Northumbria Research Link

Citation: Wilhelm, Eurico N., Mourot, Laurent and Rakobowchuk, Mark (2018) Exercise-Derived Microvesicles: A Review of the Literature. Sports Medicine, 48 (9). pp. 2025-2039. ISSN 0112-1642

Published by: Adis International

URL: https://doi.org/10.1007/s40279-018-0943-z <https://doi.org/10.1007/s40279-018-0943-z>

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/42470/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.)

1 Exercise-derived microvesicles: a review of literature

- 2 Eurico N. Wilhelm^{1*}, Laurent Mourot², Mark Rakobowchuk³
- 3
- 4 ¹ School of Physical Education, UFPel, Pelotas RS, Brazil.
- 5 ² EA3920 Prognostic Factors and Regulatory Factors of Cardiac and Vascular Pathologies, (Exercise
- 6 Performance Health Innovation EPHI), Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
- 7 and Tomsk Polytechnic University, Tomsk, Russia.
- ³ Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops BC,
 Canada.
- 10 * Corresponding author

11

- 12 * Corresponding author contact details:
- 13 School of Physical Education, UFPel
- 14 Rua Luís de Camões, 625 Três Vendas
- 15 Pelotas RS, Brazil
- 16 Postal Code: 96055-630
- 17 Telephone: +55 53 32732752
- 18 Email: euricowilhelm@gmail.com
- 19
- 20 Short Title: Microvesicles and Exercise

1 Abstract

2 Initially suggested as simple cell debris, cell-derived microvesicles (MVs) have now gained acceptance

3 as recognized players in cellular communication and physiology. Shed by most, and perhaps all, human

4 cells, these tiny lipid-membrane vesicles carry bioactive agents, such as proteins, lipids, and microRNA

- from their cell source, and are produced under orchestrated events in response to a myriad of stimuli.
 Physical exercise introduces systemic physiological challenges capable of acutely disrupting cell
- Physical exercise introduces systemic physiological challenges capable of acutely disrupting cell
 homeostasis and stimulating the release of MVs into the circulation. The novel and promising field of
- 8 exercise-derived MVs is expanding quickly, and the following work provides a review of the influence
- 9 of exercise on circulating MVs, considering both acute and chronic aspects of exercise and training.
- 10 Potential effects of the MV response to exercise are highlighted and future directions suggested as
- 11 exercise and sports sciences extend the realm of extracellular vesicles.
- 12

13 Key points

- 14 Cells naturally release microvesicles (MVs) known to regulate a variety of physiological • 15 processes including haemostasis and vascular adaptations. 16 • Acute exercise can influence the production and clearance of certain circulating MVs, with 17 remarkable effect in stimulating a transient increase in the concentration of MVs derived from 18 platelets. In selected populations, chronic exercise improves vascular function while reducing the blood 19 • 20 concentration of endothelial MVs linked to vascular damage at rest. Training variables, such as exercise intensity, can be modified to stimulate an acute increase 21 •
- 22 in the concentration of exercise-derived MVs with pro-angiogenic potential.
- 23

1 1. Introduction

When stimulated, different cell types release plasma membrane-derived vesicles into the extracellular
compartment, which can enter the circulation and interact with remote tissues. Among these,
microvesicles (MVs), also known as microparticles, transport lipids, proteins, and transcripts from their
parental cells. Despite the long debate about whether platelets should be classified as cells [1],
thrombocytes actively release MVs and comprise a large (if not the largest) fraction of circulating MVs
[2–4].
Previously viewed as biomarkers of the parental cell state, we now understand that MVs are not only

passive by-products of cell membrane cytoskeleton reorganisation, but active agents released under
 specific environmental stresses and capable of triggering functional and structural alterations in
 recipient cells [5–7]. The profile [8–10] and content [9,11] of circulating MVs differ between healthy
 and clinical conditions, with the concentration of certain MV populations related to impaired vascular

13 health [10,12].

14 Exercise training is one of the best interventions to maintain cardiovascular function, and recent 15 evidence demonstrates that acute exercise alters circulating MVs concentrations [13–17], especially 16 platelet-derived MVs (PMVs). Although exercise-mediated vascular adaptations like improved 17 endothelial function are mediated in large part by haemodynamic forces (i.e. increased anterograde 18 shear stress) [18–20], systemic circulating factors have also been suggested as involved [21], and 19 circulating MVs have arisen as putative mediators of local and systemic adaptations to exercise. The 20 precise role played by these tiny vesicles is still being unravelled, and the study of extracellular vesicles 21 has received intensive attention due to its potential in physiology and medicine. As such, this review 22 focuses on the promising field of cell-derived MVs considering their application in exercise physiology 23 and medicine and aims to provide future directions for this novel research area.

24 1.1. Literature search criteria

25 Electronic databases were searched (Pubmed/Medline, Scopus and Google Scholar) between 2017 26 and 2018, with no restriction regarding publication date. English language scientific articles were 27 selected based on content concerning (but not restricted to) the exercise and MV literature. Although 28 the present manuscript is not a systematic review, the literature search criteria included the terms 29 "exercise", "training", "microvesicles", "microparticles", "cell-derived microparticles". The reference 30 list of selected manuscripts, as well as from PhD theses and MSc dissertations on the topic, were also 31 used searching sources. For the review of specific literature relating to the influence of exercise upon 32 circulating MVs, articles were selected only if they included at least one acute or chronic exercise 33 intervention group and MV outcome.

34 2. Background – From extracellular vesicles to cell-derived microvesicles

Cells have been known to release biologically active small vesicles with many functions but not all 35 36 vesicles are created the same, so the term extracellular vesicles has been introduced as an all-37 encompassing descriptor of vesicles released by cells into the extracellular compartment. Such 38 vesicles can be sub-classified as exosomes, MVs, and apoptotic bodies, depending on their mechanism 39 of formation, size, and the presence of specific markers. Importantly, nomenclature in this field varies 40 with MVs and microparticles referred to as similar constructs, while others defining MVs as an 41 extracellular vesicle category which encompasses both microparticles and exosomes. Although we 42 appreciate that future efforts are necessary for nomenclature standardization, for clarity in this review 43 MVs and microparticles will be used interchangeably, whereas exosomes are considered distinct.

1 By standard definition, MVs are anucleate vesicular populations derived from plasma membranes, 2 ranging from approximately 0.1 to 1 μ m in diameter, and with no synthetic capabilities. MVs differ 3 from exosomes and apoptotic bodies not only in size, but also in how they are formed, their content, 4 and since MVs originate from the plasma membrane, they also carry cell membrane-specific antigens. 5 In contrast, exosomes are produced through a constitutive intracellular process and released by 6 exocytosis upon fusion of multivesicular bodies with the plasma membrane, whereas apoptotic bodies 7 are released as blebs from apoptotic cells and can also carry cell-membrane specific antigens. 8 Although some overlap exists and size definitions vary slightly, exosomes are generally described as

9 ranging from ~40 to 100 nm in diameter, and apoptotic bodies are normally characterised as vesicles

10 larger than 1.5 μ m that often carrying nuclear content [22,23].

Differentiating extracellular vesicle populations is important as each differs in function and may exhibit broad physiological and pathophysiological effects. This review focuses on MVs, but the reader is referred to previous publications for specific reviews on exosomes and exercise [24,25].

14 2.1. Introduction to circulating microvesicles

15 In 1967 Peter Wolf published a detailed manuscript describing that clot-formation occurred even in 16 platelet free-plasma as long as platelet-derived elements were present, which he named "platelet 17 dust" [26]. These pro-coagulant fragments were later found to have originated from the plasma 18 membrane and several years later, this was confirmed by electron microscopy after platelet 19 stimulation with thrombin [27], providing the first evidence of what we now call MVs.

Over decades, the field advanced with MVs characterized and, to some extent, content was determined, and evidence emerged that platelets were not the sole source of circulating MVs [22]. Presently, diverse MV populations have been identified from cell culture media, and biological fluids including plasma [3,28], urine [29], saliva [28], and synovial fluid [3]. The current view is that upon agonist stimulation most, if not all, cells release MVs carrying specific markers that enable cell origin

to be determined like endothelial (EMVs), PMVs, and red blood cell MVs (RBCMVs).

Currently, altered circulating MV concentrations have been associated with subclinical and clinical conditions. For instance, increased circulating concentrations of EMVs occur with obesity [9,12], the metabolic syndrome [30], those with coronary artery disease (CAD) [8], and type 2 diabetes mellitus [10], to list a few. They have even provided prognostic information about cardiovascular mortality in renal failure patients [31]. These conditions all exhibit vascular dysfunction, with increased EMVs concentrations likely reflecting chronic vascular damage, as observed in patients with known poor vascular outcomes such as CAD [8], and in acute stroke [32].

33 Accordingly, MVs are naturally produced and found in the circulation fluctuating within a physiological

range, with chronic alterations in MV concentrations identified as potential biomarkers of pathology.
 Of particular relevance and based on *in vitro* and *in vivo* evidence, EMVs have received great attention

36 as a surrogate circulating marker of endothelial cell health [33–36].

37 2.1.1. Microvesicle formation and phenotype

38 Shedding of MVs from the cell membrane is initiated by complex events that lead to cytoskeleton

39 proteolysis, cell shrinkage, and eventually MV sprouting [37,38]. Our understanding of the overall

40 mechanisms governing MV formation and release derives mainly from platelets, since they were

among the first to be identified, and constitute the predominant MV phenotype in human blood.

42 Briefly, in the basal state the content of phospholipid cell membranes are asymmetric with negatively 43 charged phospholipids, such as phosphatidylserine (PS), mainly a part of the inner leaflet [37]. When

1 activated or undergoing apoptosis, a randomisation in the phospholipid plasma membrane content 2 occurs, increasing the appearance of PS on the outer membrane, which, coupled with cytoskeleton 3 reorganisation and membrane remodelling, culminates in the shedding of newly formed MVs that may express PS on their surface [38]. Increases in intracellular Ca²⁺ concentration [37,39] with activation of 4 5 calcium-dependent proteins [39,40] is accepted as a general mechanism leading to these processes, 6 but calcium-independent pathways have also been identified in platelets [41]. Several stimuli that 7 bring about PMV release have been identified in vitro and include high shear stress, catecholamines, 8 adenosine diphosphate (ADP), and thrombin [42–44], but some agonists for platelet vesiculation can 9 downregulate the release of MVs from other sources such as endothelial cells [45]. An excellent 10 discussion of biological mechanisms related to MV formation has been published elsewhere [38]. 11 Methods to quantify MVs in body fluids are still limited, but recent developments have facilitated

12 quick progression from time-consuming and semi-quantitative microscopy, to high throughput 13 quantitative MV analyses using enzyme-linked immunosorbent assays (ELISA), traditional flow 14 cytometry, imaging flow cytometry, resistive pulse sensing, and nanoparticle tracking analysis 15 [29,46,47]. Knowing that MVs express PS in the outer leaflet enabled PS-binding agents (e.g. annexin-16 V staining) as general MV markers; however, PS exposure alone does not necessarily induce 17 vesiculation in platelets [39], and only a fraction of MVs released by unstimulated platelets express 18 sufficient PS to facilitate annexin-V binding [48]. Hence, more recently quantifying specific MV 19 populations has been based on the expression of cell-specific antigens associated with the MV 20 membrane, independent of annexin-V binding [16,34,48]. For example, PMVs can be identified by flow 21 cytometry as glycoprotein IIb (CD41) or glycoprotein Iba (CD42b) positive events, whereas E-selectin 22 (CD62E) can be used for EMV quantification, and CD45 is employed as a common maker for leukocyte-23 derived MVs (Table 1).

24

25 [TABLE1]

26

27 Previous studies indicate that PMVs are the most common MV phenotype in plasma [2–4], although 28 reports of greater abundance of RBCMVs also exists [47]. Such discrepancies in the proportion of 29 RBCMVs may relate to differences in blood sampling and handling procedures, as phlebotomy 30 conditions (e.g. needle Gauge, tourniquet use, and anticoagulant choice) and sample processing 31 protocols (e.g. centrifugation steps, time, and speed) can ultimately affect final MV concentrations 32 [49]. Although a complete list of all antigens expressed by circulating MVs would be useful, it is beyond 33 our scope. However, the most frequently observed MVs antigens in the circulation are also expressed 34 by platelets [12,48], erythrocytes [35,50], monocytes [4,47], neutrophils [47,50], lymphocytes [47] and 35 endothelial cells [11,33,51] suggesting these are the origins of most MVs.

36 2.1.2. Overall microvesicle function

37 Circulating MVs likely regulate physiological processes, and the interaction of MVs with target cells 38 occurs through at least three mechanisms. First, MVs may bind to membrane receptors and mediate 39 cell modifications through signalling pathway activation. Next, cell-MV interactions at the plasma 40 membrane may deliver vesicular content upon fusion with the cell membrane [6,22]. Finally, MVs may 41 be internalized by certain cells, altering the function and structure or their recipient targets [52,53]. 42 The latter may also serve as a MV clearance pathway if they are directed to lysosomes. As a result, 43 complex and sometimes contrasting responses arise from studies investigating isolated MV 44 populations.

Platelet-derived MVs are linked to the haemostatic system [22,23] with initial evidence supporting
 their role in coagulation, even in the absence of intact platelets [26]. Although not all MVs are pro-

- 3 coagulant [48], a number of MV populations present in a variety of body fluids, including blood and
- 4 saliva, display thrombogenic functions [3,28,54] similar to PS-rich PMVs [48]. The pro-thrombotic
- 5 potential of many blood MVs is highly related to their surface PS and tissue factor (TF) content [28,48],
- 6 and the natural shedding of MVs seems like a necessary physiological process. For instance, Scott
- 7 syndrome, a rare haemorrhagic disorder, is linked to impaired translocation of PS to the outer leaflet
- 8 cell membranes and reduced MV shedding [38], which results in defective blood coagulation.

Even though production of MVs is continuous, only a fraction are PS and TF-rich [4,33,48], suggesting
roles beyond coagulation. As will be explained, blood MV functions vary widely. For example, specific
EMV populations can trigger inflammation [5] and oxidative stress [55] in recipient endothelial cells,
and lymphocyte-derived MVs can suppress angiogenesis through vascular endothelial growth factor
(VEGF) downregulation [56]. Furthermore circulating MVs isolated from myocardial infarction patients
[57] and pre-eclamptic women [58] lead to endothelial dysfunction *in situ*, suggesting that the link
between augmented MV concentrations in pathological conditions is beyond correlational.

16 Conversely, other MVs display opposite functions than those described above. Grasser and Schifferli 17 [59] have shown that granulocyte-derived MVs induce anti-inflammatory properties by 18 downregulating macrophage activity, and using an ischaemic-limb model Leroyer et al. [60] 19 demonstrated a 3.5-fold increase in pro-angiogenic MV concentration in mouse muscle homogenates. 20 These ischaemia-related MVs increased progenitor cell differentiation into an endothelial phenotype 21 in vitro and in vivo, and other studies have shown that endothelial cells undergoing migration release 22 pro-angiogenic EMVs [61]. PMVs may also promote activation of pro-angiogenic pathways, resulting 23 in endothelial cell proliferation, chemotaxis, and protection from apoptosis [7,62].

- The identified function of MVs is constantly growing as it depends on a variety of factors, including the MV population, content, and the recipient cell with which they are interacting, which illustrates the complexity of these physiological interactions. More complex than local ischemia, physical exertion imposes unique challenges upon many organ systems often introducing MVs into the human circulation. As such the dynamics of MVs with exercise, and their potential relevance in exerciseinduced adaptation is an intriguingly understudied area.
- 30 3. Exercise and microvesicles
- In the following sections a review of the current state of knowledge on microvesicles and exercise will be presented, but as the reader will see the current understanding about the interaction between MVs and exercise is still incomplete. As such, the subsequent sections aim to provide a starting point and guidance for future research. Certainly, further experiments are warranted to answer specific guestions related to exercise and training variables (e.g. exercise volume, intensity, etc.), before more
- 36 definitive conclusions can be drawn.
- 37 3.1. Acute exercise

The phenomenon of microvesicle release with exercise has been appreciated only recently, with most experiments in the field focused on acute aerobic exercise and published in the current decade (Table 2). The dynamics of this response to exercise, however, is MV population specific. For example, circulating RBCMV concentrations did not change in the single study that examined this MV phenotype with exercise, but increases in the concentration of PMVs and MVs with polymorphonuclear neutrophil antigens was observed following a series of maximal cycling protocols [50]. Since MVs are physiologically active, their timed release may be involved in exercise responses.

Most studies have investigated the effect of performing an aerobic cycling session on subsequent 1 2 blood EMV concentrations. Although some authors observed an increase in certain EMV populations 3 after exercise in healthy individuals [4,16,51,63,64], most experiments report no change [4,13-4 17,50,65–67], or even a decrease in EMV concentration [63,68], with one study finding an increase in 5 blood EMV in men, but not women [16]. The discrepancies in the EMV response between studies may 6 arise from a number of confounding factors. For example, exercise brings about many acute 7 physiological adjustments that may stimulate or blunt EMV shedding. Cytokines and vascular cyclic 8 strain stimulate the formation of MVs from cultured endothelial cells [33,54,69], whereas high 9 vascular shear stress reduces EMV formation in vitro [45]. Since each of these factors increases during 10 exercise, an antagonistic environment may be created where little additional endothelial vesiculation 11 will occur and this may account for inconsistent findings. In addition, plasma volume changes may also 12 confound finding as observed by Wilhelm and colleagues [17] who noted increased EMV 13 concentration with heat stress and strenuous exercise, but this response was abolished when plasma 14 volume shifts were taken into account. This suggests changes in circulating EMVs were mediated by 15 haemoconcentration rather than altered MV dynamics. Most studies, however, do not report blood 16 volume corrected EMV concentrations, making it difficult to establish whether EMV shedding actually 17 occurs.

18 In contrast to other MV phenotypes, PMVs are the most responsive to an acute exercise bout. Most 19 studies report an increase in these MVs after exercise [4,13–15,50,64,70], with increases up to 2 to 3-20 fold from baseline, and several agonists known to stimulate PMV formation increase during exertion. 21 Plasma concentrations of ADP originating from exercising limbs in humans increase [71,72], and may 22 lead to platelet activation [72] since it is a PMV production agonist [44]. Similarly, sympathetic 23 activation during exercise can lead to blood noradrenaline spill-over that could stimulate platelet MV 24 formation, similar to in vitro effects [43]. Exercise also increases mean and anterograde vascular wall 25 shear rate (surrogate markers of shear stress) in conduit arteries of exercising [19,20], and even non-26 exercising limbs with prolonged exercise [18,73]. Increased shear stimulates PMV release from ex vivo 27 platelets [7,42] and recently a positive correlation between vascular shear rate and plasma PMV 28 concentration was noted in exercising men [15], although a follow-up set of experiments revealed this 29 correlation to not necessarily represents causation [17].

30 When comparing these results, however, the reader must be aware of intrinsic methodological 31 limitations of the field. Distinct quantification techniques result in different absolute MV 32 concentrations. For instance, in the study by Maruyama et al. [70] PMVs were assessed by ELISA and 33 concentration differed by orders of magnitude from those using traditional flow cytometry, which in 34 turn are not necessarily comparable to studies employing imaging flow cytometry. Nevertheless, the 35 trend of response was the same between techniques (i.e. an increase in PMV with exercise), 36 suggesting that the same physiological phenomenon was being assessed. As shown in Table 2, the vast 37 majority of experiments employed flow cytometry as the main MV quantification technique, but it is 38 recognized that both pre-analytical and analytical procedures influence the MV content in a sample 39 [49]. Although efforts to standardize traditional flow cytometry protocols have been made [74,75] 40 there still lacks methodological agreement between experiments. Furthermore and according to the 41 iceberg concept [29,46], flow cytometers can not identify all MVs due to light scattering limitations of 42 small particles, and as a result swarm detection of small MVs confounds absolute concentration 43 measurements. These factors can complicate comparisons made between studies and should be taken 44 into consideration when interpreting individual results. Future experiments combining quantification 45 techniques such as flow cytometry and nanoparticle-tracking analysis will certainly be useful to 46 robustly quantify absolute MV concentrations after acute exercise bouts.

- 1
- 2 [TABLE2]
- 3

4 3.1.1. Time-course of circulating microvesicle appearance with acute exercise

5 The dynamics of blood MV appearance depend on the vesicle source, and until the middle of the 6 current decade our understanding of their time-course of release with exercise was limited to one 7 study exploring EMVs [65], with the remaining experiments exploring post-exercise responses. More 8 recently, plasma PMVs, but not EMV, were shown to increase and stabilise within 30 minutes of 9 continuous cycling, with peak post-exercise values similar to those observed during exercise [15]. 10 Blood PMVs are augmented from a few minutes [4,14,50,70] up to 1 [4,15,70] and 2 h [4,13,50] after 11 exercise, and return towards baseline values thereafter. As such, the current literature indicates that 12 the rise in blood PMVs is a short-lived phenomenon, with these vesicles reaching peak concentrations 13 as early as 30 minutes after the onset of a training session, with values continuing to be elevated for 14 a few minutes to hours into the post-exercise recovery period (Figure 1).

15 The time-course dynamics of other MV populations are less clear. A single experiment has reported 16 an increase in the concentration of neutrophil-derived MV by the end of a ramp cycling protocol, with 17 a tendency to return to baseline after 2 h of recovery [50], and a delayed rise in circulating monocyte 18 MVs was observed after exercise in well-trained men [4], while it remained unchanged or 19 undetectable in less fit individuals [4,50]. Studies that observed a rise in EMVs expressing markers of 20 endothelial activation were limited to the post-exercise period [4,16,51,63]. From time-course 21 experiments, a late EMV increase may be expected, with peak values between 45-90 min after 22 exercise that returns towards baseline thereafter [4,51], but it is important to recall that several 23 investigations failed to report increases in circulating EMV concentrations (Table 2).

- 24
- 25 [FIGURE1]

26

Of relevance is an EMV subpopulation carrying apoptotic antigens (e.g. CD31⁺ and negative for platelet markers). These MVs have been thought to reflect endothelial apoptosis and vascular damage by several authors [33–35]. One should note that a number of studies in the field of exercise have considered CD31⁺ EMVs as an apoptotic subpopulation irrespective of annexin-V staining, and this review will follow the same definition when referring to apoptotic EMVs.

32 The current literature regarding apoptotic EMVs is ambiguous and may depend on the assessment 33 time-point and participant sex/population. For example, Durrer et al. [63] reported reduced 34 concentrations of circulating apoptotic EMVs in the morning following continuous and interval 35 exercise bouts in overweight/obese males, but not females, which was also evident 1 to 3 hours after exercise bouts in healthy men [68]. Conversely, plasma CD31⁺ EMV remained unchanged in healthy 36 37 individuals when assessed 5 min after moderate intensity cycling [16]. On the other hand, Schwarz et 38 al. [64] observed a 30% increase in plasma CD31⁺ MVs in men and women within 30 min of completing 39 a marathon, but it is unclear whether the authors' flow cytometry gating strategy excluded platelet 40 markers to ensure appropriate apoptotic EMV quantification. Hence, the limited evidence available 41 suggests that short to moderate duration exercise sessions (i.e. from a few minutes up to 2 h) do not 1 lead to endothelial injury, as reflected by stable circulating apoptotic EMVs and, if anything, this MV

2 subpopulation may even decrease below baseline values after exercise.

3 The exact fate of apoptotic EMVs remains unknown but it may include uptake by endothelial cells in 4 the post-exercise period [68]. Internalization of MVs by native endothelial cells have been reported in 5 several tissues [53,76,77] and may serve as a clearance mechanism since haemodynamic forces push 6 circulating MVs towards the vascular endothelium. Previous experiments have identified that 7 endocytosis of MVs by such vascular cells occurs through the anchoring of MV surface PS to 8 endothelial integrins, in a process mediated by endothelial locus-1 glycoproteins [53]. Macrophages 9 have also been reported to remove MVs through phagocytic pathways regulated by the presence of 10 PS, CD31 and Immunoglobulin M on the MV surface [78], and clearance likely involves MV 11 opsonisation by complement components and subsequent uptake by phagocytes [79]. Furthermore, 12 systemically infused MVs localise in the spleen, lungs, and liver, which are all thought to be important 13 organs involved in MV clearance [78]. It is unknown, however, whether these mechanisms apply to 14 the exercise context. Nonetheless, a decrease in apoptotic EMVs compared to resting values has also 15 been reported 1 h into recovery in patients who undergo dobutamine-induced cardiac stress [80], 16 indicating rapid clearance of EMVs which further supports findings from physical stress (exercise) 17 challenges. An extensive review of MV release and clearance has been published by Ayers et al. [78].

18 3.1.2. Exercise type

19 Little information exists regarding exercise modalities and MV responses. Most studies have employed 20 continuous or interval cycling and only a single study involved (continuous, incremental) treadmill 21 exercise, where a rise in circulating PMVs occurred [70]. Cycling and running differ in terms of 22 contraction type and muscle mass engaged, which could be factors influencing the MV response. 23 Furthermore, footstrike during running has been proposed to induce mechanical damage of 24 erythrocytes and contribute to exercise-related haemolysis [81,82], which may influence RBCMVs. 25 Although no direct comparison between exercise modalities has not been performed, some 26 conclusions regarding those variables can be drawn from published data. Using an adapted cycling 27 model, Rakobowchuk et al. [14] compared aerobic power matched concentric vs. eccentric exercise 28 and noted similar patterns of increased post-exercise plasma PMV and unaltered EMV concentrations, 29 indicating no influence of contraction type upon MV dynamics. Furthermore, MV release appears to 30 require the activation of only small quantities of skeletal muscle, as circulating PMV increase even 31 with small muscle mass exercise, like with incremental knee extensor exercise [17].

- Resistance exercise, on the other hand, does not seem to affect blood EMV levels [67], the only MV
 population studied to date. One could speculate that PMVs would be released under such conditions
 since resistance exercise can acutely increase platelet activation as assessed by increased plasma β-
- thromboglobulin concentrations [83,84] which highly correlates with plasma PMV (r=0.95) [85].
- Hence, cycling and running may be expected to induce MV or at least PMV formation, indicating that
 rhythmic endurance-like exercise can stimulate cell vesiculation, whereas data pertaining to resistance
- 38 exercise is scarce.
- 39 3.1.3. Exercise intensity

40 The relative intensity of an exercise session often governs acute physiological adjustments and 41 potentially impacts MV responses to physical exertion. If the exercise intensity domains 42 recommended by the American College of Sports Medicine are taken into consideration [86], most 43 studies of MVs and acute exercise have employed moderate to vigorous exercise stimuli, with 44 intensities generally ≥ 50% of peak oxygen uptake. Post-exercise increase in blood PMV concentration is a consistent response to exercise, even reported with cycling performed below the first ventilatory
threshold [14]. A between-study analysis, however, may lead to uncertainty about the influence of
exercise intensity on MV dynamics, since augmented appearance of certain blood MVs is reported
with near maximal incremental exercise [50,70], but variable responses have been noted after high
intensity interval exercise [51,63,66,68], or light to moderate intensity protocols [14,65].

Recent evidence comparing continuous cycling within different intensity domains has helped to clarify
this topic. Based on 60 min of moderate or vigorous continuous cycling performed by healthy men, it
has become apparent that relative intensity plays an important role in MVs dynamics. Specifically,
circulating PMVs increased from baseline during and after vigorous exercise (i.e. ≥ 64% of maximal
oxygen uptake), whereas moderate intensity cycling (i.e. ≥ 46% of maximal oxygen uptake) resulted
in a very modest non-significant rise [15]. The plasma EMVs concentrations were unaltered, no matter
the exercise intensity.

13 3.1.4. Exercise volume

14 The influence of exercise volume on acute MV responses lacks systematic evaluation at this point in 15 time. Studies designed to directly isolate exercise volume are needed, and comparison of exercise 16 protocols that induce changes in blood MV concentrations have been limited in terms of exercise 17 duration. Nevertheless, pronounced increases in circulating PMVs occurs even with small volume 18 exercise (e.g. a few minutes of incremental whole-body or isolated-limb exercise) [17,50,70], whereas 19 the longest duration studies (i.e. 4 h cycling performed below the anaerobic threshold or marathon 20 running) showed smaller increases or unchanged concentrations of circulating MVs [64,65]. One could 21 speculate that MVs may have increased and subsequently returned towards baseline concentrations 22 during the latter experiments, but the small number of sequential blood sampling time points limits 23 conclusions.

24 At this stage, data from Wilhelm et al. [15] helps shed further light on this topic as blood samples were 25 taken throughout 1 h of moderate and vigorous intensity cycling. Plasma PMVs increased from 26 baseline by 30 min of vigorous exercise and remained stable until the end of the 1 h protocol, 27 suggesting little influence of exercise volume upon PMV, since doubling the exercise duration did not 28 further increase plasma MV concentrations. Moreover, if simplistic energy expenditure estimations 29 are made considering a general O_2 caloric equivalent of 5 kcal/l O_2 (i.e. disregarding protocol-specific 30 respiratory exchange rate) it becomes apparent that exercise volume has little influence on circulating 31 MV appearance, since the concentration of plasma PMV was unchanged throughout the moderate 32 cycling session, even though the energy expenditure at the end of 1 h of this protocol (~450 kcal) was 33 greater than at 30 min of vigorous exercise (~330 kcal), when a rise in PMV was already evident.

Together, although still limited, the current body of evidence points toward a greater influence of exercise intensity rather than volume upon MV release.

36 3.1.5. Physiological significance of exercise-derived microvesicles

The introduction of MVs into the circulation of exercising humans plays a regulatory role in haemostatic control. Sossdorf et al. [4] isolated MVs exposing PS and reported an increase in MVrelated prothrombinase activity from post-exercise samples. Fibrin formation was greater in samples from well-trained participants, reinforcing the procoagulant potential of MVs. As one exercises, both the pro and anticoagulant systems may be activated [70,72,87], so the increased MV pro-coagulant potential with acute exercise may play a natural role in fine-tuning the fibrinolytic and thrombotic balance.

1 Exercise training traditionally improves endothelial function mainly through a vascular shear stress-2 mediated mechanism [18–20], but circulatory factors are also involved [21]. Since circulating MVs, 3 particularly PMVs, can be acutely increased after an exercise session, speculation that these vesicles 4 are involved in vascular adaptation to training has emerged. Early experimental evidence that exercise 5 increases the interaction between endothelial cells and MVs was provided by Wahl et al. [68]. They 6 fluorescently labelled-MVs (PKH26 staining) in vitro and loaded these into serum samples obtained 7 from male athletes prior to and after exercise. Human coronary artery endothelial cells were then 8 incubated with the MV-rich sera which increased EMV (but not monocyte MV) uptake by cultured 9 endothelial cells exposed to post-exercise serum, providing some of the first evidence that blood 10 milieu alterations after exercise stimulate the uptake of selected MV populations from the circulation. 11 Moreover, a concomitant decrease in endothelial cell apoptosis was observed as assessed by, caspase-12 3 activity but unfortunately the lack of a MV-poor serum control condition precludes that the 13 antiapoptotic effect was mediated by MVs specifically.

14 In subsequent experiments, MVs isolated from the plasma of exercising humans stimulated 15 angiogenesis of cultured endothelial cells when compared to MVs obtained from baseline resting 16 condition [15]. The angiogenic potential of exercise-derived MVs may stem from enhanced endothelial 17 proliferation and migratory capacity induced by these MVs compared to those obtained at baseline. 18 The mechanisms through which exercise-derived MVs induced alterations in endothelial phenotype 19 were not investigated but may relate to delivery of angiogenic growth factors. For example, VEGF is 20 considered a potent regulator of skeletal muscle capillary formation, and MVs shed by platelets ex 21 vivo increase endothelial wound-healing and angiogenesis partially through the delivery of VEGF to 22 endothelial cells [62]. Part of the pro-angiogenic effect of VEGF depends on activating the NO pathway 23 [88,89], and MVs from healthy individuals are a source of bloodborne eNOS [9,11]. Moreover, in 24 rodent limb ischaemia models MVs likely facilitate compensatory angiogenesis through the 25 stimulation of progenitor cell differentiation into an endothelial phenotype [60]. Together, these are 26 potential, yet speculative, mechanistic alternatives through which exercise-derived MVs may bring 27 about endothelial adaptation. Although exercise-derived PMVs remain logical candidates for their 28 physiological effects, the specific MV population responsible for the pro-angiogenic and proliferative 29 endothelial stimulation, as well as the exact biochemical pathways through which exercise-derived 30 MVs stimulate endothelial cells still needs to be determined.

31 As postulated with different extracellular vesicle populations [24], it is possible exercise-derived MVs 32 transport "exerkines" and promote systemic adaptations. An important recent study by Whitham et 33 al. [90] suggests that acute exercise might modify the cargo of sampled extracellular vesicles, which 34 contained a fraction of small MVs, as hundreds of proteins transported in extracellular vesicles were 35 altered in the circulation after a cycling bout. Beyond the vascular system, they further demonstrated 36 that systemically infused exercise-derived extracellular vesicles accumulated in the liver of recipient 37 mice, indicating a pathway for communication with non-exercising tissues during exercise, which 38 could include the lungs, kidneys, liver, and brain [53,76,77]. Hence, all these tissues could be prone to 39 phenotypical modifications mediated by the exercise-derived MVs. As such, given the systemic nature 40 of circulating MVs, one can speculate that their timed release with exercise can positively influence 41 several tissues and organs by altering remote cell function and morphology (Figure 2). Future studies 42 ought to further unravel the relevance of these MVs in vascular and systemic adaptations to exercise 43 in vivo.

44

45 [FIGURE2]

1

2 3.2. Physical activity and exercise training

Observational studies reporting altered circulating MVs concentrations in patients with vascular and metabolic dysfunctions, as well as established diseases suggest that MVs respond to chronic physiological challenges. Moreover, the ability of MVs to carry bioactive makers and participate in horizontal gene transfer at remote sites suggests involvement in the pathophysiology. Accordingly, environmental factors and chronic lifestyle modifications, such as exercise training, may influence the basal concentration of circulating MVs.

9 Early evidence of the influence of physical activity and exercise upon the blood MV profile comes from 10 small, yet well conducted, bedrest and restricted physical activity experiments. Navasiolava et al. [35] 11 limited physical activity of 8 healthy men to a minimum for 7 days, and observed an early elevation in 12 apoptotic EMVs by the third day of inactivity, with reduced microvascular vasodilatory function that 13 was likely prostaglandin-related. In agreement with this previous study, reducing daily physical activity 14 levels of recreationally active men by ~50% (from > 10,000 to < 5,000 steps/day) for 5 consecutive 15 days impaired popliteal artery endothelial function augmented circulating concentrations of apoptotic 16 EMVs [36]. Since inactivity-mediated vascular dysfunction seems to reflect increases in EMVs, a 17 decrease in basal EMVs could be expected with increased physical activity through, for example, 18 exercise training.

19 Only a few studies have investigated changes in blood MVs after a training period. Babbitt et al. [91] 20 were among the first and reported a near 50% decreased in plasma CD62⁺ EMVs (a MV subset 21 theoretically derived from activated endothelial cells) of middle-aged and older African-Americans 22 after 6 months of light to moderate intensity endurance exercise, which was accompanied by an 23 improvement in blood inflammatory markers and brachial artery flow-mediated dilation. A subgroup 24 analysis also revealed a decrease in apoptotic EMVs [92], suggesting reduced vascular damage and 25 vesiculation at rest after the training period. Unfortunately, the lack of a control group hinders 26 categorical conclusions that the reported effects were exclusive to the training program itself. 27 However, these results importantly indicate that chronic improvements in endothelial function are 28 reflected by a reduction in blood EMV concentrations in a population at elevated risk for 29 cardiovascular events [93–95].

- 30 In light of current evidence, we can only hypothesize about the chronic effect of exercise training on 31 resting PMV adaptations. As platelet hyperreactivity to ADP has been associated with long-term 32 cardiovascular complications in some studies [96,97], and considering that: (1) baseline PMV 33 concentration is increased in patients with established or at risk for cardiovascular diseases [8,10,12]; 34 and (2) exercise training can reduce markers of platelet activation at rest and diminish their sensitivity 35 to activation agonists [87]; it appears reasonable that circulating PMV content would drop after a 36 training programme in selected patient populations. However, it is important to stress that the impact 37 of exercise training on resting platelet activation is not unequivocal [87]. Alternatively, the 38 concentration of PMVs might remain unchanged while their content could be modified towards a less 39 thrombogenic and more vasoprotecive phenotype, but again this idea remains merely hypothetical.
- 40 4. Further directions in physiology and medicine

Even though alterations in certain circulating MVs concentrations with exercise seems like a normal
 response in healthy adults, little is known about the influence of acute and chronic exercise upon the

43 cargo of MVs and their dynamics in specific patient populations. For example, Guiraud et al. [66]

44 observed no change in circulating PMV and EMV amongst stable CAD patients after an exercise

challenge, whereas subsequent work by Augustine et al. [80] revealed that circulating MVs 1 2 concentrations increased in patients with normal coronary arteries in response to a 3 pharmacologically-mediated cardiac stress, but MVs concentrations were unaltered in patients likely 4 to have further cardiovascular complications. These findings suggest that an increase in selected MV 5 populations with acute stress is an important physiological process that appears blunted in patients 6 at risk. These MV dynamics to stress tests could even be useful in predicting future cardiovascular 7 events in certain populations. Monitoring changes in circulating MVs concentrations prior and after 8 standard tests (such as exercise) in healthy controls and populations with cardiovascular risk factors 9 could provide further insight into the MV dynamics and could progress to the use of exercise-derived 10 MVs as biomarkers in patient stratification.

11 As discussed, our understanding of the MVs responses to exercise and training is far from complete, 12 and this field will benefit from acute experiments exploring the influence of exercise variables (e.g. 13 volume, intensity, and type of exercise) and their chronic influence to optimise training adaptations. 14 Greater standardization on MV quantification protocols within the field of exercise is also warranted. 15 Moreover, beyond changes in the MV profile, the content of MVs is affected by one's physiological 16 state [9,11], and it is likely that exercise-released MV differ in composition compared to those 17 produced under basal or pathological conditions. It is also tempting to speculate that chronic exercise 18 may impact not just the circulating MV profile, but its cargo as well. Future studies that examine 19 proteomic, lipidomic, transcriptomic, and metabolomic profiles with more appropriate species 20 isolation and quantification techniques will certainly shed light upon the composition of MVs.

21 The exciting findings that extracellular vesicles can mediate cell-to-cell signalling through horizontal 22 transfer of mRNA and miRNA [98,99] is of particular interest, as acute and chronic exercise can alter 23 the concentration of circulating miRNA [100], and MVs might act as a transport vehicle of 24 transcription-controlling factors and alter the function of remote cells. Interestingly, there is evidence 25 linking PMVs to adhesion and differentiation of early outgrowth endothelial cells in vitro and 26 amplification of early outgrowth endothelial cell reendothelization in murine vascular injury models 27 [6]. This suggests the exercise-induced PMV release phenomenon may improve vascular repair and 28 function by enhancing differentiation of circulating endothelial progenitor cells. Integration of in vitro 29 and in vivo studies exploring these ideas may help unravel the mechanisms of exercise-mediated 30 vascular adaptations.

31 5. Conclusion

32 Cell-derived MVs have received increased attention in the scientific community due to their potential 33 to serve as biomarkers of intracellular events and their innate biological activities. These extracellular 34 vesicles had been initially thought of as simple by-products of pathological disorders, and 35 subsequently believed to play a role in maladaptation, but more recent evidence has also shown that 36 MVs are not necessarily harmful, and actually necessary for proper physiological function. Exercise is 37 a powerful factor affecting circulating MV dynamics. Available evidence indicates that the blood MV 38 response to acute and chronic training may resemble the cytokine adjustments to exercise: that is, 39 transient physical exertion may lead to a timed release of MVs, in particular PMVs, which are likely to 40 be involved in acute and subacute exercise adjustments, as is the case with the cytokine response to 41 a single bout of exercise. However, in the long term, and in analogy to pro-inflammatory cytokines, exercise training may decrease resting levels EMVs, which may be involved and reflect reduced 42 43 vascular injury. Last but not least, a body of evidence indicates that these tiny vesicles play a role in 44 the complex haemostatic control to exercise and are potential novel mediators of endothelial 45 adaptions to training. The upcoming decades will certainly benefit from research investigating the

- 1 precise dynamics of MVs in response to specific exercise variables, and will unravel their relevance in
- 2 human physiology.
- 3 Compliance with Ethical Standards
- 4 Conflict of Interest
- 5 Eurico N. Wilhelm, Laurent Mourot and Mark Rakobowchuk declare that they have no conflict of 6 interest.
- 7 Funding
- 8 The research was funded by grants from the French Ministry of National Education, of Research and
- 9 of Technology (EA3920), from Tomsk Polytechnic University Competitiveness Enhancement Program
- 10 grant, Project № ВИУ-ИСГТ-108/2017 TPU CEP-HSTI-108/2017 and a Natural Science and Engineering
- 11 Research Council of Canada Discovery Grant to M.R.
- 12 E.N.W. is supported by the Brazilian Education Ministry Foundation CAPES (Postdoctoral Fellowship).
- 13 References
- 14 1. Garraud O, Cognasse F. Are platelets cells? and if yes, are they immune cells? Front. Immunol. 2015;6:1–8.
- Berckmans RJ, Nieuwland R, