
This is a repository copy of Parallel black-box complexity with tail bounds.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/155027/

Version: Published Version

Article:

Lehre, P.K. and Sudholt, D. orcid.org/0000-0001-6020-1646 (2019) Parallel black-box
complexity with tail bounds. IEEE Transactions on Evolutionary Computation. ISSN
1089-778X

https://doi.org/10.1109/tevc.2019.2954234

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2954234, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 1

Parallel Black-Box Complexity with Tail Bounds
Per Kristian Lehre, Dirk Sudholt

Abstract—We propose a new black-box complexity model
for search algorithms evaluating λ search points in parallel.
The parallel unary unbiased black-box complexity gives lower
bounds on the number of function evaluations every parallel
unary unbiased black-box algorithm needs to optimise a given
problem. It captures the inertia caused by offspring populations
in evolutionary algorithms and the total computational effort in
parallel metaheuristics1

We present complexity results for LeadingOnes and OneMax.
Our main result is a general performance limit: we prove that on
every function every λ-parallel unary unbiased algorithm needs
at least a certain number of evaluations (a function of problem
size and λ) to find any desired target set of up to exponential
size, with an overwhelming probability. This yields lower bounds
for the typical optimisation time on unimodal and multimodal
problems, for the time to find any local optimum, and for the time
to even get close to any optimum. The power and versatility of
this approach is shown for a wide range of illustrative problems
from combinatorial optimisation. Our performance limits can
guide parameter choice and algorithm design; we demonstrate
the latter by presenting an optimal λ-parallel algorithm for
OneMax that uses parallelism most effectively.

I. INTRODUCTION

BLACK-BOX optimisation describes a challenging realm

of problems where no algebraic model or gradient infor-

mation is available. The problem is regarded a black box, and

knowledge about the problem in hand can only be obtained by

evaluating candidate solutions. General-purpose metaheuristics

like evolutionary algorithms, simulated annealing, ant colony

optimisers, tabu search, and particle swarm optimisers are well

suited for black-box optimisation as they generally work well

without any problem-dependent knowledge.

A lot of research has focussed on designing powerful

metaheuristics, yet it is often unclear which search paradigm

works best for a particular problem class, and whether and

how better performance can be obtained by tailoring a search

paradigm to the problem class in hand.

Black-box complexity is a powerful tool that describes

limits on the efficiency of black-box algorithms. The black-

box complexity of search algorithms captures the difficulty

of problem classes in black-box optimisation. It describes the

minimum number of function evaluations that every black-

box algorithm needs to make to optimise a problem from

a given class. It provides a rigorous theoretical foundation

through capturing limits to the efficiency of all black-box

search algorithms, providing a baseline for performance com-

parisons across all known and future metaheuristics as well

as tailored black-box algorithms. Also it prevents algorithm

P. K. Lehre is with the School of Computer Science, University of
Birmingham, United Kingdom.

D. Sudholt is with the Department of Computer Science, University of
Sheffield, United Kingdom.

1This paper significantly extends preliminary results which appeared in [1].

designers from wasting effort on trying to achieve impossible

performance.

Many different models of black-box complexities have been

developed. The first black-box complexity model by Droste,

Jansen, and Wegener [28] makes no restriction on the black-

box algorithm. This leads to some unrealistic results, such as

polynomial black-box complexities of NP-hard problems [28].

Subsequent research introduced refined models that restrict

the power of black-box algorithms, leading to more realistic

results [18], [20], [21], [28], [57], where black-box algorithms

can only query for the relative order of function values of

search points [20], [57] as well as memory restrictions [21],

[28] and restrictions on which search points are allowed to be

stored [23]–[25]. Lehre and Witt [45] introduced the unbiased

black-box model where black-box algorithms may only use

operators without a search bias (see Section II). This model

initially considered unary operators (such as mutation) and

was later extended to higher arity operators (such as crossover)

[16] and more general search spaces [53]. It also led to the

discovery of more efficient EA variants [11]. For further details

we refer to the comprehensive survey by Doerr [22].

A shortcoming of the above models is that they do not

capture the implicit or explicit parallelism at the heart of many

common search algorithms. Evolutionary algorithms (EAs)

such as (µ+λ) EAs or (µ,λ) EAs generate λ offspring in

parallel. Using a large offspring population in many cases can

decrease the number of generations needed to find an optimal

solution2. However, the number of function evaluations may

increase as evolution can only act on information from the

previous generation. A large offspring population can lead

to inertia that slows down the optimisation process. Existing

black-box models are unable to capture this inertia as they

assume all search points being created in sequence.

The same goes for parallel metaheuristics such as is-

land models evolving multiple populations in parallel (see,

e. g. Luque and Alba [47]). Parallelisation can decrease the

number of generations, or parallel time. But the overall com-

putational effort, the number of function evaluations across

all islands, may increase. Lässig and Sudholt [44] used the

following notion. Let Tλ be the random number of generations

an island model with λ islands (each creating one offspring)

needed to find a global optimum for a given problem. If using

λ islands can decrease the parallel time by a factor of order

λ, compared to just one island, λ · E (Tλ) = O(E (T1)), this

is called a linear speedup (with regards to the parallel time,

the number of generations). In other words, a linear speedups

means that the total number of function evaluations, λ·E (Tλ),
does not increase beyond a constant factor.

2This does not hold for all problems; Jansen, De Jong, and Wegener [38]
constructed problems where offspring populations drastically increase the
number of generations.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2954234, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 2

Previous work [43], [44], [48] considered illustrative prob-

lems from pseudo-Boolean optimisation and combinatorial op-

timisation, showing sufficient conditions for linear speedups.

However, the absence of matching lower bounds makes it

impossible to determine exactly for which parameters λ linear

speedups are achieved.

We provide a parallel black-box model that captures and

quantifies the inertia caused by offspring populations of size

λ and parallel EAs evaluating λ search points in parallel. We

present lower bounds on the black-box complexity for the well

known LO (LEADINGONES) problem and for the general class

of functions with a unique optimum, revealing how the number

of function evaluations increases with the problem size n and

the degree of parallelism, λ. The results complement existing

upper bounds [44], allowing us to characterise the realm of

linear speedups, where parallelisation is effective.

Our lower bound for functions with a unique optimum is

asymptotically tight: for the ONEMAX problem, we present a

simple (1+λ) EA with an adaptive mutation rate that achieves

an asymptotically optimal performance amongst all parallel

unary unbiased black-box algorithms. Our adaptive mutation

rates decrease the expected running time by a factor of order

ln lnλ, compared to the (1+λ) EA with the standard mutation

rate 1/n [17].

The paper extends a previous conference paper [1] with

parts of the results. A major novelty in this manuscript is the

introduction of black-box complexity results with tail bounds.

Existing black-box complexity results only make statements

about the expected number of evaluations it takes to find a

global optimum3. However, it is often not clear whether the

expectation is a good reflection of the performance observed in

practice. We provide black-box complexity lower bounds that

apply with an overwhelming probability. More precisely, using

the notation ln+ x := max(1, lnx) whenever the argument

can be smaller than the logarithm’s base4, we show for every

target search point x∗ we can choose that every λ-parallel

unary unbiased black-box algorithm needs at least

max

{

cλn

ln+ λ
, (1− δ)n lnn

}

= Ω

(

λn

ln+ λ
+ n lnn

)

(1)

function evaluations to find x∗, with an overwhelming prob-

ability5, where c is a constant with c ≥ 1/60. The leading

constant 1 − δ in the n lnn term can be chosen6 arbitrarily

close to 1. This means that it is practically impossible for any

unary unbiased black-box algorithm to find a designated target

with less than cλn
ln+ λ

or less than (1−δ)n lnn evaluations. The

latter bound applies to parallel and non-parallel unary unbiased

algorithms.

In addition, if the probability of finding a single target x∗ in

the stated time is exponentially small, the probability of finding

3A notable exception is the p-Monte Carlo runtime introduced by Doerr
and Lengler [23], defined as the minimum number of steps needed in order
to find an optimum with probability at least 1− p.

4When a logarithm appears in an asymptotic formula, we may assume that
n is large enough to make ln(n) = ln+(n). The same holds for terms of
ln lnn, ln lnn, etc. We only use ln+ when the argument is a function of λ.

5An overwhelming probability is defined as 1 − 2−Ω(nε) for some
constant ε > 0.

6The precise result contains a trade-off between the leading constant and
the exponent of the overwhelming probability formula, see Theorem 13.

many target points is still exponentially small. This simple

union bound argument opens up a range of opportunities

for obtaining stronger results that are much more relevant to

practice than the state-of-the-art. Our method is powerful and

versatile since we can choose any set of target search points, up

to an exponential size. This allows for different applications.

1) Considering global optimisation, our lower bound (1)

applies to highly multimodal functions, even allowing

for up to exponentially many optima. Apart from results

tailored to specific problem classes [18], the only generic

black-box complexity lower bounds apply to functions

with one unique global optimum. Our lower bound yields

a general baseline that applies to all unary unbiased black-

box algorithms and a wide range of problems.

2) Choosing all local optima as target search points, we also

get that for functions with up to exponentially many local

optima, every λ-parallel unary unbiased algorithm needs

at least the stated time (1) to find any local optimum.

3) Since we can have exponentially many target search

points, we can even afford to consider all search points

within an almost linear Hamming distance to any local

optimum as target. Then our results imply that even the

time to get close to any local or global optimum is

bounded from below by (1).

We demonstrate the applicability and versatility of our main

result by deriving the first black-box complexity lower bounds

for a wide range of illustrative function classes, from synthetic

problems (TWOMAX, H-IFF, JUMPk, CLIFF) that are very

popular in the evolutionary computation literature to classes

of benchmark functions [41] and important problems from

combinatorial optimisation such as VERTEX COLOURING,

MINCUT, PARTITION, KNAPSACK and MAXSAT.

In addition to providing a solid unifying theoretical founda-

tion for black-box algorithms, we believe that our results are

of immediate relevance to practice. Our black-box complexity

with tail bounds gives hard limits on the capabilities of

(unary unbiased) black-box algorithms. These limits can be

used to set stopping criteria appropriately, avoiding stopping

an algorithm before it has had a chance to come close to

local or global optima. They are useful to set parameters

such as the offspring population size λ: if we have a limited

computational budget of T evaluations, (1) implies that we

must choose λ satisfying λ/ ln+ λ ≤ T/(cn) as for larger

values T is lower than (1), meaning that every λ-parallel unary

unbiased black-box algorithm fails badly with overwhelming

probability. Moreover, our lower bounds can serve as base-

line in performance comparisons across various algorithms.

And, last but not least, knowing what is impossible is vital

for guiding the search for the best possible algorithm. The

feasibility of this approach is demonstrated in this work as

we present an optimal λ-parallel algorithm for ONEMAX that

uses parallelism most effectively.

II. A PARALLEL BLACK-BOX MODEL

Following Lehre and Witt [45], we only use unary unbiased

variation operators, i. e., operators creating a new search point

out of one search point. This includes local search, mutation in

evolutionary algorithms, but it does not include recombination.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2954234, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 3

A unary variation operator can be formally described as

a conditional probability distribution p(· | ·), where for any

pairs of bitstrings x, y ∈ {0, 1}n, p(y | x) is the probability

that the variation operator produces an “offspring” y from

the “parent” x. A unary variation operator is called unbiased

(see Lehre and Witt [45] and Rowe and Vose [53]) if for all

bitstrings x, y, z ∈ {0, 1}n and permutations σ : [n] → [n]

(1) p(y | x) = p(y ⊕ z | x⊕ z)
(2) p(y | x) = p(σb(y) | σb(x))

where ⊕ is the xor operator, and the function σb(x) is the

permutation over the bit-positions, defined by

σb(x1x2 · · ·xn) := xσ(1)xσ(2) · · ·xσ(n).

