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RESEARCH Open Access

Experimental analysis and evaluation of
wide residual networks based agricultural
disease identification in smart agriculture
system
Haoxu Yang1, Lutao Gao2, Niansheng Tang1* and Po Yang3*

Abstract

Specialised pest and disease control in the agricultural crops industry have been a high-priority issue. Due to great

cost-effectiveness and efficient automation, computer vision (CV)–based automatic pest or disease identification

techniques are widely utilised in the smart agricultural systems. As rapid development of artificial intelligence, in the

field of computer vision–based agricultural pest identification, an increasing number of scholars have begun to

move their attentions from traditional machine learning models to deep learning techniques. However, so far, deep

learning techniques still have been suffering from many problems such as limited data samples, cost-effectiveness

of network structure, and high image quality requirements. These issues greatly limit the potential utilisation of

deep-learning techniques into smart agricultural systems. This paper aims at investigating utilization of one new

deep-learning model WRN (wide residual networks) into CV-based automatic disease identification problem. We first

built up a large-scale agricultural disease images dataset containing over 36,000 pieces of diseases, which includes

typical types of disease in tomato, potato, grape, corn and apple. Then, we analysed and evaluated wide residual

networks algorithm using the Tesla K80 graphics processor (GPU) in the TensorFlow deep-learning framework. A set

of comprehensive experimental protocols have been designed in comparing with GoogLeNet Inception V4

regarding several benchmarks. The experimental results indicate that (1) under WRN architecture, Softmax loss

function gives a faster convergence and improved accuracy than GoogLeNet inception V4 network. (2) While WRN

shows a good effect for identification of agricultural diseases, its effectiveness has a strong need on the number of

training samples of dataset like at least 36 k images in our experiment. (3) The overall performance is better than

800 sheets. The disease identification results show that the WRN model can be applied to the identification of

agricultural diseases.

Keywords: Disease identification, Convolutional neural network, Wide residual networks, Position-Sensitive Score Map

1 Introduction

Specialised pest and disease prevention for crops industry

have been a highly-priority agricultural issue in many coun-

tries. Agricultural pests and diseases have great harm to

agricultural production. Agricultural pest control has always

been an important link in agricultural production, and the

effective identification and monitoring of agricultural pests

and diseases is the basis for the prevention and control of

pests and diseases. Due to great cost-effectiveness and effi-

cient automation, computer vision (CV)–based automatic

pest or disease identification techniques [1–4] are widely uti-

lised in the smart agricultural systems. The technique and

solution of CV-based real-time collection of agricultural

pests and diseases and the use of remote intelligent diagno-

sis is an important research direction.

Disease identification is a typical research problem

of object detection and recognition. Typical object de-

tection and recognition methods including steps: fea-

ture extraction, object recognition and object

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

* Correspondence: poyangcn@gmail.com
1School of Mathematics and Statistics, Yunan University, No.2 North Cuihu

Road, Kunming, Yunnan 650091, People’s Republic of China
3Liverpool John Moores University, 2 Rodney Street, Liverpool L3 5UX, UK

Full list of author information is available at the end of the article

Yang et al. EURASIP Journal on Wireless Communications and Networking

       (2019) 2019:292 

https://doi.org/10.1186/s13638-019-1613-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-019-1613-z&domain=pdf
http://orcid.org/0000-0002-8553-7127
http://creativecommons.org/licenses/by/4.0/
mailto:poyangcn@gmail.com


positioning. Early works for insect or disease identifi-

cation was done by Zayas and Flinn’s [5] RGB multi-

spectral analysis and the method proposed by Weeks

et al. [6] by principle component analysis (PCA) algo-

rithm. Also traditional object detection and classifica-

tion approaches like OpenCV [7], SVM [8], KNN [9]

and other machine learning models [10, 11] have

been widely used.

