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Abstract 15 

Non-native, invasive plants are projected to shift their ranges with climate change, 16 

creating hotspots of risk where a multitude of novel species may soon establish and spread. The 17 

Northeast U.S. is one such hotspot. However, because monitoring for novel species is costly, 18 

these range-shifting invasive plants need to be prioritized. Preventing negative impacts is a key 19 

goal of management, thus, comparing the potential impacts of range-shifting invasive species 20 

could inform this prioritization. Here, we adapted the Environmental Impacts Classification for 21 

Alien Taxa (EICAT) protocol to evaluate potential impacts of 100 invasive plants that could 22 

establish either currently or by 2050 in the states of New York, Massachusetts, Connecticut, or 23 

Rhode Island. We searched Web of Science for each species and identified papers reporting 24 

ecological, economic, human health, or agricultural impacts. We scored ecological impacts from 25 

1 (‘minimal concern’) to 4 (‘major’) and socio-ecological impacts as present or absent. We 26 

evaluated 865 impact studies and categorized 20 species as high-impact, 36 as medium-impact, 27 

and 26 as low-impact. We further refined high-impact invasive species based on whether major 28 

impacts affect ecosystems found in Northeast U.S. and identified five high-priority species: 29 

Anthriscus caucalis, Arundo donax, Avena barbata, Ludwigia grandiflora, and Rubus ulmifolius. 30 

Additional research is needed for 18 data-deficient species, which had no studies reporting 31 

impacts. Identifying and prioritizing range-shifting invasive plants provides a unique opportunity 32 

for early detection and rapid response that targets future problem species before they can 33 

establish and spread. This research illustrates the feasibility of using impacts assessments on 34 

range-shifting invasive species in order to inform proactive policy and management. 35 

 36 

Keywords: Climate change; EICAT; impact; invasion risk; range-shift  37 
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Introduction 38 

 Non-native, invasive species are a well-known driver of global change, causing both 39 

economic and ecological impacts (Mack et al. 2000; Pimentel et al. 2005). With climate change, 40 

invasive plants are projected to shift their ranges, creating a new pool of potentially high-impact 41 

species in many regions (Bradley et al. 2010; O’Donnell et al. 2012; Gallagher et al. 2013; 42 

Bellard et al. 2013; Allen and Bradley 2016). However, with limited management resources, it is 43 

impossible to monitor for and respond to all range-shifting invasive plants. A primary motivation 44 

for managing invasive species is to reduce their impacts (Parker et al. 1999), thus, identifying 45 

range-shifting invasive plants that have the highest potential impacts can support proactive 46 

monitoring and management.  47 

 Range-shifting species include both native and non-natives (Essl et al. 2019). Although 48 

some native range-shifting species will have negative impacts (Mueller and Hellmann 2008; 49 

Wallingford et al. 2019), here we focus only on those identified as non-native and invasive. That 50 

is, species non-native (here, non-native to the U.S.), spreading over a considerable area 51 

(Richardson et al. 2000), and likely to cause economic or environmental harm (Executive Order 52 

13112 1999). Climate change is projected to increase risk from these invasive species in several 53 

regions, including Northeastern North America (Bellard et al. 2013; Allen and Bradley 2016). 54 

Thus, negative impacts caused by these invasive species in more southerly states could expand to 55 

affect the Northeast U.S. with climate change. Based on their spatial analyses, Allen and Bradley 56 

(2017) created watch lists of invasive plant species with no spatial occurrence data in a given 57 

state or region, but with the potential to establish there either currently or by mid-century with 58 

climate change. For the Northeast U.S. region (New York and southern New England states) the 59 

watch list included 100 range-shifting invasive plants. 60 
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Range-shifting invasive species are a concern because of their potential impacts. Invasive 61 

plants negatively affect native species and ecosystems in a variety of ways, reducing native 62 

species abundance and diversity and altering ecosystem function (Ehrenfeld and Scott 2001; Vilà 63 

et al. 2011; Bradley et al. 2019). In addition to ecological impacts, invasive plants contribute to 64 

an estimated $24 billion in crop losses and $3 billion in control costs annually in the U.S. 65 

(Pimentel et al. 2005), can reduce crop yields by 30-50% (Zimdahl 2007), and reduce the quality 66 

of forage for livestock (Finnoff et al. 2008). Overall, the negative ecological and socio-economic 67 

consequences of invasive plants underscore the benefits of proactively identifying and 68 

preventing high-impact species from gaining a foothold in the Northeast U.S. 69 

 Identifying new invasive plant populations through early detection and rapid response 70 

(EDRR; Westbrooks 2004) can be effective for preventing a widespread invasion (Moody and 71 

Mack 1988). By the time a species has become widespread, eradication is nearly impossible 72 

(Rejmánek and Pitcairn 2002; Rejmánek et al. 2005), and only containment and impact reduction 73 

options remain (Panetta 2012). Therefore, detection and prevention of invasive plants before they 74 

become widely established is cost-effective and vital for stopping harmful invasions. For range-75 

shifting invasive species, EDRR targets the leading edge of an invasion, removing populations 76 

that could seed future spread (Moody and Mack 1988; Westbrooks 2004). But knowing which 77 

species to look for is a critical component of effective EDRR. 78 

 Identifying range-shifting invasive species was the highest priority need for climate 79 

adaptation reported by U.S. natural resource managers (Ernest Johnson 2018). However, with 80 

hundreds of potential target invasive species (Allen and Bradley 2016), risk assessment and 81 

prioritization is critical for practical monitoring and EDRR programs. A variety of risk 82 

assessments currently exist for assessing likelihood of plant invasiveness (e.g., weed risk 83 
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assessments; Pheloung et al. 1999; Koop et al. 2012; Conser et al. 2015; Booy et al. 2017). 84 

However, these assessments focus on identifying potentially invasive plants from a pool of novel 85 

plants.  With range-shifting invasive species, the pool of plants is already known. Thus, a risk 86 

assessment that focuses on their potential to have negative impacts is appropriate.  87 

The Environmental Impact Classification of Alien Taxa (EICAT) assesses the magnitude 88 

of invasive species’ impacts using the scientific literature (Blackburn et al. 2014). This protocol 89 

was developed in consultation with the International Union for Conservation of Nature (IUCN) 90 

and was formally adopted as their method for classifying the environmental impact of alien 91 

species. The overall aim of EICAT is to quantify the magnitude of known impacts from all 92 

available studies such that potential impacts can be consistently compared between invasive 93 

species (Blackburn et al. 2014; Hawkins et al. 2015). This approach has previously been used to 94 

evaluate the relative impacts of invasive birds, amphibians, mammals, and molluscs (Evans et al. 95 

2016; Kumschick et al. 2017; Hagen and Kumschick 2018; Kesner and Kumschick 2018). 96 

EICAT has also been used to compare impacts of bamboo species (Canavan et al. 2019). Thus, 97 

EICAT provides a consistent, repeatable framework for assessing and comparing the potential 98 

impacts of invasive species.  99 

Here, we used EICAT to assess the potential impacts of 100 invasive plants that are 100 

projected to expand their ranges into the states of New York and Massachusetts, Connecticut, 101 

and Rhode Island (southern New England) either currently or by mid-century with climate 102 

change. We assessed the magnitude of impact on ecosystems as well as the presence of impacts 103 

on socio-economic systems to identify high-priority species for monitoring and preventative 104 

policy. This type of prioritization provides a cost-effective, proactive strategy to prevent the 105 

spread of invasions facilitated by climate change. 106 
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 107 

Methods 108 

Target species 109 

We used a watch list of 100 invasive plant species (Table S1) that could establish in the 110 

states of New York, Connecticut, Massachusetts, or Rhode Island, either currently or by 2050 111 

with climate change (Allen and Bradley 2017). This list was based on Allen and Bradley (2016), 112 

who modeled current and future potential ranges for nearly 900 invasive plant species within the 113 

continental U.S. Each of the target species has been identified as a non-native ‘noxious weed’ by 114 

state and/or federal policymakers or identified as a non-native invasive plant by the Invasive 115 

Plant Atlas of the US (https://www.invasiveplantatlas.org/). The 100 range-shifting invasive 116 

plants are predominantly non-native to North America, although three species are native to 117 

Canada.  118 

The spatial models were based on occurrence data from herbaria and management 119 

records (Allen and Bradley 2016) and the resulting list included only species that had not been 120 

reported in the region by these spatial datasets. However, some of the watch list species may be 121 

present in part of the region but not reported to spatial databases used by Allen and Bradley 122 

(2016), or may have expanded subsequent to the 2016 analyses. Therefore, we also used the 123 

USDA Plants database (https://plants.sc.egov.usda.gov/) to assess presence and proximity of 124 

high-impact species to the Northeast.  125 

 126 

Literature search 127 

In order to assess the relative impacts of the 100 target species, we modified the 128 

Environmental Impacts Classification for Alien Taxa (EICAT) protocol (Hawkins et al. 2015). A 129 

https://plants.sc.egov.usda.gov/
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primary goal of EICAT is to develop a consistent method of leveraging the peer-reviewed 130 

literature to categorize the magnitude of environmental impacts of invasive species. This 131 

approach begins with a title and abstract search of the literature to identify any papers reporting 132 

impacts for the target species. For each species, we used the Integrated Taxonomic Information 133 

System (ITIS) to identify any synonyms or previous taxonomies. We then used the Web of 134 

Science Core Collection to search for papers using the genus and species of the target plant as 135 

well as any synonyms identified in ITIS (e.g., Aegilops ovata OR Aegilops geniculata). Each of 136 

the titles and abstracts of all returned papers was scanned for evidence of an impact study. We 137 

looked in titles and abstract for keywords such as "impact", "effect", "influence", "affect", 138 

"correlate", or "cause" as well as references to the species as invasive or references to an impact 139 

mechanism (e.g., competition or crop loss; see below). Because the impacts assessments were 140 

focused on the potential for negative impacts associated with invasive plants, papers reporting 141 

positive impacts (e.g., papers describing the species as a potential dietary supplement or biofuel) 142 

were not included. Literature searches were conducted between June-December 2018. 143 

Data collection 144 

All papers reporting an environmental, economic, agricultural, or human health impact of 145 

a target species (Table S1) were compiled. Impacts information was recorded to follow the 146 

EICAT protocol (Hawkins et al. 2015) with some modifications described below and also 147 

outlined in Table S2. Following Hawkins et al. (2015), we recorded the species information 148 

(scientific name, common name, growth form, USDA code) and citation information (first 149 

author, year, journal, DOI, citation).  150 

We expanded the EICAT protocol to include socio-economic impacts in addition to 151 

ecological impacts.  We recorded this under a column called ‘Affected System’. Affected 152 



   
 

8 

Systems are defined as: 1) Ecological – the alien taxon has impacts which affect native species 153 

or communities. 2) Human Health – the alien taxon has impacts which affect human health 154 

independently of crop systems (e.g. allergies). 3) Economic – the alien taxon has impacts which 155 

affect infrastructure or economics independent of crop systems (e.g. road deterioration). 4) 156 

Agricultural – the alien taxon affects plant or animal agriculture (e.g. crop loss). Although 157 

socio-economic impact magnitudes have been proposed (SEICAT; Bacher et al. 2018), they 158 

focus on change or abandonment of an activity (e.g. agricultural abandonment). The socio-159 

economic papers reviewed here were predominantly related to crop losses, but did not describe 160 

any change in agricultural activity. As a result, the papers reviewed here did not fit well within 161 

the SEICAT framework (Bacher et al. 2018) and were instead recorded as ‘present’. 162 

Reported ecological impacts were classified into one or more of the following 9 impact 163 

mechanisms that are relevant for plants (Hawkins et al. 2015): 1) Competition – the alien taxon 164 

competes with native taxa for resources (e.g. food, water, space). 2) Hybridization – the alien 165 

taxon hybridizes with native taxa. 3) Disease transmission – the alien taxon transmits diseases 166 

to native taxa. 4) Poisoning/toxicity – the alien taxon is toxic, or allergenic by ingestion, 167 

inhalation or contact to wildlife, allelopathic to plants, or alters microbial communities. 5) Bio-168 

fouling – the accumulation of individuals of the alien taxon on wetted surfaces. 6) Chemical 169 

impact – the alien taxon causes changes to the chemical characteristics of the ecosystem, 170 

including altered soil or water nutrients. 7) Physical impact – the alien taxon causes changes to 171 

the physical characteristics of the ecosystem, including altered fire regimes, water cycling or soil 172 

erosion. 8) Structural impact – the alien taxon causes changes to the structural characteristics of 173 

the ecosystem, such as adding or removing canopy levels, altering structural resources (e.g., 174 

nesting habitat), trapping species at higher trophic levels (e.g., bees stuck in flowers). 9) 175 
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Interaction – The alien taxon facilitates other alien taxa, (e.g., through habitat modification, 176 

addition of resources). 177 

For each study reporting ecological impacts, impact magnitude was scored on a 1-4 scale: 178 

1 = Minimal Concern is defined as discernible impacts, but no effects on individual fitness of 179 

native species. 2 = Minor is defined as fitness of individuals reduced, but no impact on 180 

populations. 3 = Moderate is defined as changes to populations, but not to community 181 

composition. 4 = Major is defined as changes to the native community composition.  Here, we 182 

interpreted a change in community composition as a decline in community richness, diversity, 183 

evenness, or overall native species abundance. For some ecological impact mechanisms, 184 

particularly chemical and physical alterations, effects on native species were often not reported.  185 

When it seemed likely based on the paper that native communities would be affected (e.g., 186 

altered hydrology caused by the invasive negatively affects native riparian communities), we 187 

scored the impact as major.  When it was unclear from the paper whether native species would 188 

be affected (e.g., the invasive species decreases carbon storage), we scored the impact as 189 

minimal concern.  190 

In addition to the data described above, the following details about each paper were also 191 

included in the database: country where the study took place, invaded habitat (based on the 192 

IUCN Habitat(s) Classification Scheme), maximum extent of the study, plot size, number of 193 

plots, whether the site was managed or not, and the taxon of the affected species or community. 194 

This information will enable end users to make a more nuanced judgment of threats to specific 195 

ecosystems or sectors. For example, invaded habitat provides information about the types of 196 

ecosystems where impacts have been reported and can be used by natural resource managers to 197 
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infer whether the ecosystems that they manage are at risk. An outline of all modifications to the 198 

EICAT protocol is presented in Table S2. 199 

We assigned each species into High, Medium, and Low Priority categories. High-200 

priority species were those with a maximum ecological impact magnitude of ‘major’ (negatively 201 

affecting ecological community composition). Medium-priority species were those with a 202 

maximum ecological impact magnitude of ‘moderate’ (negatively affecting a native species’ 203 

population). Low-priority species were those with a maximum ecological impact magnitude of 204 

