
Optimizing the Neural Network Training for OCR Error

Correction of Historical Hebrew Texts

Omri Suissa1, Avshalom Elmalech, and Maayan Zhitomirsky-Geffet

1 Bar Ilan University, Department of Information Science, Ramat Gan 52900, Israel

omrivm@gmail.com

Abstract. Over the past few decades, large archives of paper-based documents

such as books and newspapers have been digitized using Optical Character

Recognition. This technology is error-prone, especially for historical documents.

To correct OCR errors, post-processing algorithms have been proposed based on

natural language analysis and machine learning techniques such as neural net-

works. Neural network’s disadvantage is the vast amount of manually labeled

data required for training, which is often unavailable. This paper proposes an

innovative method for training a light-weight neural network for Hebrew OCR

post-correction using significantly less manually created data. The main research

goal is to develop a method for automatically generating language and task-spe-

cific training data to improve the neural network results for OCR post-correction,

and to investigate which type of dataset is the most effective for OCR post-cor-

rection of historical documents. To this end, a series of experiments using several

datasets was conducted. The evaluation corpus was based on Hebrew newspapers

from the JPress project. An analysis of historical OCRed newspapers was done

to learn common language and corpus-specific OCR errors. We found that train-

ing the network using the proposed method is more effective than using randomly

generated errors. The results also show that the performance of the neural net-

work for OCR post-correction strongly depends on the genre and area of the train-

ing data. Moreover, neural networks that were trained with the proposed method

outperform other state-of-the-art neural networks for OCR post-correction and

complex spellcheckers. These results may have practical implications for many

digital humanities projects.

Keywords: OCR Post-correction, Neural Networks, Hebrew Historical News-

papers, Digital Humanities.

1 Introduction

Over the last few decades, massive digitization of historical document collections has

been performed using OCR techniques. As a result, large digital repositories have been

created, e.g., the Library of Congress's historical digital collection [20[and the British

Newspaper Archive [15] with various discovery tools (e.g., [6]). Even commercial en-

terprises have initiated large-scale OCR projects like Google Books [16].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/288433149?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

An OCR algorithm processes a high-resolution image of the resource (e.g., a book

or newspaper page) and converts it into text. Unfortunately, OCR output for historical

documents is often inaccurate. OCR errors, sometimes called spelling mistakes, come

in several forms: insertions, deletions, substitutions, transposition of characters, split-

ting and combining of words [11].

Digitization is essential for preservation and increasing the accessibility and research

of cultural heritage. Thus, in many digital humanities projects which use digitized his-

torical collections, there is a need to search and automatically analyze the text of the

documents. However, OCR errors undermine the research and preservation efforts.

Therefore, improving the quality of the OCR technology has recently become a critical

task. Numerous studies applied machine learning techniques to correct OCR errors [1,

10]. One of the most effective machine learning approaches is deep learning based on

multi-layer neural networks, which have been successfully applied in many document

processing tasks, including the spellchecking for modern texts [10]. However, the uti-

lization of neural networks for OCR error correction in historical documents is still

underexplored in previous research [1]. Particularly, there is no available effective neu-

ral network model for fixing OCR errors in historical Hebrew newspapers. Hence, the

primary goal of this research is to develop an effective methodology for designing an

optimized neural network for OCR post-correction for Hebrew historical texts with a

minimal amount of manually created training data.

Neural networks are a componential model built using "neurons" in "layers". Each

neuron gets an input, performs a mathematical calculation, and transfers its result (out-

put) to other neurons. The first layer receives the task's input, which is transferred

through the network, and the last layer's output is the predicted result of the network

[13, 14]. The main advantage of neural networks is their ability to automatically calcu-

late the optimal representative feature set for the given task rather than relying on man-

ually selected features. As a baseline of the study, we used the neural network model

from Ghosh & Kristensson [3] that was designed for OCR post-correction. This net-

work was based on the Gated Recurrent Units (GRU) [2] architecture. We also tested

the Long Short Term Memory (LSTM) [5] architecture, which was found effective in

various NLP (natural language processing) tasks [9].

