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ABSTRACT 

Ecologists and wildlife managers alike have explored the role of fire as an 

ecosystem disturbance for decades and, yet, the role of scale remains poorly understood 

in pyrogeography. Understanding how wildfire occurs on the landscape and, 

furthermore, how these trends will change in the future provides an enhanced 

understanding of vegetative patterns, successional changes and biome distributions. As 

scientific research begins to account for the effects of climate change, predictive 

modeling will remain one of the foremost tools in understanding how present-day trends 

will begin to change. This study employs a series of spatial modeling techniques to 

examine which factors are most influential on the presence of wildfire hotspots on the 

landscape and which factors may be influential on areas devoid of wildfire occurrence 

entirely. Clustering algorithms were used to identify wildfire hotspots across the study 

area and targeted pseudo-absence points were created outside the bounds of these 

clusters. The resulting presence/absence points were analyzed within physiographic 

regions and a predictive model was fit to the data. Analysis of common covariates, such 

as climatic variables, land use, and topography allowed this study to not just fit a model 

to wildfire distribution, but inform comparable studies conducted anywhere similar data 

are available. As different aspects of climate change begin to exert influence on 

ecosystems globally, this study sheds light on how fire regimes may change with it. 
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1. INTRODUCTION

Wildfire is a foundational element of global ecology, of ecosystem destruction, 

and revitalization, but most of all: change. Often, wildfire is captured in the public 

perception as a force of destruction and this is not without cause. In 2017 alone, roughly 

71,500 wildfires were responsible for burning over 10 million acres of land (Hoover 

2018). When the paths of these fires intersect with areas of human-development and land 

use, the results can be devastating. Wildfire is not, however, solely a destructive force. 

Fire, whether from natural or anthropogenic forces, often works as the spark of change; 

it shifts ecosystem dynamics, encourages successional cycles, and sets the conditions for 

the growth of new life. Pyrophillic vegetation are highly adaptive species the utilize fire 

to grow; species such as the longleaf pine (Pinus palustris) require fire, using their fire-

resistance as a competitive advantage to grow and spread in ecosystems (Latham 2013). 

Cyclical disturbance by fire furthermore serves to open habitat for wildlife that cannot 

exist in thick woody vegetation otherwise. Fire serves an essential role in how ecological 

systems experience change and how fire-adapted species grow and develop. Fire-adapted 

species use wildfire to expand to new territories and garner resources from otherwise 

highly-competitive vegetation. The magnitude and frequency of fire serves not just to aid 

these species, but in many cases works to define the vegetation characteristics of an 

entire region (Lafon et al. 2017). 

Despite the known ecological benefits of fire, suppression remains a common 

reaction to the presence of wildfire. The answer to lasting fire control may lie in the age-

old idiom ‘fighting fire with fire’. Evidence has shown that frequent low-understory fires 
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are effective in curbing the creation and spread of large, destructive wildfires (Brose et 

al. 2001, Latham 2013). 

Fire is a universal, global phenomena but wildfire distribution is far from 

consistent across different scales and regions. Different ecosystem types experience a 

greater or lesser frequency of fire, with these variations exerting strong influence on 

their vegetation and successional cycles. This research aims to analyze and interpret 

where wildfire is most and least prevalent across the Southeastern United States, and 

which factors are the most influential on these conditions. This study will advance the 

scientific understanding of what controls wildfire distribution. With that knowledge, 

ecosystem managers and fire-suppression agencies alike will be better prepared to 

control fire before it threatens human populations, but allow it to flourish where it is a 

vital part of ecosystem dynamics. The fire regimes of the United States will likely to 

continue to change, but understanding how they are developed is the first step to 

asserting any kind of control upon them. 

To advance this regional understanding of wildlife, this research will focus on 

two primary objectives. The first objective is to characterize the known distribution of 

wildfire in the Southeastern United States. Wildfire distribution will be evaluated to 

identify the presence of clustering, hyper-dispersion, or random distributions of wildfire 

across spatial scales and physiographic sub-regions. Non-random distributions of 

wildfire indicate a control on the distribution of wildfire. Therefore, the second objective 

of this study is to identify potential factors most influential on the distribution of both 

wildfire presence and absence. Variables found to be consistent across all spatial scales 
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and sub-regions tested can be identified as having the strongest association on the 

presence of wildfire. 
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2. LITERATURE REVIEW

Research attempting to identify patterns in fire regimes is of the utmost 

importance to ecologists and ecosystem managers. Fire exerts a heavy influence on the 

disturbance and subsequent successional ecology of all continents, excluding Antarctica 

(Pausas & Ribeiro 2013). Increasingly, research in pyrogeography has been focused on 

defining large-scale patterns and interactions of fire as a disturbance regime. Bond & 

Keeley (2005) proposed that the ubiquity of fire as a disturbance around the world was 

so profound that it could be compared to the effects of grazing or browsing commonly 

done by large ungulates. This idea substantiated the role of fire in global ecosystems but 

only addresses the results of interconnected fire regimes. The interconnectedness and 

importance of fire regimes on global ecology is not a novel topic, however, several years 

later, Archibald et al. (2013) popularized the term ‘Pyromes’ as a way of classifying how 

fire regimes differ in association with vegetative and climatic patterns often used in 

defining biomes. Like Bond et al. (2005), Archibald et al. (2013) contribute to the global 

understanding of fire regimes, even providing a potential classification scheme based on 

the physical characteristics, frequency, and location of fires. It does not, however, offer 

evidence as the environmental, anthropogenic, or topographic factors that set the 

conditions for the trends observed in these regimes. 

These advances in the global fire regime research have demonstrated the 

importance of fire research at large spatial extents, but offered little evidence on what 

factors influenced these trends or how relevant factors themselves may change 

regionally. Previous studies have identified criteria for determining the presence or 



 

5 

 

absence of fires based on the ecological or anthropogenic preconditions of the area 

(Bowman et al. 2014, Bradstock et al. 2010, Pausas & Ribeiro 2013), but none have 

sought to identify the statistical influence of both specific factors on fire distribution. 

Bowman et al. (2014) further express the value in understanding the underlying causes 

of cyclical disturbance regimes, such as fire, on ecosystems. When dealing with dynamic 

systems such as large-scale ecological succession, it is imperative that testing variables 

be as independent as possible. Their study suggests that determining global fire regimes 

or pyromes using only macroecological factors is too broad; these factors are 

interdependent and reliant on the same cycles that wildfire is an integrated part of. 

Therefore, a study that identifies a set of predictive criteria for large-scale fire regimes 

based on the core factors that make up ecological designations (such as biomes) is 

required. This study seeks to determine how large-scale trends in pyrogeography are 

influenced or controlled by simple environmental, anthropogenic, or spatial factors.  

 To define a clear set of criteria for the prediction of wildfires will require more 

than just a point-based analysis. Studies of a similar nature have, thus, used the 

clustering or aggregation of fire locations to define areas of high or low fire 

susceptibility. While these data can further contribute to determining the influence of 

controlling factors on fire regimes, it also has the potential to demonstrate change in fire 

regimes over time. Serra et al. (2013) provides a framework to model these factors and 

evaluate wildfire clusters but was limited in both scope and depth. Their study evaluated 

covariates to fire clusters such as land use and ignition yet did not include any 

environmental controls on fire distribution. Additionally, it was limited to a small study 
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area of Catalonia, Spain over a brief time scale of four years. Serra et al. (2013) was a 

useful study in identifying controls on the distribution of fire clusters and Chou (1992) 

and Parente et al. (2016) help complete the picture. These studies successfully tested 

relevant controls on fire clusters. The factors that these studies tested covered topics 

such as climate, fire prevention policy, spatial influence of past fires, and anthropogenic 

land use. Neither study uses, nor generates, a comprehensive list of covariates to test 

wildfire clusters on the landscape. These three studies together support a methodology 

for testing the influence of covariates on the spatial and temporal distributions of fires, 

but leave a gap to examine a study area large enough to draw conclusions on changes in 

large-regional or global fire regimes.  Research building upon the groundwork laid out 

by these studies will be able to identify the covariates most influential on the spatial 

distribution of wildfires on a regional scale.  

Bradstock (2010) was one of the few studies that sought to define criteria for the 

prediction of wildfires at a continental extent. This study uses variations in primary 

productivity and vegetation cover to suggest changes in Australian fire regimes. While 

this study was able to identify major controls on fire regimes, it nonetheless came under 

criticism in its validity. Bowman et al. 2014 questions whether such a model could be 

valid considering the inherent feedback cycles between climate, fire, and primary 

productivity.  

Krawchuck et al. (2009) provides one of the most comprehensive analyses of the 

distribution of wildfire, with particular interest given to how these distributions change 

in relation to climate change. This study does face its limitations, however. While a fine 
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example of how the environmental factors influential in the distribution of wildfire will 

change global fire regimes, this study limits potentially relevant predictive criteria to 

environmental or ignition criteria. Furthermore, this does not consider how variations in 

significant predictive factors occur within their study region. Co-authors of the study 

expanded on this work in Parisen & Moritz (2009) by analyzing the large-regional 

contiguous United States amongst regional California and smaller ecoregions. By 

analyzing several spatial scales and incorporating more potential covariates, this study 

begins to build on the comprehensive understanding of which factors are most influential 

in the creation of fire regimes at different scales. My research attempts to build on this 

foundation by expanding the non-environmental testing covariates included in this 

analysis. In this way, this research will be able to provide support to, or evidence to 

refute the importance of non-environmental variables on regional and sub-regional 

wildfire distribution. 

Contrary to public perception, the bulk of wildfire is not caused by natural or 

environmental factors alone. Balch et al. (2017) analyzed wildfire records from 1992-

2012 to determine the influence of human impact on wildfire in the United States. They 

discovered that of fires analyzed, 84% were human-ignited in some way. Furthermore, 

Balch et al. (2017) identified that 44% of the total area burned in the time period was the 

result of these human-ignited fires. The study found that not only is human-impact 

causing more fires and burning more area than purely natural causes, but human-impact 

is expanding the annual temporal and spatial niche of wildfire. Outside of the United 

States, similar studies have brought forth similar results. Calviño-Cancela et al. (2016) 
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analyzed the wildfire risk associated with urban-wildland interfaces in Northwestern 

Spain. Like Balch et al. (2017), the study found that areas where urban and wildland 

areas interfaced increased ignition risk in most land cover types. The importance in 

human-fire interaction is, therefore, monumental, further illustrating the value in 

identifying how human influence effects fire distribution. 

Ricotta et al. (2018) found that ignition points were generally close to roads in all 

land cover types, with the ignition risk varying amongst these types. Roads are not only 

a method for human transportation but are a sign of built infrastructure and human 

development. Roads are expensive to build and maintain; generally, the higher the road 

density of an area, the higher the volume of persons that they have been built to cater to. 

Additionally, with increases in road density, it can be expected in most cases that other 

increases in infrastructure will follow (e.g., powerlines, buildings, etc.). These shifts in 

infrastructure represent an increased risk of fire ignition both through direct or indirect 

human influence. Their research has thus set the framework for the inclusion of road 

density as a relevant factor in the prediction of wildfire. 

Another measure of human-involvement on the landscape, population density, 

has also been found to correlate with wildfire. Increases in population density have 

resulted in both increases and decreases in the occurrence wildfire largely depending on 

land cover (Blistinas et al. 2013). While it would be expected that increases in 

population density would lead to a wildfire rise in fire-prone areas, it would be equally 

expected that wildfire would be found less frequently as areas begin to heavily urbanize 

and suppression becomes more prevalent (Calviño-Cancela et al. 2016). As with roads, 
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land cover/land-use is essential to measuring the impact of human influence on the 

presence and distribution of wildfire. These studies substantiate that the role of human-

impact on the distribution of wildfire is interconnected with the natural environment. 

The relationship between these groups of variables is, thus, essential to the prediction of 

wildfire. 

Just as environmental predictors alone are not wholly satisfactory in explaining 

the distribution of wildfire, land cover is not a catch-all. To effectively build a more 

comprehensive understanding of wildfire, it is imperative that different aspects 

contributing to wildfire be analyzed together. Conducted in a similar study region, 

Carmo et al. (2011) explored the relationship between land cover and slope on the 

presence of fire. They found, along with studies of a similar nature (Nunes et al. 2005, 

Moreira et al. 2009) shrub land cover to be the most fire-prone land cover with 

cultivated lands being the least fire-prone. It is not necessarily valid to assume that 

results generated from studies in different regions the world will hold true for research in 

the United States, but Carmo et al. (2011) helps to identify trends expected to hold true. 

Carmo et al. (2011) attributes falling fire prevalence in cultivated land to the controlled 

moisture content of irrigated crops and ranchland. The study also theorizes that rapidly 

changing elevation is likely a powerful indicator in the link between land cover and 

wildfire prevalence. Their research found that strong slopes increased the fire-risk of all 

land cover types. This relationship illustrates the importance of both elevation and a 

metric of surface roughness in evaluating the distribution of wildfire. 
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Carmo et al. (2011) focuses on the relationship between land cover and elevation 

in explaining wildfire distributions, whereas within the Great Lakes Region of the U.S., 

Cardille & Ventura (2001) explores the relationship between land cover and land-

ownership on the occurrence of wildfire. Cardille & Ventura (2001) found that wildfire 

was more likely to occur in areas that were not forested than areas that were within 

forested patches, but the presence or absence of wildfire otherwise varied amongst land 

cover types. Furthermore, they found that areas within the bounds of national or state-

protected forests were less likely to have wildfire than comparably sized areas outside of 

them. These results were found to be consistent across their testing scales demonstrating 

a strong relationship between wildfire and these variables. Their study asserts that 

correlation between the absence of wildfire and the federally or state protected land may 

be the result of fire-suppression practices or the absence of high-density human-

involvement. Just as land cover is a powerful covariate in conjunction with human-

involvement, their study supports the idea that ownership of the land may also play an 

important role.  

Factors that contribute to the distribution of wildfire are only valuable to the 

degree that they can be tested. This research aims to not just explain, but to quantify the 

contributions of these significant factors on the distribution of wildfire. Before these 

analyses can be tested, however, the distribution must be understood. The methods used 

to test distribution in this study are rooted in a collection of techniques called 

exploratory spatial data analysis (ESDA). ESDA was largely developed by Anselin 

(1998) as a series of techniques that focused on accounting for spatial autocorrelation 
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(SAC) in spatial data. It was developed as a broad mechanism for the exploration of 

spatial phenomena. ESDA sets the framework for research on the distribution of points 

in space; it is inherently geographic, with applications from spatial epidemiology to 

biogeography. ESDA can be broken down into 3 core segments. First, the dataset must 

be visualized, or presented. In many cases, data must be appropriately ascertained and 

presented in a way that could be tested using the techniques involved in ESDA. 

Secondly, the distribution of the data must be reviewed for evidence of SAC. To 

understand what influences SAC of a dataset, and how it can be predicted, a spatial 

relationship, the SAC of a dataset must be verifiable. Finally, the third core ESDA 

segment is the prediction of spatial patterns.  

This combined body of literature substantiates the scientific dedication to 

research in pyrogeography. Each study, paper and piece of journal correspondence 

contributes to the greater understanding of the intermingled factors that contribute to the 

distribution and spread of wildfire: a global ecological phenomenon. From global to 

local scales and nearly all scales in-between, literature has identified the value of 

studying wildfire, its importance in global ecology, its relationship with human-

interaction and land cover. By understanding these relationships and by utilizing 

techniques such as those outlined in ESDA, this research will build on the foundation 

that came before it. This research will not just quantify the importance of different 

factors on the distribution of wildfire, but synthesize how the relationships defined in 

previous literature are represented across this study area. 
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3. DATA

3.1. Study Sites 

The influence of wildfire is a common topic for ecologists, ecosystem managers 

and even homeowners throughout the world. This study focuses on the influencing 

factors of wildfire within the southeastern United States (see Figure 1). The southeastern 

U.S. was chosen not just to help fill a gap in scientific literature, but because the 

distribution of major wildfires in this region fit the right criteria to explain which factors 

most influence the presence or absence of wildfire. This study focused on large wildfires 

(>500 acres burned) in the Southeastern U.S. (see figure 1). From a cursory observation 

it appears that to some degree, there are areas where wildfire is clustered, and some areas 

that appear almost completely devoid of wildfire. The disparity in the distribution of 

wildfire across the region makes it optimal in investigating how these trends occur.  
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Just as there are areas of tightly clustered points and areas sparsely populated, the 

land, too, changes drastically between sub-regions within this selected region. The vast 

changes in physiography between the Appalachian Mountains and the Everglades 

identify the need for analyses at differing spatial scales. To help explain the role of scale 

in distribution, the southeastern study region was further divided into sub-regions based 

on their physiography. Figure 2 displays the five physiographic regions that this study 

analyzes. These regions: The Eastern Broadleaf Forest (EBF), Appalachian (APP), 

Expanded Piedmont (EPD), Coastal Plain (CSTL), and Everglades (EVR) were loosely 

derived from Bailey’s Ecoregions (Bailey 1998). Sub-regions delineated in Bailey 1998 

Figure 1: Presence of Wildfire in the S.E. U.S. 
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were aggregated based on physiography to define the sub-regions for this study. Each of 

the 5 defined sub-regions as well as the full regional study area (Southeast – SE), were 

defined, and prepared for further analyses. By analyzing each sub-region individually 

and comparing the results between them, this study seeks to further the scientific 

understanding of what causes variations in the distribution of wildfire.  

Figure 2: Physiographic Sub-regions of the S.E. U.S. 

3.2. Vector Point Data - Wildfire Data Points 

The variations in the distribution of wildfire would not be possible if not for data 

that accurately captures this information. This study derived wildfire presence data from 
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Monitoring Trends in Burn Severity (Finco et al. 2012, www.MTBS.gov). These data 

provide the position of all fire occurrence from 1984 – 2015. The data was constricted to 

only locations of major wildfires (acres burned >= 500). Data was then divided amongst 

the six testing groups (SE, EBF, APP, EPD, CSTL, and EVR) for pseudo-absence 

creation and analysis. Table 1 displays the distribution of point data among regions. 

3.3. Raster Data - Covariate Testing Data 

This study is exploratory in nature and thus compared a total of 36 covariate 

raster datasets to the dependent wildfire dataset established. Wildfire occurrence has 

been attributed to a widespread series of variables ranging from anthropogenic/societal 

to environmental/topographic (Parente et al. 2016, Serra et al. 2013, Guyette et al. 2012, 

Lafon et al. 2017). As a result, this study sought to evaluate the influence of a series of 

covariates on the distribution of wildfire. Table 2 displays the covariates, their class-

type, a short description and the source of the data. 

LOCATION PRESENCE PSEUDO- 

ABSENCE 

SE 3000 4501 

EVR 296 444 

CSTL 1773 2660 

EPD 90 135 

APP 828 1242 

EBF 13 20 

Table 1: Wildfire Presence and Pseudo-absence 

by Study Region 
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NAME CLASS DESCRIPTION SOURCE 

BIO1 Bioclimatic Annual mean temperature Worldclim.org 

BIO2 Bioclimatic Mean monthly diurnal range Worldclim.org 

BIO3 Bioclimatic Isothermality Worldclim.org 

BIO4 Bioclimatic Temperature seasonality Worldclim.org 

BIO5 Bioclimatic Max. temp. of warmest month Worldclim.org 

BIO6 Bioclimatic Min. temp. of coldest month Worldclim.org 

BIO7 Bioclimatic Temp. annual range Worldclim.org 

BIO8 Bioclimatic Mean temp. of wettest quarter Worldclim.org 

BIO9 Bioclimatic Mean temp. of driest quarter Worldclim.org 

BIO10 Bioclimatic Mean temp. of warmest quarter Worldclim.org 

BIO11 Bioclimatic Mean temp. of coldest quarter Worldclim.org 

BIO12 Bioclimatic Annual precipitation Worldclim.org 

BIO13 Bioclimatic Precip. of wettest month Worldclim.org 

BIO14 Bioclimatic Precip. of driest month Worldclim.org 

BIO15 Bioclimatic Precip. seasonality Worldclim.org 

BIO16 Bioclimatic Precip. of wettest quarter Worldclim.org 

BIO17 Bioclimatic Precip. of driest quarter Worldclim.org 

BIO18 Bioclimatic Precip. of warmest quarter Worldclim.org 

BIO19 Bioclimatic Precip. of coldest corner Worldclim.org 

WIND Bioclimatic Mean annual wind speed (m/s) Worldclim.org 

NAITO Processed Predicted mean fire interval (MFI) Guyette et al. 2012, 

Lafon et al. 2017 

POP Anthropogenic Population density USCB 

Table 2: Covariate Types, Descriptions, and Sources. 

All datasets resampled to 1km resolution 
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NAME CLASS DESCRIPTION SOURCE 

ROADS Anthropogenic Road density Author/USGS 

PTCD Anthropogenic Binary protected land designation USGS (GAP) 

DECID Land Cover Binary deciduous land designation MRLC 

BARREN Land Cover Binary barren land designation MRLC 

SHRUB Land Cover Binary shrubland designation MRLC 

MXDFRST Land Cover Binary mixed forest land designation MRLC 

EVERGRN Land Cover Binary evergreen forest land 

designation 

MRLC 

WETLAND Land Cover Binary wetland designation MRLC 

DEVELOP Land Cover Binary developed land designation MRLC 

CULTIV Land Cover Binary cultivated land designation MRLC 

GRASSLND Land Cover Binary grassland designation MRLC 

RELIEF Topographic Topographic relief/roughness Author/USGS 

DEM Topographic Digital elevation model USGS 

ASPECT Topographic Categorical, directional slope Author/USGS 

Table 2 (Continued): Covariate Types, Descriptions, and Sources. 

All datasets resampled to 1km resolution 

This study also seeks to identify the strongest predictive criteria for wildfire 

using resources readily or easily available in many areas. The use of bioclim variables (a 

free, global, online dataset) is one of the ways that this objective is made possible. 

Although less certain to be available, many of the other datasets are derived from basic 

geospatial or population data that may be collected and processed by government entities 

around the world.  
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Many of the tested datasets were freely available through private or government 

entities but some had to be developed for this study. These datasets: roads, relief, and 

aspect were processed in ArcGIS Desktop Version 10.5 using data derived from the 

USGS (USGS 2015). The roads dataset was developed by attributing a count of 1 to 

each road in the USGS dataset then creating a summation spatial join to a fishnet 

polygon of the appropriate resolution. This polygon was then rasterized for further 

processing. The relief dataset was created as a measure of the standard deviation of 

elevation in a roaming 3x3 grid cell zone. This measure of topographic roughness or 

relief, attributed to Ascione et al. 2008 and Klinkenberg 1992, was derived from the 

USGS DEM Dataset (USGS 2015) and calculated in ArcGIS Desktop Version 10.5. 

Also based off the USGS DEM dataset, the aspect dataset was created using the ‘Aspect’ 

tool in the Spatial Analyst toolbox (ArcGIS Desktop Version 10.5) then converted to 

directional categories (cardinal directions and NE, SE, NW, SW) using RStudio Version 

1.1456. 
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4. METHODS

4.1. Pseudo-Absence Creation 

This research seeks to advance the scientific understanding of which factors 

contribute most strongly to the presence of wildfire on a landscape and furthermore, if 

these factors change across regions or sub-regions. To attain this goal, it is not 

satisfactory to explain the conditions of where wildfires are located; it is equally 

imperative to explain the areas where wildfire is not occurring. For this reason, this 

research developed a metric to be used to represent not the absence of wildfire, 

necessarily, but the pseudo-absence: a statistically random distribution of geographic 

points representing the absence of wildfire. Point locations of absence do not, by 

definition, exist. In composing an ESDA of the absence of wildfire, this inhibits the first 

segment (displaying the data). To circumvent this issue, a metric must be derived to 

represent absence. A statistically random distribution of points restricted to areas least 

likely to be afflicted by wildfire would accomplish the first two tasks of ESDA, priming 

these data to be processed alongside wildfire presence data. 

Figure 3A represents the points of known wildfire locations on the landscape 

within the study period. There are some areas in the southeast where these locations 

seem concentrated and others where they appear to almost non-existent. To have pseudo-

absence points represent areas where wildfire was not noted to occur, a metric had to be 

utilized to determine where they were most likely to occur. To represent the areas of 

wildfire concentration, a kernel density estimation (KDE) was performed. KDE 
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estimates the probability density of a variable over a smoothed area (Rosenblatt 1956). 

The KDE is calculated using the presence of wildfire within a search distance or 

‘bandwidth’. This study made use of the hopt formula presented by Fotheringham et al. 

2000 to determine the optimal bandwidth where: 

hopt = [2/3n]1/4𝝈 

Where hopt (the optimal bandwidth) is a function of both the standard distance of wildfire 

presence data, 𝝈, and its sample size, n. Table 3 represents the calculation of the optimal 

bandwidth used for the KDE analysis in this research. 

DATASET n 𝝈 hopt 

SE MTBS WILDFIRE POINTS 3001 513387.6882m 62676.702m 

Table 3: Hopt Calculation for S.E. Wildfire Points 

Once the KDE was performed, concentrations of wildfire could be reliably 

determined. Figure 3B represents the concentration of wildfire on the landscape by 20th 

percentiles. The 80th percentile of wildfire concentration on the landscape was used to 

create ‘Pseudo-Absence Fire Exclusion Zones’ (See Figure 3C) that represented areas 

where wildfire occurrence was most concentrated across the landscape. With these 

exclusion zones delineated, pseudo-absence points could then be populated in areas 

outside of these exclusion zones to represent areas where wildfire was absent. 

ArcGIS Desktop version 10.5 was used to create points locations outside of the 

Fire Exclusion zones using the ‘Create Random Points’ tool in the Data Management 
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toolbox. These points were populated at a 40/60 presence to pseudo-absence ratio within 

each delineated physiographic sub-region. This ratio was selected to provide a nearly 

even number of values for each category while providing more user-generated points to 

ensure a large sample size for analysis. Table 1 represents the total points produced for 

each study area and Figure 3D represents the distribution of these points and their 

respective coverage of the study regions as a whole. 

Figure 3: Illustrated Method for the Creation of Pseudo-Absence of Wildfire in the S.E. U.S. 
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4.2. Covariate Data Creation and Formatting 

To properly relate wildfire presence and newly created pseudo-absence data it 

was essential that 36 raster testing covariates be standardized. Additionally, in further 

predictive modeling of the study regions, the covariates selected as predictive variables 

must be aligned in order to be used as a predictive stack (group of aligned rasters used 

for modiling). As a result, this research not only acquired, but cleaned, standardized and 

aligned the 36 raster datasets. Raster processing was completed in ArcGIS Desktop 

Version 10.5 using the Data Management toolbox. All datasets that deviated from the set 

1km resolution were standardized using the ‘Resample’ tool and the ‘Majority’ 

algorithm. This method ensures that rasters at a finer resolution were aggregated to a 

value encompassing the majority of the cells within it, as well as coarser resolution 

rasters defining the same value evenly across newly delineated cells. Once all raster 

datasets were standardized to the appropriate resolution, they were fit to a common 

extent and aligned. These steps, essential to forming a raster stack to be used in 

predictive analysis, were also completed using the Data Management toolbox in ArcGIS 

Desktop version 10.5. Each of the covariate rasters was separately, but in turn, mosaiced 

onto the blank raster using the ‘Mosaic to New Raster’ tool. The resulting rasters, each 

with a standardized extent, resolution and alignment were then all masked to encompass 

only the study region.  

Once the raster datasets were aligned and standardized across extent and 

resolution, the covariate data at each of the wildfire presence and pseudo-absence points 

were extracted and joined. For each of the study regions, the ‘Extract Multi Values to 
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Points’ tool in the Spatial Analyst toolbox was used to extract the raster value of each of 

the covariate rasters to each presence and pseudo-absence point. The resulting attribute 

files were then exported from ArcGIS for processing. 

4.3. Measuring Spatial Autocorrelation 

Kernel density estimation provides a visual representation of the probability 

density of a variable across a study area. While useful in identifying concentrations, it 

fails to adequately quantify spatial autocorrelation, particularly as it changes amongst 

different spatial scales. This research is centered on explaining distributions of wildfire, 

therefore a metric to quantify this distribution was needed. To accomplish this task, this 

study made use of the Ripley’s K Statistic (Ripley 1976). The Ripley’s K Statistic is a 

point pattern analysis that measures spatial autocorrelation at multiple spatial scales. 

Measuring spatial autocorrelation at different scales quantifies the spatial dependence of 

the feature data. This study focuses on both regional and sub-regional data and, as a 

result, understanding the spatial dependence of wildfire distribution furthers the 

scientific understanding what factors are most significant in controlling the distribution 

of wildfire in the Southeastern United States. Figure 4 represents the graphic output of 

the Ripley’s K function through ArcGIS. The output graphic visualizes the relationship 

between the autocorrelation of feature and space as it differs from the pattern expected 

of a sample. Within ArcGIS Pro Version 1.4 the ‘Multi-Distance Spatial Cluster 

Analysis (Ripley’s K Function)’ tool from the Spatial Statistics Toolbox was used to 

accomplish this task. Each of the study regions were tested separately using 10 distance 

bands, the Ripley Edge correction formula and repeated for 999 permutations to create a 



24 

confidence envelope. Distances used for each region were scaled according to relative 

region size. The output of these analyses was generated graphically for further 

evaluation. 

Figure 4: Ripley's K Interpretation 

4.4. Regression Analyses 

This study makes use of variations of logistic regression analyses to evaluate the 

relationship between wildfire presence/pseudo-absence, a binary dependent variable, and 

36 Bioclimatic, anthropogenic, and topographic independent variables. Logistic 

regression models calculate not just the relationship between dependent and independent 

variables, but the probability that dependent feature data will be within a testing category 

(Menard 2010). The result of a logistic regression is, thus, a measurement of the 

expected odds that a dependent feature falls within an independent category at some 

magnitude.  

0

20000

40000

60000

80000

100000

120000

140000

160000

1 2 3 4 5 6 7 8 9 10

L(
d

)

Search Band

Ripley's K Interpretation

ExpectedK ObservedK LwConfEnv HiConfEnv



25 

Before any analyses could be performed, the testing vector data had to be 

cleaned. At a regional to sub-regional scale, errors in raster data are not uncommon. The 

analyses performed for this study however cannot be run without complete datasets. As a 

result, any data points either in the presence or pseudo-absence categories that 

represented an incomplete recording of attributed covariate data were not processed. 

Table 4 displays the data reductions attributed to the cleaning of this data. While the loss 

in data is not ideal, the inflation of data by the creation of pseudo-absence ensures that 

there remain enough data points to be processed. 

LOCATION PROCESSED 

PRES 

PROCESSED 

ABS 

PROCESSED 

TOTAL 

PRE-PROCESSED 

TOTAL 

SE 1622 3092 4714 7501 

EVR 150 196 346 740 

CSTL 377 792 1169 4433 

EPD 27 47 74 225 

APP 1620 2910 756 2070 

EBF 9 16 25 33 

Table 4: Data Reductions by Study Region 

With a complete dataset created and covariate data attributed, regression analyses 

could be performed. The preliminary logistic regression model run for each study area 

was a generalized linear model processed in RStudio Version 1.1456 using the ‘glm’ 

function within the ‘stats’ package. Model fit for these analyses was evaluated using the 

‘extractAIC’ function in the ‘stats’ package. AIC, or Akaike Information Criterion, is a 

method for measuring the relative quality of statistical models (Aho et al. 2014). This 
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value is relative to the model being tested and can be used to tweak models to achieve 

the lowest AIC, indicating the highest quality model. The ‘glm’ method accomplishes 

the basic task of performing a logistic regression, but it doesn’t adjust covariate use to 

account for model fit. Therefore, any changes to the variables used in a model using a 

‘glm’ must be removed or added manually before the model reevaluated. To ensure the 

best fit model, this study made use of a stepwise regression model. 

Stepwise regression models optimize the fit of the model by analyzing the 

significance of covariates in different ways. The first way that this can be accomplished 

is in a ‘forward’ method, where each covariate is added to the model in forward 

inclusion and the model fit is measured at each step (Menard 2010). Conversely, the 

‘backward’ method works through a backward elimination of variables, starting with full 

covariate inclusion in the model and removing them at each step. Both methods can be 

evaluated using the ‘stepAIC’ function in the ‘MASS’ package and the better fit model 

of the two selected. 

Stepwise regression analyses have been criticized as representative of a 

researcher’s poor understanding of a subject (Studenmund & Cassidy 1987). This 

criticism is derived from the method’s using an automated stepwise selection as opposed 

to the previously presented manual method. Critics of this method argue that automated 

stepwise regression is more like taking a ‘shot in the dark’ at valuable covariates rather 

than demonstrating true understanding. Conversely, stepwise regression has been 

defended as a valuable resource in directed exploratory research (Agresti & Finlay 

1997). This study seeks to narrow down the most statistically significant factors in the 
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distribution of wildfire. This study is, at its core, an exploratory analysis. Exploratory 

research has and always will be an essential part of the scientific process and in cases of 

directed exploration, stepwise regression is a powerful tool to aid in that process. Not 

only do the included variables matter in stepwise regression, but so do does the order 

that they are processed in. To ensure model validity, this study will first see if relevant 

covariates change based on the method of stepwise regression (forward or backward). If 

the relevant covariates from these match, than the model remains valid. Otherwise, the 

organization of covariates must be randomized to ensure each covariate is not exerting 

greater influence on the model than any other. Once a method has been selected, 

processed and verified, it can be interpreted. 

Once a final regression model has been selected for each study region, their 

interpretation will be done using a measure of the regression coefficient: their associated 

Odds Ratio (OR). In a logistic regression model, the regression coefficient is equal to the 

log(OR). To simplify this interpretation the OR is calculated from the coefficient. OR is 

defined as the ratio of the odds of presence to the odds of absence, given each particular 

covariate. OR values, therefore, range from zero to positive infinity with values below 

one representing a negative correlation between the presence (positive correlation with 

absence) of the dependent variable and an increase in the covariate, one representing no 

correlation, and values greater than one showing a positive correlation between the 

presence of the dependent variable and an increase in the covariate. This study will use 

the OR generated by each region’s model to quantify the significance of each variable. 

An important consideration when interpreting the OR of any variable in a model is that 
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the OR is a measure of the probability or absence of a dependent variable, given an 

increase in the independent variable. For binary variables, this simply means with 

probability of dependent variable presence, given the presence of the independent 

variable. For continuous variables, the probability is given an increase in the 

independent variable. In this way, interpreting the OR of each model run will allow this 

study to quantify which variables are exerting the most influence on the presence or 

absence of wildfire. 
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5. RESULTS

5.1. Objective 1: Spatial Autocorrelation 

5.1.1. Southeastern Regional Study Area 

The multi-distance spatial cluster analysis for the southeastern region was an 

important step in characterizing the nature of wildfire distribution across this large 

regional area. Figure 5 displays how the spatial autocorrelation of wildfire points 

changes across spatial scales. From search bands 1 through 6, or measuring distances 

100 km to 600 km out from any given point, results indicated that these data are 

strongly, positively autocorrelated. This clustered distribution becomes increasingly 

more random at higher search distances, but never crosses the threshold into a random 

distribution within these confidence envelopes for a random distribution. 

Figure 5: Multi-Distance Spatial Clustering Analysis - SE 
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5.1.2. Eastern Broadleaf Forest Physiographic Sub-region (EBF) 

The EBF region contained the fewest number of points of any of the study 

regions and offered the most unique distribution of wildfire. Each of the regions studied 

found a measure (of varying degrees) of positive spatial autocorrelation amongst them 

indicating a clustered distribution. Conversely, the EBF region fell within the confidence 

envelope for a complete spatially random distribution at all search bands. Figure 6 

displays a graphic representation of the random distribution of wildfires across all the 

spatial scales in this region. 

Figure 6: Multi-Distance Spatial Clustering Analysis – EBF 
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distribution indicating strong, positive spatial autocorrelation, or clustering. This result 

was consistently positive, but lower degrees of clustering were found at both smaller and 

larger distance bands, with the highest disparity between expected and observed K 

values occurring in the middle search bands. 

Figure 7: Multi-Distance Spatial Clustering Analysis – APP 
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expected K values was exhibited in the smaller bands (bands 3 & 4) before leveling out 

to a more consistent representation at larger search bands. 

Figure 8: Multi-Distance Spatial Clustering Analysis – EPD 

5.1.5. Coastal Plain Physiographic Region (CSTL) 
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Figure 9: Multi-Distance Spatial Clustering Analysis – CSTL 
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Figure 10: Multi-Distance Spatial Clustering Analysis - EVR 
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land cover, and topographic variables had the lowest ORs of any group. Barren land 

cover, protected lands, grassland land cover, and shrubland cover had the strongest 

positive relationships with wildfire presence. Wetland cover, deciduous forest cover and 

evergreen forest cover also has positive relationships to a lesser degree. Conversely, 

cultivated land had the strongest relationship with the absence of wildfire in the 

southeast, with average annual wind and maximum temperature of the warmest month 

(bio5) also demonstrated strong correlations with the absence of wildfire. 

COVARIATE Z-VALUE PR(>|Z|) SIGNIFICANCE OR 

WETLAND 4.44 9.04E-06 *** 2.1460358 

SHRUB 4.85 1.25E-06 *** 2.665786 

ROADS -9.327 <2e-16 *** 0.9433885 

NAITO -4.56 5.06E-06 *** 0.8956563 

GRASSLND 4.36 1.31E-05 *** 3.011816 

DECID 3.616 0.0003 *** 1.8162177 

CULTIV -5.23 1.69E-07 *** 0.3328653 

EVERGRN 5.16 2.51E-07 *** 2.3529292 

BARREN 2.622 0.008742 ** 5.1816792 

RELIEF 10.128 <2e-16 *** 1.0132553 

PTCD 11.255 <2e-16 *** 3.4142484 

WIND -7.04 1.96E-12 *** 0.5223172 

DEM -3.305 0.000949 *** 0.9977846 

ASPECT -1.455 0.145791 0.9992389 

BIO03 5.19 2.16E-07 *** 1.2070583 

Table 5: SE Covariate Significance and OR 

Significance Codes:  '***' 0.001, '**' 0.01, '*' 0.05, ‘.' 0.1 

Average Calculated Pseudo-R2 = 0.484 
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COVARIATE Z-VALUE PR(>|Z|) SIGNIFICANCE OR 

BIO04 3.561 0.000369 *** 1.0042172 

BIO05 -7.13 1.03E-12 *** 0.6117248 

BIO08 6.79 1.16E-11 *** 1.1017459 

BIO09 3.815 0.000136 *** 1.0503353 

BIO13 2.815 0.004876 ** 1.0257956 

BIO14 -4.77 1.86E-06 *** 0.9507472 

BIO16 2.964 0.003033 ** 1.0124701 

BIO17 10.386 <2e-16 *** 1.0460073 

BIO18 -4.10 4.20E-05 *** 0.989777 

BIO19 -10.131 <2e-16 *** 0.9786264 

Table 5 (Continued): SE Covariate Significance and OR 

Significance Codes:  '***' 0.001, '**' 0.01, '*' 0.05, ‘.' 0.1 

Average Calculated Pseudo-R2 = 0.484 

The SE region had the greatest variance within covariates of any of the regions 

studied in this research due to the large spatial scale it incorporates. Despite this, the 

model for this region still generated significant results for many of the covariates. The 

result with the highest OR for the SE region was barren land cover. Figure 11 displays 

the distribution of barren land cover relative to the 80th percentile concentrations of 

wildfire in the SE region. There is prevalent barren land cover across the coastal plains, 

but the highest concentration falls within the APP region, particularly in or near the 

wildfire cluster it contains. The model for this analysis does not base its results simply 

on how the presence of wildfire relates to the presence of a covariate, but likewise how 
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the absence relates. Whereas barren land is over represented in areas with wildfire, it is 

vastly underrepresented in areas with a dearth of wildfire.

