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A Study of the Thermal Runaway of Lithium-ion Batteries: A Gaussian Process
based Global Sensitivity Analysis

Aaron S. Yeardley, Peter J. Bugryniec, Robert A. Milton, Solomon F. Brown∗

Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S10 2TN

Abstract

A particular safety issue with Lithium-ion (Li-ion) cells is thermal runaway (TR), which is the exothermic decompos-

ition of cell components creating an uncontrollable temperature rise leading to fires and explosions. The modelling of

TR is difficult due to the broad range of cell properties and potential conditions. Understanding the effect that thermo-

physical and heat transfer characteristics have on the TR abuse model output is essential to develop more accurate and

robust TR models. This study uses global sensitivity analysis (GSA) to investigate the effect of the cell parameters

on the outcome of TR events. Using a Gaussian Process (GP) surrogate model to calculate the Sobol’ indices, it is

shown that the emissivity value is the dominant thermo-characteristic throughout the overall abuse scenario. Further

analysis, investigating three key TR features shows the conductivity coefficient to be the most important with respect

to the maximum temperature reached during TR. Results demonstrate that researchers can confidently estimate some

thermo-characteristics but require accurate characterisation of the emissivity and conductivity coefficient to ensure

robust predictions. Given the importance of battery technology to aid in global de-carbonisation, these findings are

key to increasing their safe design and operation.
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1. Introduction

Lithium-ion (Li-ion) cells are an increasingly popular electrochemical storage device (Steen et al., 2017; Kim

et al., 2012; International Energy Agency, 2016) which play a pivotal role in applications such as electric vehicles

and grid energy storage. Li-ion cells have been extensively studied in order to increase cell performance (Nitta et al.,

2015; Ghadbeigi et al., 2015), reduce cell cost (Nitta et al., 2015), reduce environmental impact (Peters et al., 2017)

and improve safety (Abada et al., 2016). However, a particular issue with Li-ion cells is thermal runaway (TR) which

is the exothermic decomposition of cell components creating an uncontrollable rise in temperature leading to fires
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and explosions (Wang et al., 2012; Larsson et al., 2018; Feng et al., 2018). Hence, understanding the TR process, to

prevent it occurring or reducing its severity, is essential for the development of safer batteries.

Current literature focuses on the development of models designed for carrying out studies to determine the effects

of cell design (Kim et al., 2007; Lopez et al., 2015; Hu et al., 2017), environmental and abuse conditions (Chiu et al.,

2014; Lopez et al., 2015) and pack design (Coleman et al., 2016; Xu et al., 2017; Duan et al., 2018) on TR behaviour

or prevention. Recent studies have explored the implications of using Li-ion batteries in extreme environments,

investigating how severe irradiation can cause TR (Shack et al., 2014; Ma et al., 2017; Wu et al., 2019). Yet little

work has been carried out to understand the uncertainties within TR modelling and/or how variance in the physical

parameters can affect the temperature during a TR event.

The need to understand TR events in Li-ion cells has motivated the development of physics-based models to

provide assistance in the analysis of the mechanics allowing a more cost-effective and safer method rather than it-

erating cell abuse experimentally. As a result, research has been undertaken with various approaches based on the

Arrhenius formulation of cell decomposition reactions and heat generation (Hatchard et al., 2001; Kim et al., 2007;

Lopez et al., 2015) to develop computational models of TR in cells with studies. For example, comparing cell chem-

istry (Peng and Jiang, 2016), utilising efficiency factors for the conversion of electrochemical energy to thermal energy

(Coman et al., 2017), and the effect of nail penetration (Chiu et al., 2014). Previous work utilises an accelerated rate

calorimeter (ARC) to determine the initial reaction kinetics of the solid electrolyte interface (SEI) and cathode reac-

tions of cells (Richard and Dahn, 1999a; MacNeil et al., 2000). Mao et al. (2020) also used an ARC to investigate

the self-heating reaction and TR criticality of Li-ion cells resulting in kinetic data that will aid in future modelling of

Li-ion battery safety. Additionally, inverse modelling techniques have been used to estimate the parameters involved

in the reaction kinetics for both cell components (Richard and Dahn, 1999b; MacNeil et al., 2000) and full cells (Ren

et al., 2018; Liu et al., 2018). Liu et al. (2018) developed a one reaction model for an entire cell which takes into

account the state of charge (SOC) by fitting experimental ARC data at different SOC’s to determine the parameters

of the Arrhenius equation and the heat of reaction as a third-order polynomial which is a function of SOC. Ren et al.

