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ABSTRACT

Among geolocation related information, in particular, the geo-sensitive word is one of the most

critical components. A geo-sensitive word can be a word or phrase for a landmark in the city or

county name, abbreviation sports team names in the city, common words or phrases with special

meanings in local regions. In this thesis, we propose and evaluate an effective and efficient frame-

work for discovering geo-sensitive words hidden in tweets. This framework overcomes the lack

of dataset and embedding alignment problem. There are three key contributions in the proposed

framework: (i) a publicly-available dataset containing geo-tagged English tweets from 27 cities in

the United States; (ii) a concrete approach to align separately trained word embeddings with Or-

thogonal Procrustes; (iii) and a well-rounded evaluation framework for geo-sensitive words. The

system discovers over 3000 geo-sensitive words in three cities and successfully classified these

words into corresponding cities with a 95.32% high accuracy. We also find two key factors that

post an impact on the classification performance: (i) feature vector dimension; and (ii) proper

learning algorithm.
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1. INTRODUCTION

Geolocation is the identification or estimation of the real-world geographic location of an ob-

ject. Software applications usually collect it from a mobile phone or internet-connect computer.

Geolocation is essential across localized services and location-based social networks. A few suc-

cessful examples of leveraging geolocation information include Facebook’s regional advertisement

and local events discovery, Google Maps’ navigation and Explore Nearby, Uber and Lyft’s core

business: ridesharing. The success of leveraging geolocation creates new opportunities for new

exciting purposes, such as the local marketplace, finding local friends, restaurants and entertain-

ment facilities, geolocation powered augmented reality games and so on.

Among geolocation related information, in particular, the geo-sensitive word is one of the most

critical components. A geo-sensitive word is a word or a phrase that contains local information

in it, such a word or phrase for a landmark in the city or county name, abbreviation sports team

names in the city, common words or phrases with special meanings in local regions. With these

derived words, we can find and categorize points of interest, predict the location of user-generated

text data, thus improving the accuracy of local search and personalized recommendation results.

However, while there have been some previous efforts to identify geo-sensitive words [1, 2, 3,

4], there remain a number of critical challenges:

• First, there are no existing datasets for the discovery of geo-sensitive words, meaning that

we have to build a dataset that contains abundant sentences and locations for our training

algorithm and analysis.

• Second, even if we could identify appropriate representations of different words in different

places, it is unclear how to align these representations for direct comparisons. For example,

it is unable to perform direct cosine similarity on feature vectors from different cities since

they are not in the same coordinate system.

• Finally, there are challenges in evaluating the quality of methods for finding geo-sensitive

1



words. How can we be sure that our discovered words are high quality and can be applied to

find geolocation related information in real world applications.

Towards overcoming these challenges, this thesis proposes an effective and efficient framework

for discovering geo-sensitive information hidden in tweets. Our approach builds on the well-

known word2vec approach, an efficient and effective neural network model for learning vector

representations of words and phrases from very large data sets [7, 5]. Specifically, this thesis

makes the following contributions:

• We create a publicly-available dataset containing geo-tagged English tweets from 27 cities

in the United States. This dataset contains 4.7 millions tweets. We also detect phrases in

these tweets.

• We show how to learn geo-specific word representations using word2vec, and how to align

these different representations so that word feature vectors from separately trained Word

embeddings can perform direct comparisons and classification tasks.

• We propose an evaluation framework for geo-sensitive words, wherein we build 4 different

classifiers to perform a simple location prediction for discovered geo-sensitive words. By

inspecting the performance of these classifiers, we confirm that our framework is able to

identify geo-sensitive words and capture local information in their corresponding feature

vectors.

The rest of this thesis is organized as follows. First, we introduce the related work in Chapter 2.

Then we describe how to create our dataset based on a billion tweets in Chapter 3. In Chapter 4,

we walk through our geo-sensitive word discovery approach. After identifying these words, we

exhibit the proposed evaluation framework in Chapter 5. Finally, conclusion and future work are

discussed in Chapter 6.
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2. RELATED WORK

Study on the geographical estimation of web users has attracted many scholars in the last few

decades. These researches cover a wide range of topics including finding local experts on Twitter

[5], geo-locating a Facebook user based on located users [6], geo-locating Twitter users with their

tweets [1], and so on. The recent success in Word2Vec related researches has inspired us to adopt

this approach into geographical estimation studies. In this chapter, we highlight related work along

three dimensions: wrong embedding, topically constrained word embedding, and content-based

approach for geo-locating Twitter users.

2.1 word2vec

Word embedding, a useful and versatile tool for NLP (nature language processing) research, is

a learned representation for text corpus where words with close meaning have similar representa-

tions [7]. Compared to NLP system, one of the biggest advantages of word embedding is to find

relationships that may exist between the individual symbols instead of treating them as discrete

atomic symbols. This enables word embedding to capture the context of a word in a document, the

semantic and syntactic similarity, the relationships with other words. A few novel word embed-

dings include admirable vector space model [8], GloVe (Global Vectors for Word Representation)

[9], Word2Vec [10] and etc. A handful of tremendous applications are built on top of the emer-

gence and perfection of these innovative word embeddings, for instance, long short-term memory

(LSTM) networks for language modeling [11], machine translation [12], text summarization [13]

and named entity recognition [14]. Word2Vec is an efficient neural network model for learning

state-of-the-art vector representation of words and phrases from very large data sets [15, 10]. It

has gained huge attention in recent years and has been applied to a variety of natural language pro-

cessing and machine learning related tasks such as sentiment analysis in Twitter [16] and image

classification [17]. Word2vec is a three-layer neural network which contains a input layer, a hid-

den layer and an output layer. Its input is usually all words’ one-hot vectors in a large text corpus.
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Its output is the probability distribution of target words. It trains words against other words that

neighbor them in the input corpus with CBOW (continuous bag of words) or skip-gram.

Figure 2.1: Illustration of the Skip-gram and CBOW model

The skip-gram model in Figure 2.1 (A) is for prediction of contextual words based on the

center word. For a document of M words, given a word wi we want to maximize the following

objective function:
1

M

D∑
d=1

∑
−b≤k≤b,k 6=0

log p(wd+k|wd) (2.1)

where b is the hyperparameter for window size, d is the position of the word, and p(wd+k|wd) is

a probability derived by softmax function. However, it is quite inefficient to compute the softmax

function since calculation of the gradient of softmax is expensive. Hierarchical softmax objective

function or negative sampling is used to deal with this issue. To maximize the conditional log-

likelihood of this model, the Hierarchical softmax adopts a Huffman tree to minimize calculation

needed. Negative sampling, on the other hand, minimizes computations during the training process

through sampling a fix number of negative instances for the target word rather than sampling the

entire vocabulary in the model.

In contrast to skip-gram model, continuous Bag of Words model in Figure 2.1 (B) does the

4



opposite job: predicting the target word given its nearby words w−b, w−b+1, ..., wb−1, wb. The

prediction result is not affected by the order of context words. Therefore, Word2Vec model is more

meaningful for discovering words with similar semantic meaning than words’ syntactic properties.

In this work, we choose to use CBOW model.

A well-trained word embedding model tends to embed words with similar meanings closer in

the vector space. For example, "cat" and "dog" will be close in the vector space of trained model

since they are all pets [10]. With the advanced word embeddings obtained from Word2Vec, we

can not only find relationships that may exist between the individual symbols but also perform

basic vector algebra between two word vectors. For example, vector("King") - vector("Man") +

vector("Woman") resulting in vector("Queen").

2.2 Topically Constrained Word Embedding

Recent researches illustrate that word embeddings derived from Word2Vec [12] can effectively

perform natural language processing tasks such as word similarity comparison. The general ap-

proach for these tasks is to train a global word embedding where each word has their own fixed

representation in a word feature vector. However, the usage of words and phrases can change

rapidly based on different topics. For example, the word "pointer" means a breed of hunting dog in

animal-related topics while it means a variable to an address in a memory location where a value

related to it is stored. Even with the local windows in Word2Vec, we still have a high possibility

to snap only representations of the dominant topics in the text corpora.

In Diaz’s recent work related to query expansion with Word2Vec [18], he proposed that many

tasks can benefit from learning a topically constrained word embedding. He started by illustrating

the word-context pair distribution in topic-constrained text corpora. In his text corpus, he found

a substantial change for distributions of words in different subtopics. Then in his experiment, the

locally trained word embedding outperforms the globally trained embedding in his query expan-

sion tasks by a large margin. This proves that topic-constrained word embedding can provide a

better similarity result in many tasks. Based on Diaz’s recent work we believe separately trained

Word2Vec models with different cities’ text corpus will be able to learn a better representation
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that captures geo-sensitive informations in words and phrases. In addition to this, we propose an

approach to enable direct comparisons on feature vectors from Word2Vec models trained from

different cities.

2.3 Content-Based Approach for Geo-locating Twitter Users

A handful of studies related to geo-location prediction problems on social networks have been

done by researchers in the last few years. Various applications have been proposed to study them,

such as finding local experts for the recommendation on Twitter [5], geo-locating users based on

their tweets [1], and prediction of individuals locations based on geo-tagged users [6]. A few

common approaches are adopted for these problems. One traditional approach is to use external

resources from databases or a user’s IP address or a gazetteer as ground truth to coordinate the tar-

get [19]. With the growing interests in social networks, a novel approach, content-based approach,

is proposed by Cheng [1] and has gained huge attention. Compared to traditional approaches,

Cheng’s method exhibits an essential advantage: no requirements for any extra geolocation cues

from another resource. The geo-location information is solely derived from the users’ profiles. In

the following studies, scholars enhanced his approach by adding more elements to it. Chandra’s

work improved Cheng’s work by leveraging interactions between related tweets [20]. Kinsella’s

work increased prediction accuracy for the origin of a tweet with geolocation information from

tweets rather than from the users’ profiles [21]. In these works, each user is assigned to one city

based on their tweets. All these content-based methods share two essential features: probability

distribution models for terms in different cities and an estimator for locating the user with their

words used in their tweets.

In our work, we focus on the improvement of the probability distribution models in these

content-based approaches. In Cheng’s approach [1], the probability distribution of terms is cal-

culated based purely on word frequency. It ignores each word’s association with other words in

the probability distribution model. By adding words’ association into the probability distribution

model, we are able to use the co-occurrence of associated terms as a strong signal to indicate where

the target tweet is from. For example, there is a high chance that the target tweet is from Houston if

6



the term "Rockets" and the term "NBA" occur in the tweets concurrently. To capture such kind of

connections in our probability model, we use Word2Vec [10] to achieve it. By training our model

using Word2Vec, we can observe words that tends to co-occur and spot associations that can be

served as a strong signal to indicate the location of a target tweet.
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3. CREATING A DATASET OF GEO-SENSITIVE WORDS

In this chapter, we construct our dataset from a billion tweets provided by Cheng [22]. In

Cheng’s dataset, there are tweets from places all over the world in different languages. For our

work, we would like to scale down our research to English tweets in major cities in the United

States. We collect, separate, and preprocess English tweets into 27 city text corpora which contain

only clean text data.

