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Abstract

I introduce SCALE, a project aiming to further understand Human-Object Interac-
tion through the real-time analysis of force vector signals, which I have defined as
"Force-based Interaction" in this thesis. Force conveys fundamental information in
Force-based Interaction, including force intensity, its direction, and object weight - in-
formation otherwise difficult to be accessed or inferred from other sensing modalities.
To explore the design space of force-based interaction, I have developed the SCALE
toolkit, which is composed of modularized 3d-axis force sensors and application APIs.
In collaboration with big industry companies, this system has been applied to a va-
riety of application domains and settings, including a retail store, a smart home and
a famers market. In this thesis, I have proposed a base system SCALE, and two
additional advanced projects titled KI/OSK and DepthTouch, which build upon the
SCALE project.
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Chapter 1

Introduction

1.1 Motivation

Force conveys fundamental information in Human-Object Interaction, including force

intensity, its direction, and object weight [28] - information otherwise difficult to be

accessed or inferred from other sensing modalities. When force is captured during

interaction, a wide range of activities can be reconstructed such as way of touch,

movement of objects and patterns of body motion. Therefore, it is important to

explore the design space of Force-Based Interaction, which we define here as contact

based dynamic interaction between two objects or between an object and the human

body based on force vector direction and amount.

Force-based interaction is involved at different scales in terms of the intensity of

loaded force and the size of the interaction area. For instance, force-based interaction

can range from actions such as drawing minute letters on a piece of paper (~1g, 1mm),

to handling tools on a workbench (I1kg, 10cm), to dancing in a room (100kg, 10m).

Even though researchers have already tackled each respective task, {47, 601, it is ideal

if interaction designers are able to explore the wide range of force-based interactions

within a single integrated framework.

To show the broad area in HCI, covered by force-based measurement method,

I've demonstrated a variety of use cases in this master thesis, including prototyping

a tangible interface, recognizing human behaiviors in a residential room, augmenting

13



customer experience in a retail store and achieving seamless interaction with 3d dis-

plays. I believe 'Force' could be an overarching approach to capturing Human-Object

Interaction.

Exploring Force-based Interaction
Chapter 2. Prelmiinary Research

Tangible Interaction on
Load-Sensitive Surface

Chapter 3. Project SCALE
Enhancing Force-based Interaction
by Load Sensitive Modules

Chapter 4. Project K/OSK
SCALE application for Farmer's Market

Chapter 5. Project DepthTouch
Augmenting Surface Interacton
for Volumetric Display

Figure 1-1: Overview of Thesis Framework

1.2 Thesis Outline

In this master thesis, I will discuss on the Human-Object Interaction enabled by Force

Sensing method. The overview flow of my thesis is illustrated in Fig. 1-1.

In the chapter 2, I introduce that a preliminary research of the tangible system

that localizes the object position and recognizes a simple set of touch inputs. This

pilot research has a less impact on the academic community, however reveals the

potential of weight information for capturing Human-Object Interaction.

In the following chapter 3, I showed that the SCALE system, the modular load

sensors for enhancing force-based interaction. With the significant technical advance-

ment including 3d touch point localization with our patented algorithm, modular-

ized hardware and a variety set of applications. This work is also published at the

renowned venue of UIST 2019 conference.
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In the chapter 4 and 5, I discuss on the industry-oriented applications of the

SCALE system, developed through the project mentioned in chapter 3. With the

enormous support from TOPPAN company, a MediaLab sponsor, we explored the

application for farmer's market toward augmenting customers UX. Also, in collabo-

ration with Yokogawa Electric.inc we developed an interative system for volumetric

display.

1.3 List of Accomplishments

This thesis is composed from many source of accomplishments, conducted in the

two years master course, including the publications in the renowned conferences in

HCI community, patents currently under preparing with an attorney and industrial

collaborations.

1.3.1 Project SCALE

For SCALE project:

" SIGGRAPH ASIA 2018 poster session, 2018.12 A Tokyo, Japan (reviewed)

" MIT College of Computating Reception 2019 poster session, 2019.02 A Cam-

bridge, MA (reviewed)

" Media Lab Sponsor Workshop in Panasonic Beta, 2019.03 A CA, USA

* UIST 2019 full-track publication, 2019.09 (reviewed)

1.3.2 Project KI/OSK

For KI/OSK project:

" Sponsor Collaboration with TOPPAN company, 2018.09 - current

* User Study in an Actual Farmer's Market, 2019.07 ( Tokyo, Japan

* (preparing) CHI 2020 full-track

15



1.3.3 Project DepthTouch

For DepthTouch project:

" Sponsor Collaboration with Yokogawa Electric company, 2019.05 - current

" (submitted) TEI 2020 full-track

16



Chapter 2

Preliminary Exploration of

Load-based Interaction

2.1 Introduction

In this chapter, we introduce a System for Characterization And Localization of

Elements for touch and object location recognition by sensing weight.

In the advent of touch screens, and ever-increasing interweaving of interactive

surfaces across scales, it is apparent that more than ever, our ambient spaces are

becoming portholes to digital experiences. Phones, tablets, books and now wearables

are all providing interactive extensions to our surfaces. These surfaces are designed

to be able to track location of touch or tangible objects for physical and spatial in-

teractions beyond 2D surfaces [28]. Researchers have presented interactive touch and

object sensing systems that can be enabled by various technical implementation such

as computer vision[31], capacitive surface[56], magnetic sensors grid[42] or acoustics

sensors[29]. While these previous systems presented rich capabilities for detecting

a variety of interactions, weight of objects and force of touch is has remained out

of reach for these systems. Additionally, such instrumentation also have limitations

for deployability, for example, computer vision requires bulky, expensive systems,

that are not always scalable, could suffer from occlusions, and while it is able to de-

tect touch visually, it is unable to sense force or weight. Alternative approaches for
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tracking and recognizing surface interactions are beneficial for enhancement of user

interaction, and offer other advantages such as enhanced privacy since they do not

use cameras. Several approaches have been published recently [59, 60, 47, 19] for

such sensing at large scales, a comparison of our system to these implementations

shows an improvement in resolution and speed, while lowering costs and simplify-

ing implementation. We have constructed several implementations of the system to

detect various interaction modalities beyond simple force touch or object location,

to include touch on objects, object stacking and weight change within objects (such

as the addition of fluid or material). We have demonstrated the functionality and

specifications of our system by introducing several applications for tangible and touch

based interactions such as drawing, story-telling and tangible interaction prototyping.

Testing has shown that even in large scales such as instrumentation of a one square

meter surface made of solid wood weighing 20 kg, weight force could be measured

down to an accuracy of 0.03 Newtons, with spacial accuracy of under 1 cm, at a

sample rate close to 100Hz, with the system as shown in Figures 2-1 and 2-1. Due to

these surprisingly sensitive results we were able to fathom applications without the

hindrance of performance being as limiting of a factor as we expected from experience

with traditional weight-based systems.

In particular, these performance figures allow for the implementation of sophisti-

cated algorithms for real-time interaction. Our initial explorations of these prototypes

has been very positive, and users have found them easy to use. Limitations of the sys-

tem when compared to more traditional approaches, such as capacitive touch, include

the systems inability to perform true multi-touch detection, as only a single center-

of-mass can be detected at any moment. This limitation can be overcome in many

situations where there is temporal difference between the multiple touch interactions.

In addition, since the instrumentation of a surface with our system is fairly cheap

and straightforward, a combined system can easily benefit from both sensors' capa-

bilities. These hybrids can be implemented through direct integration into a product,

or through a temporary link between a product and a surface, such as when placing

a tablet on top of our system instrumented table, applications running on the tablet

18



Figure 2-1: Preliminary prototype of the load sensors and acquisition system

can respond to touch and force from both sensors at once. In this chapter we focus on

the interactions achievable through our system alone, to demonstrate its versatility

and the capabilities achievable through high resolution, high speed, sampling of load,

with a focus on tabletop and horizontal surface interactions.

2.2 Related Work

2.2.1 Touch and Object Sensing Tabletop Interfaces

In the field of HCI, tabletop or plane-based interfaces have been one of the major

form factors that allows for a variety of touch interaction and token-based tangible

interfaces 128]. One of the primary research agendas for the tabletop interface has

been on the sensing technology for detecting the physical interactions, which has been

proposed in the past few years with a variety of techniques.

One of the popular object recognition techniques is computer vision systems with

camera and markers. reacTable introduced musical control Tangible Interface with

a marker-recognition technique [311. ForceTile utilized deformable gel with optically

trackable dots to detect the object's position and touch (force and position) interaction

19



to the object [32]. Lumino introduced tokens that incorporate glass fibers for a

tabletop system to detect stacking interactions [7]. While these system were widely

implemented in research purposes, they are usually expensive, bulky, and require

special stick-on tokens according to expected interactions.

Using piezo microphones, acoustic sensing techniques have been introduced for

cheap and space efficient techniques for detecting touch on arbitrarily shaped objects[51]

and balls hitting on a ping-pong table [291. While these systems are generally low

cost and easy to instrument, they lack the sensitivity and speed to generate more rich

interaction.

With capacitive sensing surfaces, Rekimoto demonstrated a touch and object sens-

ing interactive system 1561. This technique has been widely explored especially in last

decade as capacitive touch screens have been widely commercialized [35, 13]. Apple's

force touch (or 3D touch) added extra dimension on 2D touch interactions for Track-

pads and touch screens [8]. Force touch is currently only available on small surfaces

and responds to force but not to object based interactions.

Liang et al. developed GaussSense which is a magnetic sensor grid to detect 2.5D

motion of magnet-enclosed stylus and tangible tokens [41, 40]. The pcb-based system

was able to be attached to any display to enrich the interaction beyond touching the

surfaces. While their series of research cleverly utilized the characteristics of magnets

to identify various interactions such as stacking and assembling [39, 42], scalability of

the system is a primary issue. The size of interaction surface is limited to the number

of sensor grids, the larger the surface the higher the cost, while with load-cell based

sensing such as our system the costs remain relatively fixed with respect to size, and

scale with weight of the instrumented object.

2.2.2 Load cell based interactive system

Lastly, multiple load sensors have been utilized to detect touch and objects on a

surface. This approach is easily implemented by placing the sensors under a rigid

surfaces and spatially efficient. This technique is also scalable that same number of

sensors can be used to sense activity at the scale of a tabletop or an entire room.
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Previously, Schmidt et al. presented load cell-based sensing system for object and

human behavior tracking with a room scaled surface [59]. They also presented to use

similar system for pointing device that is incorporated into ubiquitous environment

(e.g. tables) [601. Murao et al. improved the such system for multiple objects

detection and accurate sensing algorithm based on machine learning [47]. In our work,

we expand on that approach and achieve improvements in accuracy while making

the system simpler, customizable, and cheaper. The faster sampling rates and the

simultaneous sampling of all sensors enable novel interactions not previously shown

on simple load cell based systems.

Our system is also capable of sensing advanced interactions such as touch on

placed objects and stacking objects which were partially explored in recent research

using a proprietary industrial multi-directional force sensor which is two orders of

magnitude (nearly x300) more expensive than our system [24].

2.2.3 Original Contribution

From having studied related work, our contribution builds upon the use of force

measurement contact sensing with increased accuracy and decreased latency, thus

improving the overall user experience for HCI applications. With the system we have

developed we are able to implement applications that require fast response times and

accurate position sensing.

By testing multiple weight and location-specific applications, we are able to pro-

vide a platform upon which users can execute a broad range of activities that include

weight as a measurable parameter, a unique quality that is not possible with standard

tabletop touch screens and surfaces.

The design of our system is such that it can be made with low cost, off-the-shelf

hardware making deployment economic and applicable to a diverse user-base. With

the applications we have proposed herein, we have made possible the prototyping of

use-cases for accurate, force-inclusive interactions with limited hardware and simple

instrumentation. Often an existing instrumented surface can be used for multiple pro-

totyping explorations simply through placement of simple constructions on top of the
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surface. For example existing architecture foam-based models can come alive though

placement on top of an instrumented table. Interaction with the model through

placement of objects and touching the model is enabled seamlessly and without any

modifications to the model itself.

In this paper we focus on two types of evaluation: (1) a quantitative evaluation of

the system's resolution in time, space, and (2) a qualitative user experience evaluation

of prototypes utilizing the system.

The improved resolution demonstrated in the quantitative evaluation leads us to

believe that the system could be used for user identification tasks and other similar

tasks that have been shown to be possible based on load sensor data as discussed in

the related works section above. We expect that increased resolution should lead to

same-or-better performance for these existing tasks. Instead we choose to focus in a

new direction towards the strengths derived from the capabilities of the our system

and evaluate its compatibility as an implementation of a TUI prototyping device -

enhancing existing objects and sensors merely by placing them on top of the surface

installed with our system, where the properties of force sensitivity and localization

can be applied to any item, for example any laptop can be enhanced to include force

sensitivity touch-pads, and even the entire surface of the laptop can become an input

device. Under certain restrictions, and with additional calibration, force sensitivity

can even be applied to the screen on a laptop placed on top of our system. We think

of this approach as Rapid Prototyping for tangible interactions, this could be thought

of as a TUI equivalent of GUI paper-prototyping.