(2018) determined parameter values through Kissinger and nonlinear fitting methods of direct scanning calorimetry

(DSC) data. Fundamental thermal abuse experiments of ARC, DSC and oven exposure are used to validate such

computational models. However, the TR models developed for Lithium iron phosphate (LFP) cells (Peng and Jiang,

2016) have not been validated well as inaccuracies are found when compared to new experimental work (Bugryniec

et al., 2019). Therefore, the need to develop computational models of TR events are strained by the lack of under-

standing in the model parameters meaning an intensive study of the parameter sensitivities is essential for a thorough

understanding of the TR of Li-ion cells.
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A sensitivity analysis (SA) characterises the relationship between a system’s inputs and outputs thus showing how

the uncertainty of the outcome can be apportioned to the different sources of uncertainty in the input. This will provide

important knowledge in relation to the safety and development of Li-ion cells given that:

1. Parameters are commonly estimated within TR models if they cannot be measured or have no measured values

available in the literature,

2. There is an unknown certainty of the appropriateness of values in the literature for parameters such as com-

posite materials i.e. electrodes, or for the overall cell properties. Especially when considering that exact cell

compositions for literature sources or cells under study may be unknown. For example, Liu et al. (2018) and

Drake et al. (2014) have both calculated the specific heat capacity of an 18650 LFP cell but resulted in dif-

ferent values. Various other literature have recorded a specific heat capacity ranging from 1100 J kg−1 K−1

to 1720 J kg−1 K−1 (Spinner et al., 2015; Wang et al., 2013; Chen et al., 2005a). Highlighting the significant

variation, in just one parameter, of which the authors here have found that a 10% change can lead to significant

variations in the TR simulation results.

3. Carrying out SA studies can help future developments, as the uncertainty in the model can be related to a real

change in a physical cell.

This work will analyse the thermo-physical and heat transfer characteristics of a TR model to determine their

influence on cell temperature under external heating of an LFP cell leading to a TR event. The focus is on an LFP cell

as a case study due to it being considered the safest Li-ion chemistry (Jiang and Dahn, 2004; Bugryniec et al., 2018,

2019). SA has been implemented in many different research fields (for example Saltelli et al., 2005; Rohmer and

Foerster, 2011; Al et al., 2019) as it is widely acknowledged as a good practice to better understand model behaviour.

Specifically for battery research, sensitivity studies have been employed to advance the development and design of

battery performance (Drews et al., 2003; Schmidt et al., 2010; Vazquez-Arenas et al., 2014; Zhang et al., 2014) without

considering TR event occurring. Additionally, these sensitivity studies focused on minor parameter changes and how

it affects the variation in the model output using a local SA study. In general, the most common class of SA method

is the global sensitivity analysis (GSA) because it looks at the model behaviour over the whole range of inputs and

outputs. Unlike other methods, such as local SA, GSA quantifies the variation of the model response in the entire

parameter domain fully exploring the input space. The first example, to the authors knowledge, to practise a GSA for

battery development was Trembacki et al. (2016), where polynomial chaos expansion was used to calculate sensitivity

index values for a thermal simulation of molten salt batteries. Recent literature by Lin et al. (2018) has applied a GSA

to a large scale multiphysics Li-ion battery model. The SA was achieved by calculating the Sobol’ indices using a
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polynomial chaos expansion approach to surrogate the 3D multiphysics model. Specifically, the safety of an LFP cell

has been explored using GSA by Rajan et al. (2018) who considered the displacement, temperature and strain rate of

a battery with respect to it’s mechanical strength when subjected to external impacts that lead to TR. The research

conducted a SA using an artificial neural network to emulate a finite element model and showed the temperature of

a cell to have the most influence on the mechanical strength leading to catastrophic TR explosions. Whereas, the

TR process of a Li-ion cell has only been analysed once with respect to sensitivity studies, when GPs were used

as a surrogate model to optimise the reaction parameters in a TR abuse simulation (Milton et al., 2019). The work

used the error of a heuristic fit (RMSE) between simulated and experimental results as an output to a GP, which was

further reduced by an optimal rotation of the input basis. The input variables being optimised, were the parameters

that control the reactions which govern the heat generation in the TR model.

The methodology presented in this work will use the Sobol’ sensitivity indices, which are a variance-based de-

composition method that is considered the benchmark for GSA methods (Rohmer and Foerster, 2011; Al et al., 2019).

However, the calculation of Sobol’ indices require a significant number of model evaluations to ensure convergence to

a satisfactory precision level. Hence, the computational burden can be reduced by using meta-modelling techniques

such as the polynomial chaos expansion (Brown et al., 2013; Sudret, 2008), artificial neural networks (Li et al., 2016),

and Gaussian Processes (GPs) (Marrel et al., 2009). Here, based on our previous work, the surrogate model will be

developed using GPs as they are a widely used tool for Bayesian nonlinear regression and provide an approach that

predicts a distribution allowing uncertainties for each prediction. This novel approach will allow us to determine:

• which of the thermo-physical and heat transfer characteristics contribute most to the temperature output variab-

ility with respect to the time during a TR simulation,

• the number of interactions between the thermo-characteristics and with which inputs,

• which properties are insignificant and so do not need to be well characterised, helping to simplify TR models.

These goals are achieved by developing a TR model of an LFP cell which is emulated by a GP surrogate model

enabling the calculation of Sobol’ indices.