Figure 3.1: The circle used to collect tweets in San Francisco

There are about a billion geotagged tweets provided Cheng [22] from Twitter using the Twitter

Streaming API from January 2014 to April 2014, and September 2015 to November 2015. Each

tweet in this collection contains a coordinate with latitude and longitude indicating the geolocation

where the tweet is created. Based on the coordinate, we extract tweets belong to 27 different cities

in the United States and separated them into different files. To gather more tweets in a city, we do

not use the city name in the tweet to verify if a tweet is in a city, instead, we collect tweets in a
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circle defined by a center coordinate of each city and a radius (0.87544195). The radius we used is

based on latitude and longitude. The equivalent length of it is approximately 60 miles. Figure 3.1

illustrates how the circle is defined in San Francisco. We obtain 4.7 millions of tweets in total. The

number of tweets in each city are shown in Figure 3.2.

Figure 3.2: Tweets count for each city

In the next step, we separate all tweets into different text corpora based on our city labels and

we only keep text data in the tweets. This helps us shrink the size of the file from 200GB to 2GB.

With the much smaller text corpus, we can preprocess our text corpus and train our model faster.

By looking at the tweets we collected at the point, we spot many non-English words, same

words with different cases and website links in tweets. This introduces a few problems to Word2Vec

training. Since Word2Vec uses words’ past appearance and words’ associations with other words,

more occurrences of the same word will help Word2Vec learn and predict this word better. By

treating the same word with different cases as two separate words, we lower the occurrences of

both words and reduce the quality of both words’ feature vectors and prediction accuracy. Non-

English words and website links are usually quite unique and have a relatively low occurrence

among the tweets. The Word2Vec does not learn these words well. Considering these links and

non-English words are randomly associated with other meaningful words in our Word2Vec mod-
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els, we treat these words, stop words, links, and punctuations as noise and we remove all of them

from our text corpus.

The last step of our preprocessing work is to find out phrases hidden in our training data.

Phrases are valuable resources in our task because a lot of landmark names, celebrity names,

restaurant names, and sports team names are phrases and they mean quite differently in separate

words. For instance, "Big Apple City" is a nickname for New York city while apple means a kind

of fruit, and "Statue of Liberty" is a landmark in New York while statue and liberty are just general

nouns. Many phrases give us more geo-information, and in contrast, words tend to provide us less.

In our dataset, all phrases, bigrams and trigrams, are formed with Phrases module in Gensim. The

preprocessing process for San Francisco is visualized in Figure 3.3.

Figure 3.3: Tweet preprocessing process

10



4. IDENTIFYING GEO-SENSITIVE WORDS

In this chapter, we aim to find geo-sensitive words lying in three big cities and enable com-

parison for words in all 27 cities. By doing this, we want to understand how geo-sensitive words

are related to each other, and how we can find these words among tens of thousands of terms.

Our approach begins with training separate Word2Vec models for 27 cities’ text corpora and a

global Word2Vec model which contains tweets in all text corpora. Based on these models, we

align cities’ models with the global Word2Vec model by using Orthogonal Procrustes. We validate

our aligned Word2Vec models by conducting a common word discovery task. Finally, we find a

few geo-sensitive words as seed and look at their nearest neighbors to find more in 4 big cities

with adequate tweets and transform them in a geo-sensitive word dataset. The dataset serves our

evaluation experiment in Chapter 5.

4.1 Training Geo-Specific Embeddings

Table 4.1: Key hyperparameters in Word2Vec Training

Parameter Value

Dimensionality of the feature vectors 100

Size of training window 5

Threshold of sampling 1e-3

Minimum word frequency 5

The initial learning rate 0.025

The minimum learning rate 0.0001

To produce Word2Vec models for 27 cities, we train an independent model for each city’s cor-

pus with Radim Rehurek Python implementation of Word2Vec in gensim [23]. In our experiment,
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we choose to employee Continuous Bag of Words method as our training algorithm and negative

sampling as noise contrastive estimation method. The hyperparameters in the training model is

listed in Table 4.1. For each city, before the training starts, we tokenize each tweet in the current

city’s text corpus into a list of tokens and serve a list of lists that contains all tokenized tweets as

the input of Word2Vec. The output of Word2Vec is a model that contains a vocabulary constructed

based on the input text corpus and learned high dimensional vector representations of words ac-

cording to the hyperparameters specified. For the global model, we fetch text copora from 27 cities

and train it with the same set of hyperparameters employed by city models.

Houston Los Angeles

Term cosine similarity Term cosine similarity

galveston_island 0.847 beach_pier 0.744

galveston 0.799 beach_grand_prix 0.719

crystal 0.788 huntington_beach 0.672

banana_bend 0.747 longbeach 0.661

jamaica 0.732 beach_malibu 0.633

surfside_beach_gulf_coast 0.718 beach_antique_market 0.629

Table 4.2: Geo-Sensitive words in most similar words by feature vector for word "beach" in Hous-
ton and Los Angeles

After the training process, we compute the most similar words by feature vector for a few

words. For example, as shown in Table 4.2, the most similar words for the word "beach" in

Houston and Los Angeles models are mostly local beach names or region names near beaches in

the city. This shows that Word2Vec model for a single city is able to capture the geo-information

in city text corpus by learning the relationships of between geo-sensitive words in location-specific

text corpus. In another example for the word "nba", we find some positive results but also some
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problems. The result is shown in Figure 4.3. In Houston, there are a few words that occur to be not

related to Houston Rockets, local basketball team, including ’espn’, ’lakers’, and ’sportscenter’.

As we can see, these words still make sense for a high similarity with the word ’nba’. Lakers is

famous nationwide team while ’sportscenter’ is a sports TV show in ’espn’. While in Los Angeles

model, ’Spurs’ occurs due to the NBA playoff. ’Knicks’ occurs since it’s also a popular team

nationwide. Lastly, ’lebron_james’ is an influential basketball player in the league. These words

are too general in both text corpora and need to be treated as noises.

Houston Los Angeles

Term cosine similarity Term cosine similarity

espn 0.847 knicks 0.744

harden 0.799 spurs 0.719

james_harden 0.788 cp3 0.672

dwight 0.747 lebron_james 0.661

lakers 0.732 kobebryant 0.633

sportscenter 0.718 lakersnation 0.629

Table 4.3: Geo-sensitive words in most similar words by feature vector for word "nba" in Houston
and Los Angeles

4.2 Aligning Word Embedding

For our application, we want to predict which city a geo-sensitive word is from based on derived

word embedding. In order to do this, we have to ensure all word feature vectors from 27 Word2Vec

word embeddings are in the same vector space for direct comparison. In the beginning, we test

if words’ feature vectors can compare directly in different city models. We perform some cosine

similarity computations on two feature vectors from two cities for the same word. We compute

the cosine similarities for all words that exist in both New York and Chicago. The histogram in
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Figure 4.1 of words’ cosine similarities shows that word embedding in these two cities are not in

the same vector space since most words’ meanings (cosine similarities) are not close. Most words’

similarities under under 0.4.

Figure 4.1: The histogram for cosine similarities between words in common between New York
and Chicago

By investigating the Word2Vec training algorithm, we find the difference between two inde-

pendent Word2Vec training processes is a different random seed. This means that all the neural

network weights are initialized with random weight. All weights most likely converge to different

values in two standalone training processes. The similarity of words in different models stays the

same while the absolute position of them changes. This is because, in a Word2Vec model, the

similarity of two words is not determined by the absolute positions of these two words, instead,

the only thing matters is the cosine similarity between them. Therefore, we need to discover a

method to align all word embeddings from different cities into one vector space to let words in two

Word2Vec models can perform cosine similarity computation directly. Previous work in detect-

ing statistically significant linguistic shifts [24] overcame this problem when it was trying to align

word embedding trained for different time snapshot. The solution is Orthogonal Procrustes [25].

In our work, we adopt the similar approach.
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First of all, we use all tweet text corpora in all cities and train them into one global word

embedding with Word2vec. This global word embedding has its own vector space and we align

our word feature vectors in all cities into this vector space. There are two assumptions for our

approach. The first assumption is that we assume that most words in different cities have similar

meanings, thus the local relationship between word is preserved. The second one is that we can

always find a linear transformation that maps a word from one city word embedding to the global

word embedding.

In the next step, we align word embeddings from all cities with the global word embedding

with orthogonal Procrustes. Defining W (c) ∈ Rd×|V | as the matrix of word embeddings learned

at city c, we align the current word embedding with the global word embedding while preserving

cosine similarities by optimizing:

<c = arg min
Qt

cQc=I
||QcW

c −W g||F

where g represents global.

To justify our alignment on word embeddings from every city, we compute the cosine similarity

between a feature vector in every city’s aligned word embedding and feature vector in global word

embedding for the same word. The similarity for each word i is defined as:

similarity(wgi , w
c
i ) = cos− sim(wgi , w

c
i ) (4.1)

The histograms for three cities that contain most tweets are in Figure 4.2. These cities’ geo-

specific embeddings also give us the best alignment result. From the histograms, we observe that

the similarities between these three cities’ aligned word embedding and the global word embedding

for same words are reasonable. Most words have a cosine similarity between 0.7 to 1.0. Since the

assumption is that most words’ in all cities will have similar meanings, the alignment result for

these three cities is valid. We re-compute the cosine similarities for all words that exist in both

New York and Chicago with aligned embeddings in Figure 4.3. We find a high cosine similarities
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for all words in these two aligned models with most of them between 0.4 to 0.8.

Figure 4.2: The histograms for cosine similarity between a feature vector in New York, Los
Angeles, Washington, D.C. city’s aligned word embedding and feature vector

Figure 4.3: The histograms for the cosine similarities for all words that exist in both New York
and Chicago with aligned embedding

For the rest of cities, the similarities for words are a little bit lower. We plot the relationship

between the number of tweets for each city and their average cosine similarities in Figure 4.4. In

this figure, we can clearly see that the similarities are increasing exponentially with the number of
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tweets increases. There can be two reasons for this phenomenon. The first reason is that Word2Vec

needs a lot of raw text data to build an accurate model. Because of this, cities with less raw text

data will have a less precise model which has a negative effect on the alignment process later. The

second reason is that cities with more raw text data will bias our global model’s word feature vector

more than cities with fewer data. Therefore, the cosine similarities for cities with less raw text data

have a lower cosine similarity.

Figure 4.4: Average cosine similarity between feature vectors in every city’s aligned word embed-
ding and feature vector in global word embedding for the same word

4.3 Common Word Discovery

To further validate our aligned word embeddings and find out more useful information in it, we

decide to find some words that share the same meanings in all cities. For example, since we are

using tweets, "tweeted" should clearly be a common word in tweets which means the action that

someone published a tweet. "Starbucks" should be the popular coffee shop in the United States.