Informally, unbiasedness means that there is no bias towards

particular regions of the search space; unbiased operators over

{0, 1}n must treat all bit values 0, 1 and all bit positions

1, . . . , n symmetrically. This is the case for many common

variation operators, such as standard bit mutation.

Throughout this paper we only deal with unbiased algo-

rithms as the performance of biased algorithms may depend on

the particular encoding used. For example, the (1+1) EA with

the asymmetric mutation operator defined in Jansen and Sud-

holt [39] flips zeros and ones with different probabilities. This

leads to improved expected times of O(n) and O(n3/2) on

ONEMAX and LO, respectively, but this advantage disappears

when the fitness function is transformed with operators ⊕ or

σb [39]. Unbiased algorithms show the same performance on

all possible transformations ⊕, σb of a fitness function.

Unbiased black-box algorithms query new search points

based on the past history of function values, using unbiased

variation operators. We define a λ-parallel unbiased black-box

algorithm in the same way, with the restriction that in each

round λ queries are made in parallel (see Algorithm 1). We use

the abbreviation uar for uniformly at random. These λ queries

only have access to the history of evaluations from previous

rounds; they cannot access information from queries made in

the same round. We refer to these λ search points as offspring

to indicate search points created in the same round.

Algorithm 1 λ-parallel unbiased black-box algorithm

1: Let t := 0. Choose x1(0), . . . , xλ(0) uar, compute

f(x1(0)), . . . , f(xλ(0)), and initialise the history as H :=
(f(x1(0)), . . . , f(xλ(0))).

2: repeat

3: for 1 ≤ i ≤ λ do

4: Given the history H, choose indices 1 ≤ k ≤ λ and

0 ≤ j ≤ t and an unbiased variation operator pv .

5: Sample xi(t+ 1) according to pv(· | xk(j)).
6: for 1 ≤ i ≤ λ do

7: Compute f(xi(t+1)) and append f(xi(t+1)) to H.

8: Let t := t+ 1.

9: until termination condition met

This black-box model includes offspring populations in

evolutionary algorithms, for example (µ+λ) EAs or (µ,λ) EAs

(modulo minor differences in the initialisation). It can further

model parallel evolutionary algorithms such as cellular EAs

with λ cells, or island models with λ islands, each of which

generates one offspring in each generation.

The (1+λ) EA maintains the current best search point x and

creates λ offspring by flipping each bit in x independently

with probability p (with default p = 1/n). The best offspring

replaces its parent if it has fitness at least f(x).

Algorithm 2 (1+λ) EA

1: Choose x uar.

2: repeat

3: for 1 ≤ i ≤ λ do

4: Create yi by copying x and flipping each bit inde-

pendently with probability 1/n.

5: Choose z uar from argmax{f(y1), . . . , f(yλ)}.

6: if f(z) ≥ f(x) then x = z
7: until termination condition met

A. Parallel black-box complexity

The optimisation time is commonly defined as the number

of function evaluations made before a global optimum is found

for the first time. The unbiased black-box complexity (uBBC)

of a function class F is the minimum worst-case optimisation

time among all unbiased black-box algorithms [45] (equivalent

to Algorithm 1 with λ = 1). The unbiased λ-parallel black-

box complexity (λ-upBBC) of a function class F is defined

as the minimum worst-case number of function evaluations

among all unbiased λ-parallel algorithms satisfying the frame-

work of Algorithm 1.

With increasing λ access to previous queries becomes more

and more restricted. It is therefore not surprising that the black-

box complexity is non-decreasing with growing λ. For every

family of function classes Fn and all λ ∈ N,

uBBC(Fn) ≤ λ-upBBC(Fn) ≤ λ · uBBC(Fn) (2)

as any unbiased algorithm can be simulated by a λ-parallel

unbiased black-box algorithm using one query in each round.

Also note that the unary unbiased black-box complexity can

be regarded as the 1-parallel unary unbiased black-box com-

plexity, uBBC(Fn) = 1-upBBC(Fn).
The following lemma shows that the parallel black-box

complexity increases with the degree of parallelism, modulo

possible rounding issues.

Lemma 1. For any α, β ∈ N, if α ≤ β then

α-upBBC(Fn) ≤
α

β

⌈

β

α

⌉

· β-upBBC(Fn)

In particular, if
β
α ∈ N then α-upBBC ≤ β-upBBC.

A proof (in the context of distributed black-box complexity)

was given in [2, Lemma 4].

Lemma 1 implies the following for all function classes Fn

(we omit Fn for brevity): First, if β
α ∈ N then α-upBBC ≤

β-upBBC. Otherwise, α-upBBC ≤ (1 + α
β) · β-upBBC ≤

2·β-upBBC because ⌈β
α⌉ ≤ 1+ β

α and 1+α
β ≤ 2. In particular,

this implies that for all α < β ∈ N,

β-upBBC = Ω(α-upBBC). (3)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2954234, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 4

We conclude that the λ-parallel black-box complexity does

not asymptotically decrease with the degree of parallelism,

λ = λ(n). This implies that there is a cut-off point such that for

all λ = O(λ∗) the λ-parallel unbiased black-box complexity

of Fn is asymptotically equal to the regular unbiased black-

box complexity.7

Definition 2. A value λ∗ is a cut-off point if

• for all λ = O(λ∗), λ-upBBC = O(uBBC) and

• for all λ = ω(λ∗), λ-upBBC = ω(uBBC).

Such a cut-off point always exists because due to (3) the

parallel black-box complexity cannot decrease asymptotically,

and values of O(uBBC) can always be attained for suitable λ∗,

e. g. for λ∗ := 1. Furthermore, the λ-parallel black-box

eventually diverges for very large λ (e. g. λ = ω(uBBC))
as trivially λ-upBBC ≥ λ.

Note that cut-off points are not unique: if λ∗ is a cut-off

point, then every λ′ = Θ(λ∗) is also a cut-off point.

A cut-off point determines the realm of linear speedups [44],

where parallelisation is most effective. Below the cut-off, for

an optimal parallel black-box algorithm the number of function

evaluations does not increase (beyond constant factors), but the

number of rounds decreases by a factor of Θ(λ). The number

of rounds corresponds to the parallel time if all λ evaluations

are performed on parallel processors. Hence, below the cut-

off it is possible to reduce the parallel time proportionally

to the number of processors, without increasing the total

computational effort (by more than a constant factor).

III. PARALLEL BLACK-BOX COMPLEXITY OF

LEADINGONES

We consider the function LO(x) :=
∑n

i=1

∏i
j=1 xj , count-

ing the number of leading ones in x. It is an example of a

unimodal function where a specific bit needs to be flipped to

increase the fitness. Similarly, LZ(x) counts the number of

leading zeros in x. We first provide a tool for estimating the

progress made by λ trials, which may or may not be indepen-

dent. It is based on moment-generating functions (mgf).

Lemma 3. Given λ random variables X1, . . . , Xλ ∈ N,

not necessarily independent, let X(λ) := maxi∈[λ] Xi. If

there exist η,D ≥ 0, such that for all i ∈ [λ], it holds

E
(

eηXi
)

≤ D, then E
(

X(λ)

)

≤ (ln(Dλ) + 1)/η.

Proof. Note first that for any i ∈ [λ] and j ∈ N, it follows from

Markov’s inequality that Pr(Xi ≥ j) = Pr(eηXi ≥ eηj) ≤
e−ηjE

(

eηXi
)

≤ e−ηjD. Now, let k := ln(Dλ)/η. Recall that

the expectation of any non-negative, integer-valued random

variable N can be written as E (N) =
∑∞

i=1 Pr(N ≥ i).
From this and a union bound, we get

E
(

X(λ)

)

=
∞
∑

i=1

Pr(X(λ) ≥ i) ≤ k +
∞
∑

i=1

Pr(X(λ) ≥ k + i)

≤ k +
∞
∑

i=1

λ
∑

j=1

Pr(Xj ≥ k + i) ≤ k +
∞
∑

i=1

λD

eη(k+i)

7Strictly speaking, we should be writing λ(n) = O(λ∗(n)) as the degree of
parallelism may depend on n. We omit this parameter for ease of presentation.
Asymptotic statements always refer to n.

= k + e−ηk Dλ

eη − 1
≤ k +

Dλ

ηeηk
=

(ln(Dλ) + 1)

η
.

We now state the λ-parallel black-box complexity of LO.

Theorem 4. Let ln+ x := max(1, lnx). The λ-parallel unbi-

ased black-box complexity of LO is

Ω

(

λn

ln+(λ/n)
+ n2

)

and O
(

λn+ n2
)

.

The cut-off point is λ∗
LO = n. The parallel time for an optimal

algorithm is Ω
(

n
ln+(λ/n)

+ n2

λ

)

and O
(

n+ n2

λ

)

.

This result solves an open problem from Lässig and Sudholt

[44], confirming that the analysis of the realm of linear

speedups for LO from Lässig and Sudholt [44] is tight.

Proof of Theorem 4. The upper bound of O
(

λn+ n2
)

fol-

lows easily from an upper bound of O
(

n+ n2

λ

)

on the num-

ber of generations for a (1+λ) EA from Lässig and Sudholt

[43, Theorem 1]8. The intuition behind this bound is that λ
parallel queries can lead to a speedup of a factor of Θ(λ),
compared to the expected time of Θ(n2) for the (1+1) EA.

The upper bound also contains an additive term of n for the

number of non-optimal fitness values. This term limits the

possible speedups that can be proven using the cited theorem.

A lower bound Ω(n2) follows from the unary unbiased

black-box complexity of LO [45], which by (2) is a lower

bound on the λ-parallel unary unbiased black-box complexity.

Hence the statement holds for the case λ = O(n). Thus we

only need to consider the case λ = ω(n) and to prove a lower

bound of Ω
(

λn
ln+(λ/n)

)

= Ω
(

λn
ln(λ/n)

)

for this case.

We proceed by drift analysis. Let the “potential” of a search

point x be

max
0≤j≤t,1≤i≤λ

{LO(xi(j)), LZ(xi(j)), n/2}

and define the potential of the algorithm, Pt at time t to be

the highest potential of all search points produced until time t.
Assume that the potential in generation t is Pt = k. In any

generation t, let Xi for i ∈ [λ] be the indicator variable for

the event that all of the first k + 1 bit-positions in individual

i are 1-bits (or 0-bits). Furthermore, let Yi be the number of

consecutive 1-bits (or 0-bits) from position k+2 and onwards,

ie., the number of “free riders”.

To bound the progress in potential, we now estimate a

bound on the expectation of maxi∈[λ] XiYi. We first claim

that Pr (Xi = 1) = O(1/n) by recapping arguments from the

proof of Theorem 2 in Lehre and Witt [45]. For any previously

generated search point x, the number of 0-bits (or 1-bits) s in

the first k + 1 positions satisfies 1 ≤ s ≤ k + 1. Assume that

the algorithm creates a new search point x′ by flipping r bits

uniformly at random in the selected search point x. Clearly, in

order for the offspring x′ to have only 1-bits (or 0-bits) in the

first k + 1 bit-positions, it is necessary that r ≥ s. Focusing

only on the first k + 1 bit-positions, the algorithm must flip

exactly s 0-bits in the first k + 1 positions, and no 1-bits.