‘minor’ or ‘minimal concern’. We classified a species as Data Deficient when there were zero 205 

published scientific papers about their impacts. In order to identify commonalities across species, 206 

we summarized all species based on the most common impact mechanisms, affected taxa, and 207 

impact scores. 208 

The EICAT protocol includes a report of confidence in the impact score (high, medium, 209 

low; Hawkins et al. 2015). However, because confidence scores are defined somewhat 210 

subjectively (e.g., were data reported at an appropriate spatial scale?, was the data quality 211 

good?), we were not confident that our interpretation of confidence would be consistent with 212 

other scorers and therefore elected to exclude a confidence score. Instead, we performed a 213 

second evaluation of all high-priority species to ensure that these species were a high risk for 214 

ecosystems in New York and southern New England. We assessed whether each high-priority 215 

species was the likely driver of major impacts reported in the papers (Table S2), whether the 216 

species was absent from the Northeast region and therefore a candidate for EDRR, and whether 217 

impacts were reported in habitats similar to those found in Northeast ecosystems.  218 

 219 

Results 220 
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To evaluate impacts for the 100 range-shifting invasive plants, we scanned titles and 221 

abstracts of 14,263 papers and compiled data from 865 impacts studies. A total of 82 species 222 

were given a prioritization: 20 species were identified as high-priority, 36 species medium-223 

priority, and 26 species low-priority (Table 1). For the prioritized species, the average number of 224 

impact papers per species was 10.1 (±1.5 SE; range 1-71).  High-priority species tended to have 225 

more papers, with an average of 15.4 (±3.8 SE; range 1-58) studies while low-priority species 226 

had fewer papers (average 4.4 ±1.1 SE; range 1-18). The remaining 18 species were data 227 

deficient (Table S3). Of the 20 high-priority species, two had unresolved taxonomies that made 228 

it unclear if impacts papers were associated with that species (C. chalepensis, R. vestitus) and 229 

three had reported ecological impacts that were anecdotal or correlational with low confidence in 230 

causality (C. lanatus, C. lanceolata, T. hirtum). The remaining 15 species have ‘major’ negative 231 

impacts on ecological communities. Of these, two were already present throughout the region 232 

based on USDA plants and therefore not candidates for eradication or prevention (E. esula, S. 233 

pratensis). Eight species had major negative impacts, but in habitats that are not currently found 234 

in the Northeast U.S. (A. elliptica, C. selloana, E. erecta, H. altissima, P. pinaster, T. aphylla, T. 235 

chinensis, V. dubia). Thus, five species were ultimately considered high priority for proactive 236 

management because they have major ecological impacts on habitat types that are also found in 237 

the Northeast U.S. and because they are not yet widespread in the region: A. caucalis and A. 238 

donax are present in nearby mid-Atlantic states, A. barbata is reported in Massachusetts, but not 239 

neighboring states, L. grandiflora is reported in New York, but not neighboring states, and R. 240 

ulmifolius is present in nearby mid-Atlantic states. Table S4 outlines the habitats associated with 241 

the 15 ‘major’ impact species. 242 

 243 
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Table 1. Final assessments of impact mechanisms and maximum reported impact magnitude (1-4) for 244 

each impact mechanism for the 82 ranked species. Ranks are High (H), Medium (M), or Low (L) priority. 245 

Impact mechanisms are as follows: BF = Bio-Fouling; CH = Chemical Impact; CO = Competition; DT = 246 

Disease Transmission; HY = Hybridization; IN = Interaction with Alien Taxa; PH = Physical Impact; PT = 247 

Poisoning/Toxicity; ST = Structural Impact; AG = Agricultural Impact; EC = Economic Impact; HH = 248 

Human Health Impact. Agricultural, Economic, and Human Health impacts are shown as Present (P). No 249 

Data is shown as (-). Current estab. refers to whether the species could establish in the region under 250 

current and future (Y) or only future (N) climate conditions. Underlined species are already present in one 251 

or more of the target states according to USDA Plants.  252 

Name 

(Genus species) Rank BF CH CO DT HY IN PH PT ST AG EC HH 

Current 

Estab. 

No. 

Papers 

High-Priority Species – Major Ecological Impact  

Anthriscus caucalis H 4 - - - - - - - - - - - Y 3 

Ardisia elliptica H 4 - - - - - - 1 - - - - N 3 

Arundo donax H - 3 4 - - 3 4 4 - P - - N 22 

Avena barbata H - 1 4 - 3 1 2 4 - P - P N 27 

Cardaria chalepensis H - - 4 - - - 3 - - P - - Y 2 

Carthamus lanatus H - - 4 - - - - 3 - P - - N 3 

Cortaderia selloana H - 3 4 - - - 4 2 - P - - N 16 

Cunninghamia lanceolata H - 3 4 - - - 3 3 - - - P Y 58 

Ehrharta erecta H - 3 4 - - 3 - - - - - - N 2 

Euphorbia esula H 3 2 4 - - 4 4 2 3 P P P Y 54 

Hemarthria altissima H - - 4 - - - - 3 - P - - N 5 

Ludwigia grandiflora H 4 - 4 - - 3 3 4 4 P P P Y 11 

Pinus pinaster H - 1 4 - - - 4 - - P P - Y 10 

Rubus ulmifolius H - 2 4 - 3 2 3 2 3 P - - Y 20 

Rubus vestitus H - - 4 - 2 - 3 - 3 - - - Y 1 
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Schedonorus pratensis H - - 4 - - - - 4 - P - - Y 13 

Tamarix aphylla H - 4 4 - - - 4 4 4 - - - N 8 

Tamarix chinensis H - 3 4 - 3 2 4 4 4 - - - N 30 

Trifolium hirtum H - - 4 - - - - - - P - - Y 4 

Ventenata dubia H - - 4 2 - - - - 3 - - - Y 4 

Medium-Priority Species – Moderate Ecological Impact 

Achyranthes japonica M - - 1 - - - - - 3 P - - Y 3 

Alyssum murale M - 2 3 - - 1 - 2 - - - - Y 4 

Araujia sericifera M - - - - - 3 - - 2 P - P N 3 

Asclepias curassavica M - - - 3 2 1 - 3 3 P - P N 14 

Bellardia trixago M - - - - - - - 3 - - - - N 1 

Brachypodium distachyon M - 2 - 3 - - 3 - - P - P N 71 

Cardaria pubescens M - - - - - - 3 - - P - - Y 2 

Centranthus ruber M - - 3 - - - - - - P - - Y 2 

Cestrum diurnum M - - - - - 2 - 3 - P - - N 5 

Ceratocephala testiculata M - - 3 - - - - - - - - - Y 1 

Conyza bonariensis M - - - - - - - 3 3 P - - N 15 

Cytisus striatus M - 1 3 - - 1 - - - - - - Y 4 

Dalbergia sissoo M - 2 3 - - - - 2 - P - P N 16 

Daphne laureola M - - 3 - - - - - - - - - Y 2 

Festuca brevipila M - - 3 - - - - 1 - - P - Y 3 

Hedera helix ssp. 

canariensis M - 2 - 3 - - - 3 3 P P - N 7 
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Hedera hibernica M - - 3 - - - - - - - - - Y 2 

Hypericum calycinum M - - 2 2 - - - 3 - - - - Y 3 

Lagerstroemia indica M - - 1 3 2 2 - - 3 - - - N 15 

Ligustrum japonicum M - - - 3 - - 1 - 2 - - - N 9 

Lotus pedunculatus M - 2 3 - 1 2 - 2 - P - - Y 26 

Lythrum virgatum M - - - - 3 - - 3 - - - - Y 2 

Mahonia bealei M - - 3 - - - - - - - - - Y 1 

Nandina domestica M - - 2 3 - - - - - - - - N 3 

Oplismenus hirtellus M - - - - - 3 - - - - - - Y 1 

Paspalum urvillei M - - - 3 - 3 - - - - - - N 5 

Peganum harmala M - 1 2 - - - - 3 - P - P N 19 

Persea americana M - 2 3 - - 3 2 - 3 P - P N 34 

Prunus laurocerasus M - 2 3 2 1 - 2 - - P - - Y 12 

Quercus acutissima M - 3 2 2 - 2 2 - - - - - Y 11 

Senna occidentalis M - - - - - 3 - 3 - P - P N 34 

Sesbania punicea M - - - - - 3 - 3 1 - - - N 4 

Sinapis arvensis M - 3 - - 3 - - - - P - P Y 12 

Spartium junceum M - 2 3 - - 2 3 3 - P - P Y 11 

Stellaria media M - 2 3 - - - - - - P P P Y 47 

Tamarix africana M - - 3 - - - - - - - - - Y 1 

Low-Priority Species – Minor or Minimal Ecological Impact 

Aegilops ovata L - - - - 2 - - 2 - P - - Y 17 

Alhagi maurorum L - - - - - 2 - 2 - P - - Y 5 
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Anchusa arvensis L - - - - - - - 2 - P - - Y 2 

Arum italicum L - - - - 2 2 - 1 - - - - Y 3 

Avena sterilis L - - - - 2 - - - - P - - Y 18 

Buddleja lindleyana L - - - - 1 - - - - - - - N 2 

Carduus tenuiflorus L - - - - - - - - 1 - - - N 1 

Centaurea iberica L - - - - - - - - - P - P Y 1 

Centaurea melitensis L - 2 2 - - - - - - - - - Y 2 

Centaurea virgata L - - - - - 1 - - - - - - Y 1 

Crotalaria spectabilis L - 1 - - - 2 - - - P - - N 17 

Elaeagnus pungens L - 1 - - - - - - - - - - Y 1 

Firmiana simplex L - - - 1 - 1 - - - - - - N 2 

Hibiscus tiliaceus L - - - - - 2 - - 2 P - - N 6 

Leontodon taraxacoides L - - - - - - - - - P - - Y 1 

Phyllostachys aurea L - - - - - 2 - - - P P - N 3 

Poncirus trifoliata L - - 2 - - - - - - P - - Y 4 

Prunus lusitanica L - - - - - 2 - - - - - - N 1 

Pseudognaphalium 

luteoalbum L - - 2 - - - - 2 - - - - Y 2 

Rumex stenophyllus L - - - - - - - - 1 - - - Y 1 

Sacciolepis indica L - - 1 - - - - - - - - - Y 1 

Stachys arvensis L - - - - - 1 - - - P - - Y 4 
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Tripleurospermum 

perforatum L - - - - - - - - - P - - Y 1 

Vitex agnus-castus L - 2 2 - - - - 2 - P - P Y 17 

Vitis vinifera L - - 1 - 2 2 - - - P - - Y 11 

Youngia japonica L - - - - - - - - - P P - Y 3 

 253 

The most frequent ecological impact mechanisms were competition, poisoning/toxicity, 254 

and interaction with other alien species, while biofouling, disease transmission, and hybridization 255 

were the least commonly reported (Figure 1A). Although biofouling impacts were rarely 256 

reported, they were proportionally most likely to cause major impacts on communities.  257 

Competitive and physical impacts were also more likely to have ‘major’ negative impacts on 258 

ecological communities.  Therefore, data-deficient species (Table S3) known to cause 259 

biofouling, be strong competitors, or alter the physical characteristics of an ecosystem might be 260 

higher risk. 261 
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 262 

Figure 1. Magnitude of impact and affected taxa for the 82 ranked invasive plants. Ecological impact 263 

mechanisms are as follows: BF = Bio-Fouling; CH = Chemical Impact; CO = Competition; DT = Disease 264 

Transmission; HY = Hybridization; IN  = Interaction with Alien Taxa; PH = Physical Impact; PT = 265 

Poisoning/Toxicity; ST = Structural Impact. A) Maximum impact scores for the 82 species associated with 266 

each ecological impact mechanism or socio-economic system. Major ecological impacts were most 267 

common through biofouling, competition, physical impacts on the ecosystems, and poisoning/toxicity 268 

(allelopathy). Impacts to agriculture, economics, and human health were marked as present, but not 269 

scored. B) Affected taxa for the 82 species associated with each ecological impact mechanism or socio-270 

economic system. Plants and invertebrates were most commonly affected by the 82 invasive plants, but 271 

vertebrates in ecosystems and agricultural systems were also affected through poisoning/toxicity. ‘Other’ 272 

taxa are typically studies with no reported impact on species (e.g. altered structure or chemistry of an 273 

ecosystem), but also include impacts on fungi. 274 

 275 
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Of the socioeconomic impacts, Agriculture was the most common affected system 276 

(Figure 1A), occurring in 45 of 82 prioritized species (55%), followed by Human Health (17 277 

species; 21%) and Economic (8 species; 10%). Transmission of diseases to crops (26 of the 45 278 

species with agricultural impacts; 58%) was one of the most frequently reported agricultural 279 

impact. Competition with crops and forage grasses (which reduced crop yield and pastureland 280 

carrying capacity) was reported in 19 of the 45 species (42%). Interaction with other invasive 281 

species, typically involved facilitation of invasive insect pests, was also reported as an 282 

agricultural impact mechanism in 17 of the 45 species with agricultural impacts (38%). Lastly, 283 

toxic effects on livestock, which cause weight loss, avoidance, or even fatal poisoning, was 284 

reported in 16 of the 45 species (36%).  285 

Invasive plants most commonly affected native plants or plant communities and 286 

invertebrate animals (Figure 1B). Competition, disease transmission, and hybridization were 287 

proportionally most likely to affect native plants. Animals were most likely to be affected 288 

through interactions (e.g., facilitation of a non-native animal that preys upon or competes with a 289 

native animal), structural changes (e.g., reduced habitat), and poisoning/toxicity (e.g., toxic to 290 

native animals). Allelopathy, recorded as poisoning/toxicity, was also likely to affect 291 

belowground arbuscular mycorrhizal fungi (other in Figure 1B). ‘Other’ affected taxa were also 292 

likely in cases where impacts were not tied to a specific ecological response, which was most 293 

common for chemical impacts (e.g., changes in carbon storage) and physical impacts (e.g., 294 

increased fire frequency or altered stream hydrology).  Vertebrate animals affected by invasive 295 

plants in agriculture were typically livestock; invertebrate animals were typically crop pests 296 

facilitated by invasive plants. 297 

 298 
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Discussion 299 

The Northeast U.S. has been identified as a hotspot for future invasion risk under climate 300 

change (Allen and Bradley 2016). Up to 100 invasive plant species are projected to expand into 301 

the region, threatening native ecosystems, agricultural systems, and economies. Because the 302 

identity of these range-shifting species is known (Allen and Bradley 2017), there is currently a 303 

unique opportunity to prevent the introduction and spread of high-impact species into this 304 

increasingly vulnerable region. The large number of range-shifting invasive plants coupled with 305 

limited resources makes early detection and rapid response of all 100 species a challenge, thus, 306 

prioritizing range-shifting invasive plants is a critical step to inform effective prevention 307 

strategies. Getting a step ahead of the expected invasions by targeting high-impact species will 308 

not only allow us to use resources most effectively, but also increase the likelihood of success 309 

(Mack et al. 2000; Rejmánek and Pitcairn 2002). 310 

This study illustrates how the combination of watch lists and impacts assessments can 311 

provide an effective tool for proactive management of invasive plants in the context of climate 312 

change. From a list of 100 species, we identified five as high priority due to reported impacts in 313 

ecological communities and invading ecosystems similar to those found in New York and 314 

southern New England. Aside from reported impacts, these five species are highly likely to 315 

invade the Northeast due to recent establishment in this region and/or known introduction 316 

pathways that could lead to rapid establishment and spread. For example, the invasive species 317 

Ludwigia grandiflora (large-flower primrose-willow), which has already been reported in New 318 

York, creates anoxic conditions in freshwater systems which could easily damage vulnerable 319 

aquatic flora and fauna (Dandelot et al. 2005). Another high-priority species with the potential to 320 

establish by mid-century is Arundo donax (giant cane). A. donax has been promoted as a biofuel 321 
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(Corno et al. 2014) despite well-documented negative impacts on riparian ecosystems (Mack 322 

2008) and agriculture (Racelis et al. 2012). Of the five high-priority species, three (A. donax, L. 323 

grandiflora, and R. ulmifolius) have a history of deliberate introduction either as ornamentals or 324 

for biofuels. The remaining high-priority species (A. caucalis and A. barbata) were likely 325 

introduced accidentally as crop contaminants. Knowing the identity and introduction pathways of 326 

high-priority species creates an opportunity to stop future introductions and proactively 327 

remediate future impacts. 328 

 329 

Policy and Management 330 

The likelihood that new, high-impact invasive plants will soon emerge in the Northeast 331 

U.S. highlights the need for proactive policies to prevent their introduction. Most states have 332 

some sort of regulated plants list, which restricts or prohibits the sale of known invasive plants. 333 

However, most regulated plants are ones already established and invasive in the state, making 334 

these regulations reactive rather than proactive. Moreover, the listing procedures make it 335 

challenging to proactively list species likely to shift into the Northeast with climate change.  For 336 

example, the ranking system for invasive plants in New York state includes criteria about climate 337 

matching, where the maximum score is associated with species whose “native range includes 338 

climates similar to those in New York” (New York Invasive Species Council 2010). Similarly, 339 

invasive plant evaluations conducted by the Massachusetts Invasive Plant Advisory Group 340 

include the criterion that the species have a “documented history of invasiveness in other areas of 341 

the northeast” (Massachusetts Invasive Plant Advisory Group 2005). In both cases, range-342 

shifting invasive plants will not meet these criteria because the current climate of New York does 343 

not match their native range and they are not yet invasive in the Northeast. Thus, current 344 
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regulatory frameworks for identifying and preventing the introduction of invasive plants need to 345 

be adapted to encompass the reality of range-shifting due to climate change. 346 

In addition to the need for proactive regulation, better coordination of invasive plant lists 347 

is needed between Northeast states. Given that three of the five high-priority species have been 348 

introduced deliberately to the U.S. as ornamentals or biofuels, the introduction of these species to 349 

the Northeast once climate conditions are suitable is a distinct possibility. Currently, every state 350 

has a different protocol for evaluating invasiveness – often drawing from expert knowledge, 351 

which can lack transparency. In contrast, EICAT is a useful method for prioritization because it 352 

is repeatable, transparent, and provides an estimate of the magnitude of impact. All of the 865 353 

papers we assessed are reported in the resulting database, so users can easily find these sources 354 

and evaluate species based on their specific management concerns. Moving towards a single, 355 

repeatable approach for evaluating potential impacts could lead to greater consistency in state 356 

regulated lists and a united defense against future invaders. 357 

Evaluating the magnitude of potential impact in a repeatable fashion is critical for 358 

prioritization, particularly given the need to coordinate watch lists across state jurisdictional 359 

borders in the Northeast. Currently, weed risk assessment protocols vary considerably in terms of 360 

how impacts are evaluated. For example, the Australian Weeds Risk Assessment (Pheloung et al. 361 

1999) included nine factors related to potential impact, which are answered on a yes/no basis. In 362 

contrast, Koop et al. (2012) recommended 16 impact categories, while Conser et al. (2015) 363 

recommended four and Booy et al. (2017) included only overall impact. Of these, only Booy et 364 

al. (2017) recommended an estimate of magnitude of impact (following the EICAT categories 365 

used here). Yes/no scoring of impact fails to differentiate between magnitude of potential 366 

impacts, which is critical for prioritization. Thus, EICAT, which evaluates magnitude of impact, 367 
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is an appropriate approach to consistently and transparently rank potential impacts and identify 368 

high-impact species. Moving beyond impact assessment and prioritization, managers’ highest 369 

priority research on invasive species and climate change is identifying ecosystems vulnerable to 370 

future invasion (Beaury et al. 2019). While we considered invaded habitats when refining our 371 

high-priority list for the Northeast U.S., more work is needed to identify likely areas of initial 372 

introduction and spread (e.g., Padayachee et al. 2019) in order to inform monitoring for EDRR. 373 

Additionally, best management practices (BMPs) have not been developed for these species for 374 

Northeast U.S. ecosystems. In order to develop and refine BMPs for their region, invasive 375 

species managers will need to reach out to partners much further afield than they might be 376 

currently accustomed. For example, R. ulmifolius currently has reported populations in 377 

Maryland, which are several hundred kilometers from the New York border. Given the potential 378 

for these species to be introduced deliberately once the climate is right, the development of 379 

BMPs would benefit from broader networks of invasive species managers (e.g., Barney et al. 380 

2019). 381 

 382 

Impact Mechanisms 383 

There was a clear trend in the mechanisms of invasive plant impact, with the target 384 

species predominantly impacting recipient ecosystems via competition, poisoning/toxicity, and 385 

interaction with other invasive species (Figure 1A). Additionally, invasive plants frequently 386 

have detrimental impacts on agricultural systems, which was the most commonly reported socio-387 

economic impact. While the majority of impacts were reported on native plant communities or 388 

plant crops (Figure 1B), several studies also reported impacts cascading up to higher trophic 389 

levels. For example, Achyranthes japonica (Japanese chaff flower) reduces breeding carrying 390 
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capacity for the seabird, Swinhoe’s storm petrel, by invading native grasslands and reducing 391 

potential nesting sites (Arcilla et al. 2015). This evidence is consistent with a recent meta-392 

analysis showing that terrestrial invasive plants tend to have negative impacts on native insects 393 

and other higher trophic levels (Bradley et al. 2019).  394 

 395 

Data limitations 396 

These results suggest that invasive plant impacts are fairly well-studied, but additional 397 

research is needed for species with low numbers of impact papers, especially data-deficient 398 

species. We found at least one impact paper for 82% of the evaluated species. In contrast, Evans 399 

et al. (2016) compiled reports of environmental impacts for 30% of 415 invasive birds and 400 

Kumschick et al. (2017) found sufficient information for 38% of 105 invasive amphibians. In a 401 

study of bamboo, Canavan et al. (2019) found impacts information for only 15% of 135 402 

naturalized bamboo species. However, this low percentage might be due to the focus on 403 

naturalized species rather than the subset of invasive species. Based on our results, plants 404 

identified as invasive are likely to have some form of reported impacts.  405 

Although 60 species were classified here as low- or medium-priority, the lack of reported 406 

impacts on native communities should not be interpreted as evidence of an absence of impact. 407 

Many impact studies do not set out to measure community-level impacts (Bradley et al. 2019). 408 

Thus, these species should remain under consideration for future prioritization, particularly those 409 

with few or no impact papers. 410 

Finally, the range-shifting invasive plants evaluated here only encompass species that are 411 

already present and recognized as invasive somewhere within the U.S. (Allen and Bradley 2016). 412 

Non-native plants continue to be introduced at increasing rates (Seebens et al. 2017) both 413 
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accidentally (most often as seed contaminants; Lehan et al. 2013) and deliberately (most often as 414 

ornamentals; Reichard and White 2001; Mack and Erneberg 2002; Lehan et al. 2013) and a large 415 

proportion of these introduced species may go on to become invasive (Jeschke and Pysek 2018). 416 

Moreover, there is evidence that many introduced species are ‘pre-adapted’ to warmer climate 417 

conditions associated with climate change (Bradley et al. 2012; Seebens et al. 2015), which 418 

could increase future rates of invasion. Thus, while a focus on range-shifting invasive species is 419 

an important piece of proactive management, a continued focus on new imports is also needed. 420 

 421 

Conclusions 422 

 EICAT is a repeatable and transparent protocol that can be used to prioritize invasive 423 

plants likely to shift their ranges with climate change. Our analysis narrowed a large set of 100 424 

species down to a manageable target of five high-priority species. Therefore, impacts 425 

assessments can serve as a valuable tool for targeting harmful species for early detection and 426 

rapid response, increasing the likelihood of successful prevention of future invasions. This type 427 

of consistent risk assessment approach inclusive of climate change is needed in order to develop 428 

proactive regulation and management across multiple jurisdictional borders.  429 

 430 

Data availability: Data are permanently archived through UMass Scholarworks. 431 

Appendix 1. Database of impact assessments https://doi.org/10.7275/jt7g-zv93 432 

Appendix 2. Summary reports for individual species https://doi.org/10.7275/yygq-0r05 433 
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