To build an optimal model for a specified task, a neural network has to be trained on

a certain dataset for which both the input (OCRed text) and the target data (correct

golden standard text) are provided. In this study, we investigated the influence of the

training dataset characteristics on the network's performance. In particular, we experi-

mented with different types of training datasets from various genres (secular literature

vs. the Bible) and historical periods (from the last two centuries, ancient and modern),

as well as with different types of OCR errors (random OCR errors vs. language and

corpus specific OCR errors). Finally, we compared and analyzed the accuracy of the

obtained networks in OCR error correction of Hebrew historical newspapers from the

JPress corpus [21].

3

2 Methodology

2.1 Dataset Generation

The evaluation dataset of the study (JP_CE) was created from 150 OCRed historical

Hebrew newspapers articles randomly selected from JPress - the most extensive histor-

ical Hebrew newspapers collection, dated 1800-2015 [17]. The articles included OCR

errors, which were manually fixed by 75 students. The students' corrections were dou-

ble-checked by an expert to create a high-quality golden standard corpus. This dataset

comprised of the original and corrected versions of the above 150 JPress articles was

used to evaluate the networks' performance.

Next, four different training datasets were generated as follows. Each dataset com-

prised two versions of the same texts – the artificially created OCRed text and its golden

standard version. Two datasets were based on texts from the Ben Yehuda Project [18]

(the Hebrew equivalent of the Gutenberg [19] project comprised of secular Hebrew

literature mostly from the last two centuries and the Middle ages), and two others con-

sisted of the Hebrew Bible text. Both the Ben-Yehuda and Bible texts were typed man-

ually and are thus considered correct. Each of them belongs to a different time period

and genre, while Ben-Yehuda's period (partially) overlaps with that of the JPress cor-

pus. To create training sets with OCR errors, we intentionally inserted errors in each of

the above corpora (Ben-Yehuda and the Bible) using two different methods. The first

one was a random error generation procedure [11,4], when randomly chosen characters

in each line of the text were removed, replaced (with other randomly chosen charac-

ters), or inserted at a randomly selected position. As a result, BYP and BIBLE datasets

were created (as shown in Table 1). The alternative approach was to insert language

and corpus-specific OCR errors, automatically learned from the JPress newspaper col-

lection, in addition to the random error generation. The pseudo-code of the error gen-

eration algorithm is displayed in Figure 1. As can be observed from Figure 1, first, the

algorithm generates some language and corpus independent types of errors, such as the

removal and insertion of characters and swapping between two consecutive characters

at random positions. Next, the most common JPress-specific OCR errors are added ac-

cording to their relative frequency of occurrence in the corpus. To learn the most com-

mon character confusion pairs, %70 of the original JP_CE corpus and its fixed golden

standard version were compared using the Needleman–Wunsch alignment algorithm

[8]. The most common OCR confusion errors, along with their frequencies in JP_CE,

are shown in Table 2. The outcome of this method was the BYP-HEB and BIBLE-HEB

datasets.

4

Table 1. The study's datasets

Dataset Name Input Corpus Target Golden Stand-

ard Corpus

Generation method

JP_CE
JPress – OCRed histori-

cal newspapers

Fixed JPress articles
Manually fixed

BYP
The Ben Yehuda Project

with random OCR errors

The Ben Yehuda Pro-

ject - books

Automatically inserted

errors

BYP_HEB

The Ben Yehuda Project

Hebrew JPress specific

OCR errors

The Ben Yehuda Pro-

ject - books

Automatically inserted

errors

BIBLE
The Bible with Random

OCR errors

The Hebrew Bible

from sefaria.org.il

Automatically inserted

errors

BIBLE_HEB

The Bible with Hebrew

JPress specific OCR er-

rors

The Hebrew Bible Automatically inserted

errors

Table 2. Common OCR errors in Hebrew historical newspapers in JPress

Character Fix Frequency

 499 ה ח

 306 ר ד

 256 נ ג

 210 כ ב

 207 , י

 194 ס ם

 162 ת ח

 162 י ו

5

Fig. 1. Random and JPress-specific OCR error generation algorithm.