2.3 Implementation

2.3.1 Approach

Our approach utilizes inexpensive off-the-shelf components, with minor modifications

in hardware and software, which achieve an order of magnitude improvement over

previously published results. Improvements are shown in weight sensing resolution,
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weight sensing accuracy, and response times. These material improvement, in turn,

translate into improvements in response time, object detection capabilities, noise

avoidance and rejection, and dramatically reduce and even eliminate (as some of our

studies results suggest) false object detection. At its current performance character-

istics the system has been demonstrated to be an effective tool for HCI. We primarily

explored its usability as an interaction prototyping platform, as well as a platform

which enhances existing interfaces with force sensing capabilities.

2.3.2 Design Goal

Our main design goal was to construct a system that could be realistically easily

deployed in many environments, thus cost and flexibility of integration were heav-

ily favored. Minimizing cost while maximizing performance is always desirable. To

achieve a good balance of cost and performance we optimized key performance bot-

tlenecks across both software and hardware, as described in more detail later.

Sensing P

Sensor 2 Sensc

Signal SignE
Conditioning Conditio

Load Cell Load C
Amplifier Amplif

Acquisition an(

Serial Comrr

Host Computer

Software Processing

r WebSocket Server

latform

r 3 Sensor1

aI Signal
ning Conditioning

Cell Load Cell
ier Amplifier

dIntegration
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JA"1 111111

Web Browser)s)

JavaScript Application

Other WebSocket Clients
(such as Processing)

Figure 2-2: Sensing platform diagram.
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2.4 Architecture

The system consists of three layers: The hardware sensing platform, an intermedi-

ary software processing layer, and the final client layer. This architecture enables

concurrent applications to run at the same time and/or on multiple devices.

The system is made using three force sensing units, implemented using load-cells,

signal acquisition (amplification and conditioning), data integration and processing,

and an application layer which can be implemented on the host computer or dis-

tributed over a network, see figure 2-2. For reasons detailed below, use of three

load sensing units improves performance over four (or more) based systems, while

obviously also lowering cost.

2.4.1 Hardware Design

While the system can operate with any number of sensors greater than 3, construction

using 3 sensors greatly simplifies processing and keeps costs to a minimum. To further

simplify processing of the data, the load sensors are placed in a symmetric manner

around the central axis of the platform. The component breakdown and architecture

can be seen above in Figure 2-2, while the selection of the various components and

related considerations are explained below.

2.4.2 Load Cell Amplifiers

HX711 - The HX711 is essentially a.24 bit Sigma-Delta Analog-to-Digital Con-

verter (ADC) with a Programmable Gain Amplifier (PGA) and dedicated circuitry

for controlling the excitation voltage of the load cell. We have found several sources

for HX711 circuit boards spanning the USD 1.20 to USD 9.99 per unit. A comparison

of the cheap circuits (sourced from Amazon) to the more expensive ones (sourced from

SparkFun) showed a 40-times increase in noise levels. Comparison of the components

and layout of the two boards showed that the cheaper board is missing a 3.3uH induc-

tor and a 1OuF capacitor in a low-pass filter configuration on the excitation circuitry

compared to the more expensive, less noisy boards. With the load-cells in our tests,
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adding the capacitor alone reduced noise levels such that the cheap board's perfor-

mance was indistinguishable from the more expensive one. These boards both lack

any electromagnetic shielding present on boards from other manufacturers. In any

mass manufacturing design, shielding these circuits from electromagnetic interference

is highly recommended due to their sensitivity to noise. In our tests described here no

shielding was applied. The HX711 has an internal oscillator and supports sampling

at either 10 Hz or 80 Hz. In all our experiments and implementations, we used it

in the 80 Hz mode, since we found that the added temporal resolution contributes

greatly to the responsiveness of our system, while the added noise from the faster

sampling averages at lower noise overall after software filtering, as compared to the

10 Hz mode. We have found that the actual number of samples per second achievable

is 90 sps.

Sampling Library - The HX711 is digitally controlled through a serial interface

consisting of a clock pin and a data pin. Many libraries exist for interfacing with the

HX711, and some even support sampling of multiple HX711 units. However, all the

libraries we could find implemented the concurrent sampling internally as sequential

sampling, meaning that any benefits of concurrency were merely for the sake of a clean

software design rather than any real benefit in hardware and timing. To improve on

this bottleneck we published a new library[2] which supports simultaneous reading of

multiple LCAs. The maximum number that could be read simultaneously is limited

by the speed of the microcontroller used, as well as timing variations within each

LCAs internal oscillator - even though the data being read is clocked by the reader,

timing between completed reading and the next sample being ready varies. On an

Arduino Uno, we have been able to read up to 5 LCAs simultaneously, and on other

system were able to extend that number further with successful attempts of reading

6 and 12 sensors, and theoretically at least a few dozens should be easily possible.

2.4.3 Load Cells

For our load cells we picked the readily available bar-style load cells of model TAL220

rated at 10 kg, measuring 80mm (L) x 12.7mm (W) x 12.7mm (H), as shown in Figure
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Figure 2-3: TAL220 10Kg Full-bridge Load Cell

2-3. The load cells are fixed to a shared rigid platform on the bottom, and their

other end is attached under the surface to be measured. Force applied to these cells

causes deformation of the cell which in turn changes the resistance in a wheatstone

bridge. Load cells in this form are extremely common and can be acquired for between

1 and 10 USD from a variety of sources at the 10 kg capacity. Load capacities

available span from grams to tons, and cost generally tends to increase with capacity

and, of course, production quality. The achievable resolution with a given amplifier

and environmental conditions decreases as the load cell capacity increases. Another

important consideration is the load cell's ability to measure both negative and positive

forces, to allow measurement of force outside the bounding polygon of the load cells,

as described below. When choosing, placing, and measuring the load cells, their

characteristics should be taken into careful consideration. The important factors

include:

Ultimate Capacity - The load cell is rated for a certain maximum force, in our

case 10kg. Application of force above this limit can damage the load cell permanently.

Usual values for load cells are around 150 percent of the rated maximum weight for a

safe overload, and around 200 percent for an ultimate overload. While our standard

overall capacity is 30kg in the small-prototype(Figure 2-5) due to the use of three
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such load cells, it is important to ensure no single load-cell is overloaded, as there

are places on the platform where the majority of the force would be applied to only

a single cell. These capacities should be observed even when the system is offline,

such as during transport or storage. As described in more detail below, our large-

prototype (table-top) (Figure 2-6) has an increased capacity of 90kg overall through

a hierarchical design.

Off axis forces - When a force is applied to a cell off of its primary axis, it will

gradually be dampened. Designing the interconnect between the surfaces to transfer

force as much as possible on the axis is desired, especially in cases where shear forces /

torque are expected, and not only push/pull forces. If such forces are expected, their

adverse effects can be minimized by mechanical conversion, or by measurement and

compensation. If cost is not an object, 6-degree load cells exist which can measure

forces in all axes, including torque forces. Such a cell has been used in the INTACT

system [24]. In our large prototype we utilize a hierarchical implementation which

also shows promise for measuring off-axis forces while still maintaining a low cost.

We expect to be able to report on the results of such experimentation in the near

future.

Hysteresis - The cell's measurement stabilizes slightly differently depending on

the direction from which the load cell approaches the final value. This means adding

a certain weight will result in a different displacement magnitude than removing the

same weight. Consequently, adding and then removing a fixed weight could result in

a shift from the previous stable measurement even though the weight on the load cell

is the same. This translates into inaccuracy in the ability to measure precise weight,

but can be taken into account when measuring weight differentials, especially when

the recent history of force applied to the cell is known.

Temperature coefficient - The relationship between the measurement and the

force applied on the load cell is temperature dependent. This could have an effect on

the order of 1 percent of full range per 1 degree Celcius. This means that the wider

the workable range of the load cell the worse the temperature effect would be. This

could be compensated for, and is the appropriate coefficients usually are included in
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Figure 2-4: (a) Hardware data flow (b) Software data flow

the data sheets, especially for industrial, expensive, brand name load cells.

Non-linearity - The response of the load cell, especially if a cheap load cell, or

if the cell is being utilized close to the edges of its workable/sensitive range should

not be expected to be linear. This can be compensated for by measuring the load

cell's response over the desired range with known weights and calibrating for linearity

by inverse interpolation across the known measurements. It is important to note that

non-linearity and hysteresis interact, meaning that for a truly accurate calibration,

linearity should be characterized both by adding and removing weights.

Creep - Creep is the difference between the first stable measurement after a

change in force, and a later measurement without any change in force. There are

two categories: Creep Response - following a increase in force, and Creep Recovery

Response - following a reduction of force. Mostly, creep is derived from thermoelastic

effects in the metal from which the cell is made. The time until final settling of the

measurement can range from minutes to hours, for load cells that are sufficiently well

made to even reach a stable measurement. Creep magnitude is typically around 0.02

percent of the full scale load, while creep-like effects can appear to be greater than

this figure due to other components in the system, especially with cheap LCAs that

lack stability and compensation mechanisms.
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Figure 2-6: Large
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2.4.4 Sensor Placement

Three Point Contact - Many of the household human scales utilize four half-bridge

cells, to achieve both a robust base for supporting the significant weight of a human

as well as lower cost. For these reasons, it might be considered intuitive to implement

systems such as these with four load cells. However, there is a big disadvantage to

using four contact points for measuring the position of force on a plane. If modeling

the surface as completely rigid and non-compressive, application of force to such

a surface suspended over flexible load sensors inherently means tilting the surface.

Since a plane is defined by three points, measuring such tilt using four points is

over constraining the problem, this means that the data acquired has an unknown

distribution across the sensors, greatly limiting the achievable accuracy. We found

the result through the preliminary experiments, however, this could be numerically

explained in future works.

Reducing the sensor count to three sensors resolve this issue. In addition low-
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ering the sensor count lowers the overall cost of the system, however at the cost of

increased complexity in sensor placement selection. The results presented in this

chapter strongly suggest that if accuracy is desired investing in properly connecting

the units to the surface such that exactly three sensors can be used pays dividends.

For these reason, we chose to implement a three point contact mechanism and the

improvement in accuracy in force localization are shown in the evaluation section to

be an order of magnitude better (up to x40) more sensitive.

Surface attachment - In some situations, it could be tricky to implement a

three point contact system as it requires bidirectional force coupling in order to cover

the entire surface, and is not as intuitive as using 4 sensors, as described above. In

our prototypes we attached the sensors to a strong base with screws, and the sensed

(top) surface to the load cells using several approaches, for permanent installations we

used either screws or epoxy glue, and for temporary installations or when we wanted

interchangeable surfaces we used strong (1" x 1/8", N52, round) neodymium magnets,

this allowed for quick change of the surface for evaluation purposes. We used square

tops as well as round ones, utilizing a variety of materials including stretched canvas,

aluminum, wood, and acrylic. The evaluations for performance in this paper were

conducted on acrylic and wood surfaces. Further and more rigorous evaluation is

required to characterize the relationship between rigidity of the surface and accuracy.

2.4.5 Scaling up

3x3 hierarchy - To scale our system up from a personal work-area sized system

to a full table-top system, and beyond, we could have replaced the load cells with

ones with a higher load rating. However, we chose to implement a hierarchical system

utilizing the same TAL220 load cells for a number of reasons: keeping costs down,

examining flexibility of the design in stretching the same component, and for enabling

future examination into off-axis force measurement as might be enabled by having

each load sensor be a node capable of measuring the distribution of force and not just

it's total sum. This exploration has so far presented positive results as a cost-effective

method for extending the capabilities of futuredesigns.
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2.4.6 Software Design

The software architecture for our current prototypes is entirely implemented in Pro-

cessing, a Java based programming environment suitable for such experimental plat-

forms, and includes easy debugging and visualization tools showing the raw data as

well as filtered results.

We further implemented general heuristics in the software for detection of objects

and user interactions in support of more application specific developments. Low-pass

filtering of sensor data, computed force position and weight are all provided.

Low pass filters are used both to easily configure for an optimal experience, de-

pending on the goal to optimize for, as well as to simplify heuristics - as in comparing

a fast and slow low-pass of sensed weight to determine 'stability' [stable/unstable].

We used a simple implementation of a single-pole infinite impulse response filter, and

added to it noise rejection capabilities tailored for load cell driven data, rejecting

samples that would not make sense in the context of this system.

Figure 2-4 above shows the data flow in hardware and software. As can be seen,

the raw data from the hardware is split into three streams with different levels of

low pass filtering. The raw data, lightly filtered but somewhat delayed (milliseconds)

and highly filtered data (delayed by up to a second) is integrated and processed in a

generic fashion on top of which all of our applications were later implemented. This

generic process produces the force and position data as well as an initial classification

of the action performed amongst the basic set: object addition, removal, stacking,

and touch. Detection of movement, pouring action, etc. is handled by application

specific heuristics, in order to keep the generic platform simple, and widely applicable.

On top of the generic system different software decisions can use different types of

filters to properly balance response time and accuracy. In many interaction situations

decisions can be updated, a quick decision can be made using the raw (or lightly

filtered) data, and later on updated given the newer more robust data. This can be

performed in the millisecond scale, and above, as required. We implemented object

recognition, dragging, and interaction (touch, pressure, on or outside objects) in our
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Figure 2-7: Interactions the system can identify

prototypes, as well as several basic event-handlers for integrations with visual or

auditory extensions - such as playing audio in response to placement or touch of

objects.

2.4.7 Auto-calibration and simultaneous forces

A limitation of the system, as previously discussed, includes the lack of ability to

detect simultaneous forces. As such, if a user leans against the platform the calibration

could be thrown off. For the weight signal, we have dealt with these issues through

relative processing of weight rather than absolute processing, while for the position

signals a more application-specific approach is required. For example if one would

like to detect typing on a keyboard, the structure of the typing (frequency, position,

length) can be easily filtered out from the slower moving, heavier actions of the user's

body changing posture, or a second user pushing on the platform, etc.

2.4.8 Interactive functionality

The system allows for two main interactive modes: object detection though specific

weight sensing, and touch detection through force sensing based on quick fluctuations

of sensor data as shown in Figure 2-7 below. The sensing for each allows for a range

of activities to be performed such as object detection with items placed upon the

platform, and human touch gestures making contact with the platform, not limited

to one or the other.
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Figure 2-8: Experiment Setup

2.5 Technical Evaluation

2.5.1 Quantitative Evaluation

For our evaluation we followed the procedure used by Murao et al. [47] wherein

objects of different weights are placed repeatedly on several different points on the

surface and their recognition and position were recorded. In our experiment we placed

three different objects weighing 300, 600, and 900 grams each on five different points

on the table, in a T-shaped layout as can be seen in Figure 2-8.

The objects were each placed on each point five times, in total 75 object place-

ments were performed and the detected weight and position were recorded for each

placement. The overall position and weight errors per object can be seen in Table

2.1.

Using the same size platform and objects of the same weight as Murao et al. [47]

used our system performed a full order of magnitude (x10 to x40) better on both

positional accuracy as well as force accuracy.
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Table 2.1: Position error and weight error

Weight Error (g) By Test Point & Weight
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Figure 2-9: Distribution of weight error

2.5.2 Position Detection

The overall error in position detection was 0.57cm on average, and 1.5cm maximum

error. This amounts for an error on the same order of magnitude as the human error

in placement, which was observed during the experiment. While this is not sufficient

evidence to determine that the error in sensing is at any lower order of magnitude,

the stability of the signal suggests strongly that this is the case. This can be shown

experimentally, but is out of the scope of this paper. We plan further examination

of the accuracy for position detection on a variety of surface types, as previously

mentioned. For this purpose a robotic placement device will be utilized to eliminate

the human factor.
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Object (weight) Avg [cm] Max [cm] Avg [g] Max [g]
300 g 0.77 1.50 0.20 5.20
600 g 0.40 1.20 0.80 11.8
900 g 0.55 1.41 2.00 5.00
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Figure 2-10: Plots of detected points of object placement. Cross-hairs show ground
truth.

2.5.3 Weight Detection

The overall error in weight detection was 0.87g on average, and 11.8g maximum error.

If removing the single outlier of 11.8g out of the 75 placements, the worst case in all

other 74 placements was 7g only. This suggests that better filtering on the software

side can keep the error to within 7 grams, which is well within the capabilities of the

load cells.

2.5.4 Qualitative Evaluation

We constructed a dozen prototypes including several custom software layers on top of

the generic one previously described. The qualitative evaluations were mostly done

in-house, and we are gearing up production of more prototypes for more rigorous

qualitative testing in the wild. In these evaluations of prototypes, which are further

described in the applications section below, we observed that the users have had

no trouble interacting with the system, that interaction was natural, and that there

were no complaints of latency or confusion. This is far from sufficient testing, but is

suggestive of the positive results we expect to achieve from the next stage of testing

these surfaces outside of the lab.
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2.5.5 Discussion

The accuracy of the system, especially given its low cost, is considerably better than

other systems recently published. We attribute these improvements, as previously

discussed, primarily to using three (rather than four or more) sensor design, the in-

telligent data filtering (in both software and hardware), and the simultaneous reading

of the load cells.

The experiment results suggest that placement error can be further improved, as

the error direction seems to correlate with weight, as can be observed in Figure 2-

10. This might be achievable with a linear weight-dependent factor, though further

experimentation is required to clarify. It is conceivable that the bias in placement

detection is not really weight dependent but rather stems from experimenter intro-

duced bias, since the experimenter might hold the different objects differently, etc.

However we conclude this to be unlikely, especially since the bias is consistent across

all five points, albeit at different magnitudes. Further experimentation could clarify

these points.

While the number of placements used in the quantitative experiment described

here is rather low (75), the experimental data has a very low standard deviation,

and we have observed the same accuracy across all the prototypes we constructed.

The limited evaluation was performed at a larger scale than our other prototypes to

enable a more direct comparison with current state of the art systems which tend to be

larger than the prototypes we created, as those were more focused on TUI interaction

prototyping. We hope that the proof of concept for such interactions shown here will

give rise to more prototypes, which would enable a more rigorous comparison across

differentimplementations.

2.6 Applications

By developing a multi-purpose surface that detects location, movement and weight,

we are able to prototype numerous applications, as well as utilizing everyday found

objects and applying interactive qualities to them, as shown in Figure 2-11.
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Figure 2-11: Images of applications using found objects as controls. Including software
screenshots (top left of each image)

A View on Screen B. View on Screen

Figure 2-12: Drawing applications (A. Force-based drawing affecting stroke width.
B. Object-based drawing with assigned visual brushes.)

2.6.1 Drawing platform

Our first application builds upon the localization functionality of the system by pro-

viding a drawing platform that responds to movement and pressure by accurately

translating the location point of the user's hand placement. Users can draw using a

finger with variable force for variable thickness stroke (see Figure 2-12A). Also, by

training the system to recognize an object, we can assign different virtual brushes

(size, color or shape) to any found object to create a range of visual feedback for

painting and drawing applications, letting the affordance of the object guide the in-

teraction (See Figure 2-12B).

37



Figure 2-13: Farm animals placed on platform, including stacking functionality.

2.6.2 Interactive storytelling

By applying distinctly weighted characters, for example wooden farm animals, upon

the surface, the system can identify the animals and its position. Accordingly, sounds

or visual feedback from separate speaker or display can be provided for enhancing

imagination of children for storytelling. Stacking functionality can also be utilized to

detect specific characters being on top of a specific block (e.g. a cow on grass), to

add a layer to the storytelling (Figure 2-13). As long as there is a difference in the

weight, any objects can be identified in the system so that children can bring there

favorite toys in the application.

2.6.3 Interaction prototyping for User Interface Design

The use of our system for interaction-design prototyping such as interactive wire-

frames, allows for feedback such as sounds or vibrations to be incorporated into the

early phase of the design process in GUI based prototype (see Figure 2-14A). This

idea can be extended to TUI design, by the system recognizing physical object of the

weight. A good example utilizing the characteristics of our system can be MusicBot-

tles by Ishii et al. [27]. The stacking functionality lets the system identify if a bottle

is being opened by detecting the cap's weight (see Figure 2-14B).

2.6.4 Force-based Touch Gesture Controls

By applying various forces within a gestural interaction, controls can be trained to

understand what gesture is being made, as well as tracking the dynamics of the

movement to provide extra intuition about a user's behaviors (see Figure 2-15). For
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Figure 2-14: A: Touch interaction with paper-based wireframe prototype, and B:
opening of MusicBottles-like TUI on the system [27].

Figure 2-15: Force-based gestures as input control

instance temperament, intent (specific or accidental), engagement, command, and so

on. Having this data gives the opportunity for assessment of factors that are otherwise

unobtainable without obtrusive hardware.

2.6.5 Weight Tracking of Multiple Items

Using the functionality of multiple weight tracking, the system can be used within a

kitchen or lab table setting to aid in material measurement, inventory management,

etc. By coupling this with real-time feedback functionality, users can be guided

through the making process. In the case of cooking, they can precisely follow recipes.

Also, having the system in restaurant tables, customer behavior can be tracked by

measuring the weight of each dish so that restaurant owners can make use of the data

in an inherently anonymous way, as opposed to systems utilizing video.
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Figure 2-16: A.Lab items on platform. B.Kitchen items on platform.

2.7 Limitation and Future Work

The main limitation of the system stems from its inability to track multiple simul-

taneous forces. Being a non-multitouch system puts significant limitations when

compared to other multitouch systems. Additionally, detection of object orientation,

such as rotation or tilt can enhance the interaction even within the single-force do-

main. Luckily, hybrid systems can resolve issues such as these while maintaining all

of the benefits of the system. For example placement of an iPad device on-top of an

augmented surface produces a multi-touch, force sensitive surface, albeit only on the

system aware applications (through websockets, for example) on the iPad. Tighter

integration can be envisioned whereby the operating system itself could communicate

directly with the device and provide the data to all applications natively.

By combining with other sensing modalities, interaction could be further im-

proved. For example, adding acoustic sensing 151] could add a dimension for identi-

fying different touches, objects, materials, etc.

Further improvement could be made to the heuristics and filtering in software, to

tracking speed and accuracy, and to the detection of object dragging. Currently all

of these are implemented such that they perform well separately, and only the needed

modules are used in each interaction type. In principle, a more intelligent/cognitive

system could automatically adapt to the user's current type of interaction.

Tracking speed could be improved by sampling the load cells even faster, current

industrial systems support data acquisition rates in the kHz range, such improvements

could allow detection of additional features such as minute vibrations, and perhaps
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even sounds.

Regarding the easily customizable, deployable and scalable hardware design, we

are curious to conduct a user study for wide range of target audiences such as students,

designers, artists and scientists. We have already begun to distribute units, and

are currently lending several prototypes to students and researchers across the U.S.

and Europe. We hope to receive feedback that would help improve the software

architecture, and enhance the libraries currently available for the system as well as

explore integrations into other existing complementary platforms and uses.

2.8 Conclusion

Through the development of the load-sensitive system, we have shown that it is

possible to easily add ubiquitous interactivity to surfaces using minimal hardware

that is low-cost, durable and accurate. As weight is the main sensing factor, we allow

for interactivity to take place upon any material, thus diversifying the design space

in which the platform can be used. Due to its cost-effectiveness, our system is easily

deployable, allowing for numerous applications in multiple fields, as well as simple

integration into existing products. This chapter has presented the steps necessary

to produce such a system for other practitioners in the field. The next step in this

research will involve expanding the software applications as well as minimizing the

load-cell sensors to enable better integration with existing environmental elements

such as furniture and countertops.
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Chapter 3

SCALE: Load Sensitive Modules for

Force-based Interaction

3.1 Introduction

As stated in the introduction of this thesis, Force conveys fundamental information in

Human-Object Interaction, including force intensity, its direction, and object weight

[28] - information otherwise difficult to be accessed or inferred from other sensing

modalities. When force is captured during interaction, a wide range of activities can

be reconstructed such as way of touch, movement of objects and patterns of body

motion.

Force-based interaction is involved at different scales in terms of the intensity of

loaded force and the size of the interaction area. For instance, force-based interaction

can range from actions such as drawing minute letters on a piece of paper (-1g, 1mm),

to handling tools on a workbench (-~kg, 10cm), to dancing in a room (~100kg, 10m).

Even though researchers have already tackled each respective task, [47, 601, it is ideal

if interaction designers are able to explore the wide range of force-based interactions

within a single integrated framework.

In this work, the most essential technical underpinning of my thesis , we propose

a framework of processing load data from load sensitive modules to cover the three

main categories of force-based interaction, including Touch Interaction, Object Status
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Figure 3-1: The concept of SCALE: (left) Modularity and Force Retrieval (right)
Load Data Processing enables three types of functions: Touch Interaction, Object
Status Tracking and Motion Pattern Recognition.

Tracking, and Motion Pattern Recognition. The modularity of our system expands two

key aspects of load sensitive applications: scalability in weight tolerance by adding

a number of modules to fit the target load capacity on demand, and variability

in spatial configuration by reconfiguring the spatial placement depending on their

respective objectives.

Specifically for Touch Interaction, we have expanded the interaction area from a

flat 2D surface to 3D volume by developing a new algorithm freed from the geometric

shape information of an object, which is required in the previous method [24]. With a

broadened set of applicable objects, this function allows us to utilize the information

of a touch point in 3D space for further analysis, telling us which part of an object is

currently being touched, or what kind of shape outline the object has.

In addition to the algorithm improvements, we have implemented this framework

into a physical prototyping kit with compact hardware and a GUI designed for novices.

We additionally conducted a workshop with corporate designers and engineers to

explore the application space enabled by the system, and evaluated its utility.

Our contributions described in this chapter include;

*An architecture and design space for load sensitive modules to allow a range of

force-based interactions, including touch interaction, object status tracking and

motion pattern recognition.

44



* A new algorithm expanding interaction range from 2D to 3D above a load

sensitive surface based on an inverse-matrix framework without prior shape

knowledge.

" Technical implementation of hardware and GUI, and summarized findings from

our workshop with corporate practitioners to explore the application space and

to evaluate its utility.

3.2 Related Work and Approaches

The sensing technology for detecting the physical interactions between humans and

objects is one of the primary research agendas in HCI. A number of contact sensing

techniques using non force-based methods have been introduced, including vision-

based [7, 31, 32], IR based [22], capacitive sensing 113, 35, 56, 61], swept frequency ca-

pacitive sensing [23, 581, EM based [72], microphone [29] and acoustic based method[51].

Among the techniques stated above, force-based sensing methods have the notable

advantage of direct capturing of the contact force [681. In the context of HCI, several

force-based methods have been investigated, including Piezoelectric [17], and force-

sensitive registers [12, 52]. In terms of scalability in weight, the methods with load

cells show a wide range of applicability due to its high tolerance in maximum force

19, 461.

For the load-based methods, we have categorized the functionality into three parts,

including Touch, Object and Activity. On the load-based approach, many systems

have been proposed for touch detection purposes [47, 59, 67]. This approach natu-

rally expands to variations of touch, including tap, press, drag and draw, however,

the interaction area of these systems is constrained onto a 2D surface. Notably, IN-

TACT pushes the interaction area to a 2D surface in 3D volume by assuming prior

shape knowledge of the object on the geometrically-constrained surface 1241. Prelim-

inary formulation of our approach is proposed previously [69], and we improved the

algorithm in terms of mathematical stability with regularization terms, together with

added design framework and workshop study.
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Detection, or identifying objects, is another critical domain in the load-sensitive

method. As the foundation of this category is regarding objects, the concept of

Weight as ID conveys an essence that precise measurement of weight can be useful

for identifying objects due to its occurrence in daily life [101. Localization of the

target has been a hot topic from fields such as Biology [57, 74] and Robotics [4, 381.

In addition to Touch and Object, load-based activity recognition has been inves-

tigated for many years. Context-aware systems have developed in combination with

the algorithms of classifying signals [47, 59, 60]. Especially, the pose estimation for

the human body has been a growing field [18, 66].

Among such broad applications on the load-based approach, our system as a pro-

totyping tool kit unifies all the three application domains, including Touch, Object

and Activity, into a single framework of load data processing. With the technical

breakthrough being for detecting 3D touch, we expand the application field to ev-

eryday objects, freed from the requirement of having the geometric shape model in

advance.

3.3 SCALE: A tool kit for force-based interaction

3.3.1 Design Space

SCALE is a prototyping tool kit to encourage interaction designers and engineers to

explore force-based interaction, which is uniquely enabled by capturing direct force

information, with the architecture composed of load sensitive modules and a frame-

work of load data processing. The key feature of SCALE is its modularity, aiming at

scalability and variability, so that the users can increase the number of modules to be

capable of accepting heavier load on demand, and place modules to reconfigure the

spatial arrangement to fit their objectives, as shown in Fig.3-1 (left).

Furthermore, the modularity enables the system to cover a wide range of force-

based interaction with the support with three functions in the load data processing,

including Touch Interaction, Object Status Tracking and Motion Pattern Recognition,
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as shown in Fig.3-1 (right). Here we describe the design requirements for each process

as following:

Touch Interaction

The system should be capable of capturing the interaction between a human and

objects, and particularly touch is the common interaction seen in a wide range of sit-

uations. If the system captures both of the force intensity of a touch and the position

of the touch, this information can be utilized for further analysis. For example the

system could infer which part of an object is currently being touched. Furthermore,

if the system has less constraints on an object, such as restrictions on a shape, the

system could be applicable to many purposes. Therefore Touch Interaction of SCALE

is designed to capture various types of touch interactions happening on 2D surfaces

or in 3D volumes, freed from the shape constraint.

Object Status Tracking

The system should be capable of handling a large set of light and heavy objects in

a single manner. A pen with 10 grams and an adult with 60 kg would represent the

scalability seen around our life. Therefore Object Status Tracking has a function to

track the object position and weight. By calculating total weight and center of mass,

the five different status of an object can be classified: pick, put, move, increase and

decrease.

Motion Pattern Recognition

The system should be capable of capturing what people are doing on a table, or how

people are moving their body on a floor. When people walk or stretch, it causes

different signal patterns on load sensors. So we designed Motion Pattern Recognition

as a framework for recognizing different activities based on the signal pattern. Our

simplest scheme is composed of feature extraction, and the support vector machine

can distinguish between different user-defined activities.
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Figure 3-2: Architecture of SCALE: (left) Load sensitive modules and its controller
(right) Applications on top of the Load Data Processing architecture on a host com-
puter

On top of these processes, the user can develop their own applications in accor-

dance to their purposes. Since this application space, uniquely enabled by force-based

interaction, is thought to be broad, it is useful if the scope of the application space is

being disclosed as a list of potential scenarios. Therefore we figured out the scope by

having a workshop with corporate designers and engineers, as we describe the detail

in the latter part of this paper.

3.3.2 System Architecture

The system architecture of SCALE is illustrated in the block diagram shown in Fig.3-

2. There are three hardware components: modules, controller and host computer.

Each module contains three-axis load cells and its peripheral circuits to transmit load

data to controllers. All module data in the system is sent to one unified controller

and pre-processed with a simple noise filtering. Since the raw data from load cells

are sometimes polluted with sporadic saturated signals, we eliminate the outliers by

applying a simple threshold on the absolute value of the raw data.
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The host computer receives raw load data from a controller through a USB serial

bus. If we have N modules, s.t. N > 3, we receive an array of 3N load data. This load

data is sent to the signal processing core called Load Data Processing and the system

retrieves the force and its intersection as shown in Fig.3-1. This force information

is exploited by following three different pipelines: Touch Detection, Object Status

Tracking and Motion Pattern Recognition. After these three go through load data

processing, the results are utilized to make user-defined applications.

3.4 Load Data Processing

3.4.1 Force Line Retrieval

A force line is the key element of the architecture for the load data processing, which

is mathematically represented as a set of force f and intersection a as shown in Fig.3-

1. Here we describe how to retrieve a force line from raw load data. We assume the

sets of measured force fi, sensed at i-th load module (i = 1, 2, ... , N). For simplicity,

we could assume that all the sensors are placed at pi on the same z = 0 plane. The

touch force f and its torqueTis derived asf= i fi and T = Ei pi x fi by definition.

Here, the line of action for manual touch is expressed as x = a-+pd, parameterized

by scalar p. The normalized direction vector d is d = f/If and the anchor point is

ao= f XT/ f1 2. Since we can take an arbitrary point along the line as the anchor, we

obtained the intersection a as the anchor point intersecting with the modular plane,

wherea= ao- -d. On this formulation, the scalar p becomes regularized by being
aoz

zero at all times when the point is on the z = 0 plane.

3.4.2 Touch Interaction

We provide the algorithm to detect the touch point on a 2D surface or 3D object on

load sensitive modules in Fig.3-3. Here especially, we describe a unique algorithm of

3D Touch Detection, which exploits the unsteadiness of a hand during touch interac-

tion. We assume enough rigidity in the object, but it does not have to be composed
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Figure 3-3: Process for Touch Detection: (a) 2D Touch Detection (b) 3D Touch
Detection (c) Touch Classification

of a single uniform material. Our framework accepts multi-material objects (e.g. a

wooden desk with metal legs), as long as they convey force from a touch point to the

sensors without internal dispersion.

2D Touch Detection

As illustrated in the previous section for Force Line Retrieval, we used the intersecting

point a between the force line and z = 0 plane as the touch point, as shown in Fig.3-

3(a). By constraining the existence area onto z = 0 plane geometrically, we can solve

the mathematical ambiguity along the force line.

Another type of geometric constraint is investigated in a prior project called IN-

TACT [24]. Instead of the z = 0 plane stated above, as the geometric constraint on

the force line, they introduced the 2D surface envelope of an object. This approach

was clever enough to expand the interaction area from a 2D surface to a 2D envelope

in 3D volume, however, it is still less scalable since this approach requires prior shape

information and its orientation of the object on the surface in advance. That means

it is difficult to expand the application range of the method to an object with an

unknown shape.
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3D Touch Overview

To address the problem stated above, we propose an algorithm to localize the touch

point in 3D space without any geometric constraints, with focus on the unsteadiness

of a human hand. Even though our approach is still constrained on the 2D surface

envelope of an object as well, this approach outstands since it does not require any

prior shape information and can be applicable to any rigid object.

The key insight of our solution lies in the fact that when we touch an object with

our hand, the touch is never stable. As illustrated in Fig.3-3 (b), when we aggregate

the several recent lines they should have slight differences in direction. By looking

at these lines, we can find the touch point as the most possible intersecting point of

all the lines. Instead of assuming a geometric constraint, our approach equivalently

introduces the temporal continuity of human touch. This assumption is thought to

be valid when human touch is much slower than the frequency of load sensing, such

as 80 Hz sensing with the sped-up ADC, which we introduced in the implementation

section.

3D Touch Algorithm

Here we describe the detail of the algorithm to localize the 3D touch. Firstly for

simplicity we transformed the equation for a force line x = a + pd into the form of a

matrix equation, where 13 is a 3x3 unit matrix.

[13 -d] = [a] (3.1)

This equation is apparently under-determined, so we must make the equation

over-determined in order to calculate the touch point x = [x y z] by the pseudo-

matrix method. The touch point x can be assumed to be constant during a touch,

and the system obtains different force lines x = at + ptdt , where the discrete time

stamp is denoted as t. When we collect the most recent T data during the touch, the

matrix equation mentioned above naturally expands in the manner below:
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13 -di   0 ... 0 x a1

13 0 -d 2 - 0 Pi (3.2)

I3 0 0 .- -d PT aT

Here we abbreviate the equation as DX = A for simplicity, where D E R3TxT+3

X E RT+3 and A E R3T. Even though this equation has the worse condition number

in terms of the inverse problem framework since the force lines are thought to be quasi-

parallel, we can solve the equation by the support of appropriate regularization terms.

Finally, we reach the least-squares solution X by using the Moore-Penrose pseudo-

inverse matrix method. On this framework, the solution x tends to be constrained

around the origin of the space, and slightly gets closer to the surface under the

influence of the regularization on pi as well.

Note that here we introduced generalized Tikonov regularization, rather than the

standard Tikonov method with a uniform regularization parameter A, to obtain a

stable solution X by reducing the effect of sensing errors, which has introduced in a

multi-modal sensing method [45]. This is because the regularization parameters, A2

for x and A, for pi, have different physical dimensions, such as x as a spatial position

in mm and pi as a dimensionless scalar. We experimentally adopted 20 for T, 0.1

for A_ and 0.01 for A,. Here we finally reach the touch point x = [X1 X2 X3] as

picking the first three components in X:

X = (D T D + diag(A, 2, A , A , - -- ,. A 2) )'DT A (3.3)

Touch Classification

The touch classification algorithm is shown to classify an immediate touch to a cor-

responding registered touch point. It takes T samples, typically 0.25 sec or more,

to register a touch point as shown above. However, with the classification algorithm

the system can detect the touch to registered points immediately with only a single
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sample of force line.

We will classify the green force line as the most possible registered point shown

in Fig.3-3 (c). There are two steps of selection: Cylindrical Search and Direction

Similarity. For the first step of Cylindrical Search, we will ignore all of the distant

registered points from the force line with the threshold radius r. For the second step

of Direction Similarity, we will calculate the inner product of normalized directions

between input force line and that of the registered point. The appropriate parameter

r heavily depends on the application, yet we generally adopt 30 mm for the threshold

radius.
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3.4.3 Object Status Tracking

To detect an object with weight and position and identify its status from load signals,

there are two steps of load processing. The first step is called Stability Check, where

the system determines the weight and position of a new object or the removal of an

existing object. The second step called Database Manipulation is where the system

accesses the internal database to identify the type of action. The core concept of

the second part is Weight as ID insight, which claims weight information is useful to

distinguish two or more different objects on a scale with required precision [10].

Stability Check

In the first part of Object Status Tracking, we focus on weight data wi = fi, which

is the equivalent z-component of load from each module. Here we have Wtotal = Ewi.

To check the emergence or disappearance of objects, the system needs to distinguish

Stable status, where every raw load data is almost static, from Unstable status. This

stability check is conducted through simple thresholding by subtracting the slow LPF-

ed (low pass filter) from the fast LPF-ed data.

stability = slow-LPF(Wtotal)- fast-LPF(wtotai)

If stability is small enough, it means the objects on the surface are Stable. This stabil-

ity has a trade-off with response of the system. We experimentally adopted 2 grams

as the threshold value for stability. Also, LPF is implemented as the exponentially

weighed moving average, with the filter strength a at 0.04 for slow-LPF, and 0.25 for

fast-LPF. Once the status is classified to Stable, the center of total weight Xtotal can

be calculated as Xtotal = EwiX/Ewi, where xi is the position of i-th module.

Database Manipulation

In the second part of Object Status Tracking, the system handles the internal database

and reflects the result to SCALE GUI, as shown in Fig.3-4. If the detected total weight

Wtotal is above zero, the object is to be labelled as put. If the weight is not above
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zero, the object is labelled as pick. In either case, the objects are then added to the

database. In Fig.3-4, the newly detected object #4 has the same weight as that of

object #2, which is picked. Here these two objects are identified as the same, and

merged into object #4. This operation is called move. If the new object #5 appears

on the same position as the existing object #3, the system subtracts the weight from

that of the existing object #5. This is decrease of the weight. The same procedure

will apply for increase.

In our practical implementation, since the system faced errors in weight and po-

sition we need to set a tolerance to identify the values. We experimentally applied

thresholds to identify two slightly different values to one value. As a result, we

adopted 5 grams for the weight threshold and 3 cm for the position threshold.

3.4.4 Motion Pattern Recognition

Here we describe the pipeline to distinguish two or more activities from each other

based on load signals. It is out of our scope to construct a pipeline to build general

Motion Pattern Recognition framework, so we drew from activities that follow the

same raw signal with periodic patterns.

In our pipeline, the incoming raw signals are converted into a feature vector,

which expresses a specific type of motion by feature extraction. The user can choose

any feature extraction method, including fast fourier transform, average, standard

deviation and etc. The feature is fed to be classified by a support vector machine

(SVM) algorithm.