8The cited theorem gives an upper bound for an island model with a
complete topology; however, the differences to a (1+λ) EA are irrelevant in
the context of this upper bound.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2954234, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 5

Optimistically assuming that the algorithm flips exactly s bit-

positions within the first k + 1 positions, the algorithm needs

to choose s bits correctly out of k+1 bit positions. Thus, the

probability that the first k + 1 bits in the new search point x′

are only 1-bits (or only 0-bits) is therefore no more than

1
(

k+1
s

) =
s

k + 1
· s− 1

k
· · · · 1

k − s+ 1
≤ 1

k + 1
= O(1/n).

The claim now follows by a union bound, taking into account

the probability of having all 0-bits or all 1-bits in the first k+1
bit-positions.

Defining M :=
∑λ

i=1 Xi, we therefore have E (M) =
O(λ/n). For all λ − M indices i where Xi = 0, we

clearly have XiYi = 0. For the other M indices i where

Xi = 1, we have XiYi = Yi. Since the algorithm uses unary

unbiased variation operators, Lemma 1 in Lehre and Witt [45]

implies that each random variable Yi, i ∈ [λ], is stochastically

dominated by a geometric random variable Zi with parameter

1/2. The expected progress in potential is therefore

E
(

∆(λ)

)

= E

(

max
i∈[λ]

XiYi

)

≤ E

(

max
i∈[M]

Zi

)

.

The mgf of the geometric random variable Zi is MZi
(η) =

1/(2−eη). The tower property of the expectation and Lemma 3

with η := ln(3/2) and D := 2 give

E
(

∆(λ)

)

≤ E

(

E

(

max
i∈[M]

Zi | M
))

≤ E ((log(DM) + 1)/η)

≤ (log(E (DM)) + 1)/η = O(ln+(λ/n)),

where the last inequality follows from Jensen’s inequality

and the last equality follows from log(λ/n) = Ω(1). With

overwhelmingly high probability, the initial potential is at

least n/2. Hence, by classical additive drift theorems [36],

the expected number of rounds to reach the optimum is

Ω(n/ ln+(λ/n)). Multiplying by λ gives the number of func-

tion evaluations.

IV. PARALLEL BLACK-BOX COMPLEXITY OF FUNCTIONS

WITH ONE UNIQUE OPTIMUM

Jansen, De Jong, and Wegener [38] considered the

(1+λ) EA and established a cut-off point for λ where the

running time increases from Θ(n log n) to ω(n log n):

λ∗
(1+λ) EA on ONEMAX = Θ((lnn)(ln lnn)/(ln ln lnn)) (4)

Doerr and Künnemann [17] presented the following tight

bounds for bounded λ:

Theorem 5 (Adapted from Doerr and Künnemann [17]). The

expected optimisation time of the (1+λ) EA on ONEMAX is

Θ

(

n · λ ln+ ln+ λ

ln+ λ
+ n log n

)

where the upper bound holds for λ = O(n1−ε) and the lower

bound holds for λ = O(n).

We show that the parallel black-box complexity is lower

than the bound from Theorem 5 for large λ by a factor of

order ln+ ln+ λ.

Theorem 6. For any λ ≤ e
√
n the λ-parallel unbiased unary

black-box complexity for any function with a unique optimum

is at least

Ω

(

λn

ln+ λ
+ n log n

)

.

The corresponding parallel time for an optimal algorithm is

Ω
(

n
ln+ λ

+ n logn
λ

)

.

We will show in the next section that this bound is tight for

ONEMAX. Consequently, the cut-off point for ONEMAX is

λ∗
ONEMAX = Θ(log(n) · log log n).

This is higher than the cut-off point for the (1+λ) EA with the

standard mutation rate p = 1/n from (4) and Jansen, De Jong,

and Wegener [38].

To prove Theorem 6 we consider the progress made during

a round of λ variations in terms of a potential function defined

in the following. The following definitions and arguments,

including several lemmas shown in the following, will also

be used in Section VI to prove lower bounds that hold with

overwhelming probability.

Without loss of generality, we assume that the search

point 1n is the optimum. Following Lehre and Witt [45], we

assume a “mirrored” sampling process, where every time a

bit string x is queried (including in the initial generation), the

algorithm queries the complement bit string x for “free”. This

is necessary as a black-box algorithm can try to locate the

complement of the global optimum and it then just needs to

flip all bits to find the optimum. Thus, we have to consider the

progress towards the global optimum as well as the progress

towards its complement.

Definition 7. Define the 0-potential st0 as the minimum

number of zeros in all search points queried in all steps up

to time t. For all st0 ≤ m ≤ n − st0 and r ∈ {0, . . . , n} we

define the random variable ∆0(s
t
0,m, r) := max{0, st0−|y|0}

where |y|0 is the number of zeros in a random search point

y obtained by applying unbiased variation with radius r to a

search point with m zeros. Define the 1-potential st1 and ∆1

symmetrically with respect to the number of ones.

Due to mirrored sampling, we always have st0 = st1, hence

we simply write st or just s if we refer to the current point in

time. Then we define the progress in terms of the potential as

∆(s,m, r) = max{∆0(s,m, r),∆1(s,m, r)}.

Note in particular that for all z ∈ N we have

Pr (∆(s,m, r) ≥ z)

≤ Pr (∆0(s,m, r) ≥ z) + Pr (∆1(s,m, r) ≥ z) . (5)

Also note that by symmetry of zeros and ones ∆0(s,m, r)
has the same distribution as ∆1(s, n−m, r), hence it suffices

to study the distribution of ∆0. We also have for all s,m, r
with s ≤ m ≤ n− s,

∆0(s,m, r) = ∆0(s, n−m,n− r) (6)

as flipping all bits (in the transition from m to n−m) and then

flipping all but r bits in the variation has the same effect as

flipping r bits in the first place. Hence it suffices to consider

∆0(s,m, r) for s ≤ m ≤ n/2.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2954234, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 6

Now consider the progress ∆0(s,m, r). Let Z be the

number of 0-bits that flipped to 1, then there are r − Z new

0-bits that were originally 1. Therefore, the number of 0-bits

in the new generated search point is m− Z + (r − Z) where

Z can be described by the hypergeometric distribution with

parameters n,m and r. We only make progress if the number

of 0-bits in the new search point is less than s. Hence the

progress (decrease in 0-potential) is

∆0(s,m, r) = max{Z − (r − Z) + (s−m), 0}
= max{2Z − r + s−m, 0}.

We show a tail inequality for hypergeometric variables and

use this to derive a progress bound for the 0-potential.

Lemma 8. Let Z be a hypergeometrically distributed random

variable with parameters n (number of balls), m (number of

red balls), and r (number of balls drawn). For all z ∈ N0,

Pr (Z = z) ≤
(

r

z

)

· m
z

nz
.

If z ≥ r/2, this is at most
(

4m
n

)z
.

Proof. We assume z ≤ m and z ≤ r as otherwise

Pr (Z = z) = 0. We further assume z ≥ 1 as for z = 0
the probability bound is 1 and the statement is trivial. Now,

Pr (Z = z) =

(

m

z

)(

n−m

r − z

)

/

(

n

r

)

=
m!(n−m)!r!(n− r)!

z!(m− z)!(r − z)!(n−m− r + z)!n!

=

(

r

z

)

· m!(n−m)!(n− r)!

(m− z)!(n−m− r + z)!n!
. (7)

The fraction can be written as

m(m− 1) · . . . · (m− z + 1)

n(n− 1) · . . . · (n− z + 1)
·

(n−m)(n−m− 1) · . . . · (n−m− r + z + 1)

(n− z)(n− z − 1) · . . . · (n− r + 1)

Since z ≤ m, the second fraction above is at most 1. The

first fraction is at most mz/nz as (m− i)/(n− i) ≤ m/n for

all i ∈ N and m ≤ n. Plugging this into (7) yields

Pr (Z = z) ≤
(

r

z

)

· m
z

nz
.

If z ≥ r/2, this is at most
(

4m
n

)z
as
(

r
z

)

≤ 2r ≤ 22z = 4z .

The next lemma shows that for any radius r the probability

of having a progress of z decreases exponentially with z.

Lemma 9. Let s denote the current 0-potential. If s ≤ m ≤
n/8, then for all z ∈ N and r ∈ {1, . . . , n},

Pr (∆0(s,m, r) = z) ≤
(

1

2

)z/2

.

Proof. Applying Lemma 8 to the hypergeometric random

variable Z with parameters m and r we have, for all z ∈ N0,

Pr (∆0(s,m, r) = z) = Pr

(

Z =
z + r +m− s

2

)

≤
(

4m

n

)(z+r+m−s)/2

≤
(

1

2

)z/2

.

The following lemma gives another tail bound that will be

used to exclude steps where a search point of potential m ≫ s
is chosen for variation. The probability of having a positive

progress decreases rapidly with growing m− s.

Lemma 10. For every s ≤ m ≤ n/2 and every r ∈ {1, . . . , n}

Pr (∆0(s,m, r) > 0) ≤ exp

(

− (m− s)2

2r

)

.

Proof: We use the following well-known tail bound for

the hypergeometric distribution [4]: Pr (Z ≥ E (Z) + rδ) ≤
exp(−2δ2r), where E (Z) = rm

n . The first inequality follows

from r/(2r)−m/n = 1/2−m/n ≥ 0.

Pr (∆0(s,m, r) > 0)

= Pr

(

Z >
r +m− s

2

)

= Pr

(

Z >
rm

n
+ r ·

(

r +m− s

2r
− m

n

))

≤ Pr

(

Z ≥ rm

n
+ r ·

(

m− s

2r

))

≤ exp

(

−2r

(

m− s

2r

)2
)

= exp

(

− (m− s)2

2r

)

.

Putting all lemmas together shows that the expected

progress is at most logarithmic in λ.

Lemma 11. Let ∆
(λ)
0 be the maximum of λ random vari-

ables ∆0(s,m1, r1), . . . ,∆0(s,mλ, rλ) for arbitrary values

m1, . . . ,mλ and r1, . . . , rλ with s ≤ mi ≤ n/2 for all

1 ≤ i ≤ λ. For s ≤ n/16 we have E
(

∆
(λ)
0

)

= O
(

ln+ λ
)

.

Proof. If n/8 < mi ≤ n/2 then mi − s ≥ n/16 and by

Lemma 10 we have

Pr (∆0(s,mi, ri) > 0) ≤ e−n2/(512ri) ≤ e−Ω(n).

This means that the probability of making any progress is

exponentially small, for any ri. Thus in the following we

assume that mi ≤ n/8 for all i.
Under this assumption, applying Lemma 9, for all z ∈ N0,

Pr (∆0(s,mi, ri) = z) ≤
(

1

2

)z/2

=

(

1√
2

)z

Hence, for η := ln(4/3) and D := 9 + 6
√
2,

E
(

e∆0(s,mi,ri)
)

≤
∞
∑

z=0

(

1√
2

)z

eηz =
∞
∑

z=0

(

4

3
√
2

)z

=
1

1− 4
3
√
2

= D.

Applying Lemma 3 proves E
(

∆
(λ)
0

)

= O
(

ln+ λ
)

.

Now we are in a position to prove Theorem 6.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2954234, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 7

Proof of Theorem 6. The lower bound Ω(n log n) follows

from unbiased unary black-box complexity [45]. Hence, it

suffices to prove the lower bound Ω(λn/ ln+ λ).
Consider any λ-parallel unary unbiased black-box algo-

rithm. We grant the algorithm an advantage by revealing all

search points with Hamming distance at least n/16 to both 0n

and 1n at no cost. Hence the potential is always s ≤ n/16. By

Chernoff bounds and a union bound over λ trials, the potential

after initialisation is n/16 with overwhelming probability.