This work is organised as follows. Section 2 describes the methodology and the mathematics behind the three

techniques before the results sections consist of the analysis of the three tools. First, the TR model is compared

to experimental data, ensuring it accurately represents a real cell under TR allowing GPs to be created for a time-

dependent SA on the temperature of a cell. The role of the thermo-characteristics on TR behaviour is then further

investigated with analysis of the time at which self-heating and TR begins, as well as the the maximum temperature

reached by the TR event. Once the GP’s were produced, each one had to be validated ensuring inaccuracies were
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not carried over to the calculation of the Sobol’ indices. The final results from the GSA presents the time-dependent

Sobol’ indices and the Sobol’ indices from the three TR features. The report is then concluded in Section 4 detailing

how the resulting sensitivity measures can guide the decision-making process when designing Li-ion cells and their

models.

2. Methodology

This section presents the TR model, developed for an LFP cell, before it describes the formulation of the GP

emulators and the calculation of the Sobol’ indices.

2.1. TR Model

The TR abuse model for the LFP cell is constructed in the commercial finite element modelling software COM-

SOL Muiltiphysics 5.2a (COMSOL Multiphysics®V5.2a). The governing equations for heat transfer utilises one-

dimensional forms of Fourier’s law of heat conduction, Newton’s law of cooling for convection and Stefan-Boltzmann

equation for radiation (for example Kim et al., 2007). The model represents an 18650 LFP cell (1.5Ah) under oven

exposure with free convection. The model assumes a 1D axi-symmetric geometry, consisting of three geometric do-

mains; the mandrel, the jelly roll (the coil of electrodes, separator and current collector layers) and the cell casing, see

Figure 1. The multilayer jelly roll is assumed to be constituted of a single homogeneous material to reduce compu-

tational complexity. This is to allow the use of measured properties of an entire cell and also to reduce model input

parameters. Further, the model assumes all geometric domains take the average material values of a whole cell, as

these are more accurately available, and it also reduces model input parameters.
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Figure 1: Top) Representation of a 18650 cell indicating (by the red line) the model simplification, bottom) schematic of model
geometry.

Heat transfer in the model assumes a solid body throughout and considers conduction throughout the cell, while at

the cells’ surface free convection and radiation are considered. The exothermic decomposition reactions driving TR

are described by individual Arrhenius equations. Here the four common reactions are considered, these are the SEI

decomposition, the negative electrode reaction (NE), positive material decomposition (PE) and electrolyte decom-

position (E) (Spotnitz and Franklin, 2003), while the total decomposition heat is the summation of these individual

heat generation terms. This decomposition heat is assumed to be distributed over the entire jelly roll domain. The

formulation of these governing reactions follows that outlined by Kim et al. (2007).

The rate of reaction, Rx (s−1), for the SEI, positive and electrolyte reactions is given by:

Rx = Axe

(

−Ea,x

RT

)

Cmx

x (1− Cx)
nx (1)

where subscript x corresponds to one of the reactions sei, pe or e. Ax (s−1) is the frequency factor, Ea,x (Jmol−1)

is the activation energy, R and T the ideal gas constant (8.3145 Jmol−1 K−1) and temperature (K) respectively,

dimensionless quantities include: Cx the reaction species, while nx and mx are constants.

The negative electrode reaction is of a similar form:

Rne = Anee

(

−Ea,ne

RT

)

Cmne

ne (1− Cne)
nne e

(

−tsei
tsei,0

)

(2)
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with the additional term, tsei, a non-dimensional representation of the change in thickness of the SEI layer as it

decomposes. tsei,0 the initial thickness. The change in reaction species for each decomposition reaction and SEI layer

thickness is given by:
∂Csei

∂t
= −Rsei (3)

∂Cne

∂t
= −Rne (4)

∂tsei

∂t
= Rne (5)

∂Cpe

∂t
= Rpe (6)

∂Ce

∂t
= −Re (7)

The volume-specific heat generation terms Qz (W m−3) from each decomposition reaction are given by:

Qz = HzWyRz (8)

where Hz (J kg−1) is the specific heat of reaction for reactions z = sei, ne, pe, e and Wy (kg m−3) is the volume-

specific content of reactive material, i.e. y = c, p, e corresponding to carbon active material, positive active material

and electrolyte respectively. Wc is used in the SEI and NE heat generation equations, Wp in the PE heat generation

equation and We in the electrolyte heat generation equation.

Hence, the total heat generation from the decomposition of the cell is:

Qdecomp = Qsei +Qne +Qpe +Qe (9)

The thermo-physical parameters and heat transfer parameters are initially taken from experimental findings in

the literature and are presented in Table 1. The parameters for the decomposition equations are estimated through

comparison with experimental data and are presented in Table 2. Parameters describing the cell geometry, initial

temperature and oven temperature and simulation time are presented in Table 3.
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Table 1: Thermo-physical and heat transfer characteristics.