In recent years, with the rapid development of deep

learning technique [12–15], it has made some progress

in the field of agricultural pest and disease image recog-

nition. In the field of CV-based object detection study,

an increasing number of scholars have begun to move

their attentions from traditional machine learning

models to deep learning techniques. The study problem

has gradually been based on deep-learning goals for ob-

ject detection and recognition. Especially, the research of

convolutional neural networks (CNN) [12, 13] became

mainstream technology. Many sorts of algorithms based

on CNN have emerged to significantly improve current

systems performance for not only classification but also

detection. For instance, a multi-layer convolutional

neural network was designed [14] to identify the patho-

logical image of the body; Zhang et al. [15] built an 8-

layer convolutional neural network model for training

and testing on the self-expanding blade library. Besides,

deep CNN architecture could also achieve automatic

feature extraction. Also, wide residual network- [16],

AlexNet- [17], GoogleNet- [14], and ResNet [15]-based

convolutional neural network structure and related re-

search have been carried out.

Among above CNN architectures, GoogleNet is

widely recognised as the state-of-the-art of CNN-

based architecture for achieving the tasks of classifi-

cation and detection via large-scale image datasets.

In our paper, identification and recognition of dis-

ease via mobile images is a typical object detection

and classification problem, where GoogleNet would

be suitable for utilisation and investigation for this

task. But, so far deep learning techniques still have

been suffering from many problems such as limited

data samples, cost-effectiveness of network struc-

ture, and high image quality requirements. These is-

sues greatly limit the potential utilisation of deep

learning techniques into smart agricultural systems.

One typical problem in GoogleNet is that how to

speed up traditional deep-learning technique with

satisfied accuracy. A wide residual network (WRN)

[16] algorithm would widen the ResNet blocks but

reduced its depth. WRN has achieved improved

classification performance with significantly fewer

network layers. Moreover, WRN overcomes the

problem of diminishing feature reuse to a certain

extent, and it is several times faster to train than

the very deep ResNet. Thus, this paper aims at in-

vestigating utilization of one new deep-learning

model WRN (wide residual networks) into CV-based

automatic disease identification problem.

We first built up a large-scale agricultural disease

images dataset containing over 36,000 pieces of dis-

eases, which includes typical types of disease in to-

mato, potato, grape, corn and apple. Then, we

analyzed and evaluated wide residual networks algo-

rithm using the Tesla K80 graphics processor (GPU)

in the TensorFlow deep-learning framework. A set of

comprehensive experimental protocols have been de-

signed in comparing with GoogLeNet Inception V4

regarding several benchmarks. The experimental re-

sults indicate that (1) under WRN architecture, Soft-

max loss function gives a faster convergence and

improved accuracy than GoogLeNet inception V4

network. (2) While WRN shows a good effect for

identification of agricultural diseases, its effectiveness

has a strong need on the number of training samples

of dataset like at least 36 k images in our experiment.

(3) The overall performance is better than 800

sheets. The disease identification results show that

the WRN model can be applied to the identification

of agricultural diseases.

This paper takes the diseases of tomato, grape, potato,

corn and other major crops as the research object, and

takes 36,000 pictures of common agricultural diseases,

which are collected and marked in the field, as the data

set. Based on TensorFlow, the focus is introduced into

wide residual networks convolutional neural network

architecture, training disease data in dataset, it estab-

lishes an agricultural disease identification model, which

is based on WRN convolutional neural network model,

and provides a reference method of the new application

for deep-learning in the field of agricultural pests and

diseases.

The rest of this paper is organized as follows: sec-

tion II presents the materials and methods. Section

III describes the proposed experimental research ap-

proach with the details of key protocols developed.

Section IV reports the experimental results on the

benchmark. Finally, the conclusion is drawn in sec-

tion V.

2 Materials and methods
2.1 Multiple disease image dataset

For agriculture insect identification, there exist a few

open databases released such as Butterfly Dataset [18].

However, to our best knowledge, few suitable datasets

that cover multiple disease image data are released while

our purpose is to detect different kinds of insects simul-

taneously in one image. It is mainly because the acquisi-

tion of digital high quality images of pest and disease in
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natural scene is very difficult due to many issues like, di-

versity and distribution of insects, lights and illumina-

tions, and limits of weather or environments. As a result,

we attempt to establish an open source disease and pest

database as shown in Fig. 1. The picture data source of

agricultural disease used in this paper is from the “Na-

tional Agricultural and Rural Big Data Center Yunnan

Sub-center”. The data are collected from the field to the

laboratory, and the 24-bit depth picture of centralized

shooting and post-processing is performed by Canon

EOS 80D. And the data are labeled and screened by pro-

fessionals to avoid errors and duplication of data.

