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Abstract. We consider conditional transition systems, that model software product lines
with upgrades, in a coalgebraic setting. By using Birkhoff’s duality for distributive lattices,
we derive two equivalent Kleisli categories in which these coalgebras live: Kleisli categories
based on the reader and on the so-called lattice monad over Poset. We study two different
functors describing the branching type of the coalgebra and investigate the resulting
behavioural equivalence. Furthermore we show how an existing algorithm for coalgebra
minimisation can be instantiated to derive behavioural equivalences in this setting.

1.Introduction

Jǐŕı Adámek has made many important contributions to category theory to the theory of
coalgebras. The final (or terminal) chain to construct the final coalgebra [AK95] will play
a key role in this paper. In addition Jǐŕı Adámek wrote, jointly with Horst Herrlich and
George E. Strecker, the well-known textbook “Abstract and Concrete Categories – The Joy
of Cats” [AHS90], which has served as an invaluable guide to us when learning and looking
up results on category theory, also for this paper.

It is a continuation of the work that two of the co-authors did jointly with Jǐŕı Adámek
[ABH+12]. In that paper we studied generic versions of minimisation and determinisation
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algorithms in the context of coalgebras, especially in Kleisli categories. Here we are studying
a novel type of transition system, called conditional transition systems, and show how they
fit into this framework.

This example is interesting for several reasons: first, it gives a non-trivial case study in
coalgebra which demonstrates the generality of the approach. Second, it studies coalgebras
in the category of partially ordered sets, respectively in Kleisli categories over this base
category. We use the Birkhoff duality for distributive lattices to show the equivalence of
two Kleisli categories over two monads: the reader monad and the so-called lattice monad.
This result can be of interest, independently of the coalgebraic theory. Third, we introduce
a notion of upgrade into coalgebraic modelling.

The theory of coalgebras [Rut00] allows uniform modelling and reasoning for a variety
of state-based systems. For instance, (non)deterministic finite automata and weighted
automata are classical examples often studied in this context (see [Rut00] for more examples).
Furthermore, coalgebraic modelling comes with the benefit of offering generic algorithms,
capturing the core of algorithms that are similar across different types of automata. In
particular, the final-chain based algorithm [AK95] computes quotients on automata up to a
chosen notion of behavioural equivalence (such as strong bisimilarity or trace equivalence).

A conditional transition system (CTS) [ABH+12, BKKS17] is an extension of a labelled
transition system that is well suited to model software product lines [CN01], an emergent
topic of research in the field of software engineering. In contrast to the commonly used
featured transition systems [CCS+13], CTSs are not primarily concerned with the individual
features of a software product, but mainly with the individual versions that may arise from
the given feature combinations.

In CTSs [BKKS17] transitions are labelled with the elements of a partially ordered set of
conditions (Φ,≤Φ), which can be viewed as software products in the terminology of software
product lines. This gives us a compact representation which merges the transition systems
for many different versions into one single structure. A transition labelled ϕ ∈ Φ can only be
taken in version ϕ. Furthermore, with ϕ′ ≤Φ ϕ we denote that – during execution – version
ϕ can be upgraded to ϕ′.

Intuitively CTSs evolve in two steps: first, a condition ϕ ∈ Φ is chosen at a given state;
second, a transition is fired which is guarded by the chosen condition. Over the course of
the run of a CTS, it can perform an operation called upgrade in which the system changes
from a greater condition ϕ to a smaller condition ϕ′ ≤Φ ϕ. This in turn activates additional
transitions that may be taken in future steps. Originally, CTSs in [ABH+12] were defined
without upgrades, i.e., ≤Φ was fixed to be equality.

CTS have ‘monotonous’ upgrading in the sense that one can only go down on the
hierarchy of conditions, but not up. As a consequence, CTSs have a special notion of
bisimulation consisting of a family of traditional bisimulations ∼ϕ (one for each condition
ϕ ∈ Φ) such that ∼ϕ ⊆ ∼ϕ′ , whenever ϕ′ ≤Φ ϕ. Roughly, two states are behaviourally
equivalent under a condition ϕ if and only if they are bisimilar (in the traditional sense)
for every upgrade ϕ′ ≤Φ ϕ. An interesting fact about a CTS is that there exists an
equivalent model, called lattice transition system (LaTS), which allows for a more compact
representation of a CTS using the lattice of downward closed subsets of Φ (see [BKKS17]
for more details). In essence, this can be viewed as a lifting of the well-known Birkhoff’s
representation theorem to the case of transition systems.

This paper aims at characterising CTS and LaTS coalgebraically. To this end, we define
two monads, the reader monad and the lattice monad, which allow for modelling CTS and
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LaTS respectively – provided a matching functor is chosen – in their corresponding Kleisli
categories. We will show that these two categories are equivalent.

Our next aim is to characterise conditional bisimilarity using the notion of behavioural
equivalence, a concept stemming from the theory of coalgebras. Roughly, two states of a
system (modelled as a coalgebra) are behaviourally equivalent if and only if they are mapped
to a common point by a coalgebra homomorphism.

In this regard, capturing the right notion of behavioural equivalence (conditional bisim-
ilarity in our case) depends on making the right choice of functor modelling CTSs. By
working in a Kleisli category, we are interested in establishing a functor via an extension of a
functor on the base category Poset. The usual powerset functor P proves to be a viable choice
for CTSs without any upgrades, but we will provide a counterexample which shows that
this functor does not yield conditional bisimulation in the presence of upgrades, no matter
how the extension is chosen. However, for an adaptation of the powerset functor, namely
P( × Φ), behavioural equivalence indeed captures conditional bisimilarity in the presence
of upgrades. Our approach is not restricted to the treatment of those two specific functors:
we introduce so-called version filters that add conditions/versions to any Poset functor and
also develop an abstract machinery to capture conditional bisimilarity coalgebraically.

To conclude, we show that the minimisation algorithm based on the final chain construc-
tion plus factorisation structures [ABH+12] is applicable to the category under investigation
and specify how it can be applied to CTSs. CTSs without upgrades have already been
considered in [ABH+12], but applicability to CTSs with upgrades is novel.

This paper is structured as follows: in Section 2 (Preliminaries), we will define coalgebras
with their notion of behavioural equivalence. In the coalgebraic treatment of conditional
transition systems we view the currently chosen software product (also called condition)
ϕ ∈ Φ as a form of side effect and we will work with Kleisli categories for the reader monad
( Φ) in order to capture this phenomenon. Hence, we will derive the reader monad on
Poset (working in Poset is necessary in order to capture upgrades) via the product comonad
in Poset. Furthermore we discuss the (known) relationship between distributive laws and
extensions of a functor to a Kleisli category.

Then, in Section 3 (Conditional and Lattice Transition Systems), we introduce conditional
and lattice transition systems and the associated notion of conditional bisimulation from
[BKKS17]. The duality between these two variants depends on the Birkhoff duality from
lattice theory, which is also reviewed in this section.

While conditional transition systems will be modelled in the Kleisli category for the
reader monad, it is not so obvious in which category lattice transition systems should live.
In order to solve this question we introduce in Section 4 (The Lattice Monad) the lattice
monad, which characterises a monotone function f : Φ → X as a mapping from X into the
downsets of Φ (which form a lattice L). However, simply taking the monad L( ) would not be
equivalent to Φ. Hence we impose suitable restrictions on mappings LX and obtain a monad
isomorphic to the reader monad. As a result, the two corresponding Kleisli categories are
also isomorphic. Not surprisingly, in the case of a finite set Φ of conditions this isomorphism
between the two monads is related to the Birkhoff duality.

In Section 5 (Modelling Conditional Transition Systems as Coalgebras) we (first) model
conditional transition systems, where the upgrade order is discrete, i.e., the corresponding
lattice of downsets is a Boolean algebra. The corresponding coalgebras are Kleisli arrows
of the form X −→ (PX)A in Kl( Φ), where P is the powerset functor and A is the label
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alphabet. (Note that Kleisli arrows are denoted by −→.) In order to be able to define
such coalgebras, we have to extend the functor (P )A (defined on Poset) to Kl( Φ) via a
distributive law. Furthermore we also consider extensions of the functor (P( ×Φ))A, which
is required to capture upgrades. Since distributive laws are easier to derive for the comonad
Φ× , we consider distributive laws in the general setting of monad-comonad adjunctions.
This gives us suitable functor extensions (see Section 5.1).

After suitably extending the functors for both cases (without and with upgrades), we
study coalgebraic behavioural equivalences (see Section 5.2). The aim is to eventually show
that we capture bisimulation for conditional transition systems in a coalgebraic setting. We
go further than that and define conditional bisimulation and congruence for more general
behavioural functors. In particular, we introduce version filters that add conditions (from
Φ) to any Poset functor. Then we can prove general results for so-called upgrade-preserving
coalgebras that allow us to state the main theorem, namely that we correctly characterize
the notion of conditional bisimulation in our abstract setting.

Afterwards, in Section 6 (Computing Behavioural Equivalence), we consider an applica-
tion of this result. In particular, we use a generalized partition refinement algorithm from
[ABH+12] to minimise a given coalgebra and to answer questions concerning behavioural
equivalence based on this minimisation. This minimisation procedure is based on pseudo-
factorisations, i.e., factorisations that are obtained by mapping an arrow into a reflective
subcategory, following by factorisation. We show that we have such a reflective subcategory,
resulting in suitable pseudo-factorisations and that the algorithm can hence be applied. We
work out an example and we compare with the matrix multiplication algorithm in [BKKS17].

Finally, we wrap up the paper and give directions for future work in Section 7 (Conclu-
sion).

2.Preliminaries

We assume a basic knowledge of category theory. The primary objects of interest in this
work are coalgebras, which we use to model conditional transition systems.
Definition 2.1 (Coalgebra). Let H : C → C be an endofunctor on a
category C. Then an H-coalgebra is a pair (X,α), where X is an object
of C and α : X → HX is an arrow in C. An H-coalgebra homomorphism
between two coalgebras (X,α) and (Y, β) is an arrow f : X → Y in C such
that β · f = Hf · α.

X HX

Y HY

α

f Hf

β

The H-coalgebras and their homomorphisms form a category. In the sequel, we drop
the prefix ‘H-’ whenever it is clear from the context.

In the theory of coalgebras, bisimulation [Par81] is captured in more than one way,
namely: coalgebraic bisimulation or via an arrow into any coalgebra (so-called cocongruences).
At this stage, we fix the notion of behavioural equivalence in a category C structured over
the category of sets Set using a concretisation functor U : C → Set.

Definition 2.2 (Behavioural Equivalence). Let F be an endofunctor on a concrete category
C with a faithful functor U : C → Set to the category of sets Set. Then, two states x ∈ UX
and x′ ∈ UX of a coalgebra (X,α) are behaviourally equivalent if there exists a coalgebra
homomorphism f : X → Y such that Uf(x) = Uf(x′).

Example 2.3. In the sequel, we work with the concrete category of partially ordered sets
(a.k.a. posets), denoted Poset, as our base category C. Formally, the objects of Poset are



A COALGEBRAIC TREATMENT OF CONDITIONAL TRANSITION SYSTEMS WITH UPGRADES 5

pairs (X,≤X) of a set X and a partial order ≤X ⊆ X ×X; while its arrows are all the order
preserving functions between any two posets. If the order relation is just the equality, then
we call the poset discrete.

Notation 2.4. A functor F : C → D is left adjoint to a functor U : D → C (or U is right
adjoint to F ), denoted F ⊣ U , when for any two objects X from C and Y from D there is a
natural bijection between morphisms

f : X → UY

g : FX → Y

in the sense that each morphism f (displayed above) uniquely determines a morphism g and
conversely. More formally, F ⊣ U when there exists a family of isomorphisms

ΨX,Y : C(X,UY ) ∼= D(FX, Y )

natural in X and Y . Lastly, given an adjunction F ⊣ U , we note that the unit ρ and the
counit ǫ of this adjunction is given by:

ρX := Ψ−1
X,FX(idFX) and ǫY := ΨUY,Y (idUY )

Recall that a monad on C is a functor T : C → C with natural transformations η : Id → T
(called unit), µ : TT → T (called multiplication) such that µ · Tη = Id = µ · ηT and
µ · Tµ = µ · µT . Dually, a comonad on C is a monad on Cop, i.e. a functor T : C → C with
counit T → Id and comultiplication T → TT fulfilling the corresponding laws.