Parameter Reference value Range STD

ρ(kgm−3) 2418 a 2413 - 2426a 4.260a

Cp(kJ kg
−1 K−1) 1105 a 1092 - 1115a 8.680a

hconv(Wm−2 K−1) 12.5 b 7.00 - 12.5c 1.00d

κr(Wm−1 K−1) 0.5 d 0.2 - 3c 0.1d

ε 0.8 b 0 - 1 0.1d

a Measured and calculated experimentally (Bugryniec et al., 2019)

b Reference value from Hatchard et al. (2001)

c Literature ranges Refs. (Guo et al., 2010; Hatchard et al., 2001; Kim

et al., 2007; Hatchard et al., 2000; Dong et al., 2018; Coman et al.,

2017; Liu et al., 2018; Zhao et al., 2014; Tanaka and Bessler, 2014)

d Estimated

Table 2: Kinetic parameters used in the decomposition equations.

Kinetic Parameter Carbon SEI LiFePO4 Electrolyte

Frequency Factor, A(s−1) 2.50× 1013 1.67× 1015 2.00× 108 5.14× 1025

Activation Energy, Ea(Jmol−1) 1.42× 105 1.50× 105 9.60× 104 2.82× 105

Reaction order, m 1.00 1.00 1.00 1.00

Reaction order, n 0.00 0.00 1.00 0.00

Heat, H(J g−1) 1714 578.0 194.7 645.0

Specific weight, W (kgm−3) 560 560 977 151

Species initial values, Cx, tsei 0.75 (t = 0.33) 0.15 0.040 0.99

Table 3: Additional simulation parameters.

Parameter Value

rbat (mm) 18

rman (mm) 2

dcan (mm) 0.3

Tint (◦C) 16.5

Toven (◦C) 218

tlength (min) 90

8



Due to the uncertainty in the experimental data, ranges for the thermo-physical and heat transfer characteristics

(density, heat capacity, convection coefficient, radial thermal conductivity and emissivity value) were defined, while

the abuse parameters were kept constant. The initial values (used in the parameter estimation of the model) of the

varied parameters are taken to be the mean of the normal distribution. The standard deviation of the density and

heat capacity is calculated from experimental findings, while the standard deviation of the convection coefficient,

conductivity value and emissivity value are estimated arbitrarily by setting it to 1 relative to the order of magnitude.

A random sampling of these five parameters is undertaken using Latin Hypercube Sampling (LHS) (Stein, 1987),

normally distributed about the mean, and used to generate 753 sample points in the input space. Note that as emissivity

has physical limits between 0 and 1, any parameter sets that have an emissivity value out of this range are removed,

leading to a curtailment of the final distribution of emissivity values. Each of these 753 parameter sets is used (in

conjunction with the original estimated abuse parameters) to carry out an oven simulation at 218◦C exposure. The

resulting temperature data and initial input parameters sets are used to train a GP as described in the previous section.

2.2. GP Surrogate Model

In this study, standard Bayesian conditioning is used to take Gaussian priors and derive a predictive process. This

allows the creation of a GP which takes a (1 × d) row vector of inputs x and returns a Gaussian random variable

through calculations using the predictive equations

y(x) ∼ N
[

f̄(x),Σy + σ2
e

]

(10)

where

f̄(x) := k(x,X)(k(X,X) + σ2
eI)

−1y = k(x,X)K−1y (11)

Σy := k(x,x)− k(x,X)(k(X,X) + σ2
eI)

−1k(X,x) = k(x,x)− k(x,X)K−1k(X,x) (12)

whose mean f̄(x) and variance Σy is learnt from training data y = f(X) + e. Standard Bayesian inference has been

used to express the mean prediction in terms of the (n × 1) observed responses y to (n × d) training inputs X. At

the heart of this lies the kernel function k : Ri+d × R
j+d → R

i × R
j , expressing the correlation between responses

to input samples of sizes (i× d) and (j × d); for the purposes of this work the number of input dimensions is d = 5.

This work exclusively uses the automatic relevance determination (ARD) kernel (Wipf and Nagarajan, 2007):

k(x′,x) := σ2
f exp

(

−
(x− x′)Λ−2(x− x′)⊺

2

)

(13)
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where Λ is a (d × d) diagonal positive definite lengthscale matrix. The learning from training data requires the

optimisation d+2 hyperparameters, constituting of Λ, σf , and σe, through the maximum marginal likelihood p[y|X]

using the ROMCOMMA software library (ROMCOMMA, 2019).

2.3. Sobol’ Indices

In this work, the approach to the calculation of the Sobol’ indices follows Jin et al. (2004) by substituting the true

simulation model with the mean of the conditional GP resulting in semi-analytic Sobol’ indices. This section will

describe the calculation of Sobol’ indices up to evaluating integrals, which will be evaluated using the GP surrogate

model to allow more efficient computation.

Sobol’ indices are calculated by considering a function y = f(x), where x := [x1, ..., xd] is a d-dimensional row

vector found in the input space, Ω, and y is the model output. Assuming that the inputs are mutually dependent and

that f(x) ∈ L2(Ω) (Sobol, 1993, 2001). For a particular input xi, it’s first-order Sobol’ index is defined by

S1,i =
V ar{E(y|xi)}

V ar{y}
=

Di

D
(14)

Then second-order Sobol’ indices between input i and j shows the interactions between xi and xj :

S2,ij =
V ar{E(y|xixj)} − V ar{E(y|xi)} − V ar{E(y|xj)}

V ar{y}
=

Dij

D
(15)

To be able to express the whole effect of an input on the output, the total Sobol’ index is (Saltelli and Homma,

1996)

ST,i = S1,i +

n
∑

j 6=i

S2,ij +

n
∑

j 6=i,k 6=i,j<k

S3,ijk + ... (16)

Therefore, the first-order Sobol’ indices measure the contribution to the variance solely attributable to xi, in contrast,

the total Sobol’ index of i corresponds to its own contribution including interactions with the other inputs.