We refer these words as common words. We define common words to be words we use every day
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and words used a lot in tweets with no confusion in meaning. In our aligned word embedding, a

common word is a word that occurs most frequently in all cities, and its feature vector’s cosine

similarity in different cities against its global feature vector is high. To accomplish this, we first

find top 10000 words which have the highest word frequency in each city. Then we intersect word

sets across all cities. Lastly, we compute the cosine similarity using equation (4.1) for each word

in the intersection we found earlier. We claim all words that have a cosine similarity higher than

0.5 will be a common word. The result of our discovery is shown in Figure 4.5.

Figure 4.5: Common Word Discovery

We filter out 1636 words. Since the full list of the word is long, we randomly pick up a few

words and display them in a word cloud. We read through all these words, and most of them make

sense.
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City New York Los Angeles Washington, D.C.
# of tweets 6170437 6160402 2850201
# of words and phrases 239798 212884 123528

Table 4.4: Tweets and phrases counts in New York, Los Angeles, and Washington, D.C.

4.4 Geo-Sensitive Word Dataset

In the previous section 4.2, we discover that aligned word embeddings from New York, Los

Angeles, and Washington, D.C. have a higher average cosine similarity score compared to other

cities, and they are indeed cities with most tweets. The statistics for tweet number and phrase

number are in Table 4.4. Therefore, we decide to use geo-sensitive words from these three cities

to conduct our classification experiment. Besides this, we also include a set of common words

with their feature vectors as our test data. By adding common words to our dataset, we can prove

that our classifiers in evaluation section are able to distinguish common words from geo-sensitive

words.

To find geo-sensitive words in our word embeddings, we first manually find 90 words in each

city that are geo-sensitive words. We call them seed words. Then we look at the top 50 nearest

neighbors for all these words. By looking these words in three cities, we find 902 geo-sensitive

words in Los Angeles, 1085 words in New York, and 567 words in Washington, D.C. In the last

step, we save common word’s feature vector in the global Word2Vec model, geo-sensitive words

in three cities’ Word2Vec models into separate files. In accompany with these feature vectors, we

create two types of label for each feature vectors: a numeric label from 0 to 3 , and a four dimension

one-hot vector to indicate which city the word is from. We treat common words as a city. 0, 1, 2, 3

and [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] stand for common words, Los Angeles, New York

City and Washington D.C. respectively.
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5. EVALUATION

In this chapter, we build a simple location prediction application for geo-sensitve words based

on classification to evaluate our geo-sensitive word dataset and our Word2Vec models. We treat

common words in the dataset as a city. Given the input of our classifier, a geo-sensitive word

feature vector from all four cities, we want to predict which city the geo-sensitive word belongs to.

To accomplish this, we adopt four different classifiers. Using 10-fold cross-validation, we measure

the performance of each classifier with the metrics described in Section 5.1. By building and

evaluating this application, we hope the classifiers to identify the geo-information encoded in geo-

sensitive words’ feature vector and categorize these words into the correct cities. In addition to this,

we discuss the impact of learning models, feature vector dimension, and geo-specific embedding

on classifiers’ performance.

5.1 Metrics

Table 5.1: Notation Table For Metrics

T the set of all terms

C the set of all cities

t a single term in T

Tc the set of terms in city c

Lt the true label for term t

L̂t the predicted for term t

To evaluate the quality of our classifiers, we compare the predicted city for each word versus

the actual city this word belongs to. We report four metrics. We define the notation for our metrics

in Table 5.1. The first metric we use is Accuracy, which considers the percentage of the number
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of terms that are classified to the correct city to all terms. This metric helps us to have a general

idea on the overall performance of our classification task. It is defined as:

Accuracy(T ) =
|{t|t ∈ T ∧ Lt = L̂t}|

|T |

To have more insights into our classifiers’ performance, we further measure the precision and recall

of our results. We define the Precision For Each City and Recall For Each City. Precision For

Each City is the ratio of terms are correctly predicted to be in city c to total terms are predicted to

be in city c:

Precision(Tc) =
|{t|t ∈ Tc ∧ Lt = L̂t}|

|{t|L̂t = c}|

Recall For Each City is the ratio of terms that are correctly predicted to be in city c to total terms

are actually in city c:

Recall(Tc) =
|{t|t ∈ Tc ∧ Lt = L̂t}|

|{t|Lt = c}|

We then use the unweighted average of Precision For Each City and Recall For Each City from

4 cities as our overall Precision and Recall:

Precision(T ) =
1

|C|
∑
c∈C

Precision(Tc)

Recall(T ) =
1

|C|
∑
c∈C

Recall(Tc)

Finally, we define the harmonic mean of Precision and Recall , F1 score as following:

F1(T ) =
1

|C|
∑
c∈C

2Precision(Tc)Recall(Tc)

Precision(Tc) +Recall(Tc)

In addition to these metrics, we also compute the Area Under Receiver Operating Characteristic

Curve (AUC-ROC) definition of from prediction scores to calculate the overall performance of

the classification model.
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5.2 Classifiers

In this section, we explain four different classifiers including a multinomial logistic regression

classifier, a support vector machines (SVM) classifier, a random forests classifier, and a multilayer

perceptron neural network.

5.2.1 Multinomial Logistic Regression Classifier

Logistic regression is a classic supervised learning model for linear classification. Its simplicity

of implementation and usefulness make it the most prevalent and long-lived algorithm for solving

industry level problems. Many standard and customized performance metrics can be applied to

its probability score and later trimmed for different real world problems. Logistic regression is

time and memory efficient which makes it a good choice for training large data online. In addition

to this, it is resilient to small noise and multi-collinearity with L2 regularization [26]. In this

experiment, we will use a multinomial logistic regression classifier to predict the right location for

each geo-sensitive word.

Given the input of our classifier, a geo-sensitive word feature vector xi from all four cities,

we want to predict which city the geo-sensitive word belongs to. For the training data, we use a

one-hot vector y(i) to indicate which city the word belongs to.

For each possible class(four cities), our classifier has ωy ∈ Rn where y ∈ {1, ..., n} to decide

the Negative Log likelihood of class being y for a input vector using softmax function [27]:

− log p(y|x, β) = log

(
n∑

y,=1

eω
y′ ·x

)
− ωy · x (5.1)

where β = {ωt} for t ∈ {1, ..., n}

We then decide our object of the model. Given of training data D = {x(i),y(i)} for i ∈ 1, ...,m,

we want to find ω that minimizes our negative likelihood of D with cross-entropy loss [27]:

minimize − 1

m

m∑
i=1

log p
(
y(i)|x(i), β

)
+

1

2
ωTω
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where 1
2
ωTω denotes to the L2 regularization term.

5.2.2 SVM

Support vector machines (SVM) are efficient supervised learning models for classification,

regression and outliers detection. Given labeled training data, a SVM model separates two types

of categorized data by a hyperplane that maximizes the distance to nearest training data points of

any class. A few advantages of SVM include its effectiveness in high dimensional spaces, memory

efficiency and high versatility for custom kernels [28]. In this experiment, we will use a multi-

class C-Support Vector classifier(C-SVC) [29] with penalty parameter of the error term equals to

1, linear kernel, and "one-against-one" approach [30] for our task.

We will build 4 ∗ (4 − 1)/2 = 6 classifiers for each pair of class. Then we will train them

to distinguish the word vector from one city to another. Then the final multi-class classification

decision is made by maximum voting [30].

Given the input of our classifier, a geo-sensitive word feature vector xi from all four cities, we

want to predict which city the geo-sensitive word belongs to. For the training data, we use numeric

label yi to indicate which city the word is belonging to.

For each distinguished classifier between two cities, given geo-sensitive word feature vectors

xi ∈ Rm, i = 1, ..., n, from two cities, and an indicator vector y ∈ Rn where yi ∈ 1,−1, the

primal optimization problem is [31]:

min
ω,c,ε

1

2
ωTω + λ

n∑
i=1

εi (5.2)

subject to yi(ωTφ(xi) + c) ≥ 1− εi

εi ≥ for all i

where φ(xi) transforms xi into a higher-dimensional vector and λ > 0 is the regularization pa-

rameter.
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We solve the dual problem to avoid high dimensionality of the vector variable ω as bellow:

min
α

1

2
βTQβ − vTβ (5.3)

subject to yTβ = 0

0 ≤ βi ≤ C for all i

where Q is a n by n matrix with Qij ≡ yiyjK(xi, xj) and v is a vector with all ones. K(xi, xj) ≡

φ(xi)
Tφ(xj) is the kernel function. In this experiment, we use radial basis function kernel.

The optimal ω satisfies

ω =
n∑
i=1

yiβiφ(xi)

Finally, the decision function is:

sgn

(
n∑
i=1

yiβiK(xi, x) + b

)

.

5.2.3 Random Forest

Random forest is one of the most common but effective supervised learning algorithms in

data science. They can be both used to build models for regression and classification related

problems. In general, a random forest model begins with its building block, a decision tree. Given

an input, a decision tree will move the input down to the leaf nodes of it based on its condition

switch. A random forest, in essence, is an ensemble of many decision trees with different decision-

making criteria. The standalone decision trees will act as a "weak learner" in the model while

the random forest will combine the decisions from different trees and make a final decision as a

"strong learner". In terms of our problem, every single decision tree will predict a target class

a geo-sensitive word is belong to, and the random forest will make the final prediction based on

results gained from trees in its "forest". In contrast to other classification algorithms, the random

forest will never run into the trap of overfitting, and it is capable of handling missing values [32].
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In our experiment, the input is a set of geo-sensitive word feature vectors from Word2Vec, we

want to predict which city the geo-sensitive word belongs to.

There are two phases in random forest classification. In the first stage, we start with random

forest creation [32]:

Algorithm 1: Random forest creation algorithm
1 for a certain number of trees do
2 for a certain number of nodes do
3 Pick k features from all 100 features (dimension of word feature vectors)
4 Use the selected features and compute a node based on optimal splitting strategy
5 Further divide these nodes following the same splitting strategy
6 Create a node
7 end
8 create a random decision tree
9 end

In the second phase, we will predict the target class. We will use all the decision tree created in

the first phase to predict a vote for each input xi. The highest vote result will be the final prediction

[32]. The random forest in this experiment is with the maximum depth of the tree equals to 10 and

the number of trees for estimation equals to 300.