The data source includes 10 varieties of grapes,

potatoes, tomatoes, corn, etc., involving Apple Scab,

Apple Frogeye Spot, Cedar Apple Rust, Cherry_

Powdery Mildew, Cercospora zeaemaydis Tehon

and Daniels, Puccinia polysora, Corn Curvularia

Leaf Spot Fungus; Grape Black Rot Fungus, Grape

Leaf Blight Fungus, Potato Early Blight, Strawberry

Leaf Blight, Tomato Septoria Leaf Spot Fungus, To-

mato Spider Mite Damage, etc., and all are more

than 60 different levels of pest and disease data.

The number of pictures reached more than 36,000.

Some sample images of the data set are shown in

Fig. 1:

The types of design, disease names and quantities in

the multiple disease dataset are shown in Table 1.

2.2 Convolutional neural network methods

2.2.1 Wide residual networks

Wide residual networks are proposed by Zagoruyko and

Komodakis [16] for exploring a much richer set of network

architectures of ResNet [15] blocks and thoroughly examine

how several other different aspects affect its performance.

Traditional CNN architectures [19, 20] have a long time

discussion on shallow or deep residual networks. Deep re-

sidual networks have been shown to be able to scale up to

thousands of layers and still have improving performance.

However, each fraction of a percent of improved accuracy

costs nearly doubling the number of layers, and so training

very deep residual networks has a problem of diminishing

feature reuse, which makes these networks very slow to
Fig. 1 Diseases image samples acquired by Canon EOS 80D

Table 1 Detailed information of sample dataset

No. Name Quantity

1 Apple Healthy 1354

2 Apple_Scab 415

3 Apple Frogeye Spot 488

4 Cedar Apple Rust 208

5 Cherry Healthy 683

6 Cherry_Powdery Mildew 256

7 Corn Healthy 430

8 Cercospora zeaemaydis Tehon and Daniels 409

9 Puccinia polysora 958

10 Corn Curvularia Leaf Spot Fungus 806

11 Maize Dwarf Mosaic Virus 931

12 Grape Healthy 336

13 Grape Black Rot Fungus 963

14 Grape Black Measles Fungus 1055

15 Grape Leaf Blight Fungus 790

16 Citrus Healthy 419

17 Citrus Yellow-Shoot Disease 4158

18 Peach Healthy 287

19 Peach Bacterial Spot 1859

20 Pepper Healthy 1172

21 Pepper Scab 758

22 Potato Healthy 1634

23 Potato Early Blight 815

24 Potato Late Blight 797

25 Strawberry Healthy 277

26 Strawberry Leaf Blight 885

27 Tomato Healthy 1381

28 Tomato Powdery Mildew 1469

29 Tomato Early Blight 792

30 Tomato Late Blight 1569

31 Tomato Leaf Mold Fungus 755

32 Tomato Septoria Leaf Spot Fungus 1403

33 Tomato Spider Mite Damage 929

34 Tomato Yellow Leaf Curl Virus Disease 4442

35 Tomato Mosaic Virus Disease 298
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train. Differing with deep residual networks, WRNs is a

kind of novel architecture where decrease depth and in-

crease width of residual networks. The WRN used in this

paper for evaluation is based on Zagoruyko and Komoda-

kis’s research [16] on the Resnet’s depth of residual network

structure. Structure diagram of WRN is shown in Table 2.

According to the structure of WRN as shown in Fig. 2,

WRN designed in this paper uses basic-wide as the basis

residual unit. The size of the base convolution kernel is 3

× 3, including 4 groups of residual units. The group re-

sidual unit has 5 residual convolution modules; the pool-

ing layer uses the average pooling layer. The static

structure of WRN's tensor board is shown in Appendix A.

2.2.2 GoogleNet Inception V4

The Inception network [14] was an important milestone

in the development of CNN classifiers. Prior to its incep-

tion (pun intended), most popular CNNs just stacked

convolution layers deeper and deeper, hoping to get bet-

ter performance.

GoogLeNet Inception [14] has experienced four major

versions, of which the 1 × 1, 3 × 3, 5 × 5 conv and 3 × 3

pooling branch networks have been focused in the V1 ver-

sion; the batch normalization has been substituted by drop-

out and LRN in V2 version; the V3 version introduces

factorization, the larger two-dimensional convolution is split

into two smaller one-dimensional convolutions, such as the

3 × 3 convolution which is spilt into 1 × 3 convolution and

3 × 1 convolution. For one thing, it saves a lot of parameters

and accelerates the operation; for another, a non-linear is

extended.