Assuming this is the case, let ∆
(λ)
0 be the progress due

to reduction of the 0-potential in one step, and ∆
(λ)
1 be the

progress due to reduction of the 1-potential. Owing to the

symmetry of ∆0 and ∆1, Lemma 11 also applies to ∆
(λ)
1 .

Hence the expected change in potential per round is at most

E
(

∆
(λ)
0

)

+ E
(

∆
(λ)
1

)

= O(ln+ λ).

Hence, by the additive drift theorem [36], the expected number

of rounds until one of the search points 0n or 1n is obtained

is Ω(n/ ln+ λ). Multiplying by λ proves the claim.

V. AN OPTIMAL PARALLEL BLACK-BOX ALGORITHM FOR

ONEMAX

The following theorem shows that the lower bound on the

black-box complexity from Theorem 6 is tight. We show that

the (1+λ) EA has a better optimisation time if the mutation

rate is chosen adaptively, according to the current best fitness.

This is similar to common ideas from artificial immune

systems, particularly the clonal selection algorithm. Adaptive

mutation rates for ONEMAX have been studied by Zarges

[63], however the standard parameters for the clonal selection

algorithm were too drastic to even obtain polynomial running

times. Better results were obtained when using a population-

based adaptation [64].

The following result reveals an optimal choice for the

mutation rate of the (1+λ) EA, depending on n and λ.

Theorem 12. On OneMax, the expected number of function

evaluations of the (1+λ) EA with an adaptive mutation rate

pi = max{ln(λ)/(n ln(en/i)), 1/n}, where i is the number

of zeros in the current search point, for any λ ≤ e
√
n, is at

most

O

(

λn

ln+ λ
+ n log n

)

.

The parallel time (number of generations) is

O
(

n
ln+ λ

+ n logn
λ

)

.

Proof. For λ = 1 the algorithm boils down to a (1+1) EA with

mutation rate 1/n, hence we assume λ ≥ 2 where ln+ λ =
Θ(lnλ). Let i be the current number of zeros and pi be the

corresponding mutation rate. The probability of decreasing the

number of zeros by any k ∈ N with k ≤ i is at least

Pr (∆ ≥ k) ≥
(

i

k

)

· pki · (1− pi)
n−k

≥ ik

kk
· pki · (1− pi)

n−k = (1− pi)
n−k ·

(

ipi
k

)k

.

Then the probability that one of λ offspring will decrease the

number of zeros by at least k is at least, using 1− (1−pi)
λ ≥

1− e−piλ ≥ 1− 1/(1 + piλ) = piλ/(1 + piλ),

Pr
(

∆(λ) ≥ k
)

≥ 1− (1− Pr (∆ ≥ k))λ

≥ λ(1− pi)
n−k · (ipi/k)k

1 + λ(1− pi)n−k · (ipi/k)k
.

Hence for any k ≤ i the drift is at least

E
(

∆(λ)

)

≥ k · λ(1− pi)
n−k · (ipi/k)k

1 + λ(1− pi)n−k · (ipi/k)k
.

For i > en/ lnλ, which implies pin > 1, we set k := pin =
ln(λ)/ ln(en/i). We have k ≤ i since k ≤ ln(λ) ≤ √

n ≤
en/ lnλ. We use k := 1 for i ≤ en/ lnλ, the realm where

pi = 1/n. This results in the following drift function h:

h(i) :=

{

λ(1−1/n)n−1·i/n
1+λ(1−1/n)n−1·i/n if i ≤ en/ lnλ

pin · λ(1−pi)
n−pin·(i/n)pin

1+λ(1−pi)n−pin·(i/n)pin otherwise

We estimate the number of function evaluations by multiplying

the number of generations by λ. The number of generations is

estimated using Johannsen’s variable drift theorem [42] (see

Theorem 1 in [52]), with the above function h. Along with

(1− 1/n)n−1 ≥ 1/e, this gives an upper bound of

λ

h(1)
+

∫ n

1

λ

h(i)
di

=
1 + λ(1− 1/n)n−1 · 1/n

(1− 1/n)n−1 · 1/n + λ

∫ n

1

1

h(i)
di

≤ en+ λ+ λ

∫ en/ lnλ

1

1

h(i)
di+ λ

∫ n

en/ lnλ

1

h(i)
di.

The first terms are at most

en+ λ+ λ

∫ en/ lnλ

1

1 + λ(1− 1/n)n−1 · i/n
λ(1− 1/n)n−1 · i/n di

≤ en+ λ+ λ

∫ en/ lnλ

1

(

1 +
1

λ · i/(en)

)

di

≤ λen

lnλ
+ en

(

1 +

∫ en/ lnλ

1

1

i
di

)

≤ λen

lnλ
+ en · (2 + lnn).

The second integral is bounded using (1−1/x)x−1 ≥ e−1 for

x ≥ 1 and (1− pi)
n−pin = (1− pi)

(1/pi−1)npi ≥ e−pin,
∫ n

en/ lnλ

1 + λ(1− pi)
n−pin · (i/n)pin

pin · (1− pi)n−pin · (i/n)pin
di

=

∫ n

en/ lnλ

(

(n/i)pin

pin · (1− pi)n−pin
+

λ

pin

)

di

≤
∫ n

en/ lnλ

(

(en/i)pin

pin
+

λ

pin

)

di

=

∫ n

en/ lnλ

(

λ

pin
+

λ

pin

)

di

=

∫ n

en/ lnλ

2λ ln(en/i)

lnλ
di

≤ 2λ

lnλ

∫ n

0

ln(en/i) di =
4λn

lnλ
.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2954234, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 8

This gives the upper bound
(4+e)λn
ln(λ) + en · (2 + lnn).

Note that the optimal mutation rate p =
max{ln(λ)/(n ln(en/i)), 1/n}, in particular the functional

relationship between the mutation rate and the current

fitness i, is quite hard to guess through experimentation and

was only revealed through the present theoretical analysis.

After the result from Theorem 12 was first published [1],

Doerr, Gießen, Witt, and Yang [13] presented a self-adjusting

scheme for choosing the mutation rate in the (1+λ) EA

and showed that it is able to match the upper bound from

Theorem 12 without knowing the functional relationship

between the mutation rate and the current fitness.

VI. TAIL BOUNDS

In this section we now show that the lower bound for all

λ-parallel unbiased unary black-box algorithms from Theo-

rem 6 holds with high probability. In particular, it also applies

to (non-parallel) unbiased unary black-box algorithms, for

which only lower bounds on the expectation were known

before [45]. Our main result is as follows.

Theorem 13. For every fitness function f : {0, 1}n → R,

every constant 0 < δ < 1 and every set S of up to

exp(o(nδ/ log n)) search points, the following holds. Every

unary unbiased λ-parallel black-box algorithm A on f , with

probability 1−exp(−Ω(nδ/ log n)), does not query any search

point from S within time

max

{

λn

60 ln+ λ
, (1− δ)n lnn

}

= Ω

(

λn

ln+ λ
+ n lnn

)

.

The expected time also satisfies the asymptotic bound.

Theorem 13 establishes very general limits to the perfor-

mance of large classes of algorithms, including mutation-

only evolutionary algorithms with standard mutation operators,

local search, and simulated annealing. In particular, putting

δ := 0.01 (say), Theorem 13 shows that every unary unbiased

search algorithm needs to be run for at least n lnn evaluations

as the probability of finding one of few global optima within

0.99n lnn evaluations is overwhelmingly small. The same

holds for λ-parallel unary unbiased algorithms like mutation-

only evolutionary algorithms with offspring populations of

size λ. Here stopping a run before λn/(60 ln+ λ) evaluations

is futile as with overwhelming probability no optimum will

have been found yet.

In addition, Theorem 13 makes a statement about a target

set of up to exponential size. This means that the lower bounds

also apply to functions with many global optima, with respect

to the optimisation time, but it can also be used to bound the

time to find local optima or any set of high-fitness individuals

of size at most exp(o(nδ/ log n)). Section VII gives illustrative

applications to a broad range of well-known problems.

Theorem 13 will be shown by separately showing lower

bounds of Ω(λn/ ln+ λ) and Ω(n log n) for the time to locate

any fixed target search point x∗ that both hold with over-

whelming probability. Then we use a union bound to show

that even the probability to find one of exponentially many

target search points within the stated time is still exponentially

small. Again, we will assume “mirrored” sampling, i. e. every

queried search point x also evaluates x for free.

A. Lower Bound Ω(λn/ ln+ λ) with overwhelming probability

We start with a bound of Ω(λn/ ln+ λ) for the time to find

a particular target search point x∗, w. l. o. g. x∗ = 1n. Recall

from Definition 7 that due to mirrored sampling, we can define

the potential as the minimum number zeros, or equivalently

number of ones, in all search points up to time t. We will use

Theorem 2 from [46] for a tail bound on the runtime, which

requires the mgf. of the progress

∆(λ)(s) := max
m,r

{

∆
(λ)
0 (s,m, r),∆

(λ)
1 (s,m, r)

}

,

where ∆
(λ)
0 (s,m, r) is the maximal progress in the 0-potential,

and ∆
(λ)
1 (s,m, r) is the maximal progress in the 1-potential,

given current potential s, where the selected search point has

m 0-bits, respectively 1-bits, and r bits are flipped.

Lemma 14. Let s denote the current potential. If s ≤ n
8 and

γ := ln
(

3
4

√
2
)

, then E

[

eγ∆
(λ)(s)

]

≤ 8λ.

Proof. As noted in Definition 7 and (6)

∆1(s,m, r) = ∆0(s, n−m, r) = ∆0(s,m, n− r).

Hence, by a union bound

Pr (∆(s,m, r) = z)

≤ Pr (∆0(s,m, r) = z) + Pr (∆1(s,m, r) = z)

= Pr (∆0(s,m, r) = z) + Pr (∆0(s,m, n− r) = z) ≤ 21−
z
2

where the last inequality follows by Lemma 9. We now have

E

[

eγ∆
(λ)(s,m,r)

]

=
∞
∑

z=0

Pr
(

∆(λ) = z
)

eγz,

by a union bound over λ parallel runs

≤
∞
∑

z=0

λ max
r∈[n],m≥s

Pr (∆(s,m, r) = z) eγz

the definition of γ gives

≤ 2λ
∞
∑

z=0

(

1

2

)z/2(
3

4

√
2

)z

= 8λ.

Theorem 15. For every unary unbiased λ-parallel black-box

algorithm A, the probability that A finds any fixed target

search point x∗ within λn/(60 ln+ λ) steps is e−Ω(n).

Proof. Following the proof of Theorem 6, we assume without

loss of generality that the search point 1n is the optimum, and

let (Xt)t∈N be the potential as defined before.

We apply the last part of Theorem 2 (iv), from [46], with

the parameters g(x) := x, xmin := 1, xmax := n, a := 0,

S := {0} ∪ [xmin, xmax], and βl(t) := 8λ, for all t ∈ N.

We consider the number of parallel runs T ′ until the process

reaches potential a = 0.

Define c := 3
10γ where γ := ln

(

3
4

√
2
)

. By Lemma 14

E

[

eγ(g(Xt)−g(Xt+1)) ; Xt > a | Ft

]

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2954234, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 9

≤ E

[

eγ∆
(λ)(s)

]

≤ 8λ = βℓ(t)

Furthermore, by the definition of the process, if the process

reaches the set S ∩ {x | x ≤ a} = {0} then it never leaves

this set, i.e., the set S ∩ {x | x ≤ a} is absorbing. Thus for

t := cn
ln+ λ

,

Pr (T ′ < t | X0 > 0) ≤
(

t−1
∏

i=0

βℓ(i)

)

· e−γ(g(X0)−g(a))

< (8λ)t · e−γn

= (8λ)
cn

ln+ λ · e−γn

= e(
cn

ln+ λ
) ln(8λ)−γn

using that ln(8λ) = ln(λ) + 3 ln(2) ≤ 3 ln+ λ gives

≤ e(3c−γ)n = e−γn/10.

