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Abstract 1 

Initially suggested as simple cell debris, cell-derived microvesicles (MVs) have now gained acceptance 2 

as recognized players in cellular communication and physiology. Shed by most, and perhaps all, human 3 

cells, these tiny lipid-membrane vesicles carry bioactive agents, such as proteins, lipids, and microRNA 4 

from their cell source, and are produced under orchestrated events in response to a myriad of stimuli. 5 

Physical exercise introduces systemic physiological challenges capable of acutely disrupting cell 6 

homeostasis and stimulating the release of MVs into the circulation. The novel and promising field of 7 

exercise-derived MVs is expanding quickly, and the following work provides a review of the influence 8 

of exercise on circulating MVs, considering both acute and chronic aspects of exercise and training. 9 

Potential effects of the MV response to exercise are highlighted and future directions suggested as 10 

exercise and sports sciences extend the realm of extracellular vesicles. 11 

 12 

Key points 13 

• Cells naturally release microvesicles (MVs) known to regulate a variety of physiological 14 

processes including haemostasis and vascular adaptations. 15 

• Acute exercise can influence the production and clearance of certain circulating MVs, with 16 

remarkable effect in stimulating a transient increase in the concentration of MVs derived from 17 

platelets. 18 

• In selected populations, chronic exercise improves vascular function while reducing the blood 19 

concentration of endothelial MVs linked to vascular damage at rest. 20 

• Training variables, such as exercise intensity, can be modified to stimulate an acute increase 21 

in the concentration of exercise-derived MVs with pro-angiogenic potential. 22 

  23 



1. Introduction 1 

When stimulated, different cell types release plasma membrane-derived vesicles into the extracellular 2 

compartment, which can enter the circulation and interact with remote tissues. Among these, 3 

microvesicles (MVs), also known as microparticles, transport lipids, proteins, and transcripts from their 4 

parental cells. Despite the long debate about whether platelets should be classified as cells [1], 5 

thrombocytes actively release MVs and comprise a large (if not the largest) fraction of circulating MVs 6 

[2–4]. 7 

Previously viewed as biomarkers of the parental cell state, we now understand that MVs are not only 8 

passive by-products of cell membrane cytoskeleton reorganisation, but active agents released under 9 

specific environmental stresses and capable of triggering functional and structural alterations in 10 

recipient cells [5–7]. The profile [8–10] and content [9,11] of circulating MVs differ between healthy 11 

and clinical conditions, with the concentration of certain MV populations related to impaired vascular 12 

health [10,12].  13 

Exercise training is one of the best interventions to maintain cardiovascular function, and recent 14 

evidence demonstrates that acute exercise alters circulating MVs concentrations [13–17], especially 15 

platelet-derived MVs (PMVs). Although exercise-mediated vascular adaptations like improved 16 

endothelial function are mediated in large part by haemodynamic forces (i.e. increased anterograde 17 

shear stress) [18–20], systemic circulating factors have also been suggested as involved [21], and 18 

circulating MVs have arisen as putative mediators of local and systemic adaptations to exercise. The 19 

precise role played by these tiny vesicles is still being unravelled, and the study of extracellular vesicles 20 

has received intensive attention due to its potential in physiology and medicine. As such, this review 21 

focuses on the promising field of cell-derived MVs considering their application in exercise physiology 22 

and medicine and aims to provide future directions for this novel research area. 23 

1.1. Literature search criteria 24 

Electronic databases were searched (Pubmed/Medline, Scopus and Google Scholar) between 2017 25 

and 2018, with no restriction regarding publication date. English language scientific articles were 26 

selected based on content concerning (but not restricted to) the exercise and MV literature. Although 27 

the present manuscript is not a systematic review, the literature search criteria included the terms 28 

“exercise”, “training”, “microvesicles”, “microparticles”, “cell-derived microparticles”. The reference 29 

list of selected manuscripts, as well as from PhD theses and MSc dissertations on the topic, were also 30 

used searching sources. For the review of specific literature relating to the influence of exercise upon 31 

circulating MVs, articles were selected only if they included at least one acute or chronic exercise 32 

intervention group and MV outcome. 33 

2. Background – From extracellular vesicles to cell-derived microvesicles 34 

Cells have been known to release biologically active small vesicles with many functions but not all 35 

vesicles are created the same, so the term extracellular vesicles has been introduced as an all-36 

encompassing descriptor of vesicles released by cells into the extracellular compartment. Such 37 

vesicles can be sub-classified as exosomes, MVs, and apoptotic bodies, depending on their mechanism 38 

of formation, size, and the presence of specific markers. Importantly, nomenclature in this field varies 39 

with MVs and microparticles referred to as similar constructs, while others defining MVs as an 40 

extracellular vesicle category which encompasses both microparticles and exosomes. Although we 41 

appreciate that future efforts are necessary for nomenclature standardization, for clarity in this review 42 

MVs and microparticles will be used interchangeably, whereas exosomes are considered distinct. 43 



By standard definition, MVs are anucleate vesicular populations derived from plasma membranes, 1 

ranging from approximately 0.1 to 1 µm in diameter, and with no synthetic capabilities. MVs differ 2 

from exosomes and apoptotic bodies not only in size, but also in how they are formed, their content, 3 

and since MVs originate from the plasma membrane, they also carry cell membrane-specific antigens. 4 

In contrast, exosomes are produced through a constitutive intracellular process and released by 5 

exocytosis upon fusion of multivesicular bodies with the plasma membrane, whereas apoptotic bodies 6 

are released as blebs from apoptotic cells and can also carry cell-membrane specific antigens. 7 

Although some overlap exists and size definitions vary slightly, exosomes are generally described as 8 

ranging from ~40 to 100 nm in diameter, and apoptotic bodies are normally characterised as vesicles 9 

larger than 1.5 µm that often carrying nuclear content [22,23].  10 

Differentiating extracellular vesicle populations is important as each differs in function and may 11 

exhibit broad physiological and pathophysiological effects. This review focuses on MVs, but the reader 12 

is referred to previous publications for specific reviews on exosomes and exercise [24,25]. 13 

2.1. Introduction to circulating microvesicles 14 

In 1967 Peter Wolf published a detailed manuscript describing that clot-formation occurred even in 15 

platelet free-plasma as long as platelet-derived elements were present, which he named “platelet 16 

dust” [26]. These pro-coagulant fragments were later found to have originated from the plasma 17 

membrane and several years later, this was confirmed by electron microscopy after platelet 18 

stimulation with thrombin [27], providing the first evidence of what we now call MVs. 19 

Over decades, the field advanced with MVs characterized and, to some extent, content was 20 

determined, and evidence emerged that platelets were not the sole source of circulating MVs [22]. 21 

Presently, diverse MV populations have been identified from cell culture media, and biological fluids 22 

including plasma [3,28], urine [29], saliva [28], and synovial fluid [3]. The current view is that upon 23 

agonist stimulation most, if not all, cells release MVs carrying specific markers that enable cell origin 24 

to be determined like endothelial (EMVs), PMVs, and red blood cell MVs (RBCMVs). 25 

Currently, altered circulating MV concentrations have been associated with subclinical and clinical 26 

conditions. For instance, increased circulating concentrations of EMVs occur with obesity [9,12], the 27 

metabolic syndrome [30], those with coronary artery disease (CAD) [8], and type 2 diabetes mellitus 28 

[10], to list a few. They have even provided prognostic information about cardiovascular mortality in 29 

renal failure patients [31]. These conditions all exhibit vascular dysfunction, with increased EMVs 30 

concentrations likely reflecting chronic vascular damage, as observed in patients with known poor 31 

vascular outcomes such as CAD [8], and in acute stroke [32]. 32 

Accordingly, MVs are naturally produced and found in the circulation fluctuating within a physiological 33 

range, with chronic alterations in MV concentrations identified as potential biomarkers of pathology. 34 

Of particular relevance and based on in vitro and in vivo evidence, EMVs have received great attention 35 

as a surrogate circulating marker of endothelial cell health [33–36]. 36 

2.1.1. Microvesicle formation and phenotype 37 

Shedding of MVs from the cell membrane is initiated by complex events that lead to cytoskeleton 38 

proteolysis, cell shrinkage, and eventually MV sprouting [37,38]. Our understanding of the overall 39 

mechanisms governing MV formation and release derives mainly from platelets, since they were 40 

among the first to be identified, and constitute the predominant MV phenotype in human blood. 41 

Briefly, in the basal state the content of phospholipid cell membranes are asymmetric with negatively 42 

charged phospholipids, such as phosphatidylserine (PS), mainly a part of the inner leaflet [37]. When 43 



activated or undergoing apoptosis, a randomisation in the phospholipid plasma membrane content 1 

occurs, increasing the appearance of PS on the outer membrane, which, coupled with cytoskeleton 2 

reorganisation and membrane remodelling, culminates in the shedding of newly formed MVs that may 3 

express PS on their surface [38]. Increases in intracellular Ca2+ concentration [37,39] with activation of 4 

calcium-dependent proteins [39,40] is accepted as a general mechanism leading to these processes, 5 

but calcium-independent pathways have also been identified in platelets [41]. Several stimuli that 6 

bring about PMV release have been identified in vitro and include high shear stress, catecholamines, 7 

adenosine diphosphate (ADP), and thrombin [42–44], but some agonists for platelet vesiculation can 8 

downregulate the release of MVs from other sources such as endothelial cells [45]. An excellent 9 

discussion of biological mechanisms related to MV formation has been published elsewhere [38]. 10 

Methods to quantify MVs in body fluids are still limited, but recent developments have facilitated 11 

quick progression from time-consuming and semi-quantitative microscopy, to high throughput 12 

quantitative MV analyses using enzyme-linked immunosorbent assays (ELISA), traditional flow 13 

cytometry, imaging flow cytometry, resistive pulse sensing, and nanoparticle tracking analysis 14 

[29,46,47]. Knowing that MVs express PS in the outer leaflet enabled PS-binding agents (e.g. annexin-15 

V staining) as general MV markers; however, PS exposure alone does not necessarily induce 16 

vesiculation in platelets [39], and only a fraction of MVs released by unstimulated platelets express 17 

sufficient PS to facilitate annexin-V binding [48]. Hence, more recently quantifying specific MV 18 

populations has been based on the expression of cell-specific antigens associated with the MV 19 

membrane, independent of annexin-V binding [16,34,48]. For example, PMVs can be identified by flow 20 

cytometry as glycoprotein IIb (CD41) or glycoprotein Ibα (CD42b) positive events, whereas E-selectin 21 

(CD62E) can be used for EMV quantification, and CD45 is employed as a common maker for leukocyte-22 

derived MVs (Table 1). 23 

 24 

[TABLE1] 25 

 26 

Previous studies indicate that PMVs are the most common MV phenotype in plasma [2–4], although 27 

reports of greater abundance of RBCMVs also exists [47]. Such discrepancies in the proportion of 28 

RBCMVs may relate to differences in blood sampling and handling procedures, as phlebotomy 29 

conditions (e.g. needle Gauge, tourniquet use, and anticoagulant choice) and sample processing 30 

protocols (e.g. centrifugation steps, time, and speed) can ultimately affect final MV concentrations 31 

[49]. Although a complete list of all antigens expressed by circulating MVs would be useful, it is beyond 32 

our scope. However, the most frequently observed MVs antigens in the circulation are also expressed 33 

by platelets [12,48], erythrocytes [35,50], monocytes [4,47], neutrophils [47,50], lymphocytes [47] and 34 

endothelial cells [11,33,51] suggesting these are the origins of most MVs.  35 

2.1.2. Overall microvesicle function 36 

Circulating MVs likely regulate physiological processes, and the interaction of MVs with target cells 37 

occurs through at least three mechanisms. First, MVs may bind to membrane receptors and mediate 38 

cell modifications through signalling pathway activation. Next, cell-MV interactions at the plasma 39 

membrane may deliver vesicular content upon fusion with the cell membrane [6,22]. Finally, MVs may 40 

be internalized by certain cells, altering the function and structure or their recipient targets [52,53]. 41 

The latter may also serve as a MV clearance pathway if they are directed to lysosomes. As a result, 42 

complex and sometimes contrasting responses arise from studies investigating isolated MV 43 

populations. 44 



Platelet-derived MVs are linked to the haemostatic system [22,23] with initial evidence supporting 1 

their role in coagulation, even in the absence of intact platelets [26]. Although not all MVs are pro-2 

coagulant [48], a number of MV populations present in a variety of body fluids, including blood and 3 

saliva, display thrombogenic functions [3,28,54] similar to PS-rich PMVs [48]. The pro-thrombotic 4 

potential of many blood MVs is highly related to their surface PS and tissue factor (TF) content [28,48], 5 

and the natural shedding of MVs seems like a necessary physiological process. For instance, Scott 6 

syndrome, a rare haemorrhagic disorder, is linked to impaired translocation of PS to the outer leaflet 7 

cell membranes and reduced MV shedding [38], which results in defective blood coagulation.  8 

Even though production of MVs is continuous, only a fraction are PS and TF-rich [4,33,48], suggesting 9 

roles beyond coagulation. As will be explained, blood MV functions vary widely. For example, specific 10 

EMV populations can trigger inflammation [5] and oxidative stress [55] in recipient endothelial cells, 11 

and lymphocyte-derived MVs can suppress angiogenesis through vascular endothelial growth factor 12 

(VEGF) downregulation [56]. Furthermore circulating MVs isolated from myocardial infarction patients 13 

[57] and pre-eclamptic women [58] lead to endothelial dysfunction in situ, suggesting that the link 14 

between augmented MV concentrations in pathological conditions is beyond correlational.  15 

Conversely, other MVs display opposite functions than those described above. Grasser and Schifferli 16 

[59] have shown that granulocyte-derived MVs induce anti-inflammatory properties by 17 

downregulating macrophage activity, and using an ischaemic-limb model Leroyer et al. [60] 18 

demonstrated a 3.5-fold increase in pro-angiogenic MV concentration in mouse muscle homogenates. 19 

These ischaemia-related MVs increased progenitor cell differentiation into an endothelial phenotype 20 

in vitro and in vivo, and other studies have shown that endothelial cells undergoing migration release 21 

pro-angiogenic EMVs [61]. PMVs may also promote activation of pro-angiogenic pathways, resulting 22 

in endothelial cell proliferation, chemotaxis, and protection from apoptosis [7,62]. 23 

The identified function of MVs is constantly growing as it depends on a variety of factors, including 24 

the MV population, content, and the recipient cell with which they are interacting, which illustrates 25 

the complexity of these physiological interactions. More complex than local ischemia, physical 26 

exertion imposes unique challenges upon many organ systems often introducing MVs into the human 27 

circulation. As such the dynamics of MVs with exercise, and their potential relevance in exercise-28 

induced adaptation is an intriguingly understudied area. 29 

3. Exercise and microvesicles 30 

In the following sections a review of the current state of knowledge on microvesicles and exercise will 31 

be presented, but as the reader will see the current understanding about the interaction between 32 

MVs and exercise is still incomplete. As such, the subsequent sections aim to provide a starting point 33 

and guidance for future research. Certainly, further experiments are warranted to answer specific 34 

questions related to exercise and training variables (e.g. exercise volume, intensity, etc.), before more 35 

definitive conclusions can be drawn. 36 

3.1. Acute exercise 37 

The phenomenon of microvesicle release with exercise has been appreciated only recently, with most 38 

experiments in the field focused on acute aerobic exercise and published in the current decade (Table 39 

2). The dynamics of this response to exercise, however, is MV population specific. For example, 40 

circulating RBCMV concentrations did not change in the single study that examined this MV phenotype 41 

with exercise, but increases in the concentration of PMVs and MVs with polymorphonuclear 42 

neutrophil antigens was observed following a series of maximal cycling protocols [50]. Since MVs are 43 

physiologically active, their timed release may be involved in exercise responses. 44 



Most studies have investigated the effect of performing an aerobic cycling session on subsequent 1 

blood EMV concentrations. Although some authors observed an increase in certain EMV populations 2 

after exercise in healthy individuals [4,16,51,63,64], most experiments report no change [4,13–3 

17,50,65–67], or even a decrease in EMV concentration [63,68], with one study finding an increase in 4 

blood EMV in men, but not women [16]. The discrepancies in the EMV response between studies may 5 

arise from a number of confounding factors. For example, exercise brings about many acute 6 

physiological adjustments that may stimulate or blunt EMV shedding. Cytokines and vascular cyclic 7 

strain stimulate the formation of MVs from cultured endothelial cells [33,54,69], whereas high 8 

vascular shear stress reduces EMV formation in vitro [45]. Since each of these factors increases during 9 

exercise, an antagonistic environment may be created where little additional endothelial vesiculation 10 

will occur and this may account for inconsistent findings. In addition, plasma volume changes may also 11 

confound finding as observed by Wilhelm and colleagues [17] who noted increased EMV 12 

concentration with heat stress and strenuous exercise, but this response was abolished when plasma 13 

volume shifts were taken into account. This suggests changes in circulating EMVs were mediated by 14 

haemoconcentration rather than altered MV dynamics. Most studies, however, do not report blood 15 

volume corrected EMV concentrations, making it difficult to establish whether EMV shedding actually 16 

occurs. 17 

In contrast to other MV phenotypes, PMVs are the most responsive to an acute exercise bout. Most 18 

studies report an increase in these MVs after exercise [4,13–15,50,64,70], with increases up to 2 to 3-19 

fold from baseline, and several agonists known to stimulate PMV formation increase during exertion. 20 

Plasma concentrations of ADP originating from exercising limbs in humans increase [71,72], and may 21 

lead to platelet activation [72] since it is a PMV production agonist [44]. Similarly, sympathetic 22 

activation during exercise can lead to blood noradrenaline spill-over that could stimulate platelet MV 23 

formation, similar to in vitro effects [43]. Exercise also increases mean and anterograde vascular wall 24 

shear rate (surrogate markers of shear stress) in conduit arteries of exercising [19,20], and even non-25 

exercising limbs with prolonged exercise [18,73]. Increased shear stimulates PMV release from ex vivo 26 

platelets [7,42] and recently a positive correlation between vascular shear rate and plasma PMV 27 

concentration was noted in exercising men [15], although a follow-up set of experiments revealed this 28 

correlation to not necessarily represents causation [17]. 29 

When comparing these results, however, the reader must be aware of intrinsic methodological 30 

limitations of the field. Distinct quantification techniques result in different absolute MV 31 

concentrations. For instance, in the study by Maruyama et al. [70] PMVs were assessed by ELISA and 32 

concentration differed by orders of magnitude from those using traditional flow cytometry, which in 33 

turn are not necessarily comparable to studies employing imaging flow cytometry. Nevertheless, the 34 

trend of response was the same between techniques (i.e. an increase in PMV with exercise), 35 

suggesting that the same physiological phenomenon was being assessed. As shown in Table 2, the vast 36 

majority of experiments employed flow cytometry as the main MV quantification technique, but it is 37 

recognized that both pre-analytical and analytical procedures influence the MV content in a sample 38 

[49]. Although efforts to standardize traditional flow cytometry protocols have been made [74,75] 39 

there still lacks methodological agreement between experiments. Furthermore and according to the 40 

iceberg concept [29,46], flow cytometers can not identify all MVs due to light scattering limitations of 41 

small particles, and as a result swarm detection of small MVs confounds absolute concentration 42 

measurements. These factors can complicate comparisons made between studies and should be taken 43 

into consideration when interpreting individual results. Future experiments combining quantification 44 

techniques such as flow cytometry and nanoparticle-tracking analysis will certainly be useful to 45 

robustly quantify absolute MV concentrations after acute exercise bouts. 46 



 1 

[TABLE2] 2 

 3 

3.1.1. Time-course of circulating microvesicle appearance with acute exercise 4 

The dynamics of blood MV appearance depend on the vesicle source, and until the middle of the 5 

current decade our understanding of their time-course of release with exercise was limited to one 6 

study exploring EMVs [65], with the remaining experiments exploring post-exercise responses. More 7 

recently, plasma PMVs, but not EMV, were shown to increase and stabilise within 30 minutes of 8 

continuous cycling, with peak post-exercise values similar to those observed during exercise [15]. 9 

Blood PMVs are augmented from a few minutes [4,14,50,70] up to 1 [4,15,70] and 2 h [4,13,50] after 10 

exercise, and return towards baseline values thereafter. As such, the current literature indicates that 11 

the rise in blood PMVs is a short-lived phenomenon, with these vesicles reaching peak concentrations 12 

as early as 30 minutes after the onset of a training session, with values continuing to be elevated for 13 

a few minutes to hours into the post-exercise recovery period (Figure 1). 14 

The time-course dynamics of other MV populations are less clear. A single experiment has reported 15 

an increase in the concentration of neutrophil-derived MV by the end of a ramp cycling protocol, with 16 

a tendency to return to baseline after 2 h of recovery [50], and a delayed rise in circulating monocyte 17 

MVs was observed after exercise in well-trained men [4], while it remained unchanged or 18 

undetectable in less fit individuals [4,50]. Studies that observed a rise in EMVs expressing markers of 19 

endothelial activation were limited to the post-exercise period [4,16,51,63]. From time-course 20 

experiments, a late EMV increase may be expected, with peak values between 45-90 min after 21 

exercise that returns towards baseline thereafter [4,51], but it is important to recall that several 22 

investigations failed to report increases in circulating EMV concentrations (Table 2). 23 

 24 

[FIGURE1] 25 

 26 

Of relevance is an EMV subpopulation carrying apoptotic antigens (e.g. CD31+ and negative for platelet 27 

markers). These MVs have been thought to reflect endothelial apoptosis and vascular damage by 28 

several authors [33–35]. One should note that a number of studies in the field of exercise have 29 

considered CD31+ EMVs as an apoptotic subpopulation irrespective of annexin-V staining, and this 30 

review will follow the same definition when referring to apoptotic EMVs. 31 

The current literature regarding apoptotic EMVs is ambiguous and may depend on the assessment 32 

time-point and participant sex/population. For example, Durrer et al. [63] reported reduced 33 

concentrations of circulating apoptotic EMVs in the morning following continuous and interval 34 

exercise bouts in overweight/obese males, but not females, which was also evident 1 to 3 hours after 35 

exercise bouts in healthy men [68]. Conversely, plasma CD31+ EMV remained unchanged in healthy 36 

individuals when assessed 5 min after moderate intensity cycling [16]. On the other hand, Schwarz et 37 

al. [64] observed a 30% increase in plasma CD31+ MVs in men and women within 30 min of completing 38 

a marathon, but it is unclear whether the authors’ flow cytometry gating strategy excluded platelet 39 

markers to ensure appropriate apoptotic EMV quantification. Hence, the limited evidence available 40 

suggests that short to moderate duration exercise sessions (i.e. from a few minutes up to 2 h) do not 41 



lead to endothelial injury, as reflected by stable circulating apoptotic EMVs and, if anything, this MV 1 

subpopulation may even decrease below baseline values after exercise.  2 

The exact fate of apoptotic EMVs remains unknown but it may include uptake by endothelial cells in 3 

the post-exercise period [68]. Internalization of MVs by native endothelial cells have been reported in 4 

several tissues [53,76,77] and may serve as a clearance mechanism since haemodynamic forces push 5 

circulating MVs towards the vascular endothelium. Previous experiments have identified that 6 

endocytosis of MVs by such vascular cells occurs through the anchoring of MV surface PS to 7 

endothelial integrins, in a process mediated by endothelial locus-1 glycoproteins [53]. Macrophages 8 

have also been reported to remove MVs through phagocytic pathways regulated by the presence of 9 

PS, CD31 and Immunoglobulin M on the MV surface [78], and clearance likely involves MV 10 

opsonisation by complement components and subsequent uptake by phagocytes [79]. Furthermore, 11 

systemically infused MVs localise in the spleen, lungs, and liver, which are all thought to be important 12 

organs involved in MV clearance [78]. It is unknown, however, whether these mechanisms apply to 13 

the exercise context. Nonetheless, a decrease in apoptotic EMVs compared to resting values has also 14 

been reported 1 h into recovery in patients who undergo dobutamine-induced cardiac stress [80], 15 

indicating rapid clearance of EMVs which further supports findings from physical stress (exercise) 16 

challenges. An extensive review of MV release and clearance has been published by Ayers et al. [78]. 17 

3.1.2. Exercise type 18 

Little information exists regarding exercise modalities and MV responses. Most studies have employed 19 

continuous or interval cycling and only a single study involved (continuous, incremental) treadmill 20 

exercise, where a rise in circulating PMVs occurred [70]. Cycling and running differ in terms of 21 

contraction type and muscle mass engaged, which could be factors influencing the MV response. 22 

Furthermore, footstrike during running has been proposed to induce mechanical damage of 23 

erythrocytes and contribute to exercise-related haemolysis [81,82], which may influence RBCMVs. 24 

Although no direct comparison between exercise modalities has not been performed, some 25 

conclusions regarding those variables can be drawn from published data. Using an adapted cycling 26 

model, Rakobowchuk et al. [14] compared aerobic power matched concentric vs. eccentric exercise 27 

and noted similar patterns of increased post-exercise plasma PMV and unaltered EMV concentrations, 28 

indicating no influence of contraction type upon MV dynamics. Furthermore, MV release appears to 29 

require the activation of only small quantities of skeletal muscle, as circulating PMV increase even 30 

with small muscle mass exercise, like with incremental knee extensor exercise [17].  31 

Resistance exercise, on the other hand, does not seem to affect blood EMV levels [67], the only MV 32 

population studied to date. One could speculate that PMVs would be released under such conditions 33 

since resistance exercise can acutely increase platelet activation as assessed by increased plasma β-34 

thromboglobulin concentrations [83,84] which highly correlates with plasma PMV (r=0.95) [85].  35 

Hence, cycling and running may be expected to induce MV or at least PMV formation, indicating that 36 

rhythmic endurance-like exercise can stimulate cell vesiculation, whereas data pertaining to resistance 37 

exercise is scarce. 38 

3.1.3. Exercise intensity 39 

The relative intensity of an exercise session often governs acute physiological adjustments and 40 

potentially impacts MV responses to physical exertion. If the exercise intensity domains 41 

recommended by the American College of Sports Medicine are taken into consideration [86], most 42 

studies of MVs and acute exercise have employed moderate to vigorous exercise stimuli, with 43 

intensities generally ≥ 50% of peak oxygen uptake. Post-exercise increase in blood PMV concentration 44 



is a consistent response to exercise, even reported with cycling performed below the first ventilatory 1 

threshold [14]. A between-study analysis, however, may lead to uncertainty about the influence of 2 

exercise intensity on MV dynamics, since augmented appearance of certain blood MVs is reported 3 

with near maximal incremental exercise [50,70], but variable responses have been noted after high 4 

intensity interval exercise [51,63,66,68], or light to moderate intensity protocols [14,65].  5 

Recent evidence comparing continuous cycling within different intensity domains has helped to clarify 6 

this topic. Based on 60 min of moderate or vigorous continuous cycling performed by healthy men, it 7 

has become apparent that relative intensity plays an important role in MVs dynamics. Specifically, 8 

circulating PMVs increased from baseline during and after vigorous exercise (i.e. ≥ 64% of maximal 9 

oxygen uptake), whereas moderate intensity cycling ( i.e. ≥ 46% of maximal oxygen uptake) resulted 10 

in a very modest non-significant rise [15]. The plasma EMVs concentrations were unaltered, no matter 11 

the exercise intensity. 12 

3.1.4. Exercise volume 13 

The influence of exercise volume on acute MV responses lacks systematic evaluation at this point in 14 

time. Studies designed to directly isolate exercise volume are needed, and comparison of exercise 15 

protocols that induce changes in blood MV concentrations have been limited in terms of exercise 16 

duration. Nevertheless, pronounced increases in circulating PMVs occurs even with small volume 17 

exercise (e.g. a few minutes of incremental whole-body or isolated-limb exercise) [17,50,70], whereas 18 

the longest duration studies (i.e. 4 h cycling performed below the anaerobic threshold or marathon 19 

running) showed smaller increases or unchanged concentrations of circulating MVs [64,65]. One could 20 

speculate that MVs may have increased and subsequently returned towards baseline concentrations 21 

during the latter experiments, but the small number of sequential blood sampling time points limits 22 

conclusions.    23 

At this stage, data from Wilhelm et al. [15] helps shed further light on this topic as blood samples were 24 

taken throughout 1 h of moderate and vigorous intensity cycling. Plasma PMVs increased from 25 

baseline by 30 min of vigorous exercise and remained stable until the end of the 1 h protocol, 26 

suggesting little influence of exercise volume upon PMV, since doubling the exercise duration did not 27 

further increase plasma MV concentrations. Moreover, if simplistic energy expenditure estimations 28 

are made considering a general O2 caloric equivalent of 5 kcal/l O2 (i.e. disregarding protocol-specific 29 

respiratory exchange rate) it becomes apparent that exercise volume has little influence on circulating 30 

MV appearance, since the concentration of plasma PMV was unchanged throughout the moderate 31 

cycling session, even though the energy expenditure at the end of 1 h of this protocol (~450 kcal) was 32 

greater than at 30 min of vigorous exercise (~330 kcal), when a rise in PMV was already evident. 33 

Together, although still limited, the current body of evidence points toward a greater influence of 34 

exercise intensity rather than volume upon MV release. 35 

3.1.5. Physiological significance of exercise-derived microvesicles 36 

The introduction of MVs into the circulation of exercising humans plays a regulatory role in 37 

haemostatic control. Sossdorf et al. [4] isolated MVs exposing PS and reported an increase in MV-38 

related prothrombinase activity from post-exercise samples. Fibrin formation was greater in samples 39 

from well-trained participants, reinforcing the procoagulant potential of MVs. As one exercises, both 40 

the pro and anticoagulant systems may be activated [70,72,87], so the increased MV pro-coagulant 41 

potential with acute exercise may play a natural role in fine-tuning the fibrinolytic and thrombotic 42 

balance. 43 



Exercise training traditionally improves endothelial function mainly through a vascular shear stress-1 

mediated mechanism [18–20], but circulatory factors are also involved [21]. Since circulating MVs, 2 

particularly PMVs, can be acutely increased after an exercise session, speculation that these vesicles 3 

are involved in vascular adaptation to training has emerged. Early experimental evidence that exercise 4 

increases the interaction between endothelial cells and MVs was provided by Wahl et al. [68]. They 5 

fluorescently labelled-MVs (PKH26 staining) in vitro and loaded these into serum samples obtained 6 

from male athletes prior to and after exercise. Human coronary artery endothelial cells were then 7 

incubated with the MV-rich sera which increased EMV (but not monocyte MV) uptake by cultured 8 

endothelial cells exposed to post-exercise serum, providing some of the first evidence that blood 9 

milieu alterations after exercise stimulate the uptake of selected MV populations from the circulation. 10 

Moreover, a concomitant decrease in endothelial cell apoptosis was observed as assessed by, caspase-11 

3 activity but unfortunately the lack of a MV-poor serum control condition precludes that the 12 

antiapoptotic effect was mediated by MVs specifically. 13 

In subsequent experiments, MVs isolated from the plasma of exercising humans stimulated 14 

angiogenesis of cultured endothelial cells when compared to MVs obtained from baseline resting 15 

condition [15]. The angiogenic potential of exercise-derived MVs may stem from enhanced endothelial 16 

proliferation and migratory capacity induced by these MVs compared to those obtained at baseline. 17 

The mechanisms through which exercise-derived MVs induced alterations in endothelial phenotype 18 

were not investigated but may relate to delivery of angiogenic growth factors. For example, VEGF is 19 

considered a potent regulator of skeletal muscle capillary formation, and MVs shed by platelets ex 20 

vivo increase endothelial wound-healing and angiogenesis partially through the delivery of VEGF to 21 

endothelial cells [62]. Part of the pro-angiogenic effect of VEGF depends on activating the NO pathway 22 

[88,89], and MVs from healthy individuals are a source of bloodborne eNOS [9,11]. Moreover, in 23 

rodent limb ischaemia models MVs likely facilitate compensatory angiogenesis through the 24 

stimulation of progenitor cell differentiation into an endothelial phenotype [60]. Together, these are 25 

potential, yet speculative, mechanistic alternatives through which exercise-derived MVs may bring 26 

about endothelial adaptation. Although exercise-derived PMVs remain logical candidates for their 27 

physiological effects, the specific MV population responsible for the pro-angiogenic and proliferative 28 

endothelial stimulation, as well as the exact biochemical pathways through which exercise-derived 29 

MVs stimulate endothelial cells still needs to be determined. 30 

As postulated with different extracellular vesicle populations [24], it is possible exercise-derived MVs 31 

transport “exerkines” and promote systemic adaptations. An important recent study by Whitham et 32 

al. [90] suggests that acute exercise might modify the cargo of sampled extracellular vesicles, which 33 

contained a fraction of small MVs, as hundreds of proteins transported in extracellular vesicles were 34 

altered in the circulation after a cycling bout. Beyond the vascular system, they further demonstrated 35 

that systemically infused exercise-derived extracellular vesicles accumulated in the liver of recipient 36 

mice, indicating a pathway for communication with non-exercising tissues during exercise, which 37 

could include the lungs, kidneys, liver, and brain [53,76,77]. Hence, all these tissues could be prone to 38 

phenotypical modifications mediated by the exercise-derived MVs. As such, given the systemic nature 39 

of circulating MVs, one can speculate that their timed release with exercise can positively influence 40 

several tissues and organs by altering remote cell function and morphology (Figure 2). Future studies 41 

ought to further unravel the relevance of these MVs in vascular and systemic adaptations to exercise 42 

in vivo. 43 
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3.2. Physical activity and exercise training 2 

Observational studies reporting altered circulating MVs concentrations in patients with vascular and 3 

metabolic dysfunctions, as well as established diseases suggest that MVs respond to chronic 4 

physiological challenges. Moreover, the ability of MVs to carry bioactive makers and participate in 5 

horizontal gene transfer at remote sites suggests involvement in the pathophysiology. Accordingly, 6 

environmental factors and chronic lifestyle modifications, such as exercise training, may influence the 7 

basal concentration of circulating MVs. 8 

Early evidence of the influence of physical activity and exercise upon the blood MV profile comes from 9 

small, yet well conducted, bedrest and restricted physical activity experiments. Navasiolava et al. [35] 10 

limited physical activity of 8 healthy men to a minimum for 7 days, and observed an early elevation in 11 

apoptotic EMVs by the third day of inactivity, with reduced microvascular vasodilatory function that 12 

was likely prostaglandin-related. In agreement with this previous study, reducing daily physical activity 13 

levels of recreationally active men by ~50% (from > 10,000 to < 5,000 steps/day) for 5 consecutive 14 

days impaired popliteal artery endothelial function augmented circulating concentrations of apoptotic 15 

EMVs [36]. Since inactivity-mediated vascular dysfunction seems to reflect increases in EMVs, a 16 

decrease in basal EMVs could be expected with increased physical activity through, for example, 17 

exercise training.  18 

Only a few studies have investigated changes in blood MVs after a training period. Babbitt et al. [91] 19 

were among the first and reported a near 50% decreased in plasma CD62+ EMVs (a MV subset 20 

theoretically derived from activated endothelial cells) of middle-aged and older African-Americans 21 

after 6 months of light to moderate intensity endurance exercise, which was accompanied by an 22 

improvement in blood inflammatory markers and brachial artery flow-mediated dilation. A subgroup 23 

analysis also revealed a decrease in apoptotic EMVs [92], suggesting reduced vascular damage and 24 

vesiculation at rest after the training period. Unfortunately, the lack of a control group hinders 25 

categorical conclusions that the reported effects were exclusive to the training program itself. 26 

However, these results importantly indicate that chronic improvements in endothelial function are 27 

reflected by a reduction in blood EMV concentrations in a population at elevated risk for 28 

cardiovascular events [93–95]. 29 

In light of current evidence, we can only hypothesize about the chronic effect of exercise training on 30 

resting PMV adaptations. As platelet hyperreactivity to ADP has been associated with long-term 31 

cardiovascular complications in some studies [96,97], and considering that: (1) baseline PMV 32 

concentration is increased in patients with established or at risk for cardiovascular diseases [8,10,12]; 33 

and (2) exercise training can reduce markers of platelet activation at rest and diminish their sensitivity 34 

to activation agonists [87]; it appears reasonable that circulating PMV content would drop after a 35 

training programme in selected patient populations. However, it is important to stress that the impact 36 

of exercise training on resting platelet activation is not unequivocal [87]. Alternatively, the 37 

concentration of PMVs might remain unchanged while their content could be modified towards a less 38 

thrombogenic and more vasoprotecive phenotype, but again this idea remains merely hypothetical. 39 

4. Further directions in physiology and medicine 40 

Even though alterations in certain circulating MVs concentrations with exercise seems like a normal 41 

response in healthy adults, little is known about the influence of acute and chronic exercise upon the 42 

cargo of MVs and their dynamics in specific patient populations. For example, Guiraud et al. [66] 43 

observed no change in circulating PMV and EMV amongst stable CAD patients after an exercise 44 



challenge, whereas subsequent work by Augustine et al. [80] revealed that circulating MVs 1 

concentrations increased in patients with normal coronary arteries in response to a 2 

pharmacologically-mediated cardiac stress, but MVs concentrations were unaltered in patients likely 3 

to have further cardiovascular complications. These findings suggest that an increase in selected MV 4 

populations with acute stress is an important physiological process that appears blunted in patients 5 

at risk. These MV dynamics to stress tests could even be useful in predicting future cardiovascular 6 

events in certain populations. Monitoring changes in circulating MVs concentrations prior and after 7 

standard tests (such as exercise) in healthy controls and populations with cardiovascular risk factors 8 

could provide further insight into the MV dynamics and could progress to the use of exercise-derived 9 

MVs as biomarkers in patient stratification. 10 

As discussed, our understanding of the MVs responses to exercise and training is far from complete, 11 

and this field will benefit from acute experiments exploring the influence of exercise variables (e.g. 12 

volume, intensity, and type of exercise) and their chronic influence to optimise training adaptations. 13 

Greater standardization on MV quantification protocols within the field of exercise is also warranted. 14 

Moreover, beyond changes in the MV profile, the content of MVs is affected by one’s physiological 15 

state [9,11], and it is likely that exercise-released MV differ in composition compared to those 16 

produced under basal or pathological conditions. It is also tempting to speculate that chronic exercise 17 

may impact not just the circulating MV profile, but its cargo as well. Future studies that examine 18 

proteomic, lipidomic, transcriptomic, and metabolomic profiles with more appropriate species 19 

isolation and quantification techniques will certainly shed light upon the composition of MVs.  20 

The exciting findings that extracellular vesicles can mediate cell-to-cell signalling through horizontal 21 

transfer of mRNA and miRNA [98,99] is of particular interest, as acute and chronic exercise can alter 22 

the concentration of circulating miRNA [100], and MVs might act as a transport vehicle of 23 

transcription-controlling factors and alter the function of remote cells. Interestingly, there is evidence 24 

linking PMVs to adhesion and differentiation of early outgrowth endothelial cells in vitro and 25 

amplification of early outgrowth endothelial cell reendothelization in murine vascular injury models 26 

[6]. This suggests the exercise-induced PMV release phenomenon may improve vascular repair and 27 

function by enhancing differentiation of circulating endothelial progenitor cells. Integration of in vitro 28 

and in vivo studies exploring these ideas may help unravel the mechanisms of exercise-mediated 29 

vascular adaptations. 30 

5. Conclusion 31 

Cell-derived MVs have received increased attention in the scientific community due to their potential 32 

to serve as biomarkers of intracellular events and their innate biological activities. These extracellular 33 

vesicles had been initially thought of as simple by-products of pathological disorders, and 34 

subsequently believed to play a role in maladaptation, but more recent evidence has also shown that 35 

MVs are not necessarily harmful, and actually necessary for proper physiological function. Exercise is 36 

a powerful factor affecting circulating MV dynamics. Available evidence indicates that the blood MV 37 

response to acute and chronic training may resemble the cytokine adjustments to exercise: that is, 38 

transient physical exertion may lead to a timed release of MVs, in particular PMVs, which are likely to 39 

be involved in acute and subacute exercise adjustments, as is the case with the cytokine response to 40 

a single bout of exercise. However, in the long term, and in analogy to pro-inflammatory cytokines, 41 

exercise training may decrease resting levels EMVs, which may be involved and reflect reduced 42 

vascular injury. Last but not least, a body of evidence indicates that these tiny vesicles play a role in 43 

the complex haemostatic control to exercise and are potential novel mediators of endothelial 44 

adaptions to training. The upcoming decades will certainly benefit from research investigating the 45 



precise dynamics of MVs in response to specific exercise variables, and will unravel their relevance in 1 

human physiology. 2 
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FIGURE LEGENDS 1 

 2 

Figure 1. Projected time-course of circulating microvesicle (MV) appearance during and after an endurance 3 
exercise session based on the current literature. A 2 to 3-fold increase in plasma platelet MV (PMV) 4 
concentrations during and few hours after exercise have been consistently reported, but data supporting an 5 
increase in activation-derived endothelial MV (EMV) concentrations are inconsistent. The concentration of EMVs 6 
carrying apoptotic markers may be decreased in the circulation hours to days after exercise. 7 

 8 

Figure 2. Exercise-derived microvesicle formation and release in the circulation, and their putative role as 9 
ubiquitous mediators of adjustments and adaptations to exercise. Representative figure not to scale. Schematic 10 
figure developed using images from the Servier Medical Art image bank. 11 