Proposition 2.5. Given a comonad (L, ϑ, δ) on a category C and a functor T : C → C such
that L ⊣ T with unit and counit ρ and ǫ, respectively. Then, this adjunction induces a monad
structure on T as follows:

LX
ϑX−−→ X

X
ηX−−→ TX

LTTX
δTTX−−−→ LLTTX

LǫTX−−−→ LTX
ǫX−→ X

TTX
µX−−→ TX

For instance, the reader monad is defined in terms of a comonad (see e.g. [PG14,
Example 3.10]).

Definition 2.6 (Reader monad). We have a comonad on ×Φ with counit π1 : X×Φ → X

and comultiplication idX×∆Φ : X×Φ → X×Φ×Φ where ∆Φ is the diagonal ∆Φ : Φ
〈idΦ,idΦ〉
−−−−−→

Φ × Φ. Using × Φ ⊣ Φ with the counit evX : XΦ × Φ → X on Poset, Proposition 2.5
provides a monad structure ( Φ, ν, ζ). Explicitly, we have:

XΦ = (Poset(Φ, X),≤XΦ) (f : X → Y )Φ = Poset(Φ, f) = (C 7→ f · C),

where C ≤XΦ C ′ if ∀ϕ∈Φ C(ϕ) ≤X C ′(ϕ) and

νX(x)(ϕ) = x for x ∈ X,ϕ ∈ Φ ζX(D)(ϕ) = D(ϕ)(ϕ) for D ∈ XΦΦ
, ϕ ∈ Φ.

Notation 2.7. Given an arrow f : X × Φ → Y , f̄ : X → Y Φ denotes its curried version.
Furthermore, given an arrow g : X → Y Φ, ǧ : X × Φ → Y denotes its uncurried version.
Lastly, given a monotone map f : X → Y Φ then we fix one argument ϕ ∈ Φ by writing
fϕ : X → Y defined as fϕ(x) = f(x)(ϕ).

From the seminal work of Moggi [Mog91], it is common to model computations with
side-effects by a monad. Generally, such a computation with side-effects in T is treated as
an arrow in the Kleisli category of T .
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Definition 2.8. Let (T, η, µ) be a monad on C. Then its Kleisli category Kl(T ) has the
same objects as C and the arrows f : X −→ Y in Kl(T ) are the arrows f : X → TY in C.
The identity on X in Kl(T ) is given by ηX : X −→X and the composition of two arrows
f : X −→ Y , g : Y −→ Z in Kl(T ) is given by the following composition in C

g ◦ f :=
(
X TY TTZ TZ

f Tg µZ )
.

Throughout the paper, we reserve ◦ for Kleisli composition, whereas · denotes the composition
in the base category C. The base category sits in Kl(T ) witnessed by the functor I : C → Kl(T )
defined as follows: I(X) = X, for each object X; I(f) = ηY · f , for each arrow f : X → Y in
C. If η has monic components, then this functor is faithful, i.e., C is a subcategory of Kl(T ).
A Kleisli arrow f : X −→ Y is called pure, if f : X → TY factors through ηY : Y → TY in C,
i.e., if there is some arrow f ′ : X → Y with If ′ = f . Inuitively speaking, pure arrows have
no side-effects. The subcategory of pure Kleisli arrows is precisely C. The Kleisli composition
of f : X −→ Y with pure maps boils down to the composition in C:

f ◦ Ip = f · p for p : P → X
Ip ◦ f = Tp · f for p : X → P.

When considering coalgebras on a Kleisli category, one can distinguish the visible effects
of transitions in a system from the side-effects. For instance, when checking the language
equivalence of two states in a nondeterministic automaton, one only cares about the final
states and the consumed input word, but not about the non-deterministic branching.

While determining the behavioural equivalence of interest, the intended observable
effects of a transition are encoded in an endofunctor F on the Kleisli category; whereas,
the side effects are encoded via a monad T . This is motivated by the previous works in
[HJS07, PT99], where behavioural equivalence in Kleisli categories were used to characterise
(trace) language equivalence (rather than bisimulation).

Notwithstanding, the endofunctor F and the monad T of interest are often defined
on the base category. Thus, one needs a mechanism to extend the given functor F as an
endofunctor F̂ on the Kleisli category Kl(T ).

Definition 2.9. An extension of a functor F : C → C to Kl(T ) is a

functor F̂ : Kl(T ) → Kl(T ) such that IF = F̂ I. A distributive law
λ : FT → TF is a natural transformation FT → TF that preserves
the monad structure of T in the obvious way.

Kl(T ) Kl(T )

C C

F̂

I

F

I

We end this section by recalling a standard result on distributive laws from [HJS07, Mul94].

Theorem 2.10. For a functor F : C → C there is a one-to-one correspondence between:

(1) Extensions F̂ : Kl(T ) → Kl(T ) of F .
(2) Distributive law λ : FT → TF for F .

Given an extension, the corresponding distributive law is F̂ (idX : TX−→X) : FTX → TFX
and conversely a a distributive law defines an extension by

F̂ (f : X −→ Y ) =
(
FX

Ff
−−→ FTY

λY−−→ TFY
)
.

Proposition 2.11. Given a monad T whose unit η has monic components, then a functor
F̂ : Kl(T ) → Kl(T ) is an extension of some functor F : C → C iff F̂ preserves pure morphisms.

Proof.
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(⇒) The square of F̂ being an extension of F directly says that F̂ maps any pure morphism
If to the pure morphism IFf .

(⇐) On objects we put FX := F̂X. Let f : X → Y . Then F̂ maps If : X −→Y to the pure

F̂ If : F̂X −→ F̂ Y , so there is some g : FX → FY with Ig = F̂ If . Since η has monic
components, I is faithful and there is a unique such g. Hence we can put Ff := g and
thus have IFf = Ig = F̂ If . Since ηX is monic, idFX is the only morphism g : X → X
with Ig = IidX = ηX . Using the faithfulness of I, F preserves composition.

3.Conditional and lattice transition systems

Here we recall the definitions of a CTS, a LaTS, and conditional bisimilarity from [BKKS17].

Definition 3.1. A conditional transition system (CTS) is a tuple (X,A,Φ, f) consisting of
a set of states X, a set of actions A, a finite set of conditions Φ, and a transition function
f : X ×A→ (PX,⊇)(Φ,≤Φ) that maps every pair (x, a) ∈ X ×A to a monotone function of

type (Φ,≤Φ) → (PX,⊇). We write x
a,ϕ
−−→ x′, whenever x′ ∈ f(x, a)(ϕ). In case |A| = 1, we

omit the action label from a transition.

Intuitively, a CTS evolves as follows: In the beginning, a version of the system ϕ ∈ Φ is
chosen and the CTS is instantiated to the version ϕ as the traditional labelled transition

system that has a transition x
a
−→ x′ if and only if the CTS has a transition x

a,ϕ
−−→ x′. At

any point of the execution of this labelled transition system, an upgrade may be performed,
i.e., a new version ϕ′ with ϕ′ ≤Φ ϕ of the system may be chosen. The system remains in
the state reached up to that point and additional transitions get activated, since now all

transitions x
a,ϕ′

−−→ x′ give rise to a transition x
a
−→ x′. Note that due to the monotonicity of

the transition function f in a CTS, an upgrade will always retain all previous transitions,

but may add additional transitions. Symbolically, if x
a,ϕ
−−→ x′ and ϕ′ ≤Φ ϕ then x

a,ϕ′

−−→ x′.
The notion of behavioural equivalence we are interested in is conditional bisimulation:

Definition 3.2. Let (X,A,Φ, f) be a CTS. Let fϕ(x, a) = f(x, a)(ϕ) (for every ϕ ∈ Φ)
denote the labelled transition system induced upon choosing the condition ϕ. A conditional
bisimulation on the given CTS (X,A,Φ, f) is a family of relations (Rϕ)ϕ∈Φ satisfying the
following conditions:

• Each Rϕ is a traditional bisimulation relation on the LTS fϕ : X ×A→ PX.
• For every ϕ,ϕ′ ∈ Φ we have ϕ′ ≤Φ ϕ =⇒ Rϕ ⊆ Rϕ′ .

For x, y ∈ X we say that x ∼ϕ y if there exists a conditional bisimulation such that xRϕ y.

Originally, CTSs were introduced without a notion of upgrades, these systems can be
reobtained by setting the order ≤Φ on the conditions to be the trivial order.

There is a game characterising conditional bisimulation [BKKS17], in which the upgrades
are chosen by the attacker, whose aim it is to show that two states are not bisimilar. This
also explains Definition 3.2, where we require that Rϕ ⊆ Rϕ′ whenever ϕ′ ≤Φ ϕ. This means
that the defender still has a winning strategy after the attacker chooses to make an upgrade.

To get a better feeling of CTSs, consider the following example:

Example 3.3. Consider a CTS (X, {a},Φ, f) as depicted below, whereX = {x, y, z, x′, y′, z′}
and Φ = {ϕ′, ϕ} with ϕ′ ≤Φ ϕ. Since the set of actions is singleton, we leave out the action
labels in the visual representation.
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x

z

y

x′

z′

y′
ϕ,ϕ′

ϕ,ϕ′

ϕ′

ϕ′

ϕ,ϕ′

ϕ′

We will now detail how the above behavioural description can be represented by a transition
function. For instance, the equation f(x, a)(ϕ) = {y, z} specifies that the system under the
condition ϕ may move nondeterministically from the state x to y or z, additionally, it can
also upgrade to the condition ϕ′.

x

z

y

x′

z′

y′

Rϕ
x

z

y

x′

z′

y′

Rϕ′

Consider the labelled transition systems fϕ and fϕ′ as depicted above in the left and
right, respectively. Notice that the states x and x′ are bisimilar in both the instantiations
with the relations Rϕ and Rϕ′ depicted as dotted lines. However, we find that x and x′

are not conditionally bisimilar, because y Rϕ z
′, but (y, z′) 6∈ Rϕ′ and there is no other

conditional bisimulation relating x, x′. Moreover, the states y and z′ in the instantiation ϕ′

can never be related by any bisimulation.
The corresponding strategy for the attacker is as follows: start with condition ϕ and

make a move from x to y. The defender is then forced to take the transition from x′ to z′.
Then the attacker can upgrade to ϕ′ and make a move, starting from y, which the defender
can not mimic in z′.

Next, we recall an equivalent, but more compact representation of a CTS which we
call lattice transition system (LaTS). In [BKKS17] we showed that behavioural equivalence
checks can be performed more efficiently in the lattice setting, by encoding lattice elements
into binary decision diagrams.

Definition 3.4 (Complete Lattice, Frame). A poset (L,≤L) is a join-complete lattice if for
any subset L ⊆ L the supremum

⊔
L and for any finite subset L ⊆ L, the infimum

d
L

exist.
A frame (see e.g. [MLM92]) is a join-complete lattice satisfying the join-infinite dis-

tributive law:
ℓ ⊓

⊔
L =

⊔
{ℓ ⊓ ℓ′ | ℓ′ ∈ L}, (for any L ⊆ L). (JID)

Definition 3.5. A lattice transition system (LaTS) over a finite frame L is a tuple (X,A,L, f)
consisting of a set of states X, a set of actions A, and a transition function f : X×A×X → L.

Even though the frame of a LaTS is required to be finite, and thus is nothing but a
finite lattice, the results in the following Section 4 hold for arbitrary frames.
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Remark 3.6. LaTS can also serve as an explanation why in a CTS, upgrading means going
downwards in the partial order. One special case of LaTS arises when choosing L as the
binary Boolean algebra, yielding standard LTS. Using the order and Birkhoff duality as we
have done here, the matrix representation of a LaTS over {0, 1} has the same interpretation
as the standard way of writing LTS, i.e., a 1 indicates that a transition is possible, whereas
a 0 indicates that no transition is possible. If one were to turn the order around, such that
an upgrade means going up in the order, this correspondence gets turned around as well. So
in this sense, when LaTS are considered as generalisations of LTS, it is more natural to go
down in the order to upgrade, rather than to go up.

Definition 3.7. Given a poset Φ, then a subset Φ′ ⊆ Φ is downward closed if

for all ϕ ∈ Φ′ and ψ ≤ ϕ, we have ψ ∈ Φ′.

Given a lattice L with arbitrary joins, ℓ ∈ L is called (complete) join irreducible if ℓ =
⊔
L

for L ⊆ L implies ℓ ∈ L.

Notation 3.8. We write O(Φ) and J (L) to denote the set of downward closed subsets of
Φ and the set of join irreducible elements of L, respectively.

As worked out in [BKKS17], a CTS (X,A,Φ, f) corresponds to a LaTS (X,A,L, g)
where L = O(Φ) and g : X × A ×X → L with g(x, a, x′) = {ϕ ∈ Φ | x′ ∈ f(x, a)(ϕ)} for
x, x′ ∈ X, a ∈ A. Similarly, a LaTS can be converted into a CTS by using the Birkhoff
duality and by taking the join irreducibles as conditions.

Remark 3.9. O can be defined equivalently as the contravariant hom functor O :=
Poset( ,2) : Posetop → Frames, where 2 is the poset/lattice on {0, 1} with 0 ≤ 1. Similarly,
J is the contravariant hom functor Frames( ,2) : Frames

op → Poset. Taking the respective
subcategories of finite posets, resp. frames, the functors O and J form an equivalence of
categories, known as Birkhoff’s theorem:

Theorem 3.10 (Birkhoff’s representation theorem, [DP02, 5.12],[Bir37]). Let L be a finite
frame, then (L,⊔,⊓) ∼= (O(J (L)),∪,∩) via the isomorphism η : L → O(J (L)), defined as
η(ℓ) = {ℓ′ ∈ J (L) | ℓ′ ⊑ ℓ}. Furthermore, given a finite poset (Φ,≤Φ), the downward-closed
subsets of Φ, (O(Φ),∪,∩) form a frame, with inclusion (⊆) as the partial order. The
irreducibles of this frame are all sets of the form ↓ϕ = {ϕ′ | ϕ′ ≤Φ ϕ} for ϕ ∈ Φ.

Going from L to the isomorphic O(J (L)), each frame element ℓ ∈ L is mapped to the
set of all irreducible elements that are smaller than ℓ, i.e. {ℓ′ ∈ J (L) | ℓ′ ⊑ ℓ}.

Consequently, a LaTS evolves just like a CTS for Φ := J (L). At a state and in a
version ℓ ∈ J (L), all the transitions that carry a label of at least ℓ remain active, whereas
all other transitions are deactivated. At any point of the execution, an upgrade to a smaller
join-irreducible element ℓ′ may be performed, activating additional transitions accordingly.
A CTS and a LaTS can be transformed into one another by going from the lattice to its
dual partial order and vice-versa (see Section 4). More instructively, the CTS defined in
Example 3.3 can be turned into a LaTS by simply writing the conditions inside curly braces
and considering those as elements of O(Φ).

A benefit of LaTS over CTS is that now bisimulation can be stated in more traditional
terms. In addition, this view is also helpful in computing the largest conditional bisimilarity
via matrix multiplication (see [BKKS17] for more details).
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Definition 3.11. Let (X,A,L, f) be a LaTS and let J (L) denote the set of all join-
irreducible elements of L. A function R : X ×X → L is a lattice bisimulation if and only if
the following transfer properties are satisfied.

(1) For all x, x′, y ∈ X a ∈ A, ℓ ∈ J (L) whenever x
a,ℓ
−→ x′ and ℓ ≤L R(x, y), there exists

y′ ∈ X such that y
a,ℓ
−→ y′ and ℓ ≤L R(x

′, y′).
(2) Symmetric to (1) with the roles of x and y interchanged.

Here, we write x
a,ℓ
−→ x′, whenever ℓ ≤L f(x, a, x

′).

Theorem 3.12 [BKKS17]. Two states are conditionally bisimilar under condition ϕ if and
only if they are related by a lattice bisimulation R with ϕ ∈ R(x, y).

4.The Lattice Monad

When modelling a LaTS as a coalgebra in the Kleisli category of a monad, the choice of monad
is not obvious. One could try to simply use the monad mapping sets to arbitrary lattice-
valued functions defined on objects as TX = LX and on arrows as Tf(b)(y) =

⊔
f(x)≤Y y

b(x),

however, this would not be equivalent to the reader monad. Given a monotone function
f : Φ → X, one would like to define a corresponding mapping f̄ : X → L with L = O(Φ) and
f̄(x) =

⊔
{ϕ ∈ Φ | f(ϕ) ≤ x}. However, this does not result in a bijection, since some arrows

f̄ : X → L do not represent a monotone function f : Φ → X. Hence, we start by imposing
restrictions on mappings LX and defining a suitable endofunctor in our base category Poset.

Throughout this section, we consider L to be an arbitrary frame.

Definition 4.1. For an ordered set (X,≤X), define the poset TX = (X → L)∗ ⊆ Poset(X,L)
as the subset containing all those monotone maps b : X → L such that for any join-irreducible
element ℓ ∈ J (L), the minimum of {x | ℓ ≤L b(x)} exists. This means:

∃x∈X ℓ ≤L b(x) ∧ ∀x′∈X
(
ℓ ≤L b(x

′) =⇒ x ≤X x′
)
. (4.1)

For functions b, c ∈ (X → L)∗ we let

b ≤TX c ⇐⇒ ∀x∈X b(x) ≥L c(x).

Before stating T as a functor, we canonically relate the function spaces (X → L)∗ and XJ (L).

Lemma 4.2. For each X in Poset, we have a monotone τX : (X → L)∗ → XJ (L) defined by

τX(b)(ℓ) = min{x ∈ X | ℓ ≤L b(x)}. (4.2)

Proof. Given b ∈ (X → L)∗ and ℓ ∈ J (L), the minimum τX(b)(ℓ) exists.

• Since the minimum is unique if it exists, τX(b) is a map.
• The map τX(b) : J (L) → X is monotone, because for ℓ1 ≤L ℓ2 ∈ J (L) with x1 :=
τX(b)(ℓ1), and x2 := τX(b)(ℓ2) we have ℓ1 ≤L ℓ2 ≤L b(x2) and thus x1 ≤ x2 by (4.1) (for
x = x1, x

′ = x2).
• The map τX is monotone in b ∈ (X → L)∗, because for b ≤TX c and ℓ ∈ L we have:

∀x∈X b(x) ≥L c(x)
=⇒ {x ∈ X | ℓ ≤L b(x)} ⊇ {x ∈ X | ℓ ≤L c(x)}
=⇒ min{x ∈ X | ℓ ≤L c(x)} ≤X min{x ∈ X | ℓ ≤L b(x)}
=⇒ τX(c)(ℓ) ≤X τX(b)(ℓ)
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Lemma 4.3. We have an adjunction-style situation with b and τX(b), namely

τX(b)(ℓ) ≤X x iff ℓ ≤L b(x) for all x ∈ X, ℓ ∈ J (L) (4.3)

Proof. The direction ⇒ holds because by definition of τ , ℓ ≤L b(τX(b)(ℓ)) and so ℓ ≤ b(x)
by monotonicity of b. For ⇐, recall that τX(b)(ℓ) is the least element in X with ℓ ≤L b(x).

This correspondence is not a proper adjunction (or in Poset equivalently a Galois
connection), because τX(b) is only defined for ℓ ∈ J (L) and not for all elements of L.

Lemma 4.4. τX is an isomorphism; its inverse τ−1
X : XJ (L) → (X → L)∗ is given by

τ−1
X (B)(x) =

⊔
{ℓ ∈ J (L) | B(ℓ) ≤X x}

and for B : J (L) → X,

ℓ ≤L τ
−1
X (B)(x) iff B(ℓ) ≤X x for all x ∈ X, ℓ ∈ J (L). (4.4)

Proof.

• First of all τ−1
X (B) : X → L is a monotone map, because if x ≤X x′, then

τ−1
X (B)(x) =

⊔
{ℓ ∈ J (L) | B(ℓ) ≤ x} ≤L

⊔
{ℓ ∈ J (L) | B(ℓ) ≤ x′} = τ−1

X (B)(x′).

• For B : J (L) → X, we have (4.4) for all ℓ ∈ J (L) and x ∈ X, because:

ℓ ≤L τ
−1
X (B)(x) ⇐⇒ ℓ ≤L

⊔
{ℓ′ ∈ J (L) | B(ℓ′) ≤X x}

⇐⇒ ℓ = ℓ ⊓
⊔
{ℓ′ ∈ J (L) | B(ℓ′) ≤X x}

JID
⇐⇒ ℓ =

⊔
{ℓ ⊓ ℓ′ | ℓ′ ∈ J (L), B(ℓ′) ≤X x}

ℓ∈J (L)
⇐⇒ ℓ ∈ {ℓ ⊓ ℓ′ | ℓ′ ∈ J (L), B(ℓ′) ≤X x}
⇐⇒ ∃ℓ′∈J (L) ℓ = ℓ ⊓ ℓ′ and B(ℓ′) ≤X x
⇐⇒ ∃ℓ′∈J (L) ℓ ≤L ℓ

′ and B(ℓ′) ≤X x
B monotone

⇐⇒ B(ℓ) ≤ x

• τ−1 is monotone in B, because for any B ≤ C and x ∈ X

∀ℓ∈L B(ℓ) ≤X C(ℓ)
=⇒ {ℓ ∈ J (L) | B(ℓ) ≤X x} ⊇ {ℓ ∈ J (L) | C(ℓ) ≤X x}
=⇒

⊔
{ℓ ∈ J (L) | B(ℓ) ≤X x} ≥L

⊔
{ℓ ∈ J (L) | C(ℓ) ≤X x}

=⇒ τ−1
X (B)(x) ≥L τ−1

X (C)(x)

and so τ−1
X (B) ≤TX τ−1

X (C).

• For B : J (L) → X, b := τ−1
X (B), and ℓ ∈ J (L) the witness for (4.1) is B(ℓ) ∈ X:

min{x ∈ X | ℓ ≤L b(x)}
(4.4)
= min{x ∈ X | B(ℓ) ≤X x} = B(ℓ) (4.5)

So B(ℓ) is the desired witness for (4.1).
• We have τX(τ

−1
X (B)) = B by (4.5).

• For the converse, if b ∈ (X → L)∗ then we have for all x ∈ X:

τ−1
X (τX(b))(x) =

⊔
{ℓ ∈ J (L) | τX(b)(ℓ) ≤X x}

(4.3)
=

⊔
{ℓ ∈ J (L) | ℓ ≤L b(x)} = b(x)
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So we now have an object mapping T : objPoset → objPoset and a family of isomor-
phisms τX : TX ∼= XJ (L). Since J (L) is already a functor, this induces a mapping on
monotone maps for T :

Definition 4.5. Define T on monotone maps f : X → Y by

Tf(b) := τ−1
Y · fJ (L) · τX(b) for b ∈ (X → L)∗

making T a functor.

(X → L)∗ XJL

(Y → L)∗ Y JL

τX

Tf := fJL

τY

τ−1
Y

Remark 4.6. Using that J (L) is a functor, T automatically preserves identities and
composition. So by definition, T : Poset → Poset is a functor and τ : T → J (L) is a natural
isomorphism.

Proposition 4.7. For f : X → Y , b ∈ (X → L)∗, y ∈ Y we have

Tf(b)(y) =
⊔

f(x)≤Y y

b(x)

Proof.