The GoogLeNet Incepetion V4 used in this article is

based on the GoogLeNet Incepetion V3. After in-depth

study of the inception module, it is built with residual

connection. It not only greatly accelerates the training

but also greatly improves the performance. It is widely

used in the field of image recognition.

3 Experimental evaluation method

3.1 Design of the experimental protocols

We designed three sets of experimental protocols for

evaluating the performance of WRN convolutional

neural network and GoogLeNet Inception V4. The ex-

perimental design is as follows:

1) For the full dataset, the WRN and GoogLeNet

Inception V4 models were used for training, and

the evaluation and analysis of the training loss

function curve and accuracy value were performed

on the basis of the crossover quotient loss function.

2) For the common disease picture data of tomato,

potato and corn, the WRN convolutional neural

network was used to construct tomato, potato and

corn models, and tested, evaluated and analyzed.

3) Selecting the disease simulation of potato and corn

to construct an intercropping environment, using

WRN convolutional neural network for training,

and testing, evaluating and analyzing

3.2 Construction of convolutional neural network

3.2.1 Construction of basic environment

The model implementation of this paper mainly builds

TensorFlow deep learning framework which is based on

cuda_9.0, cudnn 6, tensorflow 1.4.1_gpu and other envi-

ronments on Ubuntu 16.04 LTS operating system. The

computing platform uses a single-chip model of Tesla

K80 graphics processor (GPU). It is powered by an

Intenl Core i7 4790 CPU with a 64 GB desktop

computer.

Table 2 Structure diagram of WRN

Group name Output size Block type = B(3,3)

Conv1 32×32 [3×3,16]

Conv2 32×32 3� 3; 16� k

3� 3; 16� k

� �

� N

Conv3 16×16 3� 3; 32� k

3� 3; 32� k

� �

� N

Conv4 8×8 3� 3; 64� k

3� 3; 64� k

� �

� N

Avg-pool 1×1 [8×8]

Fig. 2 Static structure of WRN
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3.2.2 Selection and construction of network model

This paper focuses on building WRN and GoogLeNet

Inception V4 networks, and trained, tested, compared

and analyzed.

Through the research of related literature and WRN

model, the data of each iteration to the network is set in

the model construction. After the image is input, accord-

ing to the height and width of the standard resnet image,

the height and width of the input image are reset as 224

dpi; after inputting the image, set the minimum learning

rate to 0.0001, the initial learning rate is 0.1, the learning

rate decline gradient is 0.0002, and using 3 × 3 convolu-

tion; the training uses the momentum gradient descent

method, and the loss function uses the Softmax loss.

3.3 Evaluation indicators

The evaluation index is an important basis for judging the

classification effect of the model. In this paper, the accuracy

rate is used as the comprehensive evaluation index, and the

precision and recall rate are also referred to. The following

describes the evaluation indicators involved in this paper:

3.4 Evaluation terminology

True positives (TP): the number of positive cases that are

correctly divided into positive examples, that is, the number

of instances (samples) that are actually positive examples

and are classified into positive examples by the classifier;

False positives (FP): The number of positive examples

that are incorrectly divided into positive examples, that

is, the number of instances that are actually negative but

are classified as positive by the classifier;

False negatives (FN): the number of instances that are

incorrectly divided into negative examples, that is, the

number of instances that are actually positive but are

classified as negative by the classifier;

True negatives (TN): The number of instances that are

correctly divided into negative examples, that is, the

number of instances that are actually negative and are

classified as negative by the classifier.

3.5 Evaluation indicators

3.5.1 Accuracy

The correct rate is our most common indicator. Accur-

acy = (TP + TN)/(P + N) is the number of samples that

are paired and divided by the number of samples. The

higher correct rate leads to the better classifier.

3.5.2 Precision

Precision is a measure of accuracy, representing the pro-

portion of a positive example that is divided into positive

examples, precision = TP/(TP + FP);

3.5.3 Recall

The recall rate is a measure of coverage. There are mul-

tiple positive examples of metrics that are divided into

positive cases, recall = TP/(TP + FN).