5.2.4 Neural Network

An artificial neural network has become extremely popular in recent years with the occurrence

of the backpropagation algorithm. Inspired by the human brain, an artificial neural network is

composed with a set of interconnected artificial neurons. There are usually three layers for a basic

neural network: an input layer, a hidden layer, and an output layer. The input layer is responsible

for fetching data and transmitting them to the hidden layer. Then, the hidden layer will perform

some computation on the activation function in the neurons and send it to the output layer. Based

on this simple model, a lot more complex and advanced neural network models have been created

to fit more specific and customized problems in different research fields and business solutions
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including convolutional neural networks for image recognition [33], Boltzmann machine networks

for collaborative filtering [34], long short-term memory (LSTM) networks for natural language

processing (NLP) [35]. For this experiment, we endorse a simple three-layer neural network to

this classification task. We will have 100 units for our input layer. We will then have dense

layer with 20 rectified linear units collect the essential geo-sensitive information from all inputs

as our hidden layer. Finally we will use softmax function on top of a dense layer with 4 units to

normalize the output vector to a probability distribution. The 4 units in the output layer represent

the possibility of the geo-sensitive word be in four different cities.

Given the input of our classifier, a geo-sensitive word feature vector xi where i ∈ {1, ..., n}

from all four cities, we want to predict which city the geo-sensitive word belongs to. For the

training data, we use a one-hot vector y(i) where y(i) ∈ {0, 1, 2, 3} to indicate which city the word

is belonging to.

The output probability for each input x(i) for be in 4 class is:

p(x(i)) = softmax(w2δ(w1x
(i) + b1) + b2)

where w1,w2 are weights, and b1, b2 is the bias terms. The δ(x) is the activation function.

The objective function for us to minimize with cross-entropy loss is:

−
3∑
0

y(i) log
(
p(x(i))

)

5.3 Experimental Results

In this section, we detail an experimental study of geo-sensitive word location prediction with a

variety of learning algorithms and different feature vector dimensions. We build our models based

on the same dataset. The goal of our experiment is to understand: (i) which learning model yields

the best performance for words’ location prediction; (ii) how does the dimension of feature vectors

affects the classification performance; and (iii) are geo-specific embeddings more effective than
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global embeddings for location prediction task?

5.3.1 Impact of Learning Algorithm

Classifier LR SVM Random Forest Neural Network

Accuracy 88.04% 90.14% 93.16% 94.22%

Precision 87.75% 89.36% 92.22% 94.56%

Recall 87.16% 89.53% 90.03% 93.80%

F1 87.18% 89.33% 90.64% 94.14%

AUC-ROC 91.63% 93.16% 93.75% 96.13%

Table 5.2: Performance metrics for learning algorithms

We begin by investigating the impact of learning models. We use the feature vector with 100-

dimension to conduct our experiment. We exam four different classifiers including a multinomial

logistic regression classifier, a support vector machines (SVM) classifier, a random forests classi-

fier, and a multilayer perceptron neural network. All the hyperparameters for each classifier and

experiment setup are described in Section 5.2. The experiment result is shown in Table 5.2. In this

experiment, all four learning algorithms reach a high accuracy above 85%. Based on the fact that

logistic regression classifier is a linear model and SVM classifier used a linear kernel function, we

confirm that most geo-sensitive words’ feature vectors in our dataset are linearly separable. The

AUC-ROC scores indicates that all classifiers are capable of distinguishing between cities.

The recall and precision for all models are relatively close to their F1 score except the random

forest model. To investigate this, we compute recall and precision of each city. The recall for each

city is shown in Figure 5.1. From this figure, we observe that random forest’s recall for Washington

is much lower than other three cities. In contrast to the recall for each city, the precision for each

city in Figure 5.2 exhibits quite different values. The precision for Washington is extremely
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high. This indicates that even Random Forest algorithm can not find all geo-sensitive words for

Washington, but it is capable to make all its retrieved instance correct. Since the precision and

recall for common words are all high, the value difference between recall and precision for random

forest clearly of three remaining cities proves that some words in Washington are characterized as

geo-sensitive words from Los Angeles or New York.The recalls of Los Angeles and New York

are high since they include most words belongs to them plus the extra words from Washington.

However, when it comes to precision, since these cities contain extra words from Washington,

all their precisions become lower. The possible explanation to this phenomenon is that we have

unequal amount of words for these three cities. The classifiers are biased to cities contain more

words. We can also spot similar behavior for other three learning models where this phenomenon

is clearer in Random Forest and logistic regression classifier. SVM and neural network, on the

other side, are more resilient to the inequality of words from different cities.

Figure 5.1: Recall for each city

In the end, we conclude that the neural network algorithm provides the best overall performance

among four learning algorithms. The neural network algorithm provides the highest accuracy,

strongest ability to distinguish between classes and best resilience to inequality of words from
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Figure 5.2: Precision for each city

different cities.

5.3.2 Impact of Feature Vector Dimension

Given the good performance of our classifiers, we further study the impact of feature vector

dimension. In this experiment, we train 5 sets of word embeddings with different feature vector

dimensions. The dimensions we chose for each set includes 10, 50, 100, 200, and 400. Each set

contains a global word embedding and 27 geo-specific embeddings for each city with the specified

dimension. Five geo-sensitive word datasets are re-constructed with the same set of words but

different feature vector dimensions.

To illustrate the impact of an increasing dimension, we plot the accuracy, F1 and AUC-ROC

score in Figure 5.3 for 4 classifiers. We observe that the accuracy, F1-score, and AUC-ROC are

enhanced while the feature vector dimension is increasing. The largest improvement happens when

the dimension changes from 10 to 50. The multinomial logistic regression classifier, the support

vector machines (SVM) classifier, and the neural network model has an clear improvement with

+8.95% in accuracy, +10.41% in F1 score, and +6.82% in AUC-ROC score. From 100 to 400, all

the metrics nearly stop growing except for random forest. The best performance for all classifiers

are obtained at dimension 400. With the increasing size of feature vector, more information is

29



Figure 5.3: Accuracy, F1 score and AUC-ROC score for different feature vector dimension

learned in the Word2Vec model which helps the classifiers to make better decisions. we conclude

that providing more information to the classifiers helps them to improve their performance.