Similarly, the distribution of wildfire in the SE region closely matches the 

distribution of protected lands. Figure 12 displays the presence of protected lands 

relative to the 80th percentile of wildfire in this region. The correlation in the presence 

Figure 11: Barren Land Cover Presence of the SE Region 
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of wildfire and barren land was strongest in the APP region, but the correlation between 

protected land and wildfire is strongest in the EVR and CSTL regions, particularly in 

Florida. These areas represent the highest concentration of wildfire in the region 

incorporating the upper 20th percentile of concentration. The correlation of wildfire to 

protected lands also correlates strongly with the absence of roads in these same areas 

(Figure 13). The percentage of APP roads in the fire cluster zone was comparable to 

proportion in protected lands (7.2% in fire cluster, 6.9% in PTCD land). 
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Figure 12: Protected Lands in the SE Region 
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This model has not only exhibited strong examples of variables that are 

influential on the presence of wildfire in the SE region, but has to provided support for 

valuable predictors in understanding the absence of wildfire. Cultivated land, including 

farmlands and pasturelands had the strongest relationship with the absence of wildfire in 

the SE. Wind, another strong indicator of absence was strongest on the coastal edges of 

the study region and in the highest parts of the Appalachian Mountains. 

Figure 13: Road Density of the SE Region 
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The final relevant indicator to the absence of wildfire in the SE region was 

maximum temperature in the warmest month (bio5). Max. temp. in the warmest month is 

lowest in the Appalachian Mountains and EBF, but exhibited lower values on the coasts 

of Florida where wildfire was prevalent. Figure 14 displays the distribution of max. 

temp. in the warmest month values across the study region in comparison to the 

prevalence of wildfire. More important for the results of this model, the highest values 

of max. temp. in the warmest month (>=30 degrees Celsius) were located throughout the 

EPD region, where the highest number of pseudo-absence points were located. 
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5.2.2. Eastern Broadleaf Forest Physiographic Sub-region (EBF) 

The EBF region had the fewest number of wildfire points of any physiographic 

region studied. While these numbers were bolstered by the creation of pseudo-absence 

points, there were still not enough points for any statistical model attempting to explain 

Figure 14: Mean Temperature of Warmest Month and 

Wildfire Distribution, S.E. U.S. 
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distribution to maintain significance. As a result, regression results from the EBF region 

hold no validity. Due to the absence of wildfire and wildfire clusters, however, this 

region is heavily represented in the pseudo-absence points that were created for the SE 

regional analysis (see Figure 14). 

5.2.3. Appalachian Physiographic Region (APP) 

Similar to the analysis of the entire southeastern U.S. region, the APP regression 

model found that the ‘backward’ stepwise regression generated the model with the 

lowest AIC and best fit (See table 6). The APP region also utilized a large number of 

variables in its model formation, 23 of the 36 total, though far fewer were deemed 

significant. Of the 23 used, only 12 were deemed significant at a p-value <= 0.05 

standard. Unlike the analysis with the entire southeast, this sub-regional analysis of the 

APP region found bioclimatic variables to play a larger role in the presence or absence 

of fire found across the study area. The strongest positive correlations of the significant 

variables were protected lands, mean temperature of coldest quarter (bio11), and mean 

temperature of the driest quarter (bio9). Mean temperature of the warmest quarter 

(bio10), minimum temperature of the coldest month (bio6), and Isothermality (bio3) 

offered the strongest relationship with the absence of wildfire in this region. Two of the 

metrics of human-related activity, road density and population density, were also flagged 

as significant and had a small correlation with the absence of wildfire in this region. 



44 

COVARIATE Z-VALUE PR(>|Z|) SIGNIFICANCE OR 

SHRUB 0.014 0.98911 1.37E+08 

ROADS -1.711 0.08715 . 0.89 

POP -3.093 0.00198 ** 0.89 

MXDFRST 0.013 0.98982 4.07E+07 

GRASSLND 0.014 0.98897 1.76E+08 

DECID 0.013 0.98939 8.49E+07 

EVERGRN 0.013 0.98993 3.34E+07 

BARREN 0.018 0.98585 3.78E+10 

PTCD 4.549 5.39E-06 *** 18.27 

DEM 1.724 0.08473 . 1.01 

BIO01 1.323 0.18578 2.52 

BIO03 -1.833 0.06681 . 0.47 

BIO05 1.186 0.23567 2.53 

BIO06 -1.641 0.10084 ** 0.38 

BIO09 3.289 0.00101 * 1.93 

BIO10 -2.029 0.04249 . 0.18 

BIO11 1.654 0.0982 * 3.62 

BIO12 2.143 0.03208 ** 1.06 

BIO13 -3.288 0.00101 ** 0.74 

BIO16 3.06 0.00221 1.10 

BIO17 -1.565 0.11749 . 0.93 

BIO18 -1.705 0.08817 0.95 

BIO19 -1.611 0.10719 0.91 

Table 6: APP Covariate Significance and OR 

Significance Codes:  '***' 0.001, '**' 0.01, '*' 0.05, ‘.' 0.1 

Average Calculated Pseudo-R2 = 0.558 

Contrary to the results observed in the regional SE study area, presence or 

absence of wildfire was much more strongly correlated to bioclimatic variables in the 

APP region. The significant variable with the highest OR, however, was protected lands. 

Within the SE regional study area, this covariate was easily recognizable within the 80th 

percentile of wildfire concentration. The APP sub-region offers a less direct correlation 

(see Figure 15). Wildfire presence in protected lands occurs most commonly outside of 
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the delineated 80th percentile wildfire cluster but in nearly all locations outside of the 

clustered area wildfire presence falls within the bounds of protected land. 

Both the average temperature of the coldest quarter and the average temperature 

of the driest quarter also exhibited a strong correlation with the presence of wildfire 

within the APP sub-region. These two variables are similar in nature and, likewise, 

exhibit a similar distribution across the study area. Wildfire is almost entirely excluded 

from areas where these bioclimatic variables are low, and is heavily present in areas with 

medium to high values (see Figure 16). Testing of the pseudo-absence of this region 

yielded similar results. Bio10, or Average temperature of the warmest quarter, and Bio6, 

or minimum temperature of the coldest month, exerted the greatest influence on the 

absence of wildfire in this sub-region. The strong relationship between wildfire presence 

and average temperature in the coldest quarter and the strong relationship between 

Figure 15: Wildfire Presence and Protected Lands 
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wildfire absence and average temperature in the warmest quarter substantiate that the 

role of uncharacteristically out-of-season temperatures are a strong predictor of wildfire. 

Figure 16: Avg. Temp. of Coldest and Driest Quarters, APP 

Region 
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5.2.4. Expanded Piedmont Physiographic Region (EPD) 

Like the EBF region, the EPD contained only sparse amounts of wildfire points. 

The difference, however proved to assist in running regression models. Whereas the 

EBF region could not be run with any confidence, the EPD region was able to be run, 

but lacked no statistical relevance in any of the covariates. Few points across large 

regions do not allow a model to confidently evaluate the variance (or lack of) between 

points in the region. 

5.2.5. Coastal Plain Physiographic Region (CSTL) 

The CSTL region offered some of the strongest results of the study using a model 

with numerous significant covariates and strong ORs (see table 7). This region’s model 

was also constructed using the ‘backward’ method of stepwise regression resulting in a 

model that incorporated 22 of the 36 covariate datasets. Of these data, 21 were found to 

be significant at a p-value <= 0.05 cutoff. Barren land cover in this region offered the 

highest OR of the study with evergreen land cover, wetland cover, shrub land cover, 

grassland cover and developed land cover all indicating strong positive relationships 

with the presence of wildfire in this region. Also indicating positive relationships to 

wildfire presence at a lesser degree were cultivated land cover, protected land, average 

annual wind, average annual temperature (bio1), and precipitation seasonality (bio15). 

Conversely mean temperature of the driest quarter (bio9) and mean temperature of the 

warmest quarter (bio10) demonstrated strong relationships with the absence of wildfire 

in this region. 
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COVARIATE Z-VALUE PR(>|Z|) SIGNIFICANCE OR 

WETLAND 5.012 5.39E-07 *** 36.64 

SHRUB 4.751 2.02E-06 *** 39.07 

ROADS -4.207 2.59E-05 *** 0.93 

POP -1.455 0.145599 1.00 

GRASSLND 2.573 0.010071 * 12.15 

DEVELOP 3.873 0.000107 *** 33.52 

CULTIV 2.018 0.04359 * 4.73 

EVERGRN 5.157 2.51E-07 *** 53.89 

BARREN 3.864 0.000111 *** 1731.41 

PTCD 3.243 0.001183 ** 2.37 

WIND 2.5 0.012419 * 2.13 

DEM -3.118 0.001819 ** 0.97 

BIO01 2.108 0.035063 * 2.00 

BIO02 3.055 0.002254 ** 1.93 

BIO04 -2.307 0.021035 * 0.99 

BIO09 -4.241 2.22E-05 *** 0.57 

BIO10 -2.487 0.012869 * 0.46 

BIO15 6.713 1.91E-11 *** 1.91 

BIO16 -2.751 0.005948 ** 0.96 

BIO17 3.509 0.00045 *** 1.06 

BIO18 -2.79 0.005273 ** 0.97 

BIO19 2.997 0.002726 ** 1.04 

Table 7: CSTL Covariate Significance and OR 

Significance Codes:  '***' 0.001, '**' 0.01, '*' 0.05, ‘.' 0.1 

Average Calculated Pseudo-R2 = 0.640 
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The CSTL region had the largest amount of significant factors of any of the sub-

regional study areas. Overall, land cover exerted the most influence on the presence of 

wildfire in CSTL sub-region and bioclimatic variables exerted the most influence on the 

absence of wildfire. The CSTL sub-region occupies the largest spatial extent of any of 

the sub-regions and similarly shares many traits with the SE regional study area. 

Successional land cover exhibited a similar distribution to that observed in the SE 

regional analysis. One of the strongest correlations in the CSTL exists with wetland 

cover. Wetland cover is heavily present in the 80th percentile wildfire clusters and 

coincides strongly with protected lands in the region (see Figure 17). Wetlands present 

at or near the Okefenokee Swamp, the Apalachicola National Forest, and the feed areas 

to the Everglades/Big Cypress (Okeechobee region) exhibited the strongest 

concentrations of wildfire within the entire SE and likewise correspond strongly to 

wetlands and protected lands in the CSTL sub-region. 