Specifically for our applications, we record the force and torque vectors for 1

sec with 30 Hz sampling rate, and then we derived the standard deviation in each

component as a 6 dimensional feature vector. Also we adopted the fine Gaussian

kernel for the detailed algorithm for classification.
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Figure 3-6: Interactive GUI for SCALE: (Left) It shows a current touch point and
registered points for Touch Detection (Right) It shows the objects with its position
and weight for Object Status Tracking

Figure 3-7: Application ideas from workshop presentations: (a) tangible music com-
poser (b) interactive narrative with voiced characters (c) fish pointer for aquarium
exhibition (d) activity sensing on the floor
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Application Ideas # of Ideas FBI types
Space per.Group I

eA B C D Object Touch Moion

Healthcare Dai Health Check 3 4 -•
Hel Medical Examination ;3 1 - 0

Surveillance Personal Identification 2 1 0 0
Tracking Living things /Objects 1 2 3 • • *
Help Cooking 2 3 • 0 0

CookdingkinCokig Record Cookin 1 1 1 1 • •

Entr- GameUI 1 1 •
tainmnt Help Creative Works 3 * * *

Compose & Play Music 1 2 1 0 0
Control Air / Sound / Lght / TV 2 • 0

Home _Help Non-Verval Communication 1 -0

Storytelling with Figures 1 0 •
Learning How to Use Device 1 0 •

Observe & Point to Living Things 1 _ •
Dance / Instruments / Yoga 1 - 1 -

Figure 3-8: Classification and analysis of application scenarios from corporate design-
ers and engineers

3.5 SCALE Prototype

3.5.1 Modular Hardware

The overall SCALE architecture is illustrated on Fig.3-2. We designed two types of

hardware to maximize usability of the entire system: modules and a controller.

Each module contains a three-axis load cell (FNZ100N, Forsentek.inc) with a load

capacity of 10 kg, and three amplifiers (HX711) with analog-digital converters in the

fastest mode at 80 Hz. The module is cuboid with an 90 x 90 x 35 mm form factor. To

make the entire module compact enough to fit on the palm of your hand, we designed

an original PCB and put all of these elements inside of a 3d-printed cabinet, as shown

in Fig. 3-5. To maximize the grip between the module and floor or object, we put

layered rubber onto both sides of the module surface.

The load sensitive modules are to be connected to a single controller with eth-

ernet cables, which has a detachable and regularized connector so that a user can
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Figure 3-9: Demonstration for Touch Detection: (a) Virtual Interface on Physical
Objects (b) Embedded Usage Tracker (c) General Shape Capturing with a tripod as a
target (d) a close-up picture of captured shape of the tripods

easily reconfigure the number and the placement of modules. A single controller is

capable of being connected with 8 modules at maximum, which leads to scalability

in weight tolerance and variability in spatial configurations. A controller contains a

micro processor (Teensy 3.6) to aggregate and pre-process all of the raw data from

the modules, and transmit them to the host computer.

3.5.2 Software GUI

All of the software composed of real time signal processing and Graphical User In-

terfaces (GUI) is implemented on the open-source library (openFramework) by C++,

as shown in Fig.3-6, except the Motion Pattern Recognition feature, which is imple-

mented on Matlab environment.

The GUI provides three different primitive modes, including Touch Detection,

Object Status Tracking, and Motion Pattern Recognition (only for capturing signals),

and the user can develop an integrated system on top of these three basic functions.

For all primitive modes, the user is capable of interactively registering a current touch

point or object to the database and selectively serialize them for further analysis for

other applications.

3.6 Workshop for Exploring Application

We conducted a SCALE hands-on workshop to evaluate the utility and to explore

potential applications which we had never expected. The workshop procedure was
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Figure 3-10: Demonstration for Shape Capturing: The system classifies the type of a
package based on weight and its size.

designed in a way participants can accomplish prototyping their ideas and present

their narratives with the developed demonstrations.

3.6.1 Designing the Workshop

With the support of a product corporation, 12 designers and 8 engineers attended

the workshop and were divided into 4 teams to evenly distribute expertise in each

group. There were three sessions in the workshop. The first 2-hour slot was designed

to brainstorm new application scenarios. The participants were asked to come up

with as many small use cases possible, to then merge them into a larger concept. The

second session was 6 hours of hands-on participation to develop functional applications

with the SCALE development kit. After providing detailed instructions to use the

kit, each team that is composed of 5-6 people started to collaborate with colleagues

to prototype their own ideas. We concluded with a one hour session to present the

developed ideas and prototypes and to receive feedback from peers.
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3.6.2 Exploring Application Space

We have compiled the ideas that corporate designers and engineers developed from

the brainstorming session into Fig. 3-8. To catch the core interests of participants,

we classified the ideas into six categories: Health-care, Surveillance, Cooking, En-

tertainment, Home and Learning. Among a range of promising scenarios, we picked

some notable ideas worth sharing: (1) monitoring one's health through the analysis

of posture changes while sitting, walking and sleeping; (2) tracking activity of pets or

growth of babies and plants; (3) controlling home devices, including speakers, lights

and air, through direct contact with furniture, walls or floor, rather than through

digital interfaces. In addition to these ideas, from the user's perspective we received

comments that mention a guideline on how to develop or implement each idea on

top of our software pipeline, and the best use cases for Touch Interaction where the

system becomes the best from a practical point of view among all sensing technology.

From the hands-on session, we had four different functional prototypes, as shown

in Fig. 3-7. We briefly describe them in the following list:

" Group A: The tangible music composer is implemented on Object Status

Tracking, and allows the user to play and mix up music based on the placement

of different types of objects on specified disk locations, as shown in Fig. 3-7(a).

" Group B: The interactive story-telling with voiced characters is designed for

children to breathe life into their favorite toys through a pre-recorded voice-over

triggered by touch interactions, which is implemented on Touch Detection and

Object Status Tracking, as shown in Fig. 3-7(b).

" Group C: A fish pointing system for future aquarium utilizes the 3D

Touch Detection technique to select a specific fish swimming in the middle of a

large tank with the assumption that the 3D position of all fish are tracked by

computer vision, as shown in Fig. 3-7(c). This application provides detailed

knowledge of the selected fish, such as the name, species, habitat and food, by

touching on the load sensitive glass window.

" Group D: The last application is the posture-aware floor for Yoga practi-
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tioners, designed to identify individuals and analyze their posture and to allow

the system to advise the individual on how to modify a post for safe practice,

as shown in Fig. 3-7(d).

3.6.3 Evaluating Utility

To analyze the utility of the toolkit from a viewpoint of practicality, we conducted

the subjective evaluation by distributing a questionnaire after the workshop. The

questions were along the lines of, "How did you feel about SCALE as a ubiquitous

sensitive system?" by using Likert's five points scale from "Very Good" to "Very

Bad" and, "What are the pros and cons of the toolkit?" through open response. We

received answers from 10 participants. The resulting scores from the first question

are 4.6 / 5.0(Average), 5.0(Median) and 0.66(SD).

Regarding the comments from the second question, the positive comments are

as follows: "It's really useful to be able to sense a variety of different things about

the physical state of objects or people using a surface and invisible sensor" (Female,

Industrial Designer), "The interface is intuitive" (Male, Chemical Engineer) and "De-

tecting not only the single touchpoint but a series of touchpoints that translate into

an activity" (Female, Experience Designer). Among the negative comments were:

"The threshold of SCALE should be adjusted so that people can act by elbow, body

and so on" (Male, Cognitive Psychologist), "The necessity of detection range and UI

for ease to control" (Male, Software Engineer) and "Accuracy across large surfaces,

sensitivity across multiple touch points at different densities" (Female, Experience

Designer).

The results of the questionnaire and brainstorming session as shown in Fig.3-8,

which allow us to consider the following points. Firstly, we can see that an advantage

of SCALE is the capability to recognize a wide variety of Touch Interaction with in-

visible forces. Secondly, SCALE is expected to use its Motion Pattern Recognition for

grasping multiple interaction touch points. Finally, improvements on the versatility

and application of SCALE are needed.

On the other hand, we found a issue regarding the constrain of the number of
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Figure 3-11: Demonstration for Object Status Tracking: (a) Retail Automation en-
ables to capture object movement and liquid consumption (b) Smart Workspace is
monitoring the location and usage of the tools

sensor module. While the reconfigurability of sensor modules made it easy for partic-

ipants to quickly customize the layout of the modules, our prototype was constrained

to use three module. This limitation made it unstable for some of the large scale

interaction prototypes (e.g. body gesture detection). We plan to improve our User

Interface software and force vector calculation algorithms to accommodate multiple

(more than three) sensor modules placements.

3.7 SCALE Applications

Reflecting on the concluding remarks from the workshop, we identified 4 application

areas where we felt that SCALE could have a potential impact - either as a useful

enhancement to an established application or a novel application, uniquely enabled

by our approach:

" making everyday objects and surfaces force sensitive

" capturing the general shape of an object by touching it

" locating objects, including liquids, through weight identification

* making home fixtures an activity tracking platform (eg. floors)

In the rest of this section we propose a few exemplary applications for each cate-

gory, shedding light on the utility and scope of our sensing approach.
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Volume Slider on PC Monitor

If everyday objects can be sensitive to touch, including touch position, direction, and

intensity, they can configure functions in productive ways. The canonical example

would be a PC monitor with a user-defined touch point, as shown in Fig. 3-9(a).

When a user touches the top-right corner, the audio volume changes from low to high

according to pressing force. A user can also assign a power button just next to the

mute button, since the system can differentiate two overlapped registered points with

the classification algorithm.

Shelf Usage Tracker

In addition to enhancing a PC monitor, making everyday objects force sensitive can

be useful for objects with no feedback system inside. A user can easily augment a

tool shelf containing different types of screws into a trackable activity tool by putting

only three modules beneath the shelf or table surface, as shown in Fig. 3-9(b). When

a user opens the third drawer and grabs some screws, the quantity and the type of

screws are distinguished immediately.

Shape Capturing By Touch

Our 3D touch algorithm allows a user to capture the general shape of an object, like a

notebook PC, by touching its outer points. After a user repeatedly touches multiple

points around the object, the detected points are connected, and a contour of the

object is captured, as shown in Fig.3-9(c).

Since our system is capable of capturing the general shape of an object from only

load data, the system classifies an object into the user-defined categories based on

its weight and estimated size, as shown in Fig.3-10. This could be useful for the

application requiring simultaneous acquisition of weight and rough shape, including

the measurement of packages at postal offices, or the airport counter to check-in the

bags for flight, to estimate its cost and rough volume.
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Figure 3-12: Demonstration for Motion Pattern Recognition: The system classifies
four different activities: (a)stand (b)stretch (c)walk (d)wave

Retail Automation

On top of the object status detection mode, combined with an external database of

product information, it is possible to prototype an automated checkout system on a

load sensitive table as shown in Fig. 3-11(a). Recently, this type of application has

been well-investigated using machine-vision systems, yet our load sensitive approach

is adding an essential value of weight-based interaction, including selling-by-weight.

In addition to discrete objects, liquids or granular products are under coverage of the

SCALE system. A customer can take as much coffee as they want, and be charged

according to the exact amount of consumption, since the change in weight is captured

with its position.

Smart Workspace

The workbenches or tables enhanced by load sensitive modules are becoming smart

enough to track the usage and positions of tools, like a handy drill, as shown in Fig.

3-11(b). The system remembers the previous position of a handy drill, so that the

user can indicate the current location of the tool through other display techniques.

Additionally, if the user forgets the place where the drill should be returned, the

system will notify you of the location by searching in its database.
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Posture Estimation on a load sensitive floor

Once load sensitive modules are embedded beneath the room floors, the surface imme-

diately becomes capable of motion pattern recognition. From the different wave shape

of load signals, the system classifies the type of movement (running) and displays a

caution to stop running inside the room, as shown in Fig. 3-12. Further analysis

including affection inference or user recognition could be implemented on top of the

load processing framework we have proposed in this paper.

3.8 Technical Evaluation

Here we provide the performance of our prototype we experimentally evaluated to

support the viability of the system. We setup the measurement on accuracy and

precision concerning spatial position, and conducted two different experiments for

the horizontal plane and the vertical axis, as shown in Fig. 3-13.

The horizontal accuracy is measured on xy plane, especially related to 2D touch

detection or object localization. As shown in Fig. 3-13(a), we achieved less than 1

cm accuracy in the prototype, tested with the three different weights (300, 600, 900

gram) to check the weight consistency of the algorithm.

The vertical accuracy is measured along the z axis to evaluate 3D touch point

detection, shown in Fig. 3-13(b). We put a fixed size shelf on the SCALE platform,

and keep touching a point on each surfaces for 1 sec. We repeatedly obtain the

estimated height for 10 times. In the figure, we illustrated the tested height as a

small red dot and the standard error as a bigger red circle. At most we have 7cm

accuracy at the height of 50 cm. While the error seemingly expands according to the

height, it would be useful to distinguish two different surfaces in a shelf.