From here, the partial variances of y are determined through a decomposition method presented by Sobol (1993)

which evaluates each term through multidimensional integrals. As previously mentioned in Section 1, here we use

a GP surrogate model to calculate the Sobol’ sensitivity indices by using Equation (11), the GP predictive mean, to

analytically compute the integrals. Therefore, we have calculated the Sobol’ indices of the predicted value so that

y = f̄(x), in a similar way to that from Chen et al. (2005b).
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3. Results

This section presents the results of the GSA of the LFP TR as described in the previous section. The case study

considers a commercial 1500 mAh 18650 3.2V LiFePO4 cell, and begins with an analysis of the full order model

results providing further understanding of the distribution of the data. Following this, the analysis is split into two

sections, first the time-dependent temperature analysis and then the TR features analysis. Both sections include cross-

validation of a GP surrogate model to assess it’s predictive accuracy and reliability. A full SA is presented including

both the first order and the total Sobol’ indices in an attempt to understand the thermo-physical and heat transfer

characteristics that govern TR. Finally, the GSA is efficiently analysed by comparing the Sobol’ sensitivity indices

for the inputs to further understand which properties govern the TR process. In particular, the research is focused on

understanding the temperature-time profile during TR and so the maximum temperature reached (the TR severity) is

detailed as much as the time to TR.

3.1. Full Order Model

Figure 2 shows the predicted cell surface temperature when exposing an LFP cell to an oven temperature of 218◦C

when simulating using the estimated abuse parameters from Table 2 and the reference values for the thermo-physical

and heat transfer characteristics shown in Table 1. The simulated fit is compared to an unpublished experimental

dataset produced using an oven test that follows the methodology from Bugryniec et al. (2019). The simulation

produces the general cell TR behaviour well, while specific details such as time to TR and TR severity are not

accurately predicted. However, in the context of this work, utilising a TR model to produce a data set for SA and to

produce more general comments for TR model development, the model is deemed appropriate for the remainder of

this work.
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Figure 2: Full order model prediction of an LFP cell TR event due to oven exposure at 218◦C and compared to experimental
results.

Figure 3 shows the mean cell surface temperature of all 753 runs varying with time, alongside the original (refer-
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ence) temperature profile for comparison. Also shown are the upper and lower bounds of the simulation results, i.e the

mean plus and minus 2 standard deviations (STDs) respectively, while the value of the STD with time is also plotted.

The difference between the mean and reference plots, as well as the magnitude and variation of the STD show how

the predicted cell temperature is effected by simply changing the thermo-physical and heat transfer characteristics.

Figure 3 highlights what is referred to as the “TR event”, importantly both before and after the TR event the mean res-

ults of the temperature profile are close to the corresponding reference values. During the TR event, the mean values

differ from the reference plots, specifically the onset, rate and maximum temperature of TR. This difference is due to

the TR event occurring at different times in each simulation run. Therefore, where the peak temperature occurs for

the reference simulation, for other simulations at this point in time the temperature may be significantly lower as TR

may not have started yet. This causes the overall mean temperature to have a lower maximum and shallower gradient

during the TR event, rather than following a steep increase in temperature that is present in each individual simulation.

Also, by looking at the STD, we can see that it increases significantly during the TR period, whilst in general the STD

is greater for steeper temperature rates. This increase in STD causes a sudden drop in the lower bound of the data,

even though for any of the 753 runs, a decrease in temperature similar to the dip in the lower bound is not possible.
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Figure 3: Mean results of all 753 oven simulations, each with randomly sampled thermo-physical characteristics, and compared to
the reference simulation.

3.2. Time-Dependent Temperature Analysis

3.2.1. GP Validation

The GP surrogate was used to predict the temperature at given times using the five thermo-physical and heat

transfer characteristics as inputs to the GP. Therefore, 10s time steps were used up to the TR event and then, to

capture the process accurately 2s time steps were used between 800s and 1200s. Hence, the GP surrogate model

consisted of 361 independent GPs, predicting the temperature at each time step. To be able to confidently calculate

the Sobol’ indices using a surrogate model the predictions produced by the GPs must be fully validated against the
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oven simulations to ensure inaccuracies are not inherently produced in the GSA. For this reason, the GP surrogate

model was tested using the 5-fold cross-validation technique (Hastie, 2009) and the final results are as follows:

• Figure 4a presents the residuals, a comparison of the true values with the predicted mean values for each test

prediction. A “high” predictive quality is indicated by the data following closely to the red y = x trend line and

a high coefficient of determination value of 0.969 (Marrel et al., 2008; Rohmer and Foerster, 2011).