Tf(b)(y) =
(
(τ−1
Y · fJ (L) · τX)(b)

)
(y) =

⊔
{ℓ ∈ J (L) |

((fJ (L)·τX)(b))(ℓ)︷ ︸︸ ︷
f(τX(b)(ℓ)) ≤ y}

f monotone
=

⊔
{ℓ ∈ J (L) | x ∈ X, τX(b)(ℓ) ≤ x, f(x) ≤ y}

(4.3)
=

⊔
{ℓ ∈ J (L) | x ∈ X, ℓ ≤ b(x), f(x) ≤ y}

⊔ associative
=

⊔{⊔
{ℓ ∈ J (L) | ℓ ≤ b(x)} | x ∈ X, f(x) ≤ y

}

=
⊔{

b(x) | x ∈ X, f(x) ≤ y
}

Using the same pattern as in Definition 4.5, T carries a canonical monad structure:

Definition 4.8. Define the monad structure η : Id → T , µ : TT → T on T : Poset → Poset

by

X

TX XJ (L)

νX

ηX :=

τX

τ−1
X

TTX (XJ (L))J (L)

TX XJ (L)

µX :=

(τ∗τ)X

ζX

τX

τ−1
X

Here τ ∗ τ : TT → ( J (L))J (L) is the Godement product (or star product, or horizontal

composition), defined by (τ ∗ τ)X := (τX)
J (L) · τTX = τXJ (L) · TτX (naturally equivalent).

Again trivially, η and µ are natural transformations because τ , ν, and ζ are, and
furthermore fulfill the monad laws, because ν and ζ do. By definition, τ is a monad
isomorphism.

Proposition 4.9. Explicitly speaking, the monad structure on T is defined as follows:

ηX(x)(x
′) =

{
⊤ if x ≤ x′

⊥ otherwise

µX(h)(x) =
⊔

b∈(X→L)∗

(h(b) ⊓ b(x)), where h ∈ ((X → L)∗ → L)∗.
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Proof. For the unit ηX : X → (X → L)∗ and x, x′ ∈ X we have directly:

ηX(x)(x
′) = (τ−1

X · νX(x))(x
′) =

⊔
{ℓ ∈ J (L) | νX(x)(ℓ) ≤ x′} =

⊔
{ℓ ∈ J (L) | x ≤ x′}

=

{⊔
ℓ∈J (L) ℓ if x ≤ x′⊔
∅ otherwise

=

{
⊤ if x ≤ x′

⊥ otherwise

Before characterising µ, we first prove that for all h ∈ ((X → L)∗ → L)∗ and x ∈ X,

ℓ ≤L

⊔

b∈(X→L)∗

h(b) ⊓ b(x) ⇐⇒ ℓ ≤L τTX(h)(ℓ)(x) for all ℓ ∈ J (L). (4.6)

(⇒) Note that for any L ⊆ L, if ℓ ≤L

⊔
L, then ℓ = ℓ ⊓

⊔
L =

⊔
ℓ′∈L ℓ ⊓ ℓ

′ (using JID), and
since ℓ is join-irreducible, there is some ℓ′ ∈ L with ℓ ≤L ℓ′. Hence for the current
assumption, there is some b ∈ (X → L)∗ with ℓ ≤L h(b) ⊓ b(x). Since in particular
ℓ ≤L h(b), we have τTX(h)(ℓ) ≤TX b by (4.3) and finally ℓ ≤L b(x) ≤L τTX(h)(ℓ)(x) by
the definition of ≤TX .

(⇐) For b := τTX(h)(ℓ) = min{c ∈ TX | ℓ ≤L h(c)} we have ℓ ≤L h(b) by the definition of τ
and ℓ ≤L b(x) by the current assumption; hence ℓ ≤L h(b) ⊓ b(x).

Now for h ∈ TTX, x ∈ X, µX : ((X → L)∗ → L)∗ → (X → L)∗ is characterised as desired:

(µX(h))(x) =
(
(τ−1
X · ζX · (τ ∗ τ)X)(h)

)
(x)

=
(
(τ−1
X · ζX · τ

J (L)
X · τTX)(h)

)
(x)

Def
=

⊔
{ℓ ∈ J (L) |

(
(ζX · τ

J (L)
X · τTX)(h)

)
(ℓ) ≤X x}

=
⊔
{ℓ ∈ J (L) | τX(τTX(h)(ℓ)︸ ︷︷ ︸

∈TX

)(ℓ) ≤X x}

(4.3)
=

⊔
{ℓ ∈ J (L) | ℓ ≤L τTX(h)(ℓ)(x)}

(4.6)
=

⊔
{ℓ ∈ J (L) | ℓ ≤L

⊔

b∈TX

(h(b) ⊓ b(x))} =
⊔

b∈(X→L)∗

(h(b) ⊓ b(x)).

It is a standard exercise to see that there is a one-to-one correspondence between monad
morphisms and functors between their Kleisli categories [Mog89, Prop. 4.0.10]. So τ induces

an isomorphism between categories Kl(T )
∼=
−→ Kl( J (L)), defined as

(f : X → TY ) 7→ (τX · f : X → Y Φ).

Now when fixing a finite partially ordered set Φ and putting L := O(Φ), Birkhoff’s theorem

(cf. Theorem 3.10) provides Φ ∼= J (L) and so T ∼= J (L) ∼= Φ.

5.Modelling Conditional Transition Systems as Coalgebras

Recall that once a condition is fixed by a CTS then it behaves like a traditional transition
system (until another upgrade). Thus, it is natural to consider the powerset functor to
model the set of successor states when the upgrade order is discrete. This way of modelling
CTS adapts the approach in [ABH+12], where the set of actions A was fixed to be singleton.

Definition 5.1. The powerset functor P on Poset maps posets (X,≤) to (PX,⊆), the
subsets of X ordered by inclusion. For f : X → Y , Pf(S) = f [S] is the forward image.
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Remark 5.2. In other words, P on Poset is the composition of the forgetful functor Poset →

Set with the ordinary powerset Set → Poset. Sometimes, the dual functor D : Poset
∼=
→ Poset

is required which sends each poset (X,≤X) to its dual (X,≥X). Then, the composition
DP(X,≤X) contains the subsets of X ordered by inverse inclusion.

Next, we define two functors H : Poset → Poset – based on P – for modelling CTS as
coalgebras for the extension of H to the Kleisli category Kl( Φ). The first one closely follows
the concrete Definition 3.1 with the reversed inclusion order. However, it turns out that this
functor can not be extended to the Kleisli category for non-discrete Φ (cf. Example 5.8).
Hence, we also consider a second functor, which not only records all the successors for a
given condition ϕ, but also all possible successors for conditions ϕ′ ≤ ϕ via pairs of the form
(x, ϕ). In order to faithfully model CTSs, we here need to consider the usual inclusion order
(if a condition is larger we have more potential upgrades).

Remark 5.3. A CTS (X,A,Φ, f) defines the following Kleisli morphisms:

(1) Considering the sets X and A as discrete posets (X,=) and (A,=), the map f : X×A→
Poset(Φ,DPX) is a morphism

f : X ×A −→ (DPX)Φ in Poset.

Up to exponential laws, this corresponds to

α : X −→ ((DPX)A)Φ in Poset,

in other words a Kleisli morphism

α : X −→ (DPX)A in Kl( Φ).

However, this is not necessarily a coalgebra, since we do not have an endofunctor
on Kl( Φ) yet. In the following, an extension of DP( )A is provided for discrete Φ.
Furthermore, it is shown that there is no meaningful extension for non-discrete Φ. For
discrete Φ, the order does not make a difference, so we can model CTS as P-coalgebras

α : X −→ (PX)A in Kl( Φ) for discrete Φ. (5.1)

(2) Another way is to encode the possible upgrades explicitly in the morphism. Therefore,
define the monotone map α : X → (P(X × Φ)A)Φ directly by

α(x)(ϕ)(a) = {(x′, ϕ′) | x
a,ϕ′

−−→ x′ ∧ ϕ′ ≤ ϕ}. (5.2)

By the discreteness of X and A, α is trivially monotone in x and a. For ψ ≤ ϕ,

(x′, ϕ′) ∈ α(x)(ψ)(a) ⇒ x
a,ϕ′

−−→ x′ and ϕ′ ≤ ψ

⇒ x
a,ϕ′

−−→ x′ and ϕ′ ≤ ϕ⇒ (x′, ϕ′) ∈ α(x)(ϕ)(a)

so α is monotone in ϕ. As for the previous functor, we can read (5.2) as a Kleisli arrow

α : X −→P(X × Φ)A

which is a coalgebra as soon as an extension of P( × Φ)A to Kl( Φ) is provided.
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5.1.Functor Extensions. Independently from Poset, functor extensions to the Kleisli
category of the reader monad are of special shape: it is just a tensorial strength fixing of
one parameter that fulfills two axioms. Actually, we state our characterisation in an even
higher generality by recognising that the monad structure on an endofunctor T is induced
by a comonad L when L ⊣ T (cf. Proposition 2.5). This characterisation is afterwards used
to extend the two functors for CTS to Kl( Φ).

Lemma 5.4. Recall from Proposition 2.5 that a comonad (L, ϑ, δ) induces a monad (T, η, µ)
when L ⊣ T with the unit and the counit of adjunctions as ρ and ǫ, respectively. Then, there
is a one-to-one correspondence between distributive laws λ : HT → TH and comonad-over-
functor distributive laws Λ: LH → HL.

Proof. The Kleisli category Kl(T ) is isomorphic to the co-Kleisli category coKl(L) of L:

Kl(T )(X,Y ) ∼= C(X,TY ) ∼= C(LX, Y ) ∼= coKl(T )(X,Y )

So we have a one to one correspondence between extensions Ĥ of H to Kl(T ) and extensions

H̃ of H to coKl(L):

Kl(T ) Kl(T )

C C

Ĥ

I

H

I
⇐⇒

coKl(L) coKl(L)

C C

H̃

Ĩ

H

Ĩ

where Ĩ(f : X → Y ) = f · ϑ : LX → Y is just the uncurrying of I(f). Recall from

Theorem 2.10 that such extensions Ĥ are in one-to-one correspondence to distributive laws
of H over the monad T , and dually are such extensions H̃ in one-to-one correspondence to
distributive laws Λ: LH → HL.

Remark 5.5. Concretely, Λ defines a distributive law λ by composition

λX :≡
(
HTX

Λ̄TX−−−→ THLTX
THǫX−−−−→ THX

)
.

The functor extension Ĥ : Kl(T ) → Kl(T ) is then defined as follows, for an f : X −→ Y and
its corresponding f̌ : LX → Y :

Ĥ(f : X −→ Y ) :≡
(
HX

Λ̄X−−→ THLX
THf̌
−−−→ THY

)
(5.3)

We can now apply this to the comonad × Φ and the monad Φ on Poset.

Definition 5.6. For a discrete poset Φ, the tensorial strength of P on Set defines a family
of monotone maps:

pX : PX × Φ → P(X × Φ), pX(C,ϕ) := {(x, ϕ) | x ∈ C}.

By the naturality in Set, p is a natural transformation in Poset. And since Φ is discrete, p is
monotone in Φ.

Lemma 5.7. The above p is a distributive law of the comonad × Φ over P.
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Proof. Using the axioms of the strength sX,Y of P : Set → Set, the following diagrams in
Set prove that pX = tX,Φ is a distributive law:

PX × Φ P(X × Φ)

PX × 1 PX × 1

PX

sX,Φ

PX×!
π1

naturality P(X×!)
Pπ1sX,1

∼=
strength

∼=

PX × Φ P(X × Φ)

PX × Φ× Φ P(X × Φ× Φ)

P(X × Φ)× Φ

sX,Φ

PX×∆Φ naturality P(X×∆Φ)
sX,Φ×Φ

sX,Φ×Φ
strength

sX×Φ,Φ

Now to model CTS with action labels (the case when |A| > 1) we use a distributive law
between the functor A and Φ. Recall from [AHS90, Prop 27.8(1)], that any cartesian closed
category has the power law ( Φ)A ∼= ( A)Φ. Any natural isomorphism is a distributive law,
and so is ι : ( Φ)A → ( A)Φ.

We have now completely defined the functor P̂A on the Kleisli category. A Kleisli arrow
f : X −→ Y , i.e., f : X → Y Φ is mapped to the Kleisli arrow

(PX)A
(Pf)A

−→ P(Y Φ)Φ
λAY−→ ((PY )Φ)A

ιPY−→ ((PY )A)Φ.

As a result, the Kleisli arrow α : X −→P(X)A (5.1) induced by a CTS is indeed a coalgebra
on Kl( Φ) for discrete Φ.

In the case of a non-discrete Φ, the above p̄ is not defined since pX is not necessarily
order preserving (even for discrete poset X). But, more generally, it is not possible to extend
P to Kl( Φ) with the right notion of behavioural equivalence.

Example 5.8. Consider the set of conditions Φ = {ϕ,ϕ′} with ϕ′ ≤ ϕ and a singleton set
of actions A = {∗}. Define the CTS α : X → (DPX)Φ on the discrete X = {x1, x2}

x1α : x2 ϕ′

in equations, α(x2)(ϕ
′) = {x2} and ∅ elsewhere. Then for any extension D̂P : Kl( Φ) →

Kl( Φ) of DP , x1 and x2 are identified in ϕ by a D̂P-coalgebra homomorphism, even though
they are not conditionally bisimilar in ϕ.

Proof. Note that x1 and x2 are not bisimilar under ϕ′, because x1 can do a step whereas
x2 can not. So there is no bisimulation Rϕ′ relating x1 and x2 in ϕ′. Consequently, there
is no conditional bisimulation with (x1, x2) ∈ Rϕ, since Rϕ ⊆ Rϕ′ . However, we can

identify x1 and x2 in ϕ by a D̂P-coalgebra homomorphism h : (X,α) −→ (Y, β), where
Y = {y1, y2}, y2 ≤ y1 and where β will be defined afterwards:

h(x1)(ϕ
′) = h(x1)(ϕ) = h(x2)(ϕ) = y1 h(x2)(ϕ

′) = y2

Since y1 ≥ y2, h is monotone. Having h, we can define β:

β(y1)(ϕ
′) = β(y1)(ϕ) = β(y2)(ϕ) = ∅

β(y2)(ϕ
′) = (D̂Ph ◦ α)(x2)(ϕ

′) = D̂Ph(α(x2)(ϕ
′))(ϕ′)

Monotonicity of β holds in both arguments:

ϕ′ ≤ ϕ =⇒ β(y2)(ϕ
′) ⊇ β(y2)(ϕ) = ∅

y2 ≤ y1 =⇒ β(y2)(ϕ
′) ⊇ β(y1)(ϕ

′) = ∅
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It remains to show that h is a coalgebra homomorphism. Recall that in terms of the

corresponding distributive law λ, D̂Ph is defined as

D̂Ph ≡ DPX
DPh
−−−→ DP(Y Φ)

λY−−→ DPY Φ.

We know that DPh(∅) = ∅, and since λ preserves the unit νY ,

λY (∅) = λY (DPνY (∅)) = νDPY (∅)

and so we have in total that D̂Ph(∅) = νPY (∅). Hence, h is indeed a homomorphism:

x1 ∅

y1 ∅

αψ

hψ (D̂Ph)ψ

βψ

for all ψ ∈ Φ

x2 ∅

y1 ∅

αϕ

hϕ (D̂Ph)ϕ

βϕ

x2 α(x2)(ϕ
′)

y2 (P̂h ◦ α)(x2)(ϕ
′)

αϕ′

hϕ′ (D̂Ph)ϕ′

βϕ′

Hence another functor, namely V = P( × Φ), is necessary to model upgrades:

Proposition 5.9. The Poset-functor P( × Φ) extends to Kl( Φ) using the comonad dis-
tributive law:

ΛX : P(X × Φ)× Φ
π1−→ P(X × Φ)

P(idX×∆Φ)
−−−−−−−→ P(X × Φ× Φ) (5.4)

The corresponding distributive law by Lemma 5.4 is

λX : P(XΦ × Φ)
P〈evX ,π2〉
−−−−−−→ P(X × Φ)

νP(...)
−−−−→ P(X × Φ)Φ

Proof. The counit π1 of × Φ is preserved by Λ, i.e. P(π1 × Φ) · Λ = π1, because

P(π1 × Φ) · P(idX ×∆Φ) = P(idX × idΦ)

The comultiplication δX = X ×∆Φ of ×Φ is preserved because ΛX = P(δX) ·π1: of course
P(δX×Φ) · P(δX) = P(δX × Φ) · P(δX), and precomposing this with π1 and using naturality
we have that Λ preserves δ.

Moreover, this extension can be composed with ( Φ)A ∼= ( A)Φ to obtain an extension
of P( × Φ)A. So α : X −→P(X × Φ)A from (5.2) indeed defines a coalgebra on Kl( Φ).

Remark 5.10. The Kl( Φ)-extension V̂ of the Poset-functor P( × Φ)A has the explicit

form: for an arrow f : X → Y in Kl( Φ), V̂f : (P(X × Φ))A → (P(Y × Φ))A is a function

V̂f : (P(X × Φ))A → ((P(Y × Φ))A)Φ, where

V̂f(p)(ϕ)(a) = {(f(x)(ϕ′), ϕ′) | (x, ϕ′) ∈ p(a)},

for all p ∈ (P(X × Φ))A, ϕ ∈ Φ and a ∈ A.
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5.2.Coalgebraic Behavioural Equivalence. Having defined coalgebras of interests on
the Kleisli category Kl( Φ), our next motive is to characterise conditional bisimilarity using
the notion of behavioural equivalence in Kl( Φ). To this end, we first define a coalgebraic
generalisation of conditional bismilarity (Definition 3.2), requiring additional structure on
a general functor H : Poset → Poset, and then prove that this notion coincides with the
coalgebraic behavioural equivalence of coalgebras on Kl( Φ).

Definition 5.11 (constant map). For a poset X, there is a unique monotone map ! : X → 1,
the final morphism. Also note that for any element x ∈ X, one has a monotone map
x : 1 → X, mapping the only element in 1 to x ∈ X. The composition of the above two
maps x! : X → X is the constant map sending any element of X to x.

Remark 5.12. Recall that a family of morphisms (fi : Y → Zi)i∈I is jointly monic, if for
morphisms g, h : X → Y with fi · g = fi · h for all i ∈ I we have g = h. If the category has
products, such a family is jointly monic iff 〈fi〉i∈I : Y →

∏
i∈I Zi is monic. For instance, the

limit projections form a jointly-monic family.

For a Kleisli arrow f : X −→ Y and a condition ϕ ∈ Φ, recall the notation fϕ : X →
Y, fϕ(x) = f(x)(ϕ). This simplifies Kleisli composition in the following arguments because

(g ◦ f)ϕ = gϕ · fϕ for any f : X −→ Y, g : Y −→ Z.

Definition 5.13. For a functor H : Poset → Poset with an extension Ĥ : Kl( Φ) → Kl( Φ),

a version filter is a Φ-indexed family of natural transformations (|ϕ : Ĥ −→ Ĥ)ϕ∈Φ such that
for every ϕ ∈ Φ the following restriction holds:

ĤX
ĤX Ĥ(X × Φ)

ĤX

ĤidX×(ϕ!)|ϕX

|ϕX ĤidX×idΦ

and
(
(|ψX)ϕ : HX → HX

)
ψ∈Φ

jointly monic. (5.5)

Recall that idX × idΦ : X −→X × Φ is just the curried version of idX × idΦ.
However, it should be noted that |ϕ is not required to be monotone in ϕ. In the second

of our main examples, |ϕ is neither monotone nor antitone in ϕ.

Intuitively, the first part of (5.5) says that each map |ϕX filters those elements from ĤX
that are associated with the version ϕ ∈ Φ. For instance, C ∈ P(X × Φ) can contain tuples
(x, ψ) holding an arbitrary versions ψ ∈ Φ, but after filtering by |ϕX : P(X ×Φ)−→P(X ×Φ)
only those terms with ψ = ϕ remain. The second part of (5.5) expresses that each set of
behaviours b ∈ HX is fully determined by the restrictions to all possible versions. Here, it

is not enough to require that the (|ψX)ψ∈Φ are jointly monic in Kl( Φ), because there are

monos m : X −→ Y in Kl( Φ) and ϕ ∈ Φ s.t. mϕ is not monic.1

Proposition 5.14. For an extension Ĥ : Kl(T ) → Kl(T ) of H, a family of morphisms

ρX : HX → THX is a natural transformation ρ : Ĥ −→ Ĥ iff ρX is natural in X with:

HTX HTX

HX HX

ρTX

ĤidTX ĤidTX
ρX

in Kl(T ) (5.6)

1For instance for Φ = {ϕ′ ≤ ϕ}, m : 2−→ 2⊥ is monic, where 2 = {0, 1} is discrete and 2⊥ = {0, 1,⊥}
is 2 with a bottom element; define mϕ = id2, mϕ′ = ⊥!.
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where idTX is considered as idTX : TX −→X.

Note that ĤidTX : HTX → THX is the corresponding distributive law w.r.t. Theorem 2.10.

Proof.

(⇒) Assume ρX : ĤX −→ ĤX is natural in X. Then (5.6) is just the naturality square for

idTX : TX −→X. For any pure f : X → Y , the extension Ĥ ensures ĤIf = IHf , and
so we have

THf · ρX = IHf ◦ ρX = ρY ◦ IHf = ρY ·Hf,

i.e. ρX : HX → THX is natural in X.

(⇐) For f : X −→ Y , Ĥf can be rewritten as

Ĥf = Ĥ(idTY · f) = Ĥ(idTY ◦ If) = ĤidTY ◦ ĤIf = ĤidTY ◦ IHf

Using that ρX : HX → THX is natural in X, we have

ρY ◦ Ĥf = ρY ◦ ĤidTY ◦ IHf
(5.6)
= ĤidTY ◦ ρTX ◦ IHf = ĤidTY ◦ (ρTX ·Hf)

Naturality
= ĤidTY ◦ (THf · ρTX) = ĤidTY ◦ IHf ◦ ρX = Ĥf ◦ ρX

Example 5.15.

(1) For the standard powerset functor P( ), define |ϕX : PX −→PX

(|ϕX)(C)(ψ) =

{
C if ϕ = ψ

∅ otherwise.

This is natural in X because for f : X → Y Φ we have

(Ĥf)ψ · |ϕX(C)(ψ) = (Ĥf)(C)(ψ) = (|ϕX)ψ · (Ĥf)(C)(ψ) if ψ = ϕ

(Ĥf)ψ · |ϕX(C)(ψ) = (Ĥf)(∅)(ψ) = ∅ = (|ϕX)ψ · (Ĥf)(C)(ψ) if ψ 6= ϕ

The first axiom of (5.5) evaluated for ψ ∈ Φ can be checked by case distinction on

ψ = ϕ. If ψ 6= ϕ, then (Ĥ īdX×Φ)ψ · (|ϕX)ψ is constantly ∅, and so is the other part of the

diagram. If ψ = ϕ then the diagram (5.5) commutes by definition of Ĥ:

(ĤidX × idΦ)ϕ(C) = p̄X(C)(ϕ) = {(x, ϕ) | x ∈ C}

= H〈idX , ϕ!〉(C) = (ĤidX × ϕ!)ϕ(C).

The family ((|ψX)ϕ)ψ∈Φ is jointly monic, because already (|ϕX)ϕ is monic.
(2) Since the previous filter is defined for an extension for discrete Φ, the previous filter

function also is a filter for DP.
(3) For P( ×Φ), first define the family of natural transformations rϕ : P( ×Φ) → P( ×Φ)

rϕX(C) = {(x, ϕ′) ∈ C | ϕ′ = ϕ}

and then |ϕ := ν · rϕ. That is, the version filter is pure, just like the distributive law for
this functor (Prop. 5.9). For f : X × Φ → Y we have

rϕY · P(〈f, π2〉)(C) = {(y, ϕ′) ∈ P(〈f, π2〉)(C) | ϕ
′ = ϕ}

= {(f(x, ϕ′), ϕ′) | (x, ϕ′) ∈ C ∧ ϕ′ = ϕ}

= P(〈f, π2〉){(x, ϕ
′) ∈ C | ϕ′ = ϕ} = P(〈f, π2〉) · r

ϕ
X(C).
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So in particular rϕ is natural in X and rϕX · P〈evX , π2〉 = P〈evX , π2〉 · r
ϕ

XΦ . Hence,
|ϕ : P( × Φ)−→P( × Φ) is natural. For the axioms (5.5), we have for all h : Φ → Φ

(ĤidX × h)ψ · (|ϕX)ψ(C)
(5.3)
= H(idX × h) · (Λ̄X)ψ · rϕX(C)

(5.4)
= P(idX × h× idΦ) · P(idX ×∆Φ) · r

ϕ
X(C)

= P(idX × 〈h, idΦ〉)({(x, ϕ
′) ∈ C | ϕ′ = ϕ})

= {(x, h(ϕ′), ϕ′) ∈ C | ϕ′ = ϕ}.

Clearly, {(x, ϕ!(ϕ′), ϕ′) ∈ C | ϕ′ = ϕ} = {(x, idΦ(ϕ
′), ϕ′) ∈ C | ϕ′ = ϕ}, so (5.5)

commutes. The family (rψX)ψ∈Φ is jointly monic since, for any t1, t2 ∈ P(X × Φ) with

rψX(t1) = rψX(t2), we have

t1 =
⋃

ψ∈Φ

rψX(t1) =
⋃

ψ∈Φ

rψX(t2) = t2.

So for all ϕ ∈ Φ, (|ψX ϕ)ψ∈Φ is jointly-monic, because (|ψX)ϕ = rψX .

(4) For VX = P(X × Φ)A apply the previous filter component-wise, i.e. (|ϕ)A. When
considering a CTS as a coalgebra for P( × Φ) (5.2), the filter recovers the structure of
the underlying transition system for a version ϕ ∈ Φ as follows:

|ϕX · αϕ(x)(a) = {(x′, ϕ) | x
ϕ,a
−−→ x′}.

Definition 5.16 (Coequaliser). Recall that for a parallel pair of morphisms f, g : D ⇉ X,
the coequaliser of f and g is a morphism e : X → Y such that

(1) e merges f and g, i.e., e · f = e · g.
(2) e is the least such morphism, i.e., for any e′ : X → Y with e′ · f = e′ · g, there is a unique

u : Y → Y ′ with e′ = u · e as indicated in the following diagram.

D X Y ′

Y

f

g

∀e′

e
∃!u

A morphism is called a regular epimorphism if it is the coequaliser for a pair of morphisms.
In Set and in preorders, Y is the quotient of X by the reflexive, symmetric, transitive
closure of the relation {(f(d), g(d)) | d ∈ D}. In Poset, the first step is to construct Y as in
preorders, and in a second step, additional elements are identified due to antisymmetry.

Notation 5.17. Instead of writing a relation E ⊆ X × X, we consider its projections
π1, π2 : E ⇉ X as morphisms, usually by writing a relation as E ⇉ X. Then the quotient
of X by E, denoted by X/E is the coequaliser of the projections E ⇉ X. If E is already an
equivalence relation, then this is the usual quotient (with additionally identified elements
due to antisymmetry in Poset).

Next, we lift the notion of conditional bisimulation to the level of coalgebras over the
base category Poset. As a result, one can reason with conditional bisimilarity for any systems
whose behavioural functor Ĥ : Kl( Φ) → Kl( Φ) comes with a notion of version filter |ϕ.

Definition 5.18. Given a coalgebra α : X → HXΦ for a functor with a version filter.

(1) a conditional bisimulation for α is a Φ-indexed family of relations Rϕ ⇉ X such that
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(a) ϕ′ ≤ ϕ implies Rϕ′ ⊇ Rϕ.
(b) Rϕ is a bisimulation for the H-coalgebra (|ϕX)ϕ · αϕ.

(2) a conditional congruence is a Φ-indexed family of relations Rϕ ⇉ X such that
(a) ϕ′ ≤ ϕ implies Rϕ′ ⊇ Rϕ.
(b) the projections Rϕ ⇉ X are made equal by the morphism:

X
αϕ
−−→ HX

(|ϕX)ϕ
−−−→ HX

Hκϕ
−−−→ HX/Rϕ,

where κϕ is the coequaliser of the parallel arrows Rϕ ⇉ X.

Just like in the traditional coalgebraic setup, the notions conditional congruence and
conditional bisimulation coincide if the underlying endofunctor H preserves weak pullbacks.
This is the case for both P( )A and P( × Φ)A. Furthermore, it should be noted that the
above notion of conditional bisimilarity for both the cases P( )A and P( × Φ)A coincides
with the concrete definition conditional bisimilarity (cf. Definition 3.2).

Definition 5.19. We say that a Ĥ-coalgebra α : X −→ ĤX preserves upgrades if

(|ψX ◦ α)ϕ = (|ψX ◦ α)ψ for all ψ ≤ ϕ in Φ (5.7)

(|ψX ◦ α)ϕ is constant for all ψ 6≤ ϕ in Φ. (5.8)

Intuitively, (5.7) says that a state always has the same ψ successors in a version ψ, no
matter whether the state is already in the version ψ or can upgrade to the version ψ. The
second property in (5.8) asserts that the successors of a state in two different version ψ, ψ′

(which cannot be upgraded from ϕ) remain the same. In our working examples, we have

(|ψX ◦ α)ϕ = ∅ = (|ψ
′

X ◦ α)ϕ for any ψ,ψ′ 6≤ ϕ.

Example 5.20. The coalgebras modelling CTS in Remark 5.3 indeed preserve upgrades:

(1) For P( )A and discrete Φ, all coalgebras satisfy the conditions: ψ ≤ ϕ in (5.7) boils
down to ψ = ϕ and (5.7) becomes trivial; similarly, ψ 6≤ ϕ boils down to ψ 6= ϕ, and

indeed (|ψX ◦ α)ϕ = (|ψX)ϕ · αϕ is constantly ∅ by the definition of |ψ.
(2) For the coalgebra modelling a CTS with upgrades

α(x)(ϕ)(a) = {(x′, ϕ′) | x
a,ϕ′

−−→ x′ ∧ ϕ′ ≤ ϕ}. (cf. 5.2)

for any ψ,ϕ ∈ Φ, we have

(|ψX)ϕ · αϕ(x)(a) = {(x′, ψ) | x
ψ,a
−−→ x′} = (|ψX)ψ · αψ(x)(a) if ψ ≤ ϕ

(|ψX)ϕ · αϕ(x)(a) = ∅ if ψ 6≤ ϕ.

For upgrade preserving coalgebras, we can show that the concrete notion of behavioural
equivalence coincides with the coalgebraic notion. We first need the following lemma.

Lemma 5.21. Given a functor H with a version filter and a coalgebra α : X −→ ĤX which
preserves upgrades, then for any f : X −→ Y , ϕ ∈ Φ, and x1, x2 ∈ X, we have

x1, x2 are merged by X HX HY
αϕ (Ĥf)ϕ

⇐⇒

x1, x2 are merged by X HX HX HY
αψ (|ψX)ψ Hfψ

for all ψ ≤ ϕ.

Proof. Since the (|ψY )ϕ, ψ ∈ Φ, are jointly-monic we have:
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X HX HX H(X × Φ)

HX HX HY

αϕ

αψ

(|ψX)ϕ

(| ψ
X )ϕ(5.7)

(ĤidX×idΦ)ϕ

(5.5)
(Ĥf)ϕ

(ĤIf̌)ϕ=(IHf̌)ϕ
=Hf̌

fψ =

f̌ · 〈idX , ψ!〉

f = If̌ ◦ īdX×Φ

(|ψX)ψ

(Ĥ
idX

×(
ψ!)

)ϕ

H〈idX
,ψ
!〉=

H(fψ)

Figure 1: Commutative diagram showing the connection between αϕ and αψ, ψ ≤ ϕ, when

uncurrying f to f̌ : X × Φ → Y

x1, x2 are merged by (Ĥf)ϕ · αϕ

⇔ for all ψ ∈ Φ, x1, x2 are merged by (|ψY )ϕ · (Ĥf)ϕ · αϕ = (|ψY ◦ Ĥf ◦ α)ϕ

By the naturality of |ψ : Ĥ −→ Ĥ we have:

⇔ for all ψ ∈ Φ, x1, x2 are merged by (Ĥf)ϕ · (|ψX)ϕ · αϕ = (Ĥf ◦ |ψX ◦ α)ϕ

⇔ for all ψ ≤ ϕ, x1, x2 are merged by (Ĥf)ϕ · (|ψX)ϕ · αϕ and

for all ψ 6≤ ϕ, x1, x2 are merged by (Ĥf)ϕ · (|ψX)ϕ · αϕ

By (5.8), (|ψX)ϕ · αϕ is constant for ψ 6≤ ϕ and thus the second conjunct is vacuous.

⇔ for all ψ ≤ ϕ, x1, x2 are merged by (Ĥf)ϕ · (|ψX)ϕ · αϕ
By the commutativity of Figure 1, we finally have the desired equivalence:

⇔ for all ψ ≤ ϕ, x1, x2 are merged by H(fψ) · (|
ψ
X)ψ · αψ

The above lemma highlights an important property of upgrade preserving coalgebra; namely
that two states x1, x2 have the same set of successors for a condition ϕ under the image of
Ĥ(f) (where f is an arrow in Kl( Φ)) if and only if they have the same set of successors for
every upgrade ψ ≤ ϕ. With this we can finally prove the main statement:

Theorem 5.22. Let H : Poset → Poset preserve monos and have a version filter. Then
for an upgrade preserving Ĥ-coalgebra α : X −→ ĤX, states x1, x2 ∈ X are conditionally
congruent in ϕ iff there is a Ĥ-coalgebra homomorphism h with h(x1)(ϕ) = h(x2)(ϕ).

Proof.

(⇒) Given a conditional behavioural equivalence (Rϕ)ϕ∈Φ, define E ⇉ X×Φ as the relation

E := {((x1, ϕ), (x2, ϕ)) | (x1, x2) ∈ Rϕ}

and let e : X × Φ → Y be the coequaliser of the projections of E. By definition,
e(x1, ϕ) = e(x2, ϕ) for all (x1, x2) ∈ Rϕ. So diagramatically speaking, the coequaliser
X/Rϕ induces a unique morphism with

X X × Φ

X/Rϕ Y

〈idX ,ϕ!〉

ēϕ
κϕ e for all ϕ ∈ Φ. (5.9)
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It remains to show that ē : X −→ Y is the carrier of some Ĥ-coalgebra homomorphism.
The necessary coalgebra structure on Y will be induced by the coequaliser e. So fix
((x1, ϕ), (x2, ϕ)) ∈ E, hence x1, x2 ∈ Rϕ and we have:

x1, x2 ∈ Rψ for all ψ ≤ ϕ
Def. 5.18
=⇒ x1, x2 are merged by Hκψ · (|ψX)ψ · αψ for all ψ ≤ ϕ
(5.9)
=⇒ x1, x2 are merged by Hēψ · (|ψX)ψ · αψ for all ψ ≤ ϕ

Lem. 5.21
=⇒ x1, x2 are merged by (Ĥē)ϕ · αϕ

So, the projections E ⇉ X × Φ are merged by the uncurried version of the morphism
Ĥē ◦ α : X −→HY , i.e., by u(x, ϕ) := (Ĥē ◦ α)ϕ(x). Hence, the coequaliser e induces a
unique morphism β : Y → HY with:

E X × Φ

Y HY

e
u

β

=⇒

X

Y Φ HY Φ

ē

Ĥ
ē◦α

βΦ

=⇒
X HX

Y HY

ē

α

Ĥē

Iβ

(⇐) We prove directly that the family

Rϕ := {(x1, x2) ∈ X ×X | there is some Ĥ-coalgebra h with hϕ(x1) = hϕ(x2)}

is a conditional congruence:
(a) Let ϕ′ ≤ ϕ and let (x1, x2) ∈ Rϕ be witnessed by h : (X,α)−→ (Y, β). Then x1, x2

are merged by βϕ ·hϕ = (Ĥh)ϕ ·αϕ. Applying Lemma 5.21 first forward, restricting
to ϕ′ ≤ ϕ and then applying Lemma 5.21 backwards again, shows that x1, x2 are
merged by (Ĥh)ϕ′ ·αϕ′ . Since Ĥh◦α = β ◦h is the composition of the Ĥ-coalgebra
homomorphisms h and β, we have the witness for (x1, x2) ∈ Rϕ′ .

(b) Let (x1, x2) ∈ Rϕ, witnessed by h : (X,α)−→ (Y, β). So we have (p1, p2) ∈ Rϕ for
all p1, p2 with hϕ(p1) = hϕ(p2). Then the regular epi part e of hϕ induces a unique
u such that:

X K Y

X/Rϕ

κϕ

e

u

m

Denote the mono part of hϕ by m, and so Hm is monic too. Finally:

(x1, x2) ∈ Rϕ
=⇒ x1, x2 are merged by βϕ · hϕ = (β ◦ h)ϕ = (Ĥh ◦ α)ϕ

Lem. 5.21
=⇒ x1, x2 are merged by Hhψ · (|ψX)ψ · αψ for all ψ ≤ ϕ

Hm monic
=⇒ x1, x2 are merged by He · (|ψX)ψ · αψ for all ψ ≤ ϕ
κϕ=u·e
=⇒ x1, x2 are merged by Hκϕ · (|ψX)ψ · αψ for all ψ ≤ ϕ
=⇒ x1, x2 are merged by Hκϕ · (|ϕX)ϕ · αϕ.

Note that both P and P( × Φ) preserve monos, i.e. monotone maps with injective
carrier, in Poset. Hence, Theorem 5.22 holds for both functors and so coalgebraic behavioural
equivalence coincides with conditional bisimilarity.
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6.Computing Behavioural Equivalence

In this section, we concentrate on algorithms to obtain a minimal CTS from a given CTS
up to conditional bisimilarity. Therefore, the final chain algorithm for minimisation from
[ABH+12] is applied to the CTS functors DP and P( × Φ). The algorithm performs
minimisation and determinisation for coalgebras on a Kleisli category, in which the pure
arrows form a reflective subcategory:

Definition 6.1. A subcategory S of A is called reflective, if the inclusion functor I : S →֒ A
has a left-adjoint R. The spelled out adjunction means: For each X ∈ A there is an S-object
RX and an A-arrow ρX : X → IRX such that for any A-arrow f : X → IY into some object
Y of S, there exists a unique S-arrow f ′ : RX → Y (called ρ-reflection of f) such that:

IRX IY

X

If ′

ρX
f

Note that for such a mapping R : objA → objS on objects, R uniquely extends to a functor
R : A → S, and is called reflector.

Remark 6.2. Here, the definition of [AHS90] is followed and thus the subcategory S →֒ A
is not required to be full. This is important because the pure arrows need to form a reflective
subcategory of the Kleisli category, i.e., we have a reflective subcategory C →֒ Kl(T ) for a
monad T : C → C. And this subcategory is full if and only if T is the identity monad.

For the reader monad Φ on Poset, we have a non-full reflective subcategory:

Lemma 6.3. For a monad (T : C → C, η, µ), the base category C →֒ Kl(T ) is a reflective
subcategory iff T has a left-adjoint L : C → C. Furthermore, the unit ρX : X −→ LX of the
adjunction L ⊣ T is the universal arrow of the reflection.

Proof.

(⇐) For L ⊣ T with unit ρ, for all f̄ : X −→Y , and g : LX → Y , we have Ig ◦ ρX = Tg · ρX ,
and so

LX Y

X

Ig

ρX
f̄

⇐⇒
TLX TY

X

Tg

ρX
f̄

The first diagram is the universal property of the reflection, the last is that of L ⊣ T ; so
the direction from right to left proves existence of an reflection of f̄ and the direction
from left to right proves its uniqueness.

(⇒) Let R ⊣ I and note that with the forgetful U : Kl(T ) → C from the Kleisli adjunction
I ⊣ U , we have T = UI. Define L := RI; then L ⊣ T by following natural isomophisms
between hom-sets:

RI X −→ Y in C

IX −→ IY in Kl(T )
R ⊣ I

X −→ UI Y in C
I ⊣ U

Note that for R ⊣ I and L ⊣ T , IR : Kl(T ) → Kl(T ) is an extension of L, because IL = IRI.
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Example 6.4. In case of the reader monad Φ on C = Poset or C = Set (resp. Φ := J (L),

and J (L) ∼= T the lattice monad from Section 4), consider a Kleisli arrow f : X−→Y . Then
its reflection is the uncurried f̌ :

f̌ :

LX︷ ︸︸ ︷
X × Φ → Y f̌(x, ϕ) = f(x)(ϕ).

The reflector R : Kl( Φ) → C maps f : X −→ Y to the pure map

Rf : X × Φ −→ Y × Φ, Rf(x, ϕ) = (f(x)(ϕ), ϕ)

which is the reflection of ρY ◦ f : X −→ Y × Φ.

Following [ABH+12], a reflective subcategory with an (E ,M)-factorisation structure
gives rise to a pseudo-factorisation structure in the base category, which in turn can be used
to compute behavioural equivalence, provided the functor meets some conditions.

Definition 6.5. Let E and M be any two classes of morphisms in a category S. Then the
tuple (E ,M) is called a factorisation structure for S if

• The classes E and M are closed under composition with isomorphisms;
• Every arrow f of S has a factorisation f = m · e, where m ∈ M and e ∈ E ;
• Unique diagonal property : For all arrows f, g, e ∈ E , and m ∈ M, if g · e = m · f , then
there exists a unique arrow d such that:

• •

• •

e

f g∃!d

m

(6.1)

Remark 6.6. In case of E = regular epimorphisms and M = monomorphisms the diago-
nalisation property (6.1) holds automatically. If e is the coequaliser of p1, p2, then e merges
p1 and p2 and so does g · e = m · f . Since m is monic, f · p1 = f · p2 and the coequaliser e
induces a unique diagonal with d · e = f and thus also m · d = g.

Example 6.7. Poset has a (RegEpi,Mono)-factorisation structure [AHS90, 14.23 Examples].

• Regular epimorphisms in Poset are monotone functions e : X → Y where e is surjective
and ≤Y is the smallest order on Y making e monotone. Regular epimorphisms are by
definition coequalisers. In complete categories such as Poset, a regular epimorphism is the
coequaliser of its kernel pair ker e⇉ X.

• Monos in Poset are monotone maps with an injective carrier map. In other words,
U : Poset → Set creates monos.

One transfers the factorisation structure from Poset to Kl( Φ) using the reflection:

Notation 6.8. From now on, the application of the inclusion functor S →֒ A is made
implicit. For clarity, morphisms in S are denoted by −→, and morphisms in A by −→.
S-arrows in M are indicated by .

Definition 6.9. Consider a reflective subcategory S →֒ A with the
A-reflection ρ and with an (E ,M)-factorisation structure on S. For
an A-morphism f : X −→ Y , take its reflection f ′ : LX → Y and
construct its (E ,M)-factorisation f ′ = m · e′ with e′ ∈ E , m ∈ M.
Then (m, e′ ◦ ρX) is called the (E ,M)-pseudo factorisation of f .

Z

LX Y

X

m

f ′
e′

e
f

ρX
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For such pseudo-factorisations, we do not necessarily have a diagonal arrow for m ∈ M,
e′ ∈ E , and e = e′ ◦ ρX in (6.1), but one can show that such an arrow exists whenever g is
in S. And the diagonal will also be an S-arrow.

Remark 6.10. This applies to Poset →֒ Kl( Φ). The pseudo-factorisation of f : X −→ Y in
Kl( Φ) is as follows:

• The inclusion m : Y0 →֒ Y , Y0 = {f(x)(ϕ) | x ∈ X,ϕ ∈ Φ} ⊆ Y .
• The function e : X → Y0

Φ defined as e(x)(ϕ) = f(x)(ϕ).
• The relation ≤Y Φ

0
is the smallest order such that e′ is order preserving.

We now recall the algorithm from [ABH+12] in its entirety.

Algorithm 6.11. Let A be a category with a final object 1 and let S be a complete and
reflective subcategory of A that has an (E ,M)-factorisation structure where

• all arrows in E are epimorphism and
• for all objects X the class of E morphisms with domain X is a set.

Furthermore, let Ĥ be an endofunctor on A preserving S andM. Then, given an Ĥ-coalgebra
α : X −→ ĤX we can compute the minimisation of α in the following way:

(1) Let d0 : X −→ 1 be the final morphism.

(2) Given a di : X −→ Y , pseudo-factorise di = mi ◦ ei,
where mi ∈ M, ei = e′i ◦ ρX , e

′
i ∈ E .

X LX Zi Yi
ρX

ei

di

e′i m

(3) Compute di+1 = Ĥei ◦ α.
(4) The algorithm terminates if the diagonal u with en = u ◦ en+1 is an isomorphism in S

and yields en as its output.

X

Z0 Z1 Z2 · · · Zn Zn+1

ĤZ0 ĤZ1 ĤZn−1 ĤZn

1 Ĥ1 Ĥ21 · · · Ĥn1 Ĥn+11

e0
e1

e2 en

en+1

m0

m1 m2 Ĥmn

u
∼=

Ĥmn+1

! Ĥ! Ĥn!

The dashed arrows in the diagram above are obtained by diagonalisation.
Termination is guaranteed whenever the state set X is finite. Whenever the algorithm

terminates we obtain a coalgebra homomorphism en from α to mn+1 · u
−1 : Zn → ĤZn.

The Algorithm 6.11 is correct in the following sense:

Theorem 6.12 [ABH+12, Theorem 4.9, Theorem 3.8].
Let α′ : LX → HLX be the reflection of

X
α

−→HX
HρX
−→ HLX,

then the uncurrying of en, ěn : LX → Zn, is the greatest E-
quotient of α′.

LX HLX

Zn HZn

α′

ěn Hěn

mn+1·u−1
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Remark 6.13. We call e : (LX,α′) ։ (Z, z) the greatest E-
quotient if e ∈ E and for any H-coalgebra homomorphism
q : (LX,α′) ։ (W,w) with q ∈ E , there is a unique homo-
morphism (W,w) → (Z, z). In Poset this means that any two
elements x1, x2 ∈ LX are merged by e if and only if they are
merged by a coalgebra homomorphism in E .

(LX,α′) (W,w)

(Z, z)

e

q

Remark 6.14. If H preserves M, then the (E ,M)-factorisation
system lifts to coalgebras, i.e. any coalgebra homomorphism h
factorises into h = m · q where m ∈ M and q ∈ E are coalgebra
homomorphisms. By the diagonalisation, the coalgebra structure
on the image is defined uniquely. So in Poset for monos M,
x, y ∈ V are merged by some coalgebra homomorphism if and only
if they are merged by some E-carried coalgebra homomorphism.

V W S

HV HW HS

v

q

h

m

w s

Hq

Hh

Hm

The algorithm’s output en : X −→ Zn characterises conditional bisimilarity (in the
general sense of Definition 5.18) in the following way: for two elements x1, x2 ∈ X and ϕ ∈ Φ
we have x1 ∼ϕ x2 if and only if (x, ϕ) and (y, ϕ) are merged by the uncurried ěn : LX → Zn.

This characterisation is sound and complete whenever the endofunctor Ĥ : Kl( Φ) → Kl( Φ)
preserves the subcategory Poset and the class M:

Theorem 6.15. Using the terminology of Algorithm 6.11 it holds that for x1, x2 ∈ X
x1 ∼ϕ x2 iff ěn merges (x1, ϕ), (x2, ϕ).

Proof.

(⇐) By Theorem 5.22 we know that x1 ∼ϕ x2 iff there exists a coalgebra homomorphism
h : X −→ Y with h(x1)(ϕ) = h(x2)(ϕ). Hence if ěn merges (x1, ϕ), (x2, ϕ), we can
infer that en(x1)(ϕ) = en(x2)(ϕ) and since en is a coalgebra homomorphism we have
x1 ∼ϕ x2.

(⇒) By Theorem 5.22, x1 ∼ϕ x2 implies the existence of some h : (X,α) −→ (Y, β) with

h(x1)(ϕ) = h(x2)(ϕ). Recall from [ABH+12, Prop. 4.4] that since Ĥ is an extension and
Kl( Φ) →֒ Poset is a reflective subcategory, the category of H-coalgebras is a reflective

subcategory of the Ĥ-coalgebras. So applying the reflector R : Kl( T ) → Poset to the

square of the Ĥ-coalgebra homomorphism h results in an H-coalgebra homomorphism:

LX HLX

LY HLY

α′

Rh HRh

β′

in Poset

R acts on objects as L and we have Rh(xi, ϕ) = (h(xi)(ϕ), ϕ), for both i ∈ {1, 2}
(cf. Example 6.4), and so Rh(x1, ϕ) = Rh(x2, ϕ). By Remark 6.14 and 6.13, the
greatest E-quotient ěn : LX → Zn merges (x1, ϕ) and (x2, ϕ).

Recall from Theorem 2.10, that the functors D̂P and ̂P( × Φ) (cf. Remark 5.3) preserve
the subcategory Poset. Furthermore, they preserve M, i.e., the class of (pure) order
preserving injections, because the underlying endofunctors D, P and × Φ do.

Thus, the algorithm from [ABH+12] is applicable using the derived pseudo-factorisation
structure. We now discuss a small example for the application of the minimisation algorithm
from [ABH+12] using this pseudo-factorisation structure on Kl( Φ) for P( × Φ).
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Example 6.16. Let X = {x, y, z, x′, y′, z′}, |A| = 1 and Φ = {ϕ′, ϕ}, with ϕ′ ≤Φ ϕ. Let

α : X → V̂X (note that V = P( ×Φ)A) be the coalgebra modelling the CTS depicted below.

α:
x

z

y

x′

z′

y′
ϕ,ϕ′

ϕ,ϕ′

ϕ′

ϕ′

ϕ,ϕ′

ϕ′

To compute behavioural equivalence, we start by taking the unique morphism d0 : X → 1
into the final object of Kl( Φ) that is 1 = {•}. At the ith iteration, we obtain ei via the

pseudo-factorisation of di = mi ◦ ei and then we build di+1 = V̂ei ◦ α. These iterations are
shown in the following tables. Note that each table represents both, di and ei, because the
pseudo-factorisation just yields simple injections as monomorphisms, so di and ei in each
step only differ by their codomain.

d0, e0 x y z x′ y′ z′

ϕ • • • • • •
ϕ′ • • • • • •

d1, e1 x y z x′ y′ z′

ϕ {(•, ϕ), (•, ϕ′)} {(•, ϕ′)} ∅ {(•, ϕ), (•, ϕ′)} {(•, ϕ′)} ∅
ϕ′ {(•, ϕ′)} {(•, ϕ′)} ∅ {(•, ϕ′)} {(•, ϕ′)} ∅

d2, e2 x y z x′ y′ z′

ϕ 5© 3© 4© 1© 3© 4©

ϕ′ 2© 3© 4© 2© 3© 4©

d3, e3 x y z x′ y′ z′

ϕ 5© 3© 4© 1© 3© 4©

ϕ′ 2© 3© 4© 2© 3© 4©

In the tables for d2/e2 and d3/e3 we have used colours to code the entries, because the
full notation for the entries would be too large to fit in the tables.

The codomains C0, C1, C2, and C3 of e0, e1, e2, and e3 (resp.) are given below (note that
the colours in C2 and C3 indicate the colours in the tables above):

C0 ={•}

C1 ={∅, {(•, ϕ′)}, {(•, ϕ), (•, ϕ′)}}

C2 ={{(∅, ϕ), (∅, ϕ′), ({(•, ϕ′)}, ϕ′)}

1©

, {{(∅, ϕ′), ({(•, ϕ′)}, ϕ′)}}

2©

, {({(•, ϕ′)}, ϕ′)}

3©

, ∅

4©

,

{({(•, ϕ′)}, ϕ), ({(•, ϕ′)}, ϕ′), (∅, ϕ), (∅, ϕ′)}

5©

}

C3 ={{{(∅, ϕ), ({({(•, ϕ′)}, ϕ′)}, ϕ′), (∅, ϕ′)}}

1©

, {{(∅, ϕ′), ({({(•, ϕ′)}, ϕ′)}, ϕ′)}}

2©

,

{({({(•, ϕ′)}, ϕ′), (∅, ϕ′)}, ϕ′)}

3©

, ∅

4©

{({({(•, ϕ′)}, ϕ′)}, ϕ), ({({(•, ϕ′)}, ϕ′)}, ϕ′), (∅, ϕ), (∅, ϕ′)}

5©

}
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each ordered by inclusion. By contrast, the codomain C ′
i of di is defined as C ′

0 = C0,
C ′
i = P(Ci × Φ) for i = 1, 2, 3.

By comparing the columns for each state we can determine which states are bisimilar.
The partitions are divided as follows (where Xi denote the entries at the ith iteration):

X0 = {{x, y, z,x′, y′, z′}} X1 = {{x, x′}, {y, y′}, {z, z′}}

X2 = X3 = {{x}, {x′}, {y, y′}, {z, z′}}.

To obtain the greatest conditional bisimulation from e2 (or e3), we need to compare individual
entries of each table. We can identify the greatest bisimulation as {Rϕ, Rϕ′}, where (written
as equivalence classes)

Rϕ = {{z, z′}, {x}, {x′}, {y, y′}} Rϕ′ = {{x, x′}, {y, y′}, {z, z′}}.

Additionally, it is possible to derive the minimal coalgebra that was identified using the

minimisation algorithm, which is of the form (E2,m3 ◦ ι) where ι : E2 → V̂(E2) is the arrow
witnessing termination of the algorithm. The minimisation has the following form:

{({(•, ϕ′)}, ϕ), ({(•, ϕ′)}, ϕ′), (∅, ϕ), (∅, ϕ′)}

{({(•, ϕ′)}, ϕ′)} {(∅, ϕ), (∅, ϕ′), ({(•, ϕ′)}, ϕ′)}

{{(∅, ϕ′), ({(•, ϕ′)}, ϕ′)}}

∅

ϕ,ϕ′

ϕ,ϕ′

ϕ′

ϕ,ϕ′

ϕ′

ϕ′

ϕ′

Note that, if there was no order on Φ, x and x′ would be found equivalent under ϕ, because
without upgrading, x and x′ behave the same for ϕ: Both can do exactly one step, reaching
either of y, z or z′, respectively, but in none of these states any additional steps are possible
in the condition ϕ.

One can observe that both x and x′ get mapped under ϕ′ to the red state (second from
bottom of the diagram), but under ϕ, the state x gets mapped to the blue state (top state in
the diagram), whereas x′ gets mapped to the black state (right-most state in the diagram).

Remark 6.17. In [BKKS17] we have also given a matrix multiplication algorithm for
minimising CTSs. This algorithm is similar to applying Algorithm 6.11, but working
conceptually in Kl(T ) rather than Kl( Φ).

Since we have seen that both categories are isomorphic, the coalgebraic representation
of a LaTS can be determined by applying the given isomorphism to the representation of
a CTS. We obtain the following arrow for any state x ∈ X, action a ∈ A and set of pairs
Y ⊆ (X × Φ)A:

f(x)(Y )(a) = {ψ ∈ Φ | ∀ϕ′ ≤ ψ, x′ ∈ X : x
a,ϕ′

−−→ x′ ⇒ (x′, ϕ′) ⊆ Y (a)}.

Similarly, we can also characterise (pseudo-)factorisation in Kl(T ). We could factorise
an arrow by converting it to a Kl( Φ)-arrow and factorising that arrow, then translating
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it back to Kl(T ). Since we have already seen that factorising in Kl( Φ) basically means to
exclude all states from the codomain of the arrow that are not in the image of any pair
of states and alphabet symbol, this boils down to finding out when a state in a Kl(T )-
arrow will be identified as redundant in Kl( Φ). So let f : X −→ Y be a Kl(T )-arrow, then
f(x) = b ∈ (Y → L)∗. An element y ∈ Y will occur in the image of f(x) if there is an
irreducible element ϕ ∈ J (L) = Φ such that y is the smallest element of Y with b(y) ≥ ϕ.
This is the case if

⊔
{b(y′) | y′ < y} 6= b(y). So, by factorising an arrow in Kl(T ) we eliminate

all states y such that
⊔
{f(x)(y′) | y′ < y} = b(y) for all x ∈ X. Hence, f = e ◦m where

e : X −→ Y ′ and Y ′ ⊆ Y is the subset of Y that remains after the elimination.
This enables us to execute the algorithm. The relation to the matrix multiplication

method is discussed in more detail in [Küp17]. In particular it can be shown that both
variants terminate after the same number of iterations.

7.Conclusion, Related and Future Work

In retrospect, the Kleisli categories for the lattice monad and the reader monad are equivalent,
providing an analogue to the Birkhoff duality between lattices and partially ordered sets.
This duality also reflects the duality between a CTS and a LaTS. We investigated two
different functors which can be used to model CTSs without upgrades and general CTSs,
respectively, in such a way that behavioural equivalence is conditional bisimulation. Though
CTSs without upgrades can be modelled using just P( )A, this functor can not be employed
for non-discrete orders, i.e., in the case where upgrades are present. When considering
upgrades, the individual versions cannot be considered purely a side effect and must instead
be observed, which leads to the requirement of making the versions explicit in a way and to
our choice of the functor P( × Φ)A.

The Kleisli category for the reader monad has a pseudo-factorisation structure that makes
it possible to use a result from [ABH+12] to compute the greatest conditional bisimulation
using a final chain-based algorithm for both functors.

Our work obviously stands in the tradition of the work in [ABH+12] and [KK14]. In
a broader sense, the modelling technique of using Kleisli categories to obtain the “right”
notion of behavioural equivalence goes back to previous work in [HJS07, PT99], where
non-deterministic branching of NFA was masked by the use of a Kleisli category (over
Set in this case) to obtain language equivalence as behavioural equivalence rather than
bisimulation.

Modelling new types of systems and their behaviour coalgebraically is an ongoing field
of research, as evident by recent work for instance by Bonchi et al. on decorated traces
[BBC+16], Hermanns et al. on probabilistic bisimulation [HKK14] or Latella et al. on labelled
state-to-function transition systems [LMdV15].

System models that can handle various software products derived from a common base
are of particular interest in the field of software product lines. Featured transition systems
(FTSs) are conceptually the closest to CTSs and can in fact be simulated by CTSs in a
rather straightforward way. A featured transition system is defined as a labelled transition
system where each transition is guarded by a feature from a common set of features. A given
FTS evolves at follows: first, a set of features (which corresponds to a condition in a CTS)
is chosen and transitions are activated or deactivated accordingly, then, the FTS evolves
just like a labelled transition system. By choosing for the set of conditions the powerset
of all features, ordered discretely, one can simulate FTSs via CTSs (cf. [BKKS17]). Due
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to the upgrading aspect of CTSs, the same does not hold the other way around. Similar
systems to CTSs have been studied for instance by Cordy et al. [CCP+12] and Kupferman
[KL10]. FTSs in particular have been an active field of study in the past years, with various
similar, yet not identical definitions being conceived in various lines of work. Classen et al.
[CHS+10], as well as Atlee et al. [AFL15] and Cordy et al. [CCH+13] have worked, among
many others, on FTSs and the accompanying feature diagrams.

In the future, we want to characterise conditional bisimulation via operational semantics
and an appropiate logic. Furthermore, we are interested in analysing different properties of
CTSs rather than bisimulation, in particular we are interested in a notion of weak bisimilarity.
For this purpose, we will consider adapting a path-based approach similar to the one present
in [BK17] to the Kleisli category of the reader monad.

In this paper, we have already taken steps to adapt the notion of conditional bisimilarity
to a coalgebraic setting, making it independent of the concrete model and functor under
investigation. We plan to investigate whether the notion of conditions (or software products)
can be introduced for various state-based system models, for instance for probabilistic
systems. That is, we are interested in combining the (sub)distribution functor with our
monads, in order to coalgebraically model and analyse families of probabilistic systems in a
unified way. From the point of view of software product lines, this could be an entry point
to a quantitative analysis of software product lines, rather than a purely qualitative one.

Acknowledgements. The authors thank Stefan Milius for fruitful discussions.
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