3.6 Experimental procedure

The experimental procedures mainly contain two parts:

(1) construction of model and (2) testing the model.

In the first part, it includes the pre-processing of raw

agriculture pest or disease images, and then construction

of WRN model. After that, we have built up the baseline

of image datasets and start up the training process. Fi-

nally, we will generate the curve of loss function of

WRN and analyse the experimental results. Among

these steps, data processing aims at classifying initial

pest images dataset and determine the training and test-

ing detests. The observation of loss function curves will

determine the best performance of models in training.

In the second part of testing model, it aims at evaluating

the WRN model over several different parameters setting,

for analyzing the best performance of models. Through

analysis the experimental results, we could re-design the

experimental protocols for further studying the accuracy

and robustness of WRN models in these dataset.

4 Experimental results and discussion

4.1 General disease identification performance of WRN

and GoogLeNet Inception V4

For the 35 diseases of 10 varieties including the crops such

as tomato, potato, grape, corn, apple and citrus in the data

set, in the 36,000 image data sets, the WRN model was

used for training, and when the loss function curve tends to

converge, model training is ended; and compared with the

GoogLeNet Inception V4 model, the loss function curves

during the model training are shown in Fig. 3 a and b.

In the deep learning network process, proper iteration

could help to avoid under-fitting and over-fitting problems.

Therefore, training iterative parameters is one of the im-

portant parameters in the deep-learning network training

process. Since the two models in this paper use the Softmax

loss, the training loss function curves of the two models are

compared and discussed as follows:

(1) For WRN model, with the increase of iteration, the

training loss could approach convergence when it is about

6000 to 7000 steps ago. The value of the loss function is

already around 0.2, which indicates that our model could

be quickly learned the characteristics of pests at the begin-

ning of the training phase. As the network continues to it-

erate, the decline in training losses becomes slower.

During the iteration of 8000 to 12000, the model became

convergent. Therefore, we chose 12000 as the best train-

ing iteration parameter in the experiment.

(2) When GoogLeNet Inception V4 has an iteration

number of 12000, the value of the loss function is
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still around 0.6. It could be seen that GoogLeNet In-

ception V4 has a lower tested in the iterative 12000

time model respectively. In the case of the same data

set and the test data are processed, the accuracy of

the WRN model is 0.9103418433578537, and the ac-

curacy of the GoogLeNet Inception V4 model is

0.572600126. It shows that the WRN model intro-

duced in this paper has a better effect on the identifi-

cation of agricultural diseases.

The results on testing WRN Model shows on Table 3

through the analysis of Table 3, the conclusions are as

the followings:

(1).As the WRN network is a better image recognition

in public data sets, and it has a good effect in

agricultural disease identification, and could provide

a new deep learning network for agricultural pest

identification;

(2). From the test results, it is found that the higher

the sample of the single disease dataset, the

higher the evaluation result of the model, which

indicate that the model is more suitable for

application in the agricultural big data

environment.

Fig. 3 Comparison of loss function curves under WRN and

GoogleLeNeT Inception V4.