50 

Adding to the fire-susceptibility of this area are two additional bioclimatic factors 

flagged as significantly influential on wildfire: bio1 and bio15. Both bio1 (average 

annual temperature) and bio15 (precipitation seasonality) follow a standard latitudinal 

gradient, increasing in values as they move southward (see figure 18). The highest 

Figure 17: Protected Lands and Wetlands of CSTL Sub-region 
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values of these factors, thus, occurs in the southernmost part of the sub-region. Likewise, 

wildfire is most strongly concentrated in the southern region, more particularly in the 

panhandle and greater peninsula of Florida. 

 Figure 18: Avg. Temp. and Precip. Seasonality of CSTL Sub-region 
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Bioclimatic variables were also found to be correlated to the absence of 

wildfire within the study area. The calculated average temperature of the driest quarter 

(bio9) and average temperature of the warmest quarter (bio10) offered the strongest 

correlation with the absence of wildfire (see Figure 19). High values of bio09 fell 

consistently out of calculated wildfire concentration. While a strong indicator of drought 

conditions, bio9 was typically lower in areas with wetlands: an area associated with the 

presence of wildfire. With little variation amongst the entire sub-region, bio10 was likely 

flagged due to larger ratio of pseudo-absence to presence points in the area. The lack of 

value in this predictor is further substantiated by the low significance of this factor in the 

model. 
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Figure 19: Avg. temp of driest (bio09) and wettest (bio10) quarters, 

CSTL Sub-region 
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5.2.6. Everglades Physiographic Region (EVR) 

The optimized model for this region was created through the ‘backward’ 

stepwise regression but only utilized 10 of the 36 covariate datasets (See table 8). Of 

these, only 8 datasets were deemed statistically significant at a p-value <= 0.05 cutoff. 

Whereas the CSTL model contained the highest OR values of any of the regions tested, 

the EVR model demonstrated the lowest OR values of any of the study regions. 

Predicted mean fire interval (naito), cultivated land cover, and mean annual temperature 

(bio1) had the strongest relationships with the absence of wildfire in this region each 

with an OR lower than .01. Conversely, elevation (dem), and precipitation of the wettest 

quarter (bio16) had the strongest relationship with the presence of wildfire. Temperature 

seasonality (bio4) was also correlated to the presence of wildfire, to a lesser degree. 

COVARIATE Z-VALUE PR(>|Z|) SIGNIFICANCE OR 

NAITO -3.159 0.001581 ** 0.003 

CULTIV -2.189 0.028599 * 0.00002 

WIND -1.616 0.106102 0.085 

DEM 1.962 0.049764 * 5.56 

BIO01 -2.98 0.002879 ** 0.0009 

BIO04 3.357 0.000787 *** 1.41 

BIO06 1.463 0.143468 0.001 

BIO10 -2.935 0.003332 ** 1.03 

BIO12 2.238 0.025229 * 1.39 

BIO16 4.146 3.38E-05 *** 7.81 

Table 8: EVR Covariate Significance and OR 

Significance Codes:  '***' 0.001, '**' 0.01, '*' 0.05, ‘.' 0.1 

Average Calculated Pseudo-R2 = 0.860 
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The EVR region had both the smallest spatial extent and the least number of 

presence and pseudo-absence points of any region a model could be made for. As a 

result, the EVR exhibited the fewest significant factors of any of the sub-regions with 

results. Despite this, it had the highest pseudo-R2 of any model. Elevation, as represented 

by a digital elevation model (DEM) was denoted as one of the most significantly 

correlated factors with the presence of wildfire in the EVR sub-region. Elevation 

followed a roughly latitudinal gradient, decreasing as it moved south. Wildfire presence 

was almost exclusively found in areas of higher elevation whereas generated pseudo-

absence was found across all gradients of elevation in the region (see Figure 20).  

Other than elevation, precipitation of the wettest quarter (bio16) and temperature 

seasonality (bio4) were found to be significantly correlated with the presence of wildfire 

(see Figure 21). These values were stronger in the internal section of the study area, 

Figure 20: Elevation and Wildfire in the EVR sub-region 



56 

particularly in the Everglades and the Big Cypress National preserver. This relationship 

closely overlaps with the distribution of both wetlands and protected lands in the sub-

region.  

Cultivated lands was had the strongest relationship with the absence of wildfire 

on the landscapes, largely occupying the northern edge of the study region but occurring 

exclusively in areas without the presence of wildfire. To a lesser degree, mean annual 

temperature (bio1) and mean fire interval (naito) were significant correlated to the 

absence of wildfire, but exhibited little variation across the region. Though wildfire was 

found almost exclusively within the lowest value groups of these variables, there is not 

enough variability across the sub-region to conclude that these variables exert any real 

influence on either the presence or the absence of wildfire.  
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5.3. Regional/Sub-regional Trends 

Analysis of sub-regional variations provides insight on how relevant covariates 

change amongst different physiographic regions, but in order to generate a list of 

predictive criteria that begins to encompass the greater regional area, trends among sub-

Figure 21: Precipitation of the Wettest Quarter (bio16) and 

Temperature Seasonality (bio4) of the EVR Sub-region 
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regions must be analyzed. Trends were measured by the number of sub-regions the 

variable was significant (out of the three results were gained from), if the trend of the 

OR was toward presence, absence or split amongst sub-regions and if the sub-regional 

analysis was consistent with the regional analysis of the SE (see table 9). 

VARIABLE SUB-

REGIONS 

SIGNIFICANT 

OR 

TREND 

CONSISTENT 

WITH SE 

ANALYSIS 

DEM 3 SPLIT 

BIO10 3 ABSENCE NO 

ROADS 2 ABSENCE YES 

CULTIV 2 SPLIT 

PTCD 2 PRESENCE YES 

BIO1 2 SPLIT 

BIO4 2 SPLIT 

BIO9 2 SPLIT 

BIO12 2 PRSENCE NO 

BIO16 2 SPLIT 

BIO19 2 SPLIT 

Table 9: Regional/Sub-Regional Trends 
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6. DISCUSSION

The difference in scales across the study regions for this research is essential to 

building an understanding of the relationship between contributing wildfire factors and 

scale. Equally important, however, was conducting analyses across sub-regions of 

similar scales. Both the similarities and differences in predictive factors across these 

regions provide insight on the role of physiography on wildfire. The base covariates 

tested in this study will help to predict and understand the distribution of wildfire in the 

southeastern U.S., but the insight gained from these analyses will better scientific 

understanding of wildfire across the world. This study revealed significant factors 

related to the concentration of wildfire, building a foundation for other similar, regional 

analyses. 

6.1. Southeastern Regional Study Area 

Barren land was found to be one of the strongest predictors of wildfire across the 

SE region, but the relationship with wildfire may not be so direct. Literature such as 

Kalabokidis et al. 2002 dismiss the use of barren land as a relevant covariate in 

predicting the prevalence of wildfire as it does not support the necessary fuel load to 

sustain large fires. Furthermore, barren land does not have the fuel load needed to 

support the type of wildfires analyzed in this study (>500 acres burned). Therefore, 

wildfire is not the result of barren land on the landscape, but the same cannot be said for 

the reverse. Wildfire instigates land cover change and, for some portion of time, barren 

land is a part of the successional cycle. It is subtle, though relevant that the presence of 
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barren land is not explicitly a predictor of wildfire, but the continued and concentrated 

presence of barren land is a strong implicit indicator of land cover change, of which 

wildfire is a common perpetrator. As land cover for this study was derived from satellite 

imagery, this research did not account for temporal trends in barren land. These areas 

could be strongly related to successional cycles, or in many cases permanent areas of 

barren land, such as mountain tops. 

Protected lands offer large, unfragmented sections of natural vegetation that is 

highly susceptible to the ignition and spread of wildfire. Human-interaction with 

protected land is one of the most prevalent causes of wildfire (Balch et al. 2017) and 

protected lands are some of the most vulnerable areas. The relationship between wildfire 

and protected lands is, therefore, heavily explained by their very nature. Furthermore, 

protected lands are not only ripe for the spread of wildlife, but wildfire management 

policies may also play a significant role in the presence of wildfire in these areas. 

Wildfire practices such as fire breaks and ‘let it burn’ policies often control the spread of 

wildfire without direct suppression. These practices make it easier for wildfires to reach 

the size required for consideration in this study. Despite this, there are areas with large 

amounts of protected lands that do not fall within the bounds of heavy fire concentration. 

This variation may be further explained by fire suppression tactics. Whereas protected 

lands in remote areas may be allowed to burn, proximity to infrastructure human 

development may serve to reduce the amount of wildfire, regardless if nearby lands are 

protected or not. Lafon et al. 2017 details how in the Appalachian region, suppression 

tactics have worked to reduce ignitions and keep wildfires small, but these same tactics 
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may be less effective in protected land in areas with less resources or less desire to 

control wildfire. Important considerations in examining the ability to adequately 

suppress wildfire are derived from both the accessibility and vulnerability of the areas. 

Wildfires that spread in the northeast APP sub-region are less accessible and the 

surrounding areas less vulnerable to the loss of human development. Road density may, 

therefore, be a useful tool in the evaluation of protected lands as a fire-prediction metric. 

Prior research exploring the cluster of wildfires in the APP region corroborates the 

relationship between roads and the absence of wildfire (Maingi & Henry 2007). Despite 

this utility, the absence of roads in rural, but not fire-prone areas inhibits the use of road 

density as a powerful predictor for wildfire in the SE region. As a powerful predictor of 

wildfire presence in the SE region, protected land is still limited by how human-

interaction responds to it. 

Furthermore, land cover related to stages of succession, such as grassland cover 

and shrub land cover proved to be relevant covariates. Each of these represent further 

stages in successional cycles prevalent in this region and of which fire is a classic 

disturbance (Clements 1916). Each of these variables were flagged as significant 

predictor of wildfire which aligns well with the prevalence of wildfire as a disturbance in 

these same ecological systems. Whether wildfire clears the way for the expansion of 

grassland and later shrubland, or in the development of pyrophilic evergreens, wildfire is 

both essential and common in natural S.E. U.S. ecosystems.  

Variables related to the absence of wildfire offer differing interpretations. 

Cultivated land cover was a variable strongly correlated to the absence of wildfire. This 



62 

closely corroborates the results of other studies of a similar nature (Nunes et al. 2005, 

Moreira et al. 2009). Fire suppression and the high moisture content of cultivated areas 

remain important factors in controlling the spread of wildfire. Though these areas 

generally contain an unfragmented fuel load, their value makes them strong targets for 

fire suppression. The absence of wildfire in cultivated land cover is most likely the result 

of human-intervention. 

Another indicator of absence, high winds, may be expected to be an indicator of 

large fires. High winds can increase the size and spread rate of wildfires (Beer 1991), but 

this is not the correlation observed in the SE region. This disparity is likely more due to 

the geography of the locations with high wind as opposed to any inherent relationship 

between wind and wildfire absence. Coastal areas have higher precipitation rates and 

populations than areas inland. Both of these factors have a negative influence on the 

occurrence of wildfire. Furthermore, the contributing dataset only separated wind speed 

into 6 classes, limiting the specific wind trends that can be observed.  

Temperature exerts influence on the distribution of wildfire by controlling 

drought conditions and vegetation growth (as well as successional regrowth). As a result, 

the converse of the relationship observed between mean temperature of the warmest 

month (bio5) and wildfire absence might be expected. Like the defined relationship 

between wildfire absence and wind, proximity to the coast may be an important 

controlling factor. Without coastal winds cooling the peninsula of Florida and the CSTL 

region, max. temp. in the warmest month values would likely follow a more linear 



63 

latitudinal gradient. Under this distribution, there would be little to no relationship 

between wildfire and the max. temp. in the warmest month in this region.  

In a much broader sense, the SE regional model offers interesting results as to 

which covariate types are the most relevant. In the SE region, land cover was typically 

flagged as variable of increased importance in the prediction of both the presence and 

absence of wildfire. Bioclimatic variables, on the other hand, were largely insignificant 

in this same regional prediction. Bioclimatic variables typically associated with wildfire, 

such as high temperatures or low precipitation, have shown little influence on the 

regional presence of wildfire. The highest clusters of wildfire in the SE region are found 

in the peninsula of Florida and in the APP region. The latitudinal differences in these 

locations accounts for vastly different bioclimatic conditions and proximity to the coast 

furthers the disparity. At this scale, bioclimatic conditions cannot fully account for the 

presence and absence of fire as the variability between fires in the mountains and fires in 

the everglades is too great. The strong correlation of wildfire to land cover is a strong 

indication that, at least in this region, the variability amongst bioclimatic variables is not 

strong enough to overcome the superior influence of other covariates. These results, 

therefore, substantiate the idea that land cover may be a more important predictor for the 

presence of wildfire than bioclimatic or topographic variables at large scales. As 

vulnerable land cover interacts with ignition points, the presence of wildfire will 

continue to be observed.  

The SE model does not simply help to explain the significant influencers at this 

regional scale, but also works to help explain discrepancies at sub-regional scales. The 
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EBF and EPD regions did not generate useful results from the attempted logistic 

regression models, but these areas were nonetheless accounted for in the SE regional 

model. The EBF and EPD regions had very few wildfires and none of the fire-exclusion 

zones used to limit the creation of pseudo-absence. As a result, the pseudo-absence 

strongly reflects the lack of wildfire in these regions. While this limits the insight that 

can be gained from the presence of wildfire in these regions, the results most influential 

on the absence of wildfire in the SE region are most reflected in the EBF and EPD 

regions. 

6.2.  Sub-regional Analyses 

In regions where results could be calculated, a dichotomy of relevant results must 

be interpreted. The standard interpretation of sub-regional analyses focuses on the 

relevant covariates in each individual sub-region’s presence or absence of wildfire. 

Equally important is which variables are commonly significant in either the presence or 

absence of wildfire across numerous sub-regions. The trends observed across study 

regions and scales illustrate the strength or weakness of each variable. This two-pronged 

interpretation of the results will not only provide insight on which variables factor most 

heavily into specific physiographic regions, like the EVR, but also what commonality 

exists between vastly different regions such as the EVR and APP. 

6.2.1. APP Physiographic Sub-region 

The APP region offered significant results as to which covariates were the most 

influential in the most mountainous sub-region of this research. It, too, had the largest 

number of insignificant variables included in a model. This result illustrated one of the 
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potential issues with the use of stepwise regression. Stepwise regression utilizes the 

variables necessary to generate a best fit model, not necessarily with significant points. 

This sub-region serves as a strong example of the line that must be walked between 

model fit and variable significance. The results from this sub-region were based largely 

on the substantial concentration of points found in the Appalachian Plateau, but were 

likewise influenced by the presence of wildfire observed across the rest of the region, 

generally in protected lands. The strong relationship found between protected lands and 

wildfire indicate that protected lands are the most susceptible to wildfire in the APP sub-

region. A discrepancy exists in the large amount of wildfires in the Appalachian Plateau 

that are not in protected lands. This area correlates strongly to absence of roads which 

could stand to be a potential explanation for this concentrations (Maingi & Henry 2007). 

As this study only analyzed wildfires above 500 acres in size, the link between rural land 

access and fire suppression in national and state parks could play a major role in 

preventing the clustering of wildfire distribution in parts of the sub-region with large 

expanses of protected land. Suppression in this region is nothing new (Lafon et al. 2017) 

and without suppression and control tactics used in many of the protected lands of this 

sub-region, the concentrated region of wildfire presence may expanded to include a large 

amount of protected land. Though it is difficult to conclude any one explanation for the 

presence of wildfire in this region, the link between fire-suppression, rural-land access, 

and land designation appears to be a significant influencer on the distribution of wildfire 

in this sub-region. 
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Despite the relationship between wildfire and road density, the significant 

concentration of wildfire in the northwestern section of the APP sub-region remains 

largely unexplained. This area, the Appalachian/Kentucky coalfields, contains the 

strongest concentration of wildfires in the region, without matching many of the 

significant characteristics of the APP, such as protected lands. Speculation has been 

made that this relationship may exist due to human land-use in the region (Maingi & 

Henry 2007), but could be related to the geology and vegetation of the region as well. 

Average temperature of the coldest quarter is another variable that was correlated 

with the presence of wildfire. This variable, a strong indicator of warm winter seasons, 

coincided with average temperature of the driest quarter, a strong indicator of the 

drought conditions of an area. As these variables increase, the odds of wildfire presence 

increase, thereby demonstrating a correlation between the two. The distribution of 

wildfire relative to the values of these factors across the study area indicate that while 

high values of these two factors is an indicator of the presence of wildfire, the converse 

is equally true. Areas experiencing low values of these factors exhibited little to no 

wildfire. These factors were highest outside of the mountainous areas of the sub-region 

supporting the idea that any role that topographic factors have in the presence and spread 

of wildfire may be offset by the changes in the bioclimate associated with topographic 

differences. 

Warm winters exert a higher influence on the presence of wildfire than warm 

summers or cold winters (as exhibited in the significance of bio6). The role of mild 
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bioclimatic conditions on the distribution of wildfire is further substantiated by the 

relationship between isothermality (bio3) and the absence of wildfire. Isothermality is a 

ratio of monthly temperature variation to annual temperature variation, making it an 

indication of the strength of seasonality. High isothermality is an indication of mild 

seasons, as monthly temperature variation is comparable to annual temperature variation. 

The APP model correlates high isothermality to the absence of wildfire providing further 

evidence that the absence of wildfire is correlated to mild seasonal variation. The final 

variable flagged in the absence of wildfire was bio13, a measure of the precipitation in 

the wettest month. Unsurprisingly, wetter areas were more indicative of the absence of 

wildfire. 

 Overall, this study of the APP sub-region provides insight on the role of 

bioclimatic variables on wildfire distribution. Potential drought conditions exerted a 

heavy influence on wildfire occurrence, as substantiated by the positive correlation 

between presence and avg. temp. of the driest quarter (bio9) and absence with precip of 

the wettest month (bio13). Furthermore, uncharacteristically warm winters were highly 

influential on wildfire presence, while warm summers, cold winters and high 

isothermality correlated strongly with absence. 

6.2.2. CSTL Physiographic Sub-region 

Given the large spatial extent of this sub-region, barren, evergreen and grassland 

land cover are likely significantly correlated to the presence of wildfire for similar 

reasons as their relevance at the SE regional scale. These different land cover types paint 

a picture as to the complex and often essential role of wildfire in successional cycles and 
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unsurprisingly, this role is reflected on the correlation between them and the presence of 

wildfire. The interdependent role of wetlands, wind, and protected land, however, reflect 

a different phenomenon. Wind, as previously identified, is strongest along the coasts and 

peninsula of Florida and weakest on the internal regions of the SE. The distribution of 

strong winds across the CSTL region correlates well to the presence of wildfire. 

Hotspots of wildfire in the CSTL region were found in the panhandle and peninsula of 

Florida where wind was greatest. Strong winds can aid the spread of fire, but this 

correlation was likely aided by the presence of overlapped wetland and protected lands. 

 Previous studies have observed that increases in wildfire corresponded to the draining of 

traditionally wet soils (Bacchus 2000, Harden et al. 2003). The drying of large fuel loads 

leaves wetlands at high risk of ignition. Florida and southern Georgia are home to the 

greatest concentration of wetlands in the SE region. Under the wildfire observation 

period of this study (1984 -2015), the aquifers that underlie the wetlands in the CSTL 

region experiences the heaviest toll of water-use (Marella 2014). Adding to the fire 

susceptibility of these lands, most major wetlands in the region are under either federal 

or state protection. As previously noted, protected lands often face challenges to fire-

suppression agencies. The combination of high winds, protected status, and wetlands 

facing both anthropogenic and natural drought conditions help to define the southern 

CSTL sub-region as a wildfire hotspot. Though not often thought of as being ideal land 

cover for wildfire, the strong correlation and possible interpretation of this relationship 

indicate that wetlands, particularly those facing draining, represent a potentially 

important predictor of wildfire. 
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Further working to exacerbate this relationship, this model noted a correlation 

between precipitation seasonality and the presence of wildfire. High precipitation 

seasonality is an indication of high disparities between dry and wet seasons. While 

heavy precipitation in wet seasons helps to build the fuel load, strong dry seasons 

contribute to the draining of these lands and the building of potential wildfire fuel loads 

(Harden et al. 2003). Longer dry seasons, combined with high average annual 

temperatures work to further drought conditions that aid in the presence of wildfire. The 

correlation exhibited between these factors and wildlife help to define how the 

distribution of wildfire became so clustered in the southern wetlands of the CSTL sub-

region.  

Measures of absence for wildfire in the CSTL sub-region were significantly less 

insightful than measures of absence. Average temperature of the driest quarter (bio9) 

was one variable that correlated to the absence of wildfire, where the reverse might be 

expected. Drought, as previously identified, plays an integral role in the prediction of the 

presence of wildfire, but this measure of high average temperatures in the dry seasons 

offers contradictory results. As was the case in the SE regional analysis, this distribution 

could be more the result of coastal/internal land differences. The interdependence of 

many of bioclimatic variables with physical climatic processes such as wind may be the 

reason for contradictory results. Likewise, mean temperature of warmest quarter (bio10) 

offers further contradictory results. This discrepancy has potentially a more obvious 

explanation. There exists little variation within this dataset for the CSTL sub-region, so 
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even subtle differences between the values of presence and absence points are 

magnified. 

Similar to the analysis of previous models, the CSTL region also indicates the 

weight that land cover exerts on the presence of wildfire is superior to that of bioclimatic 

or topographic variables. While human-influence was not directly correlated to the either 

the presence or absence of wildfire, human land-use and human-impact on land cover 

may play a significant role in the relationships observed by this model. 

6.2.3. EVR Physiographic Sub-region 

The strongest predictor of wildfire in this region was precipitation of the wettest 

quarter (bio16). Strong precipitation does not inherently have a relationship with the 

presence of wildfire, but is essential in maintaining the primary productivity of wetlands. 

Precipitation in the wettest quarter (bio16) alone may seem counterintuitive to the 

presence of wildfire on the landscape, but heavy precipitation plays greatly into the 

creation and sustainability of the wetlands that make up much of the concentrated 

wildfire area in this sub-region. The picture further clears when temperature seasonality 

is considered. High temperature seasonality is an indication of high variability in 

temperature, further indicating these wetlands experience high summer temperatures that 

can contributed to the draining and ignition of this area.  

This relationship is further explained with the addition of another significant 

variable: elevation. As previously discussed, wetlands that experience drainage or 

drought are at the highest risk of wildfire presence. The lowest elevation areas of the 

everglades are coincidentally the most saturated areas, encompassing the Everglades and 
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the Big Cypress Swamp (Davis et al. 1994). These major wetlands also define the 

east/west border of wildfire presence. Presence of wildfire was found universally across 

the northern bounds of the sub-region, excluding the eastern coast. Wetlands, and more 

appropriately, wetland soils are consistent across the calculated wildfire concentration, 

with sandy or limestone-based soils more prevalent on the eastern coast (Davis et al. 

1994, Lockwood et al. 2003). Both wetlands and protected lands are likely still strong 

indicators of wildfire in the region, but these factors encompass nearly the entire sub-

region. As a result, they account for both the presence and pseudo-absence of wildfire in 

the region, making them statistically insignificant. A finer-scale analysis of the soils in 

this sub-region, particularly discriminating wetland soils may offer strong predictors to 

the presence or absence of wildfire in the EVR and similar regions. Despite this, the 

relationship between strong precipitation and elevation help to solidify that wetlands that 

experience draining, as would be more prevalent in higher elevation areas of wetlands, 

are at increased risk of wildfire.   

Like other sub-regions, cultivated land was one of the strongest predictors of the 

absence of wildfire. The EVR region is home to large expanses of agriculture, producing 

sugarcane, vegetables, sod, and rice (Davis et al. 1994). Farmers in these areas have a 

vested interest in fire suppression and likely contribute to the strong absence of large 

wildfire in cultivated areas of the EVR sub-region. Other strongly correlated variables to 

absence of wildfire in the sub-region offered little interpretability.  

All in all, the fire regime of the EVR region is largely defined by the prevalence 

of the protected wetlands and the factors that contribute to its creation and stability. The 
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interrelationship between wetlands, elevation and the climatic conditions that support 

them define the presence of wildfire. Large, unfragmented swaths of wetlands under 

state or federal protection offer the ideal wildfire ‘habitat’ under the right conditions. 

Though this study area was likely too small to evaluate factors with little variance, a 

smaller-scale analysis of both wildlife and contributing variables for this small sub-

region would benefit the claims asserted by this research. 

6.3. Regional/Sub-regional Trends 

The APP, CSTL and EVR sub-regions offer vastly different ecologies, climates, 

and topography making fitting one set of predictive criteria to all three regions extremely 

difficult. The differences between different sub-regions and between the sub-regions and 

the SE regional study area highlight the importance of scale and study area consideration 

in research utilizing predictive modeling. Despite these differences, existing 

commonalities are a strong indication of robust predictive variables. Of the 11 variables 

consistent among sub-regions, only 4 were found to have a consistent interpretation. The 

extremely weak correlation between annual precipitation (bio12) and the presence of 

wildfire (average OR = 1.04) offers little interpretation. Protected lands, however, reigns 

as the most prominent covariate related to the presence of wildfire. Its strong OR 

(average = 8.02) and consistency with SE results indicated that this correlation is 

universally strongly correlated with wildfire. This relationship is enhanced by the 

interpretation of the EVR region; though not statistically significant, protected lands 

encompassed nearly all wildfire presence in the sub-region. Protected lands are not 

physiography-dependent. As a human construct, their presence or absence is the result of 
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land use and ownership making protected lands universal across the entire study region. 

While protected land’s relationship with wildfire is heavily influenced by human-activity 

(both through ignitions and suppressions), it exists as the strongest predictor of wildfire 

in this study area.  

Just as important as universal predictors of wildfire presence are universal 

predictors of wildfire absence on the landscape. Average temperature of the warmest 

quarter (bio10) was a predictor of wildfire across all 3 sub-regions that generated results. 

Despite this, the variable was not found significant among the SE regional analysis. Avg. 

temp of the warmest quarter (bio10) offered little variation (average range = 8.67) 

amongst values in the study region making it expansive at the sub-regional scale. At the 

regional-scale and full range (range = 29) of its values avg. temp of the warmest quarter 

(bio10) loses significance. Though not found to be significant in the EVR region, roads 

were found to be consistently correlated with the absence of wildfire across the APP, 

CSTL and SE study areas. The roads variable closely mirrors the protected lands 

variable. Both were not found significant in the EVR region, but could be significant if 

not for the large proportion of the land occupied by protected, uninhabited land. These 

variables are also both human constructs that exert influence on the land use of their 

locations. Just as federal or state protection creates conditions possible for lands to host 

large wildfires, roads offer the development and infrastructure that make lands more 

susceptible to fire suppression. While topographic, bioclimatic, and land cover variables 

were each significant amongst different study areas, measures of human-influence on the 
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landscape proved to be the most universal predictors of both wildfire presence and 

absence on the landscape. 
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7. CONCLUSIONS

An inherent, intermingled relationship exists between humans and the natural 

environment: a testament the humanity’s struggle to control nature. Humanity has, and 

always will grapple with natural disturbance and wildfire is no exception. There is, 

therefore, no ‘one size fits all’ for modeling wildfire distribution in the Southeastern 

United States, or any region for that matter. Despite this, commonalities can be found 

and trends can be recognized. This research sought to help define the variables most 

influential on the distribution of wildfire in the Southeastern United States. By 

understanding this, it will be possible to expand scientific understanding of both current 

wildfire regimes and the ever-changing fire regimes across the globe. Pyrogeography’s 

relevance lies not in just its impact on today’s ecosystems but on ecosystems subject to 

climate change, land use change, and continued human development.  

This study has found that regional and sub-regional influencers of wildfire vary 

both within and amongst spatial scales. Bioclimatic and land cover variables hold 

significant influence on the prevalence of both the presence and absence of wildfire 

across each physiographic region analyzed. Human-influence, however, reigns as the 

most consistent effect on both the presence and absence of wildfire in the Southeastern 

United States. Predicting the presence or absence of wildfire depends not just on the 

bioclimatic or land use characteristics of a study area but how these lands are impacted 

by human activity. Just as human-impact will continue to affect the climate, topography 

and land cover across the world, knowingly or not, it will continue to change the world’s 

fire regimes. 
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7.1. Further Directions 

There exists opportunity for the expansion of both the breadth and impact of this 

study given greater time and resources. As noted in the interpretation of sub-regions 

analyzed in this study, covariates could be scaled more appropriately to the size of the 

study regions. While the resolution analyzed was more than appropriate for the SE 

regional study area or large sub-regions like the APP or CSTL, this resolution was less 

appropriate for smaller regions like the EVR or EBF. A more proportional resolution to 

spatial extent would allow research to identify smaller-scale variation across the 

landscape. Similarly, a decrease in the size of wildfires analyzed for this study would 

increase available data and would help to strengthen results. Likewise, this study used 

the standard distance derived from the SE study region to define pseudo-absence points 

for the whole region. By defining this metric on a regional basis, the estimation of 

absence points could be more fine-tuned, and better represent areas with absence in 

small region. Future studies incorporating these scaled changes would better reflect the 

nature and trends observable in smaller regions. The results of this study could also be 

strengthened by testing models on similar eco-regions in different study areas. More 

replications of these models and relevant predictors would serve to enhance these results 

by supporting the claims of this study and testing its hypotheses on new areas. Future 

studies incorporating these changes would enhance the strength of their findings. 

This research provides a strong foundation for future research exploring the 

relationship between wildfire and land-change. The coupling of this model with climate 

change and land-use change models would expand the results of this study by accounting 
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for the temporal aspect. While primary effects of climate change are increasingly studied 

in scientific literature, the secondary effects to both disturbance regimes and the 

ecosystems they inhabit remains largely unrecognized. Expansions on this work would 

continue to fill these gaps and explore the impacts of climate change on global 

pyrogeography. 
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