• Figure 4b shows the test predictions as a function of time by considering the root mean squared error indicating

the predictions have negligible errors up to and after the TR event. Between 850s and 1150s, the RMSE

increases to a maximum of 0.400.

• Figure 4c considers the predictive distribution by looking at the percentage of outliers at 2 STD’s with respect

to time. These outliers include any test prediction where it’s true standardised value is outside of the predictions

95% uncertainty distribution. Again, before and after the TR event the number of outliers is negligible but

during the TR event the percentage of outliers increase to be between 4% and 12%. Figure 4c also shows the

percentage of predictions where the true test value is further than 4 predictive STD’s away from the predicted

mean.
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Figure 4: The diagnostics comparing the true standardised temperature to the standardised test predictions used to validate the
time-dependent GPs using 5-fold cross-validation: a) the residuals b) the RMSE, c) the outliers.

Figure 5 shows the variation in temperature with time as predicted by the GP surrogate model using the mean input

values. The temperature-time profile allows a direct comparison of the reference oven simulation to the predicted

distribution which includes the mean predicted temperature (shown by the solid blue line) and the 95% confidence

limits (shown by the dashed blue lines). At first, the accuracy of the GP is clear to see as the blue line closely follows

the red reference line. Additionally, the uncertainty in the predictions is very small shown by the 95% confidence

limits being barely distinguishable lines.
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Figure 5: The predicted temperature-time profile from the GPs when the inputs are kept constant at the mean values.

Overall, the test predictions have been analysed in detail by comparing the residuals, the diagnostics as a function

of time and by fitting a GP to compare with the reference model. This has made it clear to see the predictions using

the GP surrogate model are satisfactory and so we can confidently calculate the Sobol’ indices.

3.2.2. Sobol’ Indices

The Sobol’ indices for each of the five inputs as a function of time, resulting from the GSA, are presented in

Figure 6. Also shown in the figure is the mean temperature which allows us to study the dynamics of the system.

Figure 6a shows the first-order Sobol’ indices, including the interactions between all the inputs. Figure 6b shows the

total Sobol’ indices for each input. As can be seen in both figures, the surface temperature is first dominated by the

conductivity coefficient. Hence, during the first instances of the cell being heated externally, it is the cells’ ability

to transfer heat to the bulk of the mass that has the most dominant effects on surface temperature. In other words, a

higher/ lower conductivity coefficient will mean that heat from the cells surface can be more/ less easily transferred

through the cell to the bulk, leading to relatively lower/ higher surface temperatures, respectively.

From the beginning of the oven simulation to 500s the cells’ temperature increases and so does the sensitivity

measure of the emissivity and convection coefficient increase, with a corresponding decrease in the sensitivity measure

of the conductivity coefficient. At 120s the sum of the sensitivity measures of the emissivity and convection coefficient

equal that of the conductivity. Hence, at this temperature, we can say that the total heat exchange from the environment

is the most important factor in cell temperature prediction. Beyond this time, the Sobol’ indices of the emissivity

coefficient continues to increase with further reduction in the Sobol’ indices of the conductivity coefficient, while

the Sobol’ indices of the convection coefficient remain relatively constant. At 130s the emissivity becomes the most

dominant factor in the overall uncertainty in cell temperature predictions, continuing up until the TR event reaching a

maximum of 79.6% of the total output variance at 580s.

Between 600s and 800s, it can be seen from Figure 6a that the Sobol’ indices of the conductivity coefficient

15



increases. When comparing this to the temperature plot in the same graph, it can be seen that this corresponds to an

increase in the slope of the temperature. The increase in the slope of the temperature is attributed to the increase in

self-heating, as all else remains constant. Hence, the greater importance of the value of thermal conductivity shows

the governing heat transfer to be the transfer of the decomposition heat from the jelly roll to the surface.

It can clearly be seen in Figure 6a that before 800s, i.e. the start of TR, interactions between inputs are not

involved in the process. Whereas, between 800s and 1100s, we can see from Figure 6a that the interactions have

a much larger effect on the output temperature. From Figure 6b we can see that these noticeable interactions must

be between the heat capacity, conductivity coefficient, convection coefficient and emissivity, as the Sobol’ indices of

these inputs increase by a large amount from first-order Sobol’ indices to total Sobol’ indices. When the majority of

the oven simulations have reached the peak of TR at around 1050s (as shown by the mean temperature of the data)

it can be seen that the total Sobol’ indices of emissivity are large, almost reaching 1. However, at this same stage

the first-order Sobol’ indices of emissivity are below 0.3, showing that emissivity’s interactions have a large effect on

the output temperature when the TR event is reaching its finale. An increase from first order Sobol’ indices to the

total Sobol’ indices for the conductivity coefficient and the convective coefficient show that the interactions must be

between emissivity and these two thermal properties. Whereas, in comparison, the heat capacity and the density have

a small increase in Sobol’ values from first order to total. Hence, additional to the need to characterise emissivity

well, as mentioned previously, it is shown that the convection coefficient and conductivity coefficient need also be

characterised well to enable confident predictions of the TR event. Whereas, the results indicate that the density and

heat capacity value could be estimated, knowing confidently that the values should have zero effect on the outcome of

the oven simulation.