The result follows by taking into account that the algorithm

makes λ fitness evaluations per iteration, i. e., T = λT ′, and

that c > 1/60.

B. Lower Bound Ω(n log n) with overwhelming probability

Now we show a lower bound of Ω(n log n) with over-

whelming probability. Note that this result is independent of

λ and thus unrelated to parallel black-box complexity; it gives

limitations for general (parallel or non-parallel) unary unbiased

black-box algorithms. Recall that every λ-parallel unary unbi-

ased algorithm is also a unary unbiased algorithm, hence the

result applies to a strictly larger class of algorithms. Previously

only lower bounds on the expectation were known: Lehre

and Witt [45] showed an asymptotic bound of Ω(n log n)
and Doerr, Doerr, and Yang [12] presented a more precise

lower bound of n lnn−O(n).

Theorem 16. For every unary unbiased black-box algorithm

A and every constant 0 < δ ≤ 1, the probability that A finds

any fixed target search point x∗ within (1 − δ)n lnn steps is

exp(−Ω(nδ/ log n)).

Before presenting the proof of Theorem 16, we present the

main idea behind the proof, and the challenges to overcome.

The proof will be based on the following well-known

“coupon collector” argument that we discuss first for a simple

algorithm such as Randomised Local Search (RLS) or the

(1+1) EA. For these algorithms, we can argue that with high

probability there will be cn bits in the initial search point

that differ from the optimum, for an appropriate constant

0 < c < 1/2. Each such bit has a probability of 1/n of

being flipped in each step of the algorithm. For a time period

of T := (1−δ)(n−1) lnn steps, the probability that any fixed

bit is never being flipped is at least

(

1− 1

n

)T

≥
(

1− 1

n

)(1−δ)(n−1) lnn

≥ n−(1−δ)

using (1− 1/n)n−1 ≥ 1/e. Now the probability that there is

a bit among the cn incorrect bits that is never being flipped

is at least
(

1− n−(1−δ)
)cn

≤ exp(−cnδ).

This implies that with the above probability the optimum has

not been found in T = Ω(n log n) steps.

This argument works for RLS and the (1+1) EA for the

following reasons:

1) The algorithms evolve a single lineage from the initial

search point, which allows us to argue with “incorrect”

bits that need to be flipped at least once.

2) The same variation operator is applied at all times, which

establishes the formula (1− 1/n)T .

3) All bits are treated independently, which is implicitly used

in the derivation of the term (1− n−(1−δ))cn.

In order to prove Theorem 16, we have to consider all unary

unbiased black-box algorithms, for which the above properties

do not hold. In particular, algorithms may easily generate

several lineages. This makes it unclear how “incorrect” bits

can be defined. Also note that an algorithm might flip many

“incorrect” bits in one step simply by choosing a very large

radius. So the simple argument that we need to flip all incorrect

bits at least once breaks down. Algorithms may choose differ-

ent variation operators at different times, possibly depending

on fitness values generated so far. This makes it difficult to

argue that no variation flips a bit over a period of time.

Finally, mutations with a fixed radius r ≥ 2 may introduce

dependencies between bits, which needs to be addressed.

We tackle these challenges as follows. Assume w. l. o. g. that

x∗ = 1n. We give away knowledge of all search points x
that have Hamming distance at least n∗ := n/(213 lnn) to

both 0n and 1n. Hence we start with a potential of s = n∗.

Moreover, whenever the algorithm decreases the potential from

s to s′ < s, we grant the algorithm knowledge of all solutions

with Hamming distance at least s′ from both 0n and 1n.

This assumption implies that the current knowledge of the

algorithm can be fully described by the current potential, and

the progress of the algorithm can be bounded by considering

the transitions of the potential.

Note that all solutions with the same potential are iso-

morphic to the algorithm. Pick a set of n∗ bit positions,

w. l. o. g. the first n∗ ones. We define these bits as “incorrect”

bits that need to be set to 1 in order to reach the optimum.

Since the behaviour of the algorithm is fully determined by

the current potential, and the bit positions are irrelevant for

transitions between potential values, we may assume w. l. o. g.

that, whenever the algorithm performs a variation of a search

point xt with k ones, xt = 0n−k1k.

Now variations that decrease the potential by decreasing the

number of zeros will fix some of the incorrect bits accordingly.

Variations that do not decrease the potential only create search

points that are already known and thus can be ignored as they

have no effect. Hence we require that these incorrect bits are

flipped in variations that decrease the potential.

Having laid the foundation for arguing with “incorrect” bits

being fixed, we now show that with overwhelming probability,

A does not find 1n within T := (1− δ)(n− 1) lnn steps.

Note that A can choose the radius in each step. We

distinguish between single-bit variations where r = 1 (or,

symmetrically, r = n − 1) and multi-bit variations where

2 ≤ r ≤ n − 2. We first show that in at most T steps with

multi-bit variations, not too many incorrect bits are being fixed.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2954234, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 10

Then we show later that at most T single-bit variations are

not enough to fix all incorrect bits that are not being fixed

by multi-bit variations. Note that the algorithm can interleave

single-bit variations and multi-bit variations arbitrarily. Our

arguments work for arbitrary sequences of single-bit and multi-

bit variations; they even hold if the algorithm is allowed to

make T single-bit variations and T multi-bit variations at the

cost of T queries.

The following lemma considers multi-bit variations and

bounds transition probabilities of the potential.

Lemma 17. Let s ≤ n∗ for n∗ := n/(213 lnn), then for every

m ∈ [s, 2n∗] ∪ [n − 2n∗, n − s], every radius 2 ≤ r ≤ n − 2
and every 1 ≤ z ≤ n we have

Pr (∆0(s,m, r) = z) ≤
(

16n∗

n

)2

· 2−z.

If 2n∗ < m < n− 2n∗ we have

Pr (∆0(s,m, r) = z) ≤ e−Ω(n∗2/n).

Proof. Recall that by (6) it suffices to consider the case m ≤
n/2. If 2n∗ ≤ m ≤ n/2 then by Lemma 10

Pr (∆0(s,m, r) > 0) ≤ exp

(

− (m− s)2

2r

)

= e−Ω(n∗2/n).

Now assume s ≤ m ≤ 2n∗. As shown in the proof of

Lemma 9,

Pr (∆0(s,m, r) = z) ≤
(

4m

n

)(z+r+m−s)/2

≤
(

8n∗

n

)(z+r)/2

We claim that the above is bounded by
(

16n∗

n

)2

· 2−z for all

z ≥ 1 and all r ≥ 2.

Note that Pr (∆0(s,m, r) = z) = 0 if z > r or if z = 1
and r = 2 as the progress must be an even number. For z = 1
and r ≥ 3 we get

(

8n∗

n

)(z+r)/2

=

(

8n∗

n

)2

·
(

8n∗

n

)(r−3)/2

≤
(

16n∗

n

)2

·2−1.

For z = 2 and all r ≥ 2 we get

(

8n∗

n

)(z+r)/2

=

(

8n∗

n

)2

·
(

8n∗

n

)(r−2)/2

≤
(

16n∗

n

)2

·2−2.

For z = 3 and r = 3 we get, using (8n∗/n)1/2 ≤ 1/2,

(

8n∗

n

)(z+r)/2

≤
(

8n∗

n

)2

·
(

8n∗

n

)(r−1)/2

≤
(

16n∗

n

)2

·2−3.

For all r ≥ 4 we have, using (8n∗/n)1/2 ≤ 1/2,

(

8n∗

n

)(z+r)/2

≤
(

8n∗

n

)2

·
(

8n∗

n

)z/2

≤
(

8n∗

n

)2

· 2−z.

Using Lemma 17 now allows us to express the progress of

any algorithm using stochastic domination and a combination

of two simple random variables:

Lemma 18. Let s ≤ n∗ for n∗ := n/(213 lnn), then for

every s ≤ m ≤ n − s and every radius 2 ≤ r ≤ n − 2
the progress ∆(s,m, r) is stochastically dominated by XtYt

where Xt ∈ {0, 1} is a Bernoulli random variable with

Pr (Xt = 1) = 2
(

16n∗

n

)2

and Yt is a geometric random

variable with parameter 1/2, Xt and Yt being independent

of each other and independent of other time steps t′ 6= t.

Proof. By Lemma 17 and the definition of Xt, Yt,

Pr (∆0(s,m, r) = z) ≤
(

16n∗

n

)2

· 2−z =
Pr (XtYt = z)

2

for every z ≥ 1 and all m ∈ [s, 2n∗]∪[n−2n∗, n−s]. The same

clearly also holds in case 2n∗ < m < n− 2n∗ by the second

statement of Lemma 17. This implies Pr (∆0(s,m, r) ≥ z) ≤
Pr (XtYt ≥ z) /2 for all z ≥ 1.

The probability bounds for ∆0 also apply

to ∆1 by symmetry of zeros and ones, and

thus by the union bound Pr (∆(s,m, r) ≥ z) ≤
Pr (∆0(s,m, r) ≥ z) + Pr (∆1(s,m, r) ≥ z) we get

Pr (∆(s,m, r) ≥ z) ≤ Pr (XtYt ≥ z) for all z ≥ 1.

The last inequality also holds trivially for z = 0 as then both

sides are 1. This completes the proof.

We use Lemma 18 to show tail bounds for the progress

made in multi-bit variations. The following lemma shows that

at most half of the incorrect bits are being fixed by multi-bit

variation steps, even when considering a time span of n lnn
steps instead of (1− δ)n lnn.

Lemma 19. Let n∗ := n/(213 lnn). Within T := n lnn multi-

bit variation steps at most n∗/2 incorrect bits are being fixed,

with probability 1− 2−Ω(n/ logn).

Proof. We give a tail bound for the sum of variables XtYt

defined in Lemma 18; by stochastic domination, the tail bound

then also holds for the real progress. Recall that Xt as well

as Yt are both sequences of iid variables and that all variables

are mutually independent.

By Chernoff bounds, with overwhelming probability the

number of Xt variables attaining value 1 is bounded by at

most twice its expectation:

Pr

(

T
∑

t=1

Xt ≥ 4T

(

16n∗

n

)2
)

≤ exp

(

−2T

3

(

16n∗

n

)2
)

= e−Ω(n/ logn).

If
∑T

t=1 Xt ≤
⌊

4T
(

16n∗

n

)2
⌋

=: k then there are at most

k variables Yt that contribute to
∑T

t=1 XtYt. For ease of

notation, we assume that these are variables Y1, . . . , Yk.

We apply Chernoff bounds for sums of geometric random

variables [10, Theorem 3] to bound the contribution of k

variables Y1, . . . , Yk. Note that E
(

∑k
t=1 Yt

)

= 2k.

Pr

(

k
∑

t=1

Yt ≥ 4k

)

≤ exp

(

−k − 1

4

)

= e−Ω(n/ logn).

Hence if both “typical” events occur,

T
∑

t=1

XtYt ≤ 4k ≤ 16T · 16
2n∗ · n∗

n2
=

16n ln(n)n∗

25n lnn
=

n∗

2
.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2954234, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 11

Taking the union bound for the two probabilities

2−Ω(n/ logn) that the typical events do not happen completes

the proof.

Now we are ready to give a proof for Theorem 16.

Proof of Theorem 16. As explained earlier, it suffices to con-

sider n∗ incorrect bits and to show that with the claimed

probability not all of these bits will be fixed within T unbiased

variations.

Lemma 19 implies that with overwhelming probability there

exist n∗/2 incorrect bits that are not being fixed by up to T
multi-bit variations. We now use coupon collector arguments

(similar to those sketched earlier) to show that, in up to

T single-bit variations, with overwhelming probability these

n∗/2 incorrect bits will not all be fixed.

The probability that any fixed bit i will not be flipped in a

single-bit variation amongst the first T steps is at least, using

(1− 1/x)x−1 ≥ 1/e for x > 1,

(

1− 1

n

)T

=

(

1− 1

n

)(1−δ)(n−1) lnn

≥ n−(1−δ).

Hence the probability that a fixed bit i will be flipped in up

to T single-bit variations is at least 1 − n−(1−δ). Hence the

probability that all of the n∗/2 incorrect bits are being flipped

in T steps is at most

(1− n−(1−δ))n
∗/2 ≤ exp(−Ω(nδ/ log n)).

Theorems 15 and 16 imply our main result, Theorem 13.

Proof of Theorem 13. Fix a target search point x∗ from the

target set. By Theorem 15 the probability of finding x∗ within
λn

60 ln+ λ
steps is exp(−Ω(n)). Applying Theorem 16 with

parameter δ yields that the probability of finding x∗ within

(1−δ)n lnn steps is exp(−Ω(nδ/ log n)). By the union bound,

the probability that one of these lower bounds does not apply is

exp(−Ω(n))+exp(−Ω(nδ/ log n)) ≤ 2 exp(−Ω(nδ/ log n)).
Repeating the above arguments for all target search points and

using a union bound over at most exp(o(nδ/ log n)) search

points yields an overall probability bound of

exp(o(nδ/ log n)) · 2 exp(−Ω(nδ/ log n))

= exp(−Ω(nδ/ log n) + o(nδ/ log n) + ln 2)

= exp(−Ω(nδ/ log n)).

Finally, the claimed equality

max

{

λn

60 ln+ λ
, (1− δ)n lnn

}

= Ω

(

λn

ln+ λ
+ n lnn

)

follows from max{x, y} ≥ (x+ y)/2 and 1− δ = Ω(1).

VII. BLACK-BOX COMPLEXITY RESULTS FOR

ILLUSTRATIVE FUNCTION CLASSES

In this section we give a number of examples of how to

exploit the fact that our lower bounds apply to the time for

finding an arbitrary target set of up to exponentially many

search points. This leads to novel results for functions with

many global optima, but can also be used to bound the time

for reaching local optima or search points within a certain

distance from any local or global optimum.

A. Black-Box Complexity Lower Bounds for Functions with

Many Optima

Previous black-box complexity results like Theorem 6 or

results on (non-parallel) unbiased black-box complexity [45]

were limited to functions with a unique optimum. These

results apply to popular test functions like ONEMAX and

LO and function classes like linear functions or monotone

functions [14]. However, they do not apply when considering

functions with more than one optimum. Apart from tailored

analyses for specific problems classes (e. g. problems from

combinatorial optimisation [18]), we are not aware of any

generic black-box complexity results that apply to functions

with multiple optima.

Theorem 13 overcomes this limitation, yielding novel black-

box complexity results for the unary unbiased black-box com-

plexity and its λ-parallel variant across a range of problems

with several global optima, including some widely studied

problem classes. These black-box complexity results give

general limitations that can serve as baselines for performance

comparisons and guide the search for the most efficient

algorithms, including those using parallelism most effectively

(as demonstrated successfully for ONEMAX in Section V).

There are many examples of relevant problem classes

to which Theorem 13 applies. The most obvious class is

that of all functions with exp(o(nδ/ log n)) optima. Note

that when choosing, say, δ := 0.995 then exp(n0.99) ≤
exp(o(nδ/ log n)); the reader may choose to think of the latter

expression as exp(n0.99) as this may be easier to digest.

Following Witt [62], the mentioned function class includes

problems where all optima have at most nδ/ log3 n ones or

at most nδ/ log3 n zeros. This is because the number of such

search points is bounded by

2

nδ/ log3 n
∑

i=0

(

n

i

)

= O
(

nnδ/ log3 n
)

= exp(o(nδ/ log n)), (8)

where the last step used nnδ/ log3 n

= exp(Θ(nδ/ log2 n)) =
exp(o(nδ/ logn)).

In the following we survey a number of illustrative problems

that have been studied previously and for which we give the

first black-box complexity results. In terms of combinatorial

problems, there are a lot of well-studied problems with a

property called bit-flip symmetry: flipping all bits gives a

solution of the same fitness. This means that there are always

at least two global optima. Such problems have been popular

as search algorithms need to break the symmetry between good

solutions [32].

Well-known examples include the function TWOMAX :=
max{∑n

i=1 xi,
∑n

i=1(1 − xi)} [32], which has been used

as a challenging test bed in theoretical studies of diversity-

preserving mechanisms [6], [7], [50]. The function H-IFF

(Hierarchical If and only If) [59] consists of hierarchical

building blocks that need to attain equal values in order to

contribute to the fitness. It was studied theoretically [9], [35]

and is frequently used in empirical studies, see, e. g. [33], [58].

In terms of classical combinatorial problems, the VERTEX

COLOURING problem asks for an assignment of colours to ver-

tices such that no two adjacent vertices share the same colour.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2954234, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 12

For two colours, a natural setting is to use a binary encoding

for the colours of all vertices and to maximise the number

of bichromatic edges (edges with differently coloured end

points). A closely related setting is that of simple Ising models,

where the goal is to minimise the number of bichromatic edges.

For bipartite (that is, 2-colourable) graphs, this is identical

to maximising the number of bichromatic edges as inverting

one set of the bipartition turns all monochromatic edges into

bichromatic ones and vice versa. Previous theoretical work

includes evolutionary algorithms on ring/cycle graphs [30],

the Metropolis algorithm on toroids [29] and evolutionary

algorithms on binary trees [54].

Other combinatorial problems with bit-flip symmetry in-

clude cutting and selection problems. Given an undirected

graph, the problems MAXCUT and MINCUT seek to partition

the graph into two non-empty sets such as to maximise or

minimise the number of edges running between those two

sets, respectively. Using a straightforward binary encoding

for all vertices, this results in bit-flip symmetry and multiple

optima. Theoretical studies of evolutionary algorithms on

cutting problems include Neumann, Reichel, and Skutella [49]

and Sudholt [55]; the latter paper considers a simple instance

of two equal-sized cliques that leads to two complementary

optima. Concerning selection problems, the well-known NP

hard PARTITION problem asks whether it is possible to sched-

ule a set of n jobs on two identical machines such that both

machines will have identical loads. An optimisation problem is

obtained by trying to minimise the load of the fuller machine,

also called the makespan. A straightforward encoding is used:

every bit indicates which machine the corresponding job

should be assigned to. Witt [61] analysed the performance

of the (1+1) EA for this problem, including random instance

models where job sizes are drawn randomly from a real

range, according to a uniform or an exponential distribution,

respectively. In both cases such instances will almost surely

have two complementary optima9.

Wegener and Witt [60] considered monotone polynomials:

a sum of monomials (products of variables, e. g. x1x3x4)

with positive weights. Here 1n is always a global optimum,

but more optima can exist if there are variables that do

not appear in any monomial: each such variable doubles the

number of optima as it is not relevant for the fitness. Hence

if there are o(nδ/ log n) such variables then there are at most

2o(n
δ/ logn) ≤ exp(o(nδ/ log n)) optima.

Jansen and Zarges [41] presented instance classes called

nearest peak functions and weighted nearest peak functions.

Both are defined with respect to an arbitrary number of peaks:

search points with an associated height and slope. For nearest

peak functions the fitness of a search point is determined by its

closest peak: for the peak itself the fitness is equal to the height

of the peak and for other search points the fitness decreases

gradually with the distance from the peak, according to the

slope of the peak. Weighted nearest peak functions are defined

similarly, but all peaks are considered and higher peaks can

9More than two optima only exist if there are different combinations of job
sizes (beyond symmetries) that add up to the same value. Since the weight
of each job size is drawn from a continuous range and the number of values
that could lead to equal values is finite, this almost surely never happens.

dominate shallower peaks. This function class was introduced

as a test bed allowing to create an arbitrary number of optima.

It is shown in Jansen and Zarges [41] that the set of local

optima is a subset of all peaks. Hence the number of peaks is

an upper bound on the number of global (and local) optima.

The two function classes were named Jansen-Zarges function

classes in Covantes Osuna and Sudholt [7], where they were

used as benchmarks for the clearing diversity mechanism.

Finally we consider random planted MAX-3-SAT instances

as a popular benchmark model in both experimental [34]

and theoretical studies [3], [19], [56]. The fitness function

is the number of satisfied clauses and each clause contains

exactly 3 literals (negated or non-negated variables from the

set {x1, . . . , xn}). In this model, we fix a planted optimum x∗

and generate clauses independently such that they are satisfied

by x∗. This means that at least one literal needs to evaluate

to true in x∗. The variables for each clause are chosen

uniformly at random (with or without replacement) from

{x1, . . . , xn}. We may assume that instances are generated

by first deciding which of the 3 literals will match x∗ and

which won’t. In a second step, the indices of variables will be

picked. We further assume that there is at least a constant

probability c1 of a clause having one matching literal and

at least a constant probability c3 of a clause having three

matching variables10. In this setup, x∗ is a global optimum, but

there may be more global optima. We argue that the number

of optima is bounded if the number of clauses, m, is chosen

large enough.

Consider a solution x with Hamming distance H :=
H(x, x∗) to x∗. We argue that for any clause, the probability

that the clause will be satisfied under x is Ω(H/n). If H ≤
n/2 then with probability c1 we will choose one matching

literal and the probability that only the variable of this literal

will be chosen among the H ones that differ in x and x∗

is Ω(H(n − H)2/n3) = Ω(H/n). Likewise, if H > n/2
then with probability c3 we will choose three matching literals

and the probability that they are all different in x and x∗ is

Ω(H3/n3) = Ω(H/n). Now since all clauses are generated

independently, the probability that all m clauses are satisfied

under x is (1− Ω(H/n))m ≤ exp(−Ω(Hm/n)).

Hence for all search points x with H ≥ nδ/ log3 n
the probability that x is a global optimum is at most

exp(−Ω(nδ/(log3 n) · m/n)) = exp(−Ω(n log n)) if the

number of clauses is m = Ω(n2−δ log4 n). In this case, the

probability that any such search point will be a global optimum

is at most 2n · exp(−Ω(n log n)) = exp(−Ω(n log n)), a

failure probability so small that it can be absorbed in the failure

probabilities for our tail bounds. Now, with overwhelming

probability the number of global optima is bounded by the

number of search points with Hamming distance less than

nδ/ log3 n from x∗. By (8), this number is exp(o(nδ/ log n)).

The following theorem summarises all the above.

10This is the case in [3], [19], [56] where implicitly c1 = 3/7 and c3 = 1/7
and in [34] where c1 = 4/6 and c3 = 1/6. The latter probabilities favour
clauses with only one matching literal in order not to give an obvious bias
towards the values of x∗. Note that we do not care about the value of c2 (two
matching literals).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2954234, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 13

Theorem 20. Every unary unbiased λ-parallel black-box

algorithm A needs more than

max

{

λn

60 ln+ λ
, (1− δ)n lnn

}

= Ω

(

λn

ln+ λ
+ n lnn

)

evaluations, with probability 1− exp(−Ω(nδ/ log n)), to find

a global optimum for all of the following settings.

1) All functions with exp(o(nδ/ log n)) optima.

2) All functions where all optima have at most nδ/ log3 n
ones or at most nδ/ log3 n zeros.

3) TWOMAX := max{
∑n

i=1 xi,
∑n

i=1(1− xi)}.

4) H-IFF (Hierarchical If and only If).

5) Vertex colouring/Ising model problems: maximising or

minimising the number of bichromatic edges when trying

to colour a connected bipartite graph with 2 colours.

6) MINCUT instances with two equal-sized cliques.

7) PARTITION instances having two symmetric optimal so-

lutions (which almost surely applies to random instances)

8) Monotone polynomials with positive weights where all but

o(nδ/ log n) variables appear in at least one monomial.

9) Jansen-Zarges nearest peak functions and weighted near-

est peak functions with exp(o(nδ/ log n)) peaks.

10) Random planted MAX-3-SAT instances as described

above with at least m = Ω(n2−δ log4 n) clauses.

The expected time also satisfies the asymptotic bound.

We remark that results on the expectation are tight for some

of these problems: for TWOMAX and the mentioned MINCUT

instances, the (1+λ) EA with adaptive mutation rates and

appropriate restart schemes can find global optima in expected

O(λn/(ln+ λ)+n lnn) fitness evaluations (this easily follows

from the analysis on ONEMAX). Other function classes from

Theorem 20 contain functions with an exponential black-box

complexity, for instance the NEEDLE function. Our results

should be regarded as a general baseline that applies to all

unary unbiased black-box algorithms and a wide range of

problems.

B. Lower Bounds on the Time to Reach Local Optima

For many multimodal problems where the lower bounds

from Theorem 20 are not tight, there is another significant

application of Theorem 13. It can also be applied to bound the

time until any unary unbiased black-box algorithm has found a

local optimum, or any search point of reasonably high fitness,

if the number of such points is bounded.

This includes functions with exp(o(nδ/ log n)) local op-

tima, and those where all local optima have at most nδ/ log3 n
ones or at most nδ/ log3 n zeros. The latter function class

includes the well-known JUMPk functions [8], [26], where

a gap of Hamming distance k has to be “jumped” to reach

a global optimum, with parameter k ≤ nδ/ log3 n: here all

search points with k zeros are local optima, in addition to

the global optimum 1n. A similar function class CLIFFd was

used in [5], [37], [51], where the same holds for d in lieu

of k; the difference between these two functions is that in

the region “between” local and global optima JUMPk has

a gradient pointing back towards the local optima whereas

CLIFFd points towards the global optimum 1n.

Functions with difficult local optima include a modi-

fied version of TWOMAX used in [31]: in TWOMAX
′ :=

max{∑n
i=1 xi,

∑n
i=1(1− xi)}+

∏n
i=1 xi the point 1n is the

only global optimum and 0n is a local optimum that is very

hard to escape from. A combinatorial example of a MAXSAT

instance with difficult local optima was studied in the context

of evolutionary algorithms in Droste, Jansen, and Wegener

[27], with variables x1, . . . , xn and clauses

{(xi ∨ xj ∨ xk) | i 6= j 6= k 6= i} ∪ {(xi) | 1 ≤ i ≤ n}. (9)

Here the optimum is again 1n, and all n search points with a

single 1-bit are local optima. Likewise, the MINCUT instance

from Theorem 20 has O(n) local optima as well: all search

points with exactly one 1-bit or one 0-bit are locally optimal.

Sudholt [55] further presented a hard KNAPSACK instance

with (n + 1)/2 “small” objects of weight and value n and

(n−1)/2 “big” objects of weight and value n+1. The weight

limit is set to (n+1)/2·n, such that including all small objects

yields a global optimum, but selecting all but one big object

gives a local optimum. Similar as above, the number of local

optima is O(n).

Finally, the arguments for Jansen-Zarges function classes

also hold with respect to the number of local optima.

The following theorem summarises all the above.

Theorem 21. Every unary unbiased λ-parallel black-box

algorithm A needs more than

max

{

λn

60 ln+ λ
, (1− δ)n lnn

}

= Ω

(

λn

ln+ λ
+ n lnn

)

evaluations, with probability 1− exp(−Ω(nδ/ log n)), to find

a local or global optimum for all of the following settings.

1) All functions with exp(o(nδ/ log n)) local optima.

2) All functions where all local optima have at most

nδ/ log3 n ones or at most nδ/ log3 n zeros.

3) JUMPk functions with k ≤ nδ/ log3 n.

4) CLIFFd functions with d ≤ nδ/ log3 n.

5) TWOMAX := max{∑n
i=1 xi,

∑n
i=1(1 − xi)} as well

as the modified TWOMAX function TWOMAX
′ :=

max{∑n
i=1 xi,

∑n
i=1(1− xi)}+

∏n
i=1 xi

6) MINCUT instances with two equal-sized cliques.

7) The hard MAXSAT instance from (9).

8) The hard KNAPSACK instance mentioned above.

9) Jansen-Zarges nearest peak functions and weighted near-

est peak functions with exp(o(nδ/ log n)) peaks.

The expected time also satisfies the asymptotic bound.

We can even push our applications a bit further. Again

using (8), there are at most exp(o(nδ/ log n)) search points

within a Hamming ball of radius nδ/ log3 n around any

search point. If there are exp(o(nδ/ log n)) global or local

optima then the number of all search points within the

union of Hamming balls around all these points is still

exp(o(nδ/ log n)) · exp(o(nδ/ log n)) = exp(o(nδ/ log n)).
Hence our main result from Theorem 13 still applies when

considering the time to get to within Hamming distance

nδ/ log3 n of any global or local optimum.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2954234, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 14

Theorem 22. Theorem 20 and Theorem 21 still apply when

replacing “to find a global optimum” with “to find any search

point within Hamming distance nδ/ log3 n to any global

optimum” in Theorem 20 and replacing “to find a local

or global optimum” with “to find any search point within

Hamming distance nδ/ log3 n to any local or global optimum”

in Theorem 21.

In particular, this implies that with overwhelming probabil-

ity no unary unbiased black-box algorithm can find a search

point of fitness at least n−nδ/ log3 n for ONEMAX, LO and

TWOMAX within the stated time. In other words, the expected

fitness after the stated time is n − nδ/ log3 n + o(1) (where

the o(1) term accounts for an exponentially small failure

probability, in case of which the fitness could be as large as n).

Such results are known as fixed-budget results [15], [40]. This

shows that our λ-parallel black-box complexity results with

tail bounds can be applied in a large variety of settings.

VIII. CONCLUSIONS AND FUTURE WORK

We have introduced the parallel unbiased black-box com-

plexity to quantify the limits on the performance of parallel

search heuristics, including offspring populations, island mod-

els and multi-start methods. We proved that every λ-parallel

unbiased black-box algorithm needs at least Ω
(

λn
ln+ λ

+ n lnn
)

function evaluations on every function with unique optimum,

and at least Ω
(

λn
ln+(λ/n)

+ n2
)

function evaluations on LO.

Corresponding parallel times are by a factor of λ smaller.

For LO and ONEMAX we identified the cut-off point for λ,

above which the asymptotic number of function evaluations

increases, compared to non-parallel algorithms (λ = 1). All

smaller λ allow for linear speedups with regard to the parallel

time. For ONEMAX this cut-off point is higher than that for the

standard (1+λ) EA; optimal performance for all λ is achieved

by a (1+λ) EA with an adaptive mutation rate.

In a novel and more detailed analysis we have established

tail bounds showing that the lower bound Ω
(

λn
ln+ λ

+ n lnn
)

holds with overwhelming probability, for parallel and non-

parallel algorithms (where λ = 1) and for finding any target set

of search points we can choose. This makes it a very general,

powerful and versatile statement: we obtain lower bounds on

the optimisation time on functions with many optima, the time

to find a local optimum, and the time to even get close to

any local or global optimum. We demonstrated the usefulness

of this approach by deriving the first black-box complexity

lower bounds for a range of popular and illustrative prob-

lems, from synthetic problems (TWOMAX, H-IFF, JUMPk,

CLIFF) to classes of multimodal benchmark functions [41]

and important problems from combinatorial optimisation such

as VERTEX COLOURING, MINCUT, PARTITION, KNAPSACK

and MAXSAT.

A major open problem for future work is to derive lower

bounds for the λ-parallel unbiased black-box complexity when

allowing binary operators like crossover, or operators combin-

ing many search points as in EDAs or swarm intelligence algo-

rithms. Currently even in the non-parallel case no non-trivial

lower bounds on the binary unbiased black-box complexity

are known.

REFERENCES

[1] G. Badkobeh, P. K. Lehre, and D. Sudholt, “Unbiased black-box
complexity of parallel search,” in Proc. of PPSN ’14, Springer, 2014,
pp. 892–901.

[2] ——, “Black-box complexity of parallel search with distributed pop-
ulations,” in Proc. of FOGA ’15, ACM, 2015, pp. 3–15.

[3] M. Buzdalov and B. Doerr, “Runtime analysis of the (1+(λ,λ))
genetic algorithm on random satisfiable 3-CNF formulas,” in Proc.

of GECCO ’17, ACM, 2017, pp. 1343–1350.
[4] V Chvátal, “The tail of the hypergeometric distribution,” Discrete

Math., vol. 25, no. 3, pp. 285–287, 1979.
[5] D. Corus, P. S. Oliveto, and D. Yazdani, “On the runtime analysis of

the opt-IA artificial immune system,” in Proc. of GECCO ’17, ACM,
2017, pp. 83–90.

[6] E. Covantes Osuna and D. Sudholt, “Runtime analysis of probabilistic
crowding and restricted tournament selection for bimodal optimisa-
tion,” in Proc. of GECCO ’18, ACM, 2018, pp. 929–936.

[7] ——, “On the runtime analysis of the clearing diversity-preserving
mechanism,” Evolutionary Computation, vol. 27, no. 3, pp. 403–433,
2019.

[8] D.-C. Dang, T. Friedrich, T. Kötzing, M. S. Krejca, P. K. Lehre, P. S.
Oliveto, D. Sudholt, and A. M. Sutton, “Escaping local optima using
crossover with emergent diversity,” IEEE Transactions on Evolutionary

Computation, vol. 22, no. 3, pp. 484–497, 2018.
[9] M. Dietzfelbinger, B. Naudts, C. V. Hoyweghen, and I. Wegener, “The

analysis of a recombinative hill-climber on H-IFF,” IEEE Transactions

on Evolutionary Computation, vol. 7, no. 5, pp. 417–423, 2003.
[10] B. Doerr, E. Happ, and C. Klein, “Tight analysis of the (1+1)-EA for

the single source shortest path problem,” Evolutionary Computation,
vol. 19, no. 4, pp. 673–691, 2011.

[11] B. Doerr, C. Doerr, and F. Ebel, “From Black-Box Complexity to
Designing New Genetic Algorithms,” Theoretical Computer Science,
vol. 567, no. 0, pp. 87–104, 2015.

[12] B. Doerr, C. Doerr, and J. Yang, “Optimal parameter choices via
precise black-box analysis,” in Proc. of GECCO ’16, ACM, 2016,
pp. 1123–1130.

[13] B. Doerr, C. Gießen, C. Witt, and J. Yang, “The (1+λ) evolutionary
algorithm with self-adjusting mutation rate,” Algorithmica, vol. 81,
no. 2, pp. 593–631, 2019.

[14] B. Doerr, T. Jansen, D. Sudholt, C. Winzen, and C. Zarges, “Mutation
rate matters even when optimizing monotonic functions,” Evolutionary

Computation, vol. 21, no. 1, pp. 1–21, 2013.
[15] B. Doerr, T. Jansen, C. Witt, and C. Zarges, “A method to derive

fixed budget results from expected optimisation times,” in Proc. of

GECCO ’13, ACM, 2013, pp. 1581–1588.
[16] B. Doerr, D. Johannsen, T. Kötzing, P. K. Lehre, M. Wagner, and C.

Winzen, “Faster black-box algorithms through higher arity operators,”
in Proc. of FOGA ’11, ACM, 2011, pp. 163–172.

[17] B. Doerr and M. Künnemann, “Optimizing linear functions with
the (1+λ) evolutionary algorithm—different asymptotic runtimes for
different instances,” Theoretical Computer Science, vol. 561, pp. 3–23,
2015.

[18] B. Doerr, T. Kötzing, J. Lengler, and C. Winzen, “Black-box com-
plexities of combinatorial problems,” Theoretical Computer Science,
vol. 471, pp. 84–106, 2013.

[19] B. Doerr, F. Neumann, and A. M. Sutton, “Improved runtime bounds
for the (1+1) EA on random 3-CNF formulas based on fitness-distance
correlation,” in Proc. of GECCO ’15, ACM, 2015, pp. 1415–1422.

[20] B. Doerr and C. Winzen, “Towards a complexity theory of randomized
search heuristics: Ranking-based black-box complexity,” in Proc. of

CSR ’11, Springer, 2011, pp. 15–28.
[21] ——, “Playing Mastermind with Constant-Size Memory,” Theory of

Computing Systems, 2012.
[22] C. Doerr, “Complexity theory for discrete black-box optimization

heuristics,” CoRR, vol. abs/1801.02037, 2018.
[23] C. Doerr and J. Lengler, “Elitist black-box models: Analyzing the im-

pact of elitist selection on the performance of evolutionary algorithms,”
in Proc. of GECCO ’15, ACM, 2015, pp. 839–846.

[24] ——, “Introducing elitist black-box models: When does elitist behavior
weaken the performance of evolutionary algorithms?” Evolutionary

Computation, vol. 25, no. 4, pp. 587–606, 2017.
[25] ——, “The (1 + 1) elitist black-box complexity of LeadingOnes,”

Algorithmica, vol. 80, no. 5, pp. 1579–1603, 2018.
[26] S. Droste, T. Jansen, and I. Wegener, “On the analysis of the (1+1) evo-

lutionary algorithm,” Theoretical Computer Science, vol. 276, no. 1–2,
pp. 51–81, 2002.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2019.2954234, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 15

[27] ——, “Optimization with randomized search heuristics—the (A)NFL
theorem, realistic scenarios, and difficult functions,” Theoretical Com-

puter Science, vol. 287, no. 1, pp. 131–144, 2002.
[28] ——, “Upper and lower bounds for randomized search heuristics in

black-box optimization,” Theory of Computing Systems, vol. 39, no. 4,
pp. 525–544, 2006.

[29] S. Fischer, “A polynomial upper bound for a mutation-based algo-
rithm on the two-dimensional Ising model,” in Proc. of GECCO ’04,
Springer, 2004, pp. 1100–1112.

[30] S. Fischer and I. Wegener, “The one-dimensional Ising model: Muta-
tion versus recombination,” Theoretical Computer Science, vol. 344,
no. 2–3, pp. 208–225, 2005.

[31] T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt, “Analysis of
diversity-preserving mechanisms for global exploration,” Evolutionary

Computation, vol. 17, no. 4, pp. 455–476, 2009.
[32] D. E. Goldberg, C. Van Hoyweghen, and B. Naudts, “From TwoMax

to the Ising model: Easy and hard symmetrical problems,” in Proc. of

GECCO ’02, Morgan Kaufmann, 2002, pp. 626–633.
[33] B. W. Goldman and W. F. Punch, “Fast and efficient black box opti-

mization using the parameter-less population pyramid,” Evolutionary

Computation, vol. 23, no. 3, pp. 451–479, 2015.
[34] B. W. Goldman and W. F. Punch, “Parameter-less population pyramid,”

in Proc. of GECCO ’14, ACM, 2014, pp. 785–792.
[35] B. W. Goldman and D. Sudholt, “Runtime analysis for the parameter-

less population pyramid,” in Proc. of GECCO ’16, ACM, 2016,
pp. 669–676.

[36] J. He and X. Yao, “A Study of Drift Analysis for Estimating Compu-
tation Time of Evolutionary Algorithms,” Natural Computing, vol. 3,
no. 1, pp. 21–35, 2004.

[37] J. Jägersküpper and T. Storch, “When the plus strategy outperforms
the comma strategy and when not,” in Proc. of FOCI ’07, IEEE, 2007,
pp. 25–32.

[38] T. Jansen, K. A. De Jong, and I. Wegener, “On the choice of the
offspring population size in evolutionary algorithms,” Evolutionary

Computation, vol. 13, pp. 413–440, 4 2005.
[39] T. Jansen and D. Sudholt, “Analysis of an asymmetric mutation

operator,” Evolutionary Computation, vol. 18, no. 1, pp. 1–26, 2010.
[40] T. Jansen and C. Zarges, “Performance analysis of randomised search

heuristics operating with a fixed budget,” Theoretical Computer Sci-

ence, vol. 545, pp. 39–58, 2014.
[41] ——, “Example landscapes to support analysis of multimodal optimi-

sation,” in Proc. of PPSN XIV, Springer, 2016, pp. 792–802.
[42] D. Johannsen, “Random combinatorial structures and randomized

search heuristics,” PhD thesis, Universität des Saarlandes, Saarbrücken,
Germany and the Max-Planck-Institut für Informatik, 2010.

[43] J. Lässig and D. Sudholt, “Analysis of speedups in parallel evolutionary
algorithms for combinatorial optimization,” in Proc. of ISAAC 2011,
Springer, 2011, pp. 405–414.

[44] ——, “General upper bounds on the runtime of parallel evolutionary
algorithms,” Evolutionary Computation, vol. 22, no. 3, pp. 405–437,
Nov. 2013.

[45] P. K. Lehre and C. Witt, “Black-box search by unbiased variation,”
Algorithmica, vol. 64, no. 4, pp. 623–642, 2012.

[46] ——, “Concentrated hitting times of randomized search heuristics with
variable drift,” in Proc. of ISAAC ’14, https://arxiv.org/abs/1307.2559,
2014, pp. 686–697.

[47] G. Luque and E. Alba, Parallel Genetic Algorithms–Theory and Real

World Applications. Springer, 2011.
[48] A. Mambrini, D. Sudholt, and X. Yao, “Homogeneous and heteroge-

neous island models for the set cover problem,” in Proc. of PPSN ’12,
Springer, 2012, pp. 11–20.

[49] F. Neumann, J. Reichel, and M. Skutella, “Computing minimum cuts
by randomized search heuristics,” Algorithmica, vol. 59, no. 3, pp. 323–
342, 2011.

[50] P. S. Oliveto, D. Sudholt, and C. Zarges, “On the benefits and risks
of using fitness sharing for multimodal optimisation,” Theoretical

Computer Science, vol. 773, pp. 53–70, 2019.
[51] T. Paixão, J. Pérez Heredia, D. Sudholt, and B. Trubenová, “Towards a

runtime comparison of natural and artificial evolution,” Algorithmica,
vol. 78, no. 2, pp. 681–713, 2017.

[52] J. E. Rowe and D. Sudholt, “The choice of the offspring population size
in the (1,λ) evolutionary algorithm,” Theoretical Computer Science,
vol. 545, pp. 20–38, 2014.

[53] J. E. Rowe and M. D. Vose, “Unbiased black box search algorithms,”
in Proc. of GECCO ’11, ACM, 2011, pp. 2035–2042.

[54] D. Sudholt, “Crossover is provably essential for the Ising model on
trees,” in Proc. of GECCO ’05, ACM, 2005, pp. 1161–1167.

[55] ——, “Hybridizing evolutionary algorithms with variable-depth search
to overcome local optima,” Algorithmica, vol. 59, no. 3, pp. 343–368,
2011.

[56] A. M. Sutton and F. Neumann, “Runtime analysis of evolutionary
algorithms on randomly constructed high-density satisfiable 3-cnf
formulas,” in Proc. of PPSN ’14, Springer, 2014, pp. 942–951.

[57] O. Teytaud and S. Gelly, “General lower bounds for evolutionary
algorithms,” Proc. of PPSN IX, vol. 8623, pp. 21–31, 2006.

[58] D. Thierens and P. A. N. Bosman, “Hierarchical problem solving with
the linkage tree genetic algorithm,” in Proc. of GECCO ’13, ACM,
2013, pp. 877–884.

[59] R. A. Watson, G. S. Hornby, and J. B. Pollack, “Modeling building-
block interdependency,” in Proc. of PPSN V, Springer, 1998, pp. 97–
106.

[60] I. Wegener and C. Witt, “On the optimization of monotone polynomials
by simple randomized search heuristics,” Combinatorics, Probability

and Computing, vol. 14, no. 1–2, pp. 225–247, 2005.
[61] C. Witt, “Worst-case and average-case approximations by simple

randomized search heuristics,” in Proc. of STACS ’05, Springer, 2005,
pp. 44–56.

[62] ——, “Runtime analysis of the (µ+1) EA on simple pseudo-Boolean
functions,” Evolutionary Computation, vol. 14, no. 1, pp. 65–86, 2006.

[63] C. Zarges, “Rigorous runtime analysis of inversely fitness proportional
mutation rates,” in Proc. of PPSN X, Springer, 2008, pp. 112–122.

[64] ——, “On the utility of the population size for inversely fitness
proportional mutation rates,” in Proc. of FOGA 2009, ACM, 2009,
pp. 39–46.

Per Kristian Lehre is a Senior Lecturer at the
University of Birmingham, UK.

He received MSc and PhD degrees in Computer
Science from the Norwegian University of Science
and Technology (NTNU). After finishing his PhD in
2006, he held postdoctorial positions in the School of
Computer Science at the University of Birmingham
and at the Technical University of Denmark. From
2011, he was a Lecturer in the School of Computer
Science at the University of Nottingham, until 2017,
when he returned to Birmingham.

Dr Lehre’s research interests are in theoretical aspects of nature-inspired
search heuristics, in particular, runtime analysis of population-based evolu-
tionary algorithms. His research has won several best paper awards, including
at GECCO (2013, 2010, 2009, 2006), ICSTW (2008), and ISAAC (2014). He
is editorial board member of Evolutionary Computation, and associate editor
of IEEE Transactions on Evolutionary Computation. He was the coordinator
of the successful 2M euro EU-funded project SAGE which brought together
the theory of evolutionary computation and population genetics.

Dirk Sudholt received his Master’s and Ph.D. de-
grees in computer science, under the supervision of
Prof. I. Wegener, from the Technische Universität
Dortmund, Dortmund, Germany, in 2004 and 2008,
respectively. He is a Senior Lecturer and Head of
the Algorithms Group at the University of Sheffield,
Sheffield, U.K. He has held Post-Doctoral posi-
tions at the International Computer Science Institute,
Berkeley, CA, USA, and the University of Birm-
ingham, Birmingham, U.K. He has more than 100
refereed publications. His current research interests

include runtime analysis of randomized search heuristics, such as evolutionary
algorithms and swarm intelligence. Dr. Sudholt was a recipient of the EU’s
Future and Emerging Technologies Scheme (SAGE Project) and eight best
paper awards at GECCO and PPSN. He is an Editorial Board Member of
Evolutionary Computation, Natural Computing and The Computer Journal.

https://arxiv.org/abs/1307.2559