Also, as shown in Fig.3-13(c), we classified four motion patterns according to the

proposed pipeline, and evaluated the accuracy of the prediction by making a confu-

sion matrix. For the specific four different body motion, the prototype successfully

classified them with more than 90 % accuracy.
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Figure 3-13: Results from Technical Evaluations: (a) Horizontal Accuracy from Object
Status Tracking (b) Vertical Accuracy from 3D Touch Detection (c) Confusion Matrix
for Motion Pattern Recognition

3.9 Discussion and Limitation

Multi-touch Inability

Our system is not designed to accept multi-touch input in parallel to other load

sensitive systems. If two different people are interacting on the surface or handling

the objects simultaneously, the data processing framework would fail. This is because

as shown in Fig.3-1 we combine all of the signals from load cells into one force line

at the very beginning of the processing pipeline. Thanks to the modularity of our

system, we can apply different modules beneath two areas where a user would like to

separately detect multi-touches.

Database

An additional database about product, which is composed of product name, sale price,

or materials would be useful to build wider applications, especially for Object Status

Tracking. For example, our basic system stores the set of (weight, position) as shown

in Fig.3-4. Once we assign the initial relation between weight and product, or position

and product, the system is capable of tracking all changes during its execution.
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Speed

This system has 80 Hz throughput of touch point detection, yet we are facing an un-

avoidable latency of at least 0.25 sec, since the system requires this for the acquisition

of a bundle of quasi-parallel action lines, and it usually takes more than 20 samples.

Although our system could apply to 3D input, there are limitations in expanding

to temporal critical applications, such as making instant musical instruments with

pieces of cardboard.

Scalability

We can deploy a much larger system, such as a load sensitive floor on an architecture

scale, with the advantage of area and weight scalability. Thanks to the modularity

of our system, we can put as many modules as a user requires to meet the maximum

load requirement. If the user exceeds the load tolerance of the system, they have

another option of using higher-capacity load cells, such as ones with 100kg tolerance,

in turn sacrificing the minimum distinguishable weight on the platform.

3.10 Conclusion

We proposed a load processing framework with load sensitive modules for enhanc-

ing force-based interaction, and explored its design space with scalable and variable

architecture. The workshop with corporate designers shows a range of applications

and the utility of a modular prototyping kit with the algorithm including 3D touch

detection. We envision the SCALE framework provide ubiquitous interactive surfaces

with scalable load sensitive architecture to capture scalable Force-based Interactions

of everyday activities for further analysis of human object interaction.
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Chapter 4

KIOSK: SCALE Application for

Customer UX in Farmer's Market

4.1 Introduction

The increasing availability of information communication technologies in retail stores

has created retail technology solutions in recent years[16]. For example, recognition

technologies for customer buying behavior[71, 25, 55, 63] has taken an important

part for emerging automated goods control and checkout[3, 431. On the other side,

regarding the trend of retail stores, small temporary stores such like directly selling

by producers has been increasingly attracting attentions to meet diversified demands

of customers with differentiated products[50].

In a condition like this, toward the future, retail technology solutions should be

enhanced enough to expand to every stores from supermarket to farmers market. The

reason for that is the fact that it is increasingly needed to improve efficient supply

management in stores as well as comfortable customer's experiences, even if in small

temporary stores. However, the limitation that makes seller's efforts in installation

of system tends to be an obstacle to deploy to every stores. For example, regarding

computer vision(CV) or radio frequency(RF) technologies based recognition system,

the installation needs seller's efforts for setting sensors up at a proper place for sensing.

Especially, for farmers market's sellers, the problem of installation becomes significant
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due to its low-cost operation strategy. Thus, we started exploring a minimum viable

goods control system so as to realize easy installation for small temporary stores.

In this study, we assume that the experimental goods control system should be

designed on the basis of two concepts that we defined as follows. The first is to be

system embedded configuration. In order to enable easier installation and the versa-

tility of use, the electronic components such as sensor devices should be embedded

into selling equipments itself like shelves or tables for goods display. Thus, the sensor

device component must be designed for minimal simplicity, and also the component

should be comprised of conventional devices. The second is to recognize consumer

buying behaviors in real-time. As we can see in large store's tend, recognition of

consumer's behaviors is naturally considered as a primary function for automated

solutions and in-store marketing. But then, we have only to focus on the necessary

behaviors to keep simplifying the system.

This study aims to create the first prototype which has the characteristic of easier

installation and recognition of customer behaviors with a simplified configuration

for smaller temporary stores. Though this study suggests an early-stage prototype

without a field verification, we believe that this study will be the first step to helping

an expansion of emerging retail solutions to the long tail of retail stores.

4.2 Related Works

4.2.1 Customer Buying Behavior Recognition

Regarding customer buying behavior recognition and analysis, the studies have been

increasingly conducted thanks to progression and generalization of behavior sensing

technologies including CV or RF technologies.

In this study, the challenge is to enable unobtrusive for the interaction behaviors

between customers and goods in farmers market's small stores. In the light of the

condition, several studies have explored how accurately the behaviors are recognized

by using conventional image sensors including Kinect. Popa et al suggest a system
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for analyzing customer behavior patterns related to products interaction, and they

obtained an accuracy of 80 percent for six basic handling actions they defined[54, 55].

Regarding utilizing RF technology, several researchers have investigated to easily

grasp the customer behaviors[63, 62, 73}. They suggest motion recognition methods

by detecting RFID tags which are attached on goods. In addition to them, Avrahami

et al present an unobtrusive recognition system which utilizes an RF-rader sensor

mounted under a table surface[5]. The system works with high recognition accuracy

in a lab environment. Moreover, Sharma and Lee suggest a unique method of sensing

sound that customer's smart watch emits to grasp customer behaviors[64]. Although

these systems perform high recognition accuracy by using conventional devices, the

systems have the limitation of target goods and a range of goods handling behaviors,

and need to user's installation efforts.

4.2.2 Surface-Embedded Object Sensing

Here, we aim for the unobtrusive sensing on a surface, which means that the sensing

system requires no attachment, wrapping or coverage on the object itself. Instead,

the focus is on the interactions with the object placed on a surface. One popular

technique is object recognition based on computer vision systems [33]. To address

the issue of occlusion, or line of sight, here we focus on table-embedded vision systems.

There has also been research based on the token-based touch sensing technique, yet

this approach requires pre-defined tokens or markers [31, 32, 7].

We decided to utilize load-based approach as the touch sensing platform, since

it has an advantage that is capable to capture both of the total load and the center

position of the load based on simple triangulation. This simultaneous acquisition

of weight and position is widely used in the applications from robotics to human

computer interactions 110, 59, 60, 47], however, the spatial resolution is limited in

horizontal 2D plane and no way to detect the height of the touch point from the

sensory plane.

Here as a conclusion, we are focusing on load-based approach which allow a user

to measure the both of position and force directly and provide a thin and single form
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factor for easy installation.

4.3 Design

A first step in our exploration of prototyping of the goods control system, we named

KI/OSK is the definition of the design specifications. Before that, we need to consider

the requirements of smaller temporary stores. To figure out the specification of our

goods control system, here we provide Preliminary Investigation, Design Requirements

and System Specifications.

4.3.1 Preliminary Investigations

The requirements are compiled in keeping with preliminary investigations by ob-

servations of farmer markets and interviews with the persons who concern about

organizations of farmers markets in Tokyo, Japan as follows. Regarding the limita-

tions of space regulations, each shop is basically assigned to a space(typical size, 3.Om

square) and one or two tables for goods display shelves(typical size, W:1.5m x D:0.6m

x H:1.0m). And, as characteristic of farmers markets, in most of cases, each store in

a farmer's market is managed by one seller who almost is producer of the goods.

Accordingly, the stores provide unique shopping experiences like talking about

goods with sellers. Moreover, farmer's market has usually a lot of fresh foods stores

due to customer's high-demand for purchasing fresh foods. Most of the customers tend

to be interested in higher quality and lower price foods according to their lifestyle.

On the other side, seller tends to be bothered about unaccustomed checkout, packing

operations and compiling sales data. And also, they are interested in the customer's

interaction with goods to know the interests of customers.

4.3.2 Design Requirements

The requirements for KI/OSK are as follows, (1) KI/OSK focuses on recognitions

of two customer's buying behaviors phases, selection of goods and check-out goods.
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In the selection phase, since customers tend to select goods while handling them,

the recognition naturally record physical interactions between customers and goods

on shelves. In the chef-out phase, we aim to realize an automated registering and

calculating transactions at cashier to support the seller's check-out operations. (2)

KI/OSK focuses on fresh foods and drinks which are major commodities in farmer's

markets. We aim to enable the recognition system as mentioned above to apply

for a wide range of foods. (3) KI/OSK employs an approach to embed electronic

components into a table equipment in order to realize easy installation for regular

farmers market stores. We aim that seller have only to set a table up and connect

with PC, and they are able to use KI/OSK.

4.3.3 System Specifications

We decided for KI/OSK to employ a load-based sensing approach among other avail-

able technologies mentioned in related works, since this approach is capable to satisfy

the requirements above. The reasons are (1) load is occurred by object's weight that

is an intrinsic property of object and force acting on an object. Thus, object's load

variation is recognized via on everywhere the object contacts, (2) load sensing suitable

for selling fresh foods and drinks by weight, (3) load sensor is a conventional which

is low-cost and small-size. On the other hand, CV based recognition approach has

the limitation of configuration design owing to considering the position of cameras or

tags and the light condition, and recognizing an amount of foods.

In the prototyping, the challenging are how the load sensing system should be

designed to accurately recognize load sequences, further customer's buying behaviors

and simplify embed into a table top board. We hypothetically design KI/OSK config-

uration as shown in Figure.1. The first prototype system is basically comprised of the

minimum number of load cell sensors with the cell amplifiers and a microprocessor to

grasp object position on the top board and embed between table top boards.
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Load CeU + Lad CeU Amp

Figure 4-1: KI/OSK system configuration. the load cells, load cell amplifiers and
microprocessor are located between top boards

4.4 Implementation

Here we explain how the hardware and software in KI/OSK system is implemented,

followed by the design guideline we mentioned in advance.

4.4.1 Hardware

KI/OSK platform contains both of the electronics to achieve the position sensing

with load cells and the wooden board interface to provide the natural affordance as

well as a common table in a farmers market. In the electronics, three sets of a load
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cell (TAL220) and its amplifier circuit (HX711) are connected to one microprocessor

(Arduino Uno), which sends the measured data to a laptop (Macbook Pro).

Each load cell is fixed at a vertex of a triangle beneath the wooden board with

screws to make tight and rigid connection for better sensitivity. Every single load cell

has maximum capacity of acceptable load, which is 10 kg with the low cost sensor

in the prototype. This is durable enough for a table in a farmers market, but a

designer who has much severe requirement could choose a load cell with more than

100 kg capacity. Also, we prepared the wooden board with 0.6m x 1.2m, which has

the same dimension as the top panel of an off-the-shelf table, to conduct actual-scale

experiments.

Figure 4-2: (Left) a hardware prototype of KI/OSK platform, with the removal of
top board (Right) the software capturing all the object transfer and user interactions
on the platform

4.4.2 Software

The design goal of the software is to process the acquired data and recognized the basic

interactions for inferring customer buying behavior. The data sequence containing the

triplet of measured weight is continually sent from the Arduino to KI/OSK software

in a laptop, developed in the Processing environment. Here we explain the software

pipeline, including Load Localization, Object Detection and Object Tracking.
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Load Localization

We implemented the localization system based on a simple triangulation with the

positions of load cells and the incoming triplets of measured weight, denoted as pi

and wi respectively, where i = 1, 2, 3 represents the id of each load cell. Here the

system could estimate the current total weight w and its position p by following

formula.

W= w and p = Ei wip:/ Ei wi

Object Detection

The goal of Object Detection is to distinguish the signal pattern when a new object

appears from the other patterns caused by user interactions, including touching or

dragging. These interactions by a human hand make fast fluctuations in the sequence

of measured load and hence distinguishable difference from an object emergence.

Since we treat w > 0 as object emergence and w < 0 as object missing, the system is

able to capture object missing in the same manner.

To capture the fluctuation arising from user interactions, we applied two different

low pass filters (LPF) on the calculated total weight w, called Fast LPF and Slow

LPF. Since these two filters are implemented based on exponentially weighted moving

average, where the smoothing weight for the newest data sample is 0.25 and 0.04

respectively, Slow LPF has to have more stable and steady value. Therefore the

system recognize the emergence when the absolute difference between Slow and Fast

LPF becomes lower than a certain threshold. For detecting multiple object on a single

surface, once an object is detected and recorded to the database the sensor values are

calibrated to be zero again for next sampling.

Object Tracking

We implemented Object Tracking function on the software, lying on the fact that each

object has unique mass inside and hence this could be utilized as unique identification

when it appears again after a object with the same weight was missing. Here we
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assume that two objects with the same weight are not picked up simultaneously, in

other words, the system expects that missing objects with a certain weight is unique.

This functionality of tracking object provides a user to return a product after their

pick-up since the system identifies it as the same product by the stored weight.

4.5 Technical Evaluation

Figure 4-3: The evaluation of the accuracies in position and weight. (left) the setup
of technical evaluation (right) the plot of measured points and standard deviation in
repetitive measurement

We conducted technical evaluations on following basic components: weight, po-

sition and recognition time. For each target value we prepare 4 reference point and

a test cylindrical object with 167.5 gram weight as shown in Figure.4-3 and put the

object on the reference points repeatedly. The measurement of weight, time and posi-

tion is conducted 10 times respectively and then we calculate its average and standard

deviation. As a result, averaged weight error is 6.1 gram, averaged position error is

7.3 cm at maximum and averaged recognition time is 1.48 seconds.