As shall be discussed in Section 4, calculating Sobol’ indices for dependent inputs may create inaccuracies in the

results as the method relies on independent variables Mara and Tarantola (2012). In spite of this, as the calculated

Sobol’ indices for both density and heat capacity are very small, we can assume that this is negligible.

Another important consideration is the high confidence in the experimental results which could cause the Sobol’

indices for the density input variable to be small. This level of confidence in experiments has caused the relative

standard deviation (RSTD) of density to be much smaller than the other input variables and so the variability of the

density in the oven simulations is much smaller. This, along with the fact that the RSTD of density is less than a

quarter to the RSTD of its dependent variable, the heat capacity, ensures that the small changes in density do not

affect the output of the simulations. It should also be noted that the confidence of the heat capacity is relatively high.

However, reported values in the literature between 18650 cells for the heat capacity vary greatly, and hence would

increase the variance in the results if the Cp had a STD that encompassed the literature range of values.
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Once TR has completed and the battery begins to cool, the variation in the Sobol’ indices decreases as the cross

effects become negligible. After this period the battery cools towards the oven temperature and so the relevance of

emissivity and the convection coefficient begin to slowly reduce linearly. Whereas, the conductivity coefficient starts

to increase again, due to the dominant heat transfer from inside the cell to its surface and the environment, from almost

zero relevance straight after the TR event to joining the convection coefficient’s value of Sobol’ indices. Nonetheless,

it is clear that the most dominant thermo-physical and heat transfer characteristic is the emissivity, reducing from 0.81

at the time the TR event is over to 0.77 to the time the oven simulation has finished at 2000s. In agreement with

this result, the importance of radiation in TR of Li-ion cells has has also been shown experimentally (Hatchard et al.,

2000; Chen et al., 2006).
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Figure 6: The Sobol’ indices for each input as a function of time: a) shows the first-order Sobol’ indices and the interactions, b)
shows the total Sobol’ indices.

3.3. TR Features Analysis

3.3.1. GP Validation

The time-dependent data showed emissivity to be the most dominant thermo-physical and heat transfer charac-

teristic throughout the oven simulation, nevertheless, it is important to understand how this effects the key steps in a

TR event. Consequently, after looking at the time-series data, the research shall now build on this knowledge, further

understanding how the input variables have an impact on the three important TR features.

The time-dependent data showed emissivity to be the most dominant thermo-physical and heat transfer charac-

teristic throughout the oven simulation furthering our understanding of the TR modelling process. Additionally, a
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similar analysis was used to assist the time-series analysis, to consider how the input variables have an impact on

three important TR features. We therefore perform a further GSA on the following features:

• Self-heating onset - defined as the point in time at which self-heating becomes dominant. Calculated as the time

at which the rate of change in temperature goes from a negative slope to a positive slope, i.e the inflection point

of temperature rate, marked “IP ” on the temperature rate plot of Figure 2.

• TR onset time - the time at which the TR event begins. It is defined and calculated as the time at which the

temperature rate goes above 1◦Cs−1 after the initial 500 seconds of heating, marked “TR” on the temperature

rate plot of Figure 2

• Maximum temperature - marked as “Tmax” on Figure 2.

Once again, a 5-fold cross validation of the GP outputs were performed just as before enabling a plot of the

residuals shown in Figure 4a, comparing the observed values to the predicted mean values show the three GPs to have

an excellent predictive quality, achieving a coefficient of determination value of 0.9998. Additionally, Table 4 shows

the three outputs individually have low values close to zero for the outliers at 2 STD’s and the RMSE.

y = 0.9995x - 1E-05
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-4

-2

0

2

4

-4 -2 0 2 4

P
re

d
ic

te
d

 M
e

a
n

 V
a

lu
e

s

Observed Values

Figure 7: The residuals showing the observed standardised values against the predicted standardised values for all of the oven
simulation test predictions.

Table 4: Resulting diagnostic values from the time prediction GPs

Output Outliers at 2 STD’s RMSE

Inflection Point 0.266% 0.0225

TR Onset Time 0.133% 0.00763

Maximum Temperature 0.000% 0.00607
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3.3.2. Sobol’ Indices

The SA of the three important TR conditions were conducted to find which of the thermo-physical and heat transfer

characteristics had the greatest effects on the time and severity of TR. The results are the total Sobol’ indices calculated

for each output can be seen in Figure 8 where the bars are split between the first-order and cross effects for the three

different outputs. Figure 8a and Figure 8b clearly show the emissivity to be the most relevant thermo-physical and heat

transfer characteristic for the important times dictating the TR event. Another interesting feature shown through the

first two bar charts is that as the cell is first heated up to the inflection point, conductivity has little effect on the speed

of the process. Although, for the TR onset time the total Sobol’ indices for conductivity increases slightly. This infers

that once self-heating of the battery becomes dominant (the inflection point) then conductivity has an increased effect