Figure 2 summarizes the proposed approach for constructing the neural network for

OCR error correction.

Fig. 2. The study's methodology diagram.

Manually fixing Hebrew OCR
Errors

Extracting common errors

Writing language-specific OCR
error injection algorithm

Generating language-specific
and dialect- specific datasets

Generating language-agnostic
datasets

Optimizing neural
network hyper

parameters

Evaluating loss
(accuracy)

Training known OCR
error correction neural

network

Training the optimized
neural network on
historical dialect

Training the optimized
neural network on biblical

dialect

Evaluating the historical dialect
neural network s quality

Creating a manually fixed
validation dataset

Evaluating the biblical dialect
neural network s quality

Evaluating Google Docs spell
checker quality

Evaluating Microsoft Word spell
checker quality

6

2.2 Evaluation Measures

To assess the quality of the results, two evaluation measures were used: 1) the charac-

ter-based accuracy increase, and 2) the word-based overall accuracy of the text. The

character-based increase in the text's accuracy is computed as a percentage of the errors

fixed by the network out of the total number of OCR errors in the input text. The number

of network's corrections is calculated as a difference between the Levenshtein's mini-

mal edit distance [7], denoted as lev, of the input OCRed text from the)correct) golden

standard version of the text, GS, and the minimal edit distance of the fixed text, Fixed,

(after the network's corrections) from the golden standard text. The initial number of

errors in the OCRed text is computed as the minimal edit distance between the OCRed

text and the golden standard text. If a network has inserted more errors than it has fixed,

the accuracy increase value is set to 0. More formally, we define acc-increase as fol-

lows:

𝑎𝑐𝑐 − 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒

= {

𝑙𝑒𝑣𝐺𝑆,𝑂𝐶𝑅𝑒𝑑 − 𝑙𝑒𝑣𝐺𝑆,𝐹𝑖𝑥𝑒𝑑

𝑙𝑒𝑣𝐺𝑆,𝑂𝐶𝑅𝑒𝑑

∗ 100, 𝑙𝑒𝑣𝐺𝑆,𝑂𝐶𝑅𝑒𝑑 ≥ 𝑙𝑒𝑣𝐺𝑆,𝐹𝑖𝑥𝑒𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(1)

To estimate the accuracy of the given text at the word-level, Wunsch alignment algo-

rithm [8] was applied to compare the evaluated text with its golden standard version.

Then, the output of the alignment was processed to split the text into words using a

standard set of delimiters. The word-based accuracy of the text compared to its golden

standard version is assessed with the standard word accuracy measure [22]:

W𝐴𝑐𝑐 =
𝑁𝑤 − 𝐼𝑤 ± 𝑆𝑤 ± 𝐷𝑤

𝑁𝑤

∗ 100 (2)

where Nw is the total number of words in the evaluated text, Sw is the number of words

in the evaluated text that are substituted with other words in the golden standard version

of the text, Dw is the number of words in the evaluated text that are absent from the

golden standard text, and Iw is the number of words which occur in the golden standard

text, but are absent from the evaluated text. The word-based metric is crucial from the

user perspective since users comprehend and search texts by whole words.

3 Results

First, to select the most effective network model for the task, we comparatively evalu-

ated the performance of the baseline GRU network [3] and an LSTM-based model with

different hyperparameters. The optimized network was the bidirectional LSTM [12]

with 4 layers, a dropout of 0.2, 500 units, an epoch size of 250,000, and a batch size of

256. The technical details of the network optimization procedure are beyond the scope

of the paper.

7

3.1 The Networks' Training and Validation

To train and validate the networks, we divided each of the two datasets (BYP and

BYP_HEB) described above into training (80%) and validation (20%) subsets. Then,

two different networks were constructed and trained on the training subsets. The results

of the networks' validation on the corresponding validation sets are presented in Figure

3. As can be observed from Figure 3, the network that was trained and validated on the

BYP_HEB dataset achieved higher accuracy (94%) than the network trained and vali-

dated on BYP (85%). We concluded that training on the dataset with JPress-specific

errors is more effective than training on the dataset with randomly generated errors.

Fig. 3. BYP and BYP_HEB validation accuracy

3.2 The Networks' Evaluation

The networks' evaluation was performed by applying the two best networks (trained on

BYP-HEB and BIBLE-HEB) to fix the JP_CE (historical newspapers from JPress) da-

taset. Note that the baseline word-based accuracy of the original evaluation dataset

(JP_CE) was 48.984% (i.e., only about 49% of the words were correct before applying

the networks).

In addition to the two networks trained on historical texts (Ben-Yehuda and the Bi-

ble), we evaluated the performance of the state-of-the-art spellcheckers that were im-

plemented by Google and Microsoft as deep neural networks, trained mostly on modern

Hebrew texts. Interestingly, neither Google Docs nor Microsoft Word 2019 improved

the text's accuracy. Their quality score was about 0%, since they have introduced as

many errors as they have fixed. From an examination of 20% of randomly chosen texts,

it seems that these spellcheckers fixed well non-real words, but failed on real words

(that do not make sense in the context of the sentence). Non-real words always got a

8

fix, but not always a correct one. The spellcheckers were able to fix the following error

types:

 Characters' transposition

 Redundant spacing

 “Dirt” signs (smudges, actual dirt, damaged paper)

 Real word spelling mistakes

The evaluation results are presented in Table 3. The obtained results show the

dependency of the network's effectiveness on the time period of the training dataset.

When the network learns from the corpus written in a similar period, it achieves positive

and much better results (around 4.5% character-based and 5.5% word-based accuracy

increase), than networks trained on texts from substantially more distant periods (which

demonstrated none or negative change in the accuracy).

The best network (BYP_HEB) learned different types of corrections and success-

fully applied them on historical newspapers, including:

 Fixing spelling mistakes

 Fixing characters transposition

 Removing redundant spacing

 Adding spacing

 Preserving the names of the entities

 Removing “dirt” signs

However, the majority of the errors were not fixed by the network, and in some cases,

it even introduced new errors. This might be explained by genre and style-driven dif-

ferences among the training (Ben-Yehuda corpus, literature) and the evaluation datasets

(JP_CE, newspaper articles).

Table 3. Comparison of all the networks evaluated on JP_CE

Network Character-based Accuracy

Increase

Word Accuracy

Neural Network

(BYP_HEB)

5.406% 53.472%

Google Docs spell

checker

~ 0% 41.58%

Microsoft Word spell

checker

~ 0% 41.53%

Neural Network

(BIBLE_HEB)

~ 0% ~ 0%

9

4 Conclusions

This work introduced a light-weight method to train neural networks for Hebrew OCR

error post-correction. As demonstrated in the results section, there is a substantial ben-

efit for generating a language and period-specific dataset for OCR post-correction. In-

terestingly, generating only a language-specific dataset using the Bible introduces more

errors than corrections. It is similar to a time traveler from the biblical era trying to fix

OCR errors of more modern texts.

In addition, only 105 manually fixed articles were needed for the error generation

algorithm for Hebrew historical newspapers, which is a minimal human effort com-

pared to the vast amount of labeled training data typically required for a neural network.

These results are another step towards creating automated error correction of histor-

ical Hebrew OCRed documents and historical-cultural preservation in general. Alt-

hough the scope of this research was Hebrew, we believe the proposed methodology

can be generalized to other languages. Researchers can use these results to reduce the

complexity when designing neural networks for OCR post-correction and to improve

the OCRed document correction process for many digital humanities projects.

References

1. Chiron, G., Doucet, A., & Moreux, J.: Competition on Post-OCR Text Correction. In:

ICDAR2017 Competition on Post-OCR Text Correction, pp. 1423–1428. (2017).

2. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., &

Bengio, Y.: Learning Phrase Representations using RNN Encoder-Decoder for Statistical

Machine Translation. In: Proceedings of the 2014 Conference on Empirical Methods in Nat-

ural Language Processing (EMNLP) (2014).

3. Ghosh, S., & Kristensson, P. O.: Neural Networks for Text Correction and Completion in

Keyboard Decoding. (2017).

4. D’hondt, E., Grouin, C., & Grau, B.: Generating a Training Corpus for OCR Post-Correction

Using Encoder-Decoder Model. In: Proceedings of the Eighth International Joint Confer-

ence on Natural Language Processing. vol. 1, pp. 1006-1014. (2017).

5. Hochreiter, S., & Schmidhuber, J. J.: Long short-term memory. Neural Computation, 9(8),

1–32 (1997).

6. Lansdall-Welfare, T., Sudhahar, S., Thompson, J., Lewis, J., & Cristianini, N.: Content anal-

ysis of 150 years of British periodicals. In: Proceedings of the National Academy of Sci-

ences. vol. 114 (4), pp. 457–465. (2017)

7. Levenshtein, Vladimir I.: Binary codes capable of correcting deletions, insertions, and re-

versals. Soviet physics doklady 10(8), 707-710 (1966).

8. Needle, S. B., Christus, A. S. D., & Needleman, Saul B., and C. D. W.: A General Method

Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins. Jour-

nal of Molecular Biology, 48(3), 443–453 (1970).

9. Pascanu, R., Mikolov, T., & Bengio, Y.: On the difficulty of training Recurrent Neural Net-

works. In: International conference on machine learning, pp. 1310-1318. (2013).

10. Raaijmakers, S.: A Deep Graphical Model for Spelling Correction. In: BNAIC 2013, Pro-

ceedings of the 25th Benelux Conference on Artificial Intelligence. Delft, The Netherlands

(2013).

10

11. Reynaert, M.: Non-interactive OCR post-correction for giga-scale digitization projects. In:

Lecture Notes in Computer Science, LNCS, vol. 4919, pp. 617–630. Springer, Heidelberg

(2008).

12. Schuster, M., & Paliwal, K. K.: Bidirectional recurrent neural networks. IEEE Transactions

on Signal Processing, 45(11), 2673–2681 (1997).

13. Sutskever, I., Vinyals, O., & Le, Q. V.: Sequence to Sequence Learning with Neural Net-

works. In Advances in neural information processing systems, 3104-3112 (2014)

14. Werbos, P.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral

Sciences. Ph. D. dissertation, Harvard University. (1974).

15. The British Newspaper Archive, https://www.britishnewspaperarchive.co.uk/, last accessed

2019/06/20.

16. NYTimes.com, "Google Books: A Complex and Controversial Experiment", last accessed

2015/10/28.

17. JPress Collection Homepage, http://web.nli.org.il/sites/JPress/Hebrew/Pages/default.aspx,

last accessed 2019/06/20.

18. Project Ben Yehuda Homepage, https://bybe.benyehuda.org/, last accessed 2019/06/20.

19. Project Gutenberg Homepage, https://www.gutenberg.org/, last accessed 2019/06/20.

20. https://chroniclingamerica.loc.gov/

21. http://www.jpress.nli.org.il/

22. Ali, A., & Renals, S. (2018, July). Word error rate estimation for speech recognition: e-

WER. In Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers) (pp. 20-24

https://www.britishnewspaperarchive.co.uk/
https://www.nytimes.com/2015/10/29/arts/international/google-books-a-complex-and-controversial-experiment.html
https://www.gutenberg.org/