Also, we checked if three basic human interactions, including touching, dragging

and tracking are surely captured by the system. You can see the colored circle appears

when touched, dotted lines are emerged when dragged and rings are connected when

tracked, as shown in Figure.4-3.
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4.6 User Study

We conducted user studies for test the applicability of the system into a real scenario

of farmers market. We assigned the following task for 3 participants as behaved as

customers in the store. The task statement is: "Choose three better apples and two

better oranges, then pick them up into your basket within 30 seconds". We compared

the count of detected interaction, including pick-ups and returns, with the ground

truth, and then calculated the detection rate.

With the 63 accumulated trials, we have obtained the detection rate is 76 percent-

ages. There is less confusion in the interaction classification level, such as confusion

pick-ups with returns, since there is a significant difference in positive sign and nega-

tive sign of measured weight. However, we found that most of the confusion is caused

in area classification level, which means the precision of localization process in our

system. In this practical setting-up, it would be better to work to remove the external

noise and incomplete isolation from vibration sources.

Figure 4-4: The photographs from user studies. (left) A test subjects choosing and
picking up a set of fruits. (right) The system can recognized the amount of a cup of
coffee as well.

4.7 Discussion

In this section, based on the evaluation results above, we compile the effectiveness,

the problems and the future works of KI/OSK according to the design concepts which

we defined to realize.
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4.7.1 Easy installation

We suppose that KIOSK realized easy installation due to its embedded system con-

figuration. We could prepare the experiments just by set the table and connect with

a PC. Besides this, KI/OSK basically makes it easier to register goods before selling.

KI/OSK's Object Tracking function allows to easily register the location where each

goods is put on. For example, a seller can intuitively input the location just by tracing

around the goods on the top board by his/her pointer finger.

On the other hand, we found that the load sensor module should be designed for

easy mounting and removing. Because sellers actually use various shapes and sizes

tables according to their layout design or might change the layout during selling, the

design specification of module structure should be reconsidered.

4.7.2 Recognition customer buying behavior

We obtained the result that KI/OSK allows to recognize the customer buying behav-

iors that we expected. In selection phase, recognition of touching, picking up and

return goods worked while distinguishing the signal patterns as we explained above.

In check-out phase, KI/OSK determines pricing as much as participants take as we

expected. Similarly, the system could recognize goods which have both characteristics

of solid and fluid, and determine pricing by weight.

However, the current recognition system has the limitations that should be ad-

dressed for the future field study. At first, KI/OSK should be improved to make

a distinction between goods load variations and others such as load variations from

the environment or goods handling by sellers. As one possibility, the system should

understand a lot of customer behavior patterns to distinguish from the noisy load in-

formation. To do this, we have to define more goods handling patterns based on field

investigations as Popa et al attempted to define customer goods handling patterns

for accurate recognition[54]. Secondary, KI/OSK should be improved to recognize

multiple customers' behaviors at the same time. As an approach, we assume that

load sensor is embedded into shopping baskets which customers use to recognize the
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person who takes the goods.

4.8 Conclusion

In this chapter, toward efficient supply chains and comfortable shopping experiences

in physical stores, we proposed KI/OSK platform, which allows unobtrusive sensing of

customer buying behaviors, including touches, pickups and returns. We clarified the

design specifications based on preliminary investigation, implemented the prototype

and conducted both technical evaluation and a user study. We envision the future ICT

solutions weaving into not just only large retailers but also small owners in farmers

market.
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Chapter 5

DepthTouch: Augmenting Surface

Interaction for Volumetric Displays

by Force Sensors

5.1 Introduction

The rising demand for 3d imagery in the past few years has been pushing the enve-

lope of 3d display research. Volumetric displays, which put the light-sources in a 3d

volume, have the advantage over other methods in terms of no accommodation ver-

gence mismatch etc., including swept-volume, static-volume and free-space methods

[651. Researchers also have been investigating how to interact with the 3d contents

displayed in the display volume, including selection, manipulation and data input

[44].

Among these basic interactions, depth selection is an essential technique so that a

variety of principles has been proposed so far, including mechanical or optical methods

etc. [20, 1]. However, these methods require the use of additional devices, providing

a less than ideal sense of interaction. Previous studies have reported the usefulness

of interacting with a built-in transparent enclosure surface, which is inherently part

of the volumetric display [6].
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DepthTouch Concept Application Domain

Force Volume Imagery Enclosed Showcase
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D th titen 
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Force Sensors g ca a

Figure 5-1: Design Space for DepthTouch: (left) The basic concept of force-depth
conversion. Atomic functions of the system includes pushing, twisting and assigning
peripheral inputs. (right) Application Domain of the system, including interaction
with Volumetric Imagery and interaction with Enclosed Showcases. Photos for Vol-

ume Imagery are from Voxon website [53]

In this chapter, we have explored the design space of an interactive display en-

closure combined with the 6 DoF force vector capturing method [70]. We propose

DepthTouch system, that determines the cursor position along loaded force direction,

enables us to interact with contents / imagery in a physically separated volume by an

enclosure boundary, through detecting the exact location of the touch point on the

dome and its force intensity. This method provides volumetric displays depth selec-

tion capability with spatial coordinate consistency between CGI and our body, with-

out having the argument of controller-mapping for the conventional input methods.

Moreover, our framework is capable of augmenting a variety of enclosures, including

glass showcases in a museum, animal cages at a zoo, and chemical chambers in a lab.

We have clarified the design space and architecture for DepthTouch system, and have

implemented prototypes. Also, we have evaluated the user performance in a pointing

task, comparing to the conventional 3d mouse method. and demonstrated multiple

application scenarios.

Our contributions described in this paper include:

* An architecture and design space for DepthTouch to allow a range of force-

based interactions, including quick depth selection, directional pointing, and

other gestures with exact spatial coordination.

* Technical implementation of hardware and example demonstrations showing a
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wide range of applications from volumetric displays to exhibition glass show-

cases.

• Outcome and findings from our thorough user study, revealing the performance

of depth selection conducted with 12 human subjects.

5.2 Related Work

5.2.1 Basic Interaction with Volumetric Displays

To display 3d imagery to a user without wearable devices, researchers have been in-

vestigating different principles, including ray-based lightfield methods [49, 30], point-

based volumetric methods[14, 36] and wave-based holographic methods 165]. Among

these methods, a volumetric display is capable of focusing a light source at an arbi-

trary point in 3d in a display area, so that makes multiple users simultaneously to

watch 3d imagery with both of correct motion parallax and correct binocular dispar-

ities, without accommodation-vergence mismatch 114].

In addition to the volumetric method, researchers have proposed and explored a

variety of interaction methods with displayed content. According to the survey paper

[44], basic interactions are generally categorized into four different types: selection,

navigation, manipulation and data input. To select displayed content in 3d volume,

the user can use methods such as 3d mouse and peripheral controllers, optical tracking,

and touch-sensitive enclosures. 3d mouse and peripheral controllers have been widely

accepted in commercial products [1, 53], and optical tracking using hand-held devices

are also well-investigated by researchers 121, 201. For touch-sensitive enclosures on a

non-planar surface, researchers have attempted this method, however it is difficult to

fabricate a capacitive panel onto an arbitrary 3d curved shape 134].

In this chapter, we explore depth selection and other basic interactions with touch-

sensitive enclosures based on the force-depth conversion technique, which is inspired

by the pencil-type product that converts its touch pressure onto the surface into

positional depth 'under' the display surface 37].
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Figure 5-2: DepthTouch System: (a) Workflow
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5.2.2 Force Vector Sensing

To capture force-based interaction between the user and the display enclosure, we have

several design choices including a capacitive touch screen [56, 611, swept frequency

capacitive sensing [23, 58], acoustic sensing [51] and force sensing [68, 12].

Among these methods, it is critical to capture the force vector with spatial and

3-axis resolution, meaning we have two design choices: a single centralized 6 DoF

(force and torque) sensor 124] and a set of distributed 3 DoF (force) sensors 170].

From a mechanical engineering point of view, it is better to have multiple supports

for the structure above, so that we utilized distributed force sensors. Note that even

though 6 DoF force sensors are generally much more expensive than a set of 3 DoF

sensors, if the target enclosure size is relatively small, eg. less than 10 cm, it is better

to use the 6 DoF sensor due to the limitation of size.
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5.3 DepthTouch system

DepthTouch is an input technique that enables direct selection and manipulation of 3d

contents in a volumetric display, with additional sets of force sensors placed beneath

/ beside the volumetric display. Force sensors calculate the force intensity, direction

and the contact point simultaneously, so that the system is capable of interpreting

the information into accurate input results for the contents in the display, as shown

in the left of Fig. 5-1.

The immediate processing of force information results in a wide range of real-time

application, as shown in the right of Fig. 5-1. The application domain covers two

different digital / physical contents: Volume Imagery and Enclosed Showcase, which

we will describe in detail in the following section.

5.3.1 Volume Imagery

A user could deploy DepthTouch system with a volumetric display, followed by the

display immediately obtaining interactivity, with the user input of the enclosure di-

mensions.

The user can manipulate a 3d point as a cursor by pushing on the enclosure, and

selecting the content inside by hovering over or applying more force on the desired

area. In addition to using the system as a point cursor, manipulating a 'plane' could

exploit more advantages for the DepthTouch method. For instance, snapping layers

on a geological landscape model or creating an incision during surgery by changing

the direction and position of the manipulated plane according to pushing force, can

be a beneficial scenario on the proposed system 111, 481.

5.3.2 Enclosed Showcases

The DepthTouch system can be applied not just to digital content in 3d volume, but

also for physical objects in an enclosed space, such as displayed items in jewelry shops,

museum exhibitions and animal enclosures. With the simple input of the enclosure

dimensions, eg. width x height x length, and the relative position of force sensors to
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the enclosure's center, the system is capable of detecting the force line of touch and

its contact points, which is intersecting with the enclosure surface.

In this application domain, the enclosure starts to understand the user intention,

on top of the specific application context. For example in a jewelry shop, the user can

point to and select a specific wedding ring in a glass showcase by pointing at the ring

with their forefinger on the surface, as a natural extension of pointing at objects. In

an aquarium, a child could point at a fish by touching the glass surface, and through

voice input, ask, "what's that?" to the system. With the additional input of the

relative position of the fish in the tank, the system is capable of answering the child's

question and identifying the fish.

5.4 Implementation

5.4.1 Hardware

Force Input

For the force sensor, we utilized load cells (FNZ100N, Forsentek.inc) with a load

capacity of 10 kg, and packaged each sensor into a small cuboid with a 90 x 90 x

35 mm form factor, as shown in Fig. 5-2. We have placed three force sensors on

the support structure with 24-inch square, at the front corners and the middle of the

backside edge. More detailed fabrication protocol of the force sensors are available in

the related project [70]. For the communication between force sensors and the central

PC, we connected the sensors to teensy 3.6, the Arduino compatible processor.

Imagery Output

Here we describe the hardware that displays volumetric imagery. As a display, we have

used Voxon VX1 (Voxon Photonics.inc), which has the volume for imagery area with

a cuboid of 180 x 180 x 80 mm [53]. The device has a vertically-moving translucent

screen inside the acrylic dome, and a high-speed projector with 4,000 fps projecting

a patterned image corresponding to the swept height of the actuated screen.

86



interactive surface

________________________ I

61 cm

Figure 5-3: DepthTouch Hardware: (a) the photograph of system outlook (b) the
structure and dimensions: Voxon display in gray lines, mechanical support in black
lines and force sensors in blue squares
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Figure 5-4: (a) Logarithmic Conversion from Force to Depth based on Weber Fechner
Law (b) The depth is measured along the force direction from the contact point

Coverage for Mechanical Isolation

To construct a touch-sensitive acrylic enclosure over the 3d display, one can imme-

diately imagine the architecture with the force sensors just beneath the legs of the

display. However, force sensors are so sensitive to external vibration that they need to

be mechanically isolated from any vibration sources around the force sensors. There-

fore, we designed an acrylic cover over a dome of the 3d display to mechanically

isolate both the sensors and the display, as shown in Fig. 5-3. We utilized aluminum

frames with a 50 mm square intersection to build a support of 610 x 610 x 950 mm,

and install an acrylic hemisphere with 400 mm in diameter to cover the entire display

area. At the top, the outer dome height is 1250 mm.

5.4.2 Software

3d Application Environment

We implemented an interactive 3d application in a Unity 2017 environment with

Voxon VX1 SDK[26]. We exported the application into an execution file for Windows,

and sent it to a Windows 10 environment, which has a built-in OS for Voxon VX1

hardware, as shown in Fig.5-2.
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Force Line & Contact Point Detection

A force line is the key element for detecting the contact point, which is mathematically

represented as a set of force f and contact point x. Here we describe how to retrieve

a single force line from force sensors. We assume the sets of measured force fi, sensed

at i-th load module (i = 1, 2, 3). For simplicity, we can assume that all sensors are

placed at pi on the same plane. We placed three sensors at pi = (250,250, -30),

P2 = (-250,250, -30) and pa = (0, -270, -30) in millimeters.

The touch force f and its torqueTare derived as f = Z fi andT = E pi x fi by

definition. The force line is expressed as x = a + pd, parameterized by scalar p. The

normalized direction vector d is d = f/If Iand the anchor point is a = f X /1f2 .

With the geometry of the enclosure, eg. hemisphere with 400 mm diameter, the

system is capable of numerically detecting the point of contact, at the intersection of

the force line and the enclosure geometry.

Force-Depth Conversion

In converting force to depth, we experimentally designed a logarithmic transformation

formula, based on a discussion of Weber Fechner law [15].

force
depth= dolog( fo

We experimentally determined the constants, 1.5 N as a minimum threshold of

touch force and 25 N as a maximum. As shown in Fig. 5-4 we have selected the

constants as follows: do = 100 mm and fo = 1.5 N. This parameter can also be

determined and updated in the future through a user study.

Peripheral Functions

In addition to direct touch input onto the enclosure dome, this system is capable of

assigning a variety of functions triggered by the users touch onto the surface outside

of the transparent enclosure. Here we describe two example functions enabled by

force input: button and slider. Since the dimension of the enclosure dome and its
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Figure 5-5: Input Methods for User Study: (a) With 3d mouse, a user controls the
cursor position by wriggling the device neck (b) With DepthTouch technique, a user
points the target through touching the surface and forcing differently in intensity and
direction.

mechanical extension is known in design, the system is able to judge if the force line

is intersected with a certain point. The user can assign a virtual button at arbitrary

points onto the structure's surface. If a user put several buttons in a line, one could

create a virtual slider as well.

5.5 User Study

We have designed and conducted user study to experimentally validate the concept

of DepthTouch. To reveal performance in a pointing task, we decided to conduct the

same experiment for 3d mouse in parallel. As shown in Fig. 5-5 these input methods

have different design principles, still the result from 3d mouse experiment is thought

to be useful as a baseline performance for the result from DepthTouch experiment.

For experimental design, we followed the protocol reported in a related work which

proposed the pointing method with an optically-tracked hand-held device [201.

5.5.1 Procedure

We designed a 'static target acquisition' task to measure the performance of the

pointing method. Targets are rendered as yellow wire-frame cuboids with 18 mm
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Figure 5-6: Results of User Study: (a) a static target acquisition task with a yellow
target cuboid and a red cursor sphere (b) the elapsed time from one target to another
for DepthTouch method. 3d mouse provides the baseline performance of the task.

Figure 5-7: Comparison of the Cursor Trajectory. A user is asked to pass by yellow
check points sequentially. The red dots are the trajectory of the cursor. The pink lines
are the illustrated path. (a) With 3d mouse, the trajectory tends to be continuous
and sequential. and (b) With DepthTouch method, the trajectory tends to be jumped
and disconnected.
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edges, as shown in Fig.5-6. The cursor is rendered as a red sphere with 10 mm

diameter. Once the distance between the target center and the cursor center is close

enough less than 14 mm, the target is determined as selected. A start target would

randomly appear in the displayed volume of the display. The trial began once this

target was selected, and a trial ended when 120 seconds elapsed. Once a target is

selected, a next target would appear at a random position, with the distance from

the previous target of longer than 90 mm. The mean elapsed time from one target to

another is used as the task performance indicator. For control purposes, participants

were centered in front of the display and were told not to move their feet during the

trials.

As a baseline performance of the task, we compared the pointing performance by

DepthTouch method with that by a commercial 3d mouse (SpaceNavigator, 3dcon-

nexion Inc.) [1]. Before each session there was a 5 minute demonstration and had

practice periods to warm up with 5 min each for DepthTouch and 3d mouse. After

the practice, a user had 2 min fist trial, 1 min break and 2 min second trial. There-

fore we had 4 min accumulative log data per method per person. The participant is

asked to try the tasks in random sequence, such that 50 % of the users are asked to

try DepthTouch first, and other half to try 3d mouse first. As the unpaid volunteer

participant for user study, we had 5 males and 7 females with the age ranging from

19 to 35. One of the 12 participants was left handed and the rest were right handed.

Participants touched the enclosure or manipulated the 3d mouse with their dominant

hand.

5.5.2 Results

The result of the static target acquisition is shown in Fig.5-6. The vertical axis shows

the mean elapsed time, which is the average of the travel time from one box to next

box. This value is calculated per person at first, and then summarized into single

value over all the participants.

The mean elapsed time of DepthTouch is 3.4 seconds (SD = 1.9 sec), and that of

3d mouse is 2.4 seconds (SD = 0.5 sec), as shown in Fig. 5-6. The result shows with
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the proposed method a user take 1.0 seconds longer than with 3d mouse. Also, the

standard deviation for the proposed method is larger by 1.4 seconds.

Notably, we found user # 8 showed the quickest performance, with 1.24 seconds

(SD = 0.85 sec.), in DepthTouch among all the task including 3d mouse. We also

found the a certain set of users could not get familiar with the proposed method.

They are almost double-scored participants, compared to the DepthTouch average,

including 8.0 se of user # 6 and 6.3 sec of user #7. Without having them as outliers,

we got the 2.7 seconds (SD = 0.8 sec). The individual difference is seen larger than

3d mouse, in the limited practice time.

Note that we analyze data of 12 participants for DepthTouch and of 11 participants

for 3d mouse, since the 3d mouse experiment for user # 3 couldn't be conducted due

to machine trouble. Also we treated data from 2nd trial, omitting 1st trial data as

part of practice time.

5.5.3 User Comments

We also have received a variety of feedback including the positive and the negative,

through the questionnaire which the participants have answered right after the user

study. Toward qualitative understanding of user experience, here we have categorized

the comments to similar groups, and show the dominant comment, which is mentioned

from at least three participants.

For the positive feedback, the dominant comments mentioned Control, Response

and Enjoyment: "I feel like I could control every aspect of the touch and interaction.

The amount of force and angling of my finger were a couple of the things that made

the DepthTouch experience feel more authentic and personalized." (Female, Software

Engineer), "faster than 3d mouse, more degrees of freedom because both position and

direction vector were present." (Male, Mechanical Engineer)" and "New experience,

fun to play!" (Male, Chemical Engineer). For the negative feedback, the dominant

comments mentioned Stability and Accuracy: "At the shallow layer, the DepthTouch

is easily influenced by vibration." (Male, Audio Engineer) and "It would be nice if

the control of depth/pressure is more sensitive." (Female, Mechanical Engineer).
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Figure 5-8: Application - Protein Viewer (a) selecting a molecule by touch (b) rotating
a model by twisting

5.5.4 Discussion

We found a significant difference between two methods in terms of way of interaction,

as shown in Fig.5-7. Here, a user is passing by yellow boxes one by one from the box

1 to the box 3. With 3d mouse, the trajectory is continuous and on a straight line,

since the mouse input reflects to the differential change from the current position. It

is easy to stop at a certain point, or 'hover', since a user can just stop to touch the

device. With DepthTouch system, the trajectory tends to be jumped and fluctuated.

This results in the difficulty of hovering a single point with the method. A user

collects the box 1 and the box 2 in one motion, pushing at a same contact position

but into different direction. This technique, pointing two or more targets without

changing the contact position, contributes to quick access to multiple objects. Also

in order to point the next box 3 in a distance from the box 2, users tend to change the

contact position to the closer place, typically in the middle of the box 3 and user's

body position.

According to the user's comment, the design guideline of our method starts to be

formed in comparison with the established 3d mouse method. First of all, the Depth-

Touch method could not be thought as the replacement of conventional 3d mouse

input. Similar to other gestural midair input methods, DepthTouch users tend to be

feeling tired during the interaction since they need to pull their arm up. However,
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Figure 5-9: Application - Medical Section Cut: Slicing a 3d model with an intersecting
plane at a different depth by pushing

specifically for instant pointing inside the object enclosure, some participants agree

with usefulness and seamlesness of our method.

From technical point of view, some participants complained on the unintended

fluctuation of the cursor position. This is thought to be partially from unsteadiness

of a hovering hand, partially from incomplete mechanical isolation of the force sensors

from the vibration source. The better mechanical design and comprehension of touch

characteristics could be important future works.

5.6 Application Examples

5.6.1 Interacting with Volumetric Imagery

Protein Viewer

Seeing a digital scientific model in a 3d image viewer, such as a protein structure,

it is required for the software to capture the user input, including selecting, scaling,

rotating and so on, towards smooth interaction with the contents.

To demonstrate the capability of basic interactions, we displayed a protein model

of pespin, and implemented the functions of selection by touching and rotation by

twisting, as shown in Fig.5-8.
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Medical Section Cut

In some 3d contents in medical or geoscience applications, it is critically important

to see the planar intersection of the volumetric model.

To demonstrate this function, we implemented the 3d human model with manip-

ulable 2D plane. A user can manipulate position and surface normal of the plane by

force input to see the model from better point of view, as shown in Fig. 5-9. A user

could push harder to see the contents at deeper intersection, and push less to see it at

shallower position. If a user would like to watch the intersection from different point

of view, one can achieve that only by touching from different point on the enclosed

dome.

5.6.2 Interacting with Enclosed Showcases

Accessory shop

In an accessory shop with a bunch of different kinds of jewerly rings beyond a glass

showcase, it is better to provide a user the quick pointing method to candidate rings.

Augmenting the enclosed showcases with our force sensors, the system could help

pointing remote objects at enclosed place.

As shown in Fig. 5-10, we demonstrate this scenario'with small accessories in

an acrylic transparent case, on the illuminating surface to indicate which object is

currently under pointing. This enclosure understands a user's selection, and could

interprets deep push to selecting, not just pointing, to convey more input information.

5.7 Limitations and Discussions

5.7.1 Scalability

We demonstrate the augmentation for display enclosure or showcases around 400

mm scale in this paper. However our system is inherently scalable to size of target

enclosure, because we could choose different force sensor specification, specifically
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Figure 5-10: Application - Jewery Shop Selecting a exhibited jewery over the glass
window case by pointing

the maximum weight torelance and load resolution of loadcels inside, based on the

applications.

5.7.2 Multi-touch Inability

Our current prototype is not designed to accept multi-touch input, in parallel to

other force-based approaches. If two different people are interacting on the surface or

handling the objects simultaneously, the data processing framework would fail. This

is because we combine all of the signals from load cells into one force line at the very

beginning of the processing pipeline. Combining with additional spatially resolved

layer, such as non-planar capacitive panel, could be a future possible direction towards

multi-touch force-based sensing on non-planar surface [34].

5.7.3 Other Possible Interactions

Since our projects is implemented on the similar architecture suggested in the other

loadcel-based sensing architecture, a user also could implement other possible inter-

actions, including object detection or activity recognition, in our DepthTouch system

as well [701. For example, weight-based object detection technique could be used as

a physical token to turn on the corresponded applications. Force signal-based activ-
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ity recognition could be useful to classify different types of gestural input, including

swiping, writing, dragging and etc., onto the surface of volumetric display hardware.

5.8 Conclusion

In this paper we proposed DepthTouch system that captures force vector of human

touch, and interprets its intensity and direction to the 3d point or planar cursor in

the isolated enclosed volume of 3d display. This method could also augment inert

physical enclosures, including glass showcases and animal cages, to enhance pointing

and selecting applications. We envision the living environments with the distributed

and embedded force sensors are capable of capturing human object interaction unob-

trusively to comprehend human behavior and intentions.
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Chapter 6

Conclusion

6.1 Summary of Force-based Interaction

In this thesis, I have explored the force-based interaction, the most fundamental

conveyor of our intention to physical objects through our body, specifically a hand

/ a finger. Throughout the two years research of Human-Object Interaction, I have

revealed the exciting capabilities of force vector information.

" Scalability - Force sensing can be applicable from a minute small object sensing

with 0.1 gram to a room-scale large body motion with 100 kilogram weight

change.

" Expressibility - Force vector conveys the spatial-temporal information of human

body part movement. Through the detailed analysis of the force signals, I

revealed a variety of the human activity can be reconstructed from the data.

* Reconfigurability - Force preservation is the one of the fundamental law of

universe according to the basic physics. Force doesn't disappear anywhere.

This characteristics allow us to place the sensors onto / into the target object

with a broad range of attachment position.
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6.2 Future of Force-based Interaction

I'm writing this concluding section to note the broaden perspectives with the foresee-

able future of my overarching concept, Force-based Interaction, with a strong confi-

dence underpinned on top of the intensive two-years investigation.

We human being with bright mind and open sight to see and understand the world

mostly through the channel of eyes, however, at the same time, we are the being with

physical bodies that feel and experience the world through the body, which can be

behaved as both of an actuator and a sensor for force signals.

Photons, which is emitted from the "Pixel Empire" or just bounced from a surface

of objects, are literally 'light', actually assumed to have no mass in theory, so that it

is thought to be the quickest way to convey the summarized information to the eyes.

However our body and way of life also generate Forces, which is the another broad

channel of information, as revealed in every chapter of this thesis.

On top of the expectation, we have schemed Force-based Interaction. I hope that

this fundamental insight could be contributing to establish the next grand vision

towards enhancing Human Object Interaction. This perspective of Force-based Inter-

action could be the great complement of GUI, VR and AR and any other technologies

from the Pixel Empire. I know that this is not purely my invention, from the ex-

perience of extensive survey for past researches, however, I believe this thesis work

could assist the circulation, distribution and communication of the idea, insight and

perspective of Force-based Interaction to the rest of the world.

In conclusion, I envision the world, covering everyday life in our residence to an

architectural space, augmented with unobtrusive force sensors to capture the human

intention through the subtle features hidden and embedded in force signals.
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