on the TR. Once again, density and heat capacity have very little relevance on the output of the times during the TR

process. Whereas, the TR severity has found the calculated Sobol’ indices to show different relevance of importance

for the input variables to all the previous results. The TR severity is described by the maximum temperature reached

in the TR event and the total Sobol’ indices calculated are shown in Figure 8c stating that the conductivity coefficient

is the most dominant input, followed by the heat capacity and then the emissivity. In this case, both the density and

the convection coefficient have no effect on the maximum temperature reached by the oven simulation. This shows

the complexity involved in parametrising a TR model for Li-ion cells considering the whole process has previously

shown to be dominated by the emissivity, it has now been shown that severity is dominated by a mixture of the three

inputs. These results concur with the previous time-dependent Sobol’ indices as the figures show very little red bars

proving the interactions between inputs have small relevance leading up the TR events.
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Figure 8: The total Sobol’ indices for each input split to show the interactions and the first order Sobol’ indices for each output: a)
inflection point, b) TR onset time, and c) maximum temperature during TR.

To summarise, the SA outlines the importance of the values chosen for the development of TR models. It can

be seen that estimating the emissivity value would not be adequate for a model as the sensitivity indices have shown

that this dominates the whole TR process. Therefore, the SA has proven important in relation to Li-ion cell TR by

providing vital information on the thermo-physical and heat transfer characteristics in respect to their effects on the

temperature. From that, the research has also discovered that leading up to TR events the most dominant property is,

again, emissivity as the inflection point and the TR onset time is considered. Although, when considering the severity

of the TR event, analysing the maximum temperature reached by the oven simulations has found that the conductivity

coefficient is the most dominant input. Additionally, heat capacity has zero impact on when TR occurs but it does

have a say in the maximum temperature as the Sobol’ indices for heat capacity increase with respect to the maximum

temperature.
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4. Conclusion

Modelling the thermal runaway (TR) of Li-ion cells is intrinsically as important as it is difficult due to the lack

of understanding in the model parameters. A large number of parameters that govern the rise in temperature of a cell

ensure the accuracy of simulation models difficult to obtain. Therefore, further understanding of some of the many

properties was analysed in this research. Beginning with a GSA of the thermo-physical and heat transfer characteristics

of a Li-ion cell provides guidelines into which parameters are the most important when designing the TR model. This

was achieved by developing a TR abuse model for an LFP cell case study whereby all the parameters except the

thermo-physical and heat transfer properties were kept constant to generate enough simulations for a variance-based

GSA. With the use of a GP surrogate model, the Sobol’ indices of the five inputs were calculated. Consequently, care

was taken to validate the surrogate model ensuring inaccuracies were not carried onto the GSA.

The calculated Sobol’ indices found that the most dominant parameter through the overall abuse scenario is clearly

the emissivity value. This statement is true when considering the time-dependent Sobol’ indices throughout the

TR process as well as the Sobol’ indices when considering the two key time points as an output. However, when

the severity of the TR event is considered, emissivity is no longer the dominant variable and now the conductivity

coefficient has a much larger Sobol’ indices. Hence, Li-ion safety will benefit by ensuring the radiation is controlled

with care and when designing a TR model it is essential the emissivity is well characterised to avoid uncertainty in

the model output. We have shown which parameters are key and at what point during TR, enabling other researchers

to interpret their results better given their confidence in parameter values. The work carried out should ensure more

accurate and robust TR models are developed by showing the important parameters to obtain. This further benefits

the energy storage community as these uncertainties in the TR models are related to physical cells and so the relevant

phenomena to consider for Li-ion safety are known.

As this model does not account of axial conductivity, which could lead to a greater temperature rate of the cell from

increased heat transfer from the oven, reaction parameters may have to be altered to ensure accurate TR predictions.

However, as the overall TR behaviour would be similar in any instance, one can assume the general dependences (of

TR on parameters) would be similar. This is with the exception that the conductivity coefficient in the axial direction

would have a greater influence on the model than the value in the radial direction. The GP SA techniques used here

can be readily applied to higher dimensional models that include this extra heat transfer path but this is beyond the

scope of this work.

For future work this study will be extended to the parameters governing the reaction kinetics and decomposition

heat within the TR model, further developing the work begun by Milton et al. (2019) by understanding the effects each

parameter has on the output. The GP model will be improved so that the uncertainty in predictions cover a wider range
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allowing a wider range of oven simulations to be used. Particularly, care will be taken in predictions for TR events that

occur incredibly early/late so that the GP can successfully predict temperatures up to 10 STD’s away from the mean

at these early/late times. Another important aspect to consider is the range of input variables as this work gleaned the

range of values from experimental work but an increase of 10% would reflect a larger variation of parameter values

quoted in the literature. Furthermore, an unpublished analysis of the full order oven simulation has shown that a 10%

increase/decrease in heat capacity has a large effect on the resulting temperature-time graph. Whereas this research

has shown that the range of heat capacity found from experimental work has very little significance on the resulting

temperature profile. On a more practical level, it would be beneficial to consider the effects of all the model parameters

together and apply the method for various other battery chemistries.
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