) log nA(iA) for any A ∈ C ∪ S. The term

ĤA is a scaled entropy. We can rewrite it as:

ĤA = −N
∑
iA

nA(iA)

N
log
(nA(iA)

N
·N
)

= −N
∑
iA

µ̂A(iA) log µ̂A(iA)−N
∑
iA

µ̂A(iA) logN

= NHA −N logN

where HA is now the entropy of the empirical marginal distribution µ̂A = nA/N .

Since the total multiplicity of the separators is one less than the number of cliques,

when we substitute back into Eq. (A.1), all of the N logN terms cancel, and we are

left only with

H(n) = N ·
( ∑
C∈C(T )

HA −
∑

S∈S(T )

ν(S)HA

)
But, from standard arguments about the decomposition of entropy on junction

trees, the term in parentheses is exactly the entropy of distribution q defined as:
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q(x) =

∏
C∈C

∏
iC∈X |C|

µ̂C(xC)

∏
S∈S

∏
iS∈X |S|

µ̂S(xS)ν(S)
,

which factors according to C and can be written as p(x;θ) for parameters θ

derived from the marginal probabilities. Although the mapping from parameters

to distributions is many-to-one, for any marginals µ̂, there is a unique distribution

p(x;θ) in the model family that has marginals µ̂ [Wainwright & Jordan, 2008], so this

uniquely defines q(x) as stated in the Proposition.
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APPENDIX B

CHAPTER 4: EXPONENTIAL FAMILY MODELS

B.1 Properties of Exponential Families

B.1.1 Form of Conjugate-Update(λ, x1:n)

Following Diaconis & Ylvisaker [1979], the prior is

p(η | λ) = h(λ) exp
(
λ>1 η − λ2A(η)−B(λ)

)
,

where the parameters are λ = [λ1, λ2] and sufficient statistics are [η,−A(η)]

The posterior after observing x1:n is

p(η | λ, x1:n) = h(λ′) exp
(
λ′>1 x− λ′2A(η)−B(λ′)

)
λ′1 = λ1 +

∑
i

t(xi)

λ′2 = λ2 + n

Define above updates as λ′ = Conjugate-Update(λ, x1:n)

B.1.1.1 Proof of Log-Partition Function of Truncated Distribution used

in Lemma 1

Claim:

Â(η) = A(η) + log
(
F (w; η)− F (v; η)

)
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Proof :

exp
(
Â(η)

)
=

∫ w

v

h(x) exp
(
ηT t(x)

)
dx

= exp
(
A(η)

) ∫ w

v

h(x) exp
(
ηT t(x)− A(η)

)
dx

= exp
(
A(η)

)(
F (w; θ)− F (v; θ)

)
B.1.1.2 Proof of Lemma 1: Mean and Variance of t(x) in truncated dis-

tribution

Claim

Ep̂[t(x)] = Ep[t(x)] +
∂

∂ηT
log
(
F (w; η)− F (v; η)

)
Varp̂[t(x)] = Varp[t(x)] +

∂2

∂η∂ηT
log
(
F (w; η)− F (v; η)

)
Proof :

Ep̂[t(x)] =
∂

∂ηT
Â(η)

=
∂

∂ηT

(
A(η) + log

(
F (w; η)− F (v; η)

))
=

∂

∂ηT
A(η) +

∂

∂ηT
log
(
F (w; η)− F (v; η)

)
= Ep[t(x)] +

∂

∂ηT
log
(
F (w; η)− F (v; η)

)
The proof for Varp̂[t(x)] is similar.

B.2 Derivation of σ2 Gibbs update

We fully derive the Gibbs update for the noise variance σ2 of the augmented model

as stated in Park & Casella [2008]. We represent the Laplace distribution with scale

b = ∆s/ε as a scale mixture of normals, i.e. a zero-mean normal with an exponential

prior on the variance:
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p(z | b) =
1

2b
exp

(
−|z|
b

)
=

∫ ∞
0

1√
2πσ2

exp

(
− z2

2σ2

)
︸ ︷︷ ︸

p(z|σ2)

· ` exp
(
−`σ2

)︸ ︷︷ ︸
p(σ2|b)

dσ2, ` = 1/2b2

For clarity we have written the exponential rate as ` = 1/2b2. Also recall that the

noise z corresponds to the difference y − s between the noisy and non-noisy sufficient

statistics in our model. As per Park & Casella [2008] we can write the conditional

update for σ2 as a Wald distribution (inverse-Gaussian) with the change of variable

t = 1/σ2:

pt (t | z, `) =

∣∣∣∣ ddt 1

t

∣∣∣∣ · pσ2

(
1

t
| z, `

)
=

1

t2
· pσ2

(
1

t
| z, `

)
=

1

t2
· 1√

2π 1
t

exp

(
− z

2

21
t

)
· ` exp

(
−`
t

)

∝ 1√
t3

exp

(
−z

2

2
t− `

t

)

numpy.random.Wald is a two-parameter (mean and scale) implementation of

inverse-Gaussian. Its pdf is
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Wald(t;µ, γ) =
γ√
2πt3

exp

(
−γ(t− µ)2

2µ2t

)
∝ 1√

t3
exp

(
−γ(t− µ)2

2µ2t

)
=

1√
t3

exp

(
−γt

2 − 2γµt+ γµ2

2µ2t

)
=

1√
t3

exp

(
− γ

2µ2
t+

γ

µ
− γ

2t

)
∝ 1√

t3
exp

(
− γ

2µ2
t− γ

2t

)

Then matching parameters we have

γ = 2`

=
1

b2

and

γ

µ2
= z2

µ =

√
γ

z2
=

1

bz

So we draw t from

p (t | z, b) = Wald
(
t;

1

bz
,

1

b2

)
and set σ2 = 1/t.

B.3 Sensitivity of Sufficient Statistics in Truncated Model

Recall that t̂(x) = 1[v,w](x) t(x). Then
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∆ŝ = max
x,y∈R

‖t̂(x)− t̂(y)‖1

= max
x,y∈R

∑
j

|t̂j(x)− t̂j(y)|

≤
∑
j

max
x,y∈R

|t̂j(x)− t̂j(y)|

=
∑
j

max
{

max
x∈[v,w],y /∈[v,w]

|t̂j(x)− t̂j(y)|, max
x,y∈[v,w]

|t̂j(x)− t̂j(y)|
}

=
∑
j

max
{

max
x∈[v,w]

|tj(x)|, max
x,y∈[v,w]

|tj(x)− tj(y)|
}

B.4 Proof of uniformity of CDF transform used by Cook et al.

[2006]

Claim: Let X be a random variable with CDF F . The random variable U = F (X)

is uniformly distributed.

Proof :

Pr(U ≤ u) = Pr(F (X) ≤ u)

= Pr
(
F−1(F (X)) ≤ F−1(u)

)
= Pr(X ≤ F−1(u))

= F
(
F−1(u)

)
= u
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B.5 Convergence of Gibbs Sampler

Figure B.1 shows the progress of sampled model parameters over the course of 500

iterations for both binomial and exponential models. For both models the samples

quickly converge to the vicinity of the true parameter.
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Figure B.1: Progress of Gibbs sampler parameters over iterations at (n = 1000; ε = 0.1)
for binomial and exponential models.
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APPENDIX C

CHAPTER 5: LINEAR REGRESSION

C.1 Appendix

C.1.1 Derivation of non-private and private posteriors in Section 5.2.3

See corresponding models in Figure C.1.

p(θ, σ2 | X,y) =
p(θ, σ2, X,y)

p(X,y)

=
p(X)p(θ, σ2)p(y|X,θ, σ2)

p(X)p(y | X)

=
p(θ, σ2)p(y|X,θ, σ2)

p(y | X)

=
p(θ, σ2)p(y|X,θ, σ2)∫
p(y,θ, σ2 | X) dθ, σ2

=
p(θ, σ2)p(y|X,θ, σ2)∫

p(θ, σ2)p(y | X,θ, σ2) dθ, σ2

p(θ, σ2 | z) =

∫
p(X,y,θ, σ2, z) dX dy

=

∫
p(X,y,θ, σ2)p(z | X,y,θ, σ2)

p(z)
dX dy

= p(z)

∫
p(X,y,θ, σ2)p(z | X,y,θ, σ2) dX dy
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Figure C.1: (a) Non-private and (b) private regression models.

C.1.2 Gibbs Sufficient Statistic Update

C.1.2.1 Derivations of Equation 5.2: Components of µt

E [xiy] = Ex
[
xiEy|x [y]

]
= Ex

[
xiθ

Tx
]

= Ex

[
xi
∑
j

θjxj

]

=
∑
j

θjE [xixj]
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E
[
y2
]

= Ex

[
Ey|x

[
y2
]]

= Ex

[
σ2 +

(
θTx

)2
]

= σ2 + E

(∑
i

θixi

)2


= σ2 + E

[∑
i,j

θiθjxixj

]

= σ2 +
∑
i,j

θiθjE [xixj]

C.1.2.2 Derivations of Equation 5.3: Components of Σt

Cov (xixj, xky) = E [xixjxky]− E [xixj]E [xky]

= Ex
[
xixjxkEy|x [y]

]
− E [xixj]E [xky]

= Ex

[
xixjxk

∑
l

θlxl

]
− E [xixj]

∑
l

θlE [xkxl]

=
∑
l

θlE [xixjxkxl]−
∑
l

θlE [xixj]E [xkxl]

=
∑
l

θl Cov (xixj, xkxl)

Cov
(
xixj, y

2
)

= E
[
xixjy

2
]
− E [xixj]E

[
y2
]

= Ex
[
xixjEy|x

[
y2
]]
− E [xixj]E

[
y2
]

= Ex

[
xixj

(
σ2 +

∑
k,l

θkθlxkxl

)]
− E [xixj]

(
σ2 +

∑
k,l

θkθlE [xkxl]

)

= σ2E [xixj] +
∑
k,l

θkθlE [xixjxkxl]− σ2E [xixj]−
∑
k,l

θkθlE [xixj]E [xkxl]

=
∑
k,l

θkθl Cov (xixj, xkxl)
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Cov (xiy, xjy) = E
[
xixjy

2
]
− E [xiy]E [xjy]

= Ex
[
xixjEy|x

[
y2
]]
−

(∑
k

θkE [xixk]

)(∑
l

θlE [xjxl]

)

= E

[
xixj

(
σ2 +

∑
k,l

θkθlxkxl

)]
−
∑
k,l

θkθlE [xixk]E [xjxl]

= σ2E [xixj] +
∑
k,l

θkθl (E [xixjxkxl]− E [xixk]E [xjxl])

= σ2E [xixj] +
∑
k,l

θkθl Cov (xixk, xjxl)

Cov
(
xiy, y

2
)

= E
[
xiy

3
]
− E [xiy]E

[
y2
]

= Ex
[
xiEy|x

[
y3
]]
− E [xiy]E

[
y2
]

= Ex

[
xi

(∑
j,k,l

θjθkθlxjxkxl + 3σ2
∑
j

θjxj

)]

−
∑
j

θjE [xixj]

(
σ2 +

∑
k,l

θkθlxkxl

)

=
∑
j,k,l

θjθkθlE [xixjxkxl] + 3σ2
∑
j

θjE [xixj]

− σ2
∑
j

θjE [xixj] +
∑
j,k,l

θjθkθlE [xixj]E [xkxl]

=
∑
j,k,l

θjθkθl Cov (xixj, xkxl) + 2σ2
∑
j

θjE [xixj]
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Var
(
y2
)

= E
[
y4
]
− E

[
y2
]2

= 3σ4 +
∑
j,k,l,m

θjθkθlθmE [xjxkxlxm] + 6σ2
∑
j,k

θjθkE [xjxk]−

(
σ2 +

∑
j,k

θjθkE [xjxk]

)2

= 3σ4 +
∑
j,k,l,m

θjθkθlθmE [xjxkxlxm] + 6σ2
∑
j,k

θjθkE [xjxk]

− σ4 − 2σ2
∑
j,k

θjθkE [xjxk]−
∑
j,k,l,m

θjθkθlθmE [xjxk]E [xlxm]

= 2σ4 +
∑
j,k,l,m

θjθkθlθm (E [xjxkxlxm]− E [xjxk]E [xlxm]) + 4σ2
∑
j,k

θjθkE [xjxk]

= 2σ4 +
∑
j,k,l,m

θjθkθlθmCov (xjxk, xlxm) + 4σ2
∑
j,k

θjθkE [xjxk]
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