Table 3 Experimental results on testing WRN model

No. Name Precision Recall F1-
score

Test volume/
total volume

1 Apple Healthy 0.87 0.93 0.90 407/1354

2 Apple_Scab 0.97 0.69 0.80 125/415

3 Apple Frogeye Spot 0.98 0.91 0.94 147/488

4 Cedar Apple Rust 0.95 0.95 0.95 63/208

5 Cherry Healthy 0.91 0.99 0.94 205/683

6 Cherry_Powdery Mildew 0.94 0.81 0.87 77/256

7 Corn Healthy 0.63 0.91 0.74 130/430

8 Cercospora zeaemaydis
Tehon and Daniels

0.75 0.93 0.83 123/409

9 Puccinia polysora 0.97 0.97 0.97 228/958

10 Corn Curvularia Leaf
Spot Fungus

0.97 0.80 0.88 242/806

11 Maize Dwarf Mosaic
Virus

0.96 0.95 0.96 280/931

12 Grape Healthy 0.90 0.97 0.93 101/336

13 Grape Black Rot Fungus 0.90 0.98 0.94 289/963

14 Grape Black Measles
Fungus

0.98 0.93 0.96 317/1055

15 Grape Leaf Blight Fungus 0.91 0.99 0.95 238/790

16 Citrus Healthy 0.88 0.60 0.71 126/419

17 Citrus Yellow-Shoot
Disease

0.96 1.00 0.98 1248/4158

18 Peach Healthy 0.92 0.84 0.88 87/287

19 Peach Bacterial Spot 0.98 0.92 0.95 558/1859

20 Pepper Healthy 0.94 0.90 0.92 352/1172

21 Pepper Scab 0.94 0.87 0.90 228/758

22 Potato Healthy 0.91 0.99 0.95 834/1634

23 Potato Early Blight 0.99 0.97 0.98 417/815

24 Potato Late Blight 0.97 0.74 0.84 408/797

25 Strawberry Healthy 0.95 0.90 0.93 84/277

26 Strawberry Leaf Blight 0.94 0.96 0.95 226/885

27 Tomato Healthy 0.99 0.95 0.97 415/1381

28 Tomato Powdery Mildew 0.99 0.98 0.99 441/1469

29 Tomato Early Blight 0.92 0.71 0.80 238/792

30 Tomato Late Blight 0.80 0.89 0.84 471/1569

31 Tomato Leaf Mold
Fungus

0.96 0.89 0.93 227/755

32 Tomato Septoria Leaf
Spot Fungus

0.92 0.90 0.91 421/1403

33 Tomato Spider Mite
Damage

0.87 0.91 0.89 279/929

34 Tomato Yellow Leaf Curl
Virus Disease

0.95 1.00 0.97 1333/4442

35 Tomato Mosaic Virus
Disease

0.92 0.87 0.89 80/298
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4.2 Specific disease identification performance of WRN

and GoogLeNet Inception V4

Using the WRN model, the number of data samples

was more than 1000, and the crops with better recog-

nition effect, such as tomato, potato and corn, were

selected as the main research objects, to construct the

professional identification models for its important

diseases.

Using the construction of the WRN model, the training

sample data of important diseases of tomato, potato and

corn were input respectively. When the loss function curve

became stable, the model training was ended. The loss

function curves in the model training process are shown in

Fig. 4 a (tomato), b (potato) and c (corn). When the model

training is finished, the test data set reserved in advance is

input into the model, and the recognition result is output

through the test program. Among them, the Accuracy

value of tomato is 96%; The Accuracy value of the potato is

98%; the Accuracy value of corn is 94%. In addition, the

comprehensive evaluation of Precision, Recall and F1-score

is shown in Table 4, Table 5 and Table 6.

4.3 Disease identification performance under simulated

environment on intercropping corn and potato

In the process of agricultural production in Yunnan, the

intercropping method is used to verify the effect of

WRN model in agricultural production. In this paper,

the important diseases of common crops such as corn

and potato are used as identification objects, and the

intercropping environment is simulated. The recognition

effect of the model is shown below.

Using the WRN model, the four common diseases of corn

and the two common diseases of potato are taken as data

samples. As shown in Fig. 5, through training the model,

when the loss function curve tends to be stable, the model

training is ended. It also represents the curve of loss func-

tion in the training process in the Fig. 5. On this basis, the

recognition program is used to input the training set data to

the model for identification, and the identified accuracy

value is 96%. The comprehensive evaluation of precision, re-

call and F1-score is shown in Table 7: It can be seen from

the analysis that the identified accuracy value is about 97%,

indicating that the agricultural disease identification model

constructed by the WRN network used in this paper has a

good effect on the disease identification between the

Fig. 4 Loss function curves of data of tomato, potato and corn

Table 4 Recognition results of tomato

No. Name Precision Recall F1-score Test volume/
total volume

1 Tomato Healthy 0.99 0.96 0.98 415/1381

2 Tomato Powdery
Mildew

1.0 1.0 1.0 441/1469

3 Tomato Early Blight 0.84 0.84 0.84 238/792

4 Tomato Late Blight 0.93 0.93 0.93 471/1569

1 Tomato Leaf Mold
Fungus

0.90 0.96 0.93 227/755

2 Tomato Septoria Leaf
Spot Fungus

0.93 0.95 0.94 421/1403

3 Tomato Spider Mite
Damage

0.96 0.94 0.95 279/929

4 Tomato Yellow Leaf
Curl Virus Disease

0.99 0.99 0.99 1333/4442

5 Tomato Mosaic Virus
Disease

0.92 0.89 0.90 90/298
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simulated corn and potato intercropping crops. It has an im-

portant reference value on agricultural disease identification

in Yunnan Province.

By analyzing the accuracy value, the comprehensive

evaluation of precision, recall and F1-score are as follows:

(1). Through the training loss analysis of WRN model and

GoogLeNet Inception V4, it was found that with the in-

crease of iteration, the training loss of WRN model can ap-

proach convergence when it was about 6000 to 7000 steps;

and the number of iterations of GoogLeNet Inception V4 at

12000 At the same time, the value of the loss function was

still around 0.6. It can be seen that the GoogLeNet Inception

V4 had a lower learning rate for pests and diseases than the

WRN model. The model was tested at 12000 iterations. The

accuracy of the WRN model was 0.91. The accuracy of the

GoogLeNet Inception V4 model was 0.57. It can be seen

that the WRN model introduced in this paper has a better

effect on the identification of agricultural diseases.

(2). Through experiments on more than 36,000 pieces

of 35 different diseases, it shows that WRN has certain

requirements on the number of agricultural disease pic-

ture samples. The total sample size is greater than 800

and showed better recognition effect;

(3). Considering that the images were not optimized

during the training process, the original images were

used. According to the identification results of the grape,

corn, potato and corn and potato intercropping scenar-

ios, the WRN model can be applied to the identification

of agricultural diseases.

5 Conclusion and future work

This paper proposed a novel end-to-end approach for

automatic multiclass insect detection. It consists of three

major parts. Firstly, we utilize deep convolutional

backbones for automatic feature extraction. In this

paper, more than 36,000 pictures of diseases involving

tomato, potato, grape, corn, apple, etc. are studied.

Through literature retrieval and comparative analysis,

Tesla K80’s graphics processor (GPU) is used to deeply

study in TensorFlow. The WRN convolutional neural

network and GoogLeNet inception V4 network were

trained, tested, evaluated and compared in the frame-

work, and the agricultural disease identification based on

WRN convolutional neural network was studied.

Through the design of the experiment, the accuracy

was used to evaluate the model, and three sets of experi-

ments are designed, which use WRN and GoogLeNet In-

ception V4 model to train on the full data set, and

evaluate and analyze the training loss function curve and

accuracy value. The WRN convolutional neural network

was used to construct tomato, potato and corn models,

and tested, evaluated and analyzed. The disease simula-

tion of potato and corn was selected to construct the

intercropping environment, and the WRN convolutional

neural network was used for training, evaluating and

analyzing.

Fig. 5 Loss function curves of simulation model construction

process on intercropping corn and potato

Table 7 Recognition results of intercropping corn and potato

No. Name Precision Recall F1-score Test volume/
total volume

1 Corn Healthy 0.95 0.95 0.95 130/430

2 Cercospora zeaemaydis
Tehon and Daniels

0.85 0.85 0.85 123/409

3 Puccinia polysora 0.99 0.98 0.98 288/958

4 Corn Curvularia Leaf
Spot Fungus

0.92 0.93 0.93 242/806

5 Maize Dwarf Mosaic
Virus

0.98 0.98 0.98 280/931

6 Potato Healthy 0.99 0.99 0.99 491/1634

7 Potato Early Blight 0.98 0.99 0.98 245/815

8 Potato Late Blight 0.97 0.96 0.96 240/797

Table 6 Recognition results of corn

No. Name Precision Recall F1-
score

Test volume/
total volume

1 Corn Healthy 0.99 0.85 0.92 130/430

2 Cercospora zeaemaydis
Tehon and Daniels

0.90 0.85 0.92 123/409

3 Puccinia polysora 0.99 0.99 0.99 288/958

4 Corn Curvularia Leaf
Spot Fungus

0.89 0.95 0.92 242/806

5 Maize Dwarf Mosaic
Virus

0.94 1.00 0.97 280/931

Table 5 Recognition results of potato

No. Name Precision Recall F1-score Test volume/total
volume

1 Potato Healthy 0.99 0.99 0.99 491/1634

2 Potato Early Blight 1.00 0.99 0.99 245/815

3 Potato Late Blight 0.97 0.97 0.97 240/797
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1 Appendix

Fig. 6 Static structure of WRN’s Tensor Board
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