We further investigate if feature vector dimension increasement has positive impact on re-

silience to inequality of words from different cities. As we can see, both precision and recall of

all classifiers are increasing with the feature vector dimension grows. However, the unbalance be-

tween precision and recall caused by the inequality of words is not improved. The most unbalanced

classifier is still random forest. We conclude that the feature vector dimension increasement does

not help classifiers to improve inequality of words.
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LR dim-10 dim-50 dim-100 dim-200 dim-400

Precision 71.11% 85.54% 87.75% 89.57% 90.50%

Recall 70.66 % 84.98% 87.16% 89.52% 90.88%

SVM dim-10 dim-50 dim-100 dim-200 dim-400

Precision 77.70% 86.83% 89.36% 91.11% 91.86%

Recall 74.77% 86.59% 89.53% 91.44% 92.97%

Random Forest dim-10 dim-50 dim-100 dim-200 dim-400

Precision 90.15% 91.77% 92.22% 91.67% 93.21%

Recall 88.39% 89.98% 90.03% 89.09% 91.55%

Neural Network dim-10 dim-50 dim-100 dim-200 dim-400

Precision 90.61% 94.69% 94.56% 94.23% 94.97%

Recall 85.89% 92.98% 93.80% 94.24% 95.65%

Table 5.3: Precision and recall for different feature vector dimension

5.3.3 Impact of Geo-Specific Embeddings

An important question remains: have the geo-specific embeddings outperforms the global em-

beddings? Does it offer a big improvement to our classification task? In previous sections, all

experiments are focused on testing the hyperparameters and learning algorithms. If we can use

global embeddings to achieve the same performance, it will defeat our purpose of learning the

geo-specific embeddings.

To illustrate the impact of geo-specific embeddings, we conduct another set of experiments. For

all geo-sensitive words in our dataset, we use feature vectors with 200 and 400 dimension from

global word embeddings. We compare the performance of it with our feature vectors from geo-

specific embeddings. The result of our experiment is displayed in Figure 5.4, 5.5, 5.4 and 5.5. As

we can see, the highest performance gain we have is for random forest with 10.50% improvement

on accuracy, 12.78% on F1, and 7.70% on AUC-ROC score with 400 dimension word embedding.
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Logistic regression on the other side, has the lowest performance gain with 2.98% improvement

on accuracy, 3.61% on F1, and 2.54% on AUC-ROC score with 400 dimension word embedding.

The low performance gain on logistic regression symbols a high possibility that the full dataset is

not linearly separatable. Even logistic regression can separate most of the words in the dataset,

it struggles to separate the remaining portion of words. From these data, we conclude that geo-

specific embeddings have a strong positive impact on our classification task. By learning geo-

specific embeddings for each city, we are able to capture more geo-sensitive information in word

feature vectors.

Figure 5.4: Performance comparison between global and geo-specific embeddings with 200 di-
mension

32



LR SVM Random Forest Neural Network

Accuracy 4.41% 7.83% 10.50% 7.60%

Precision 5.46% 7.78% 13.09% 6.57%

F1 5.51% 8.80% 12.78% 7.83%

Recall 5.97% 9.71% 13.00% 8.97%

AUC-ROC 3.57% 5.89% 7.70% 5.21%

Table 5.4: Performance gain for geo-specific embeddings with 200 dimension

Figure 5.5: Performance comparison between global and geo-specific embeddings with 400 di-
mension
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LR SVM Random Forest Neural Network

Accuracy 2.98% 5.08% 11.32% 7.22%

Precision 3.39% 4.78% 12.53% 5.95%

F1 3.61% 5.46% 13.85% 7.42%

Recall 4.18% 6.21% 14.58% 8.72%

AUC-ROC 2.54% 3.87% 8.62% 5.07%

Table 5.5: Performance gain for geo-specific embeddings with 400 dimension
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6. CONCLUSION AND NEXT STEPS

6.1 Conclusion

The success of leveraging geolocation creates new opportunities for new exciting purpose. As

one of the most critical components in geolocation related information, geo-sensitive words is

able to deliver multiple benefits for local searches and personalized recommendation systems. To

identify these words, our proposed framework overcomes the challenges with the following key

contributions: (i) a publicly-available dataset containing geo-tagged English tweets from 27 cities

in the United States; (ii) a concrete approach to align separately trained word embeddings with

Orthogonal Procrustes; (iii) and a well-rounded evaluation framework for geo-sensitive words.

We’ve aligned all geo-specific embeddings to enable direct comparison between word embeddings.

We’ve discovered over 3000 geo-sensitive words in three large cities in USA. We’ve showed that

our geo-sensitive word classification task with geo-specific embeddings yields an average 7.5%

accuracy gain compared to the classification with global word embedding. The classifier with

neural network has reached a high accuracy at 95.32%. We have seen that the increasement of

feature vector dimension improved the prediction’s performance.

6.2 Next Steps

In this study, we have only studied the models for word in different locations. We anticipate

continuing work on prediction of user location based on their tweets. We are also interested in

fully automating the geo-sensitive word discovery framework by adopting Backstrom’s model for

analyzing the geographic distribution of terms in search engine query logs [2]. Ultimately, we

expect our model can be used to recommend local restaurants, experts, and tourist places based on

the users’ preference in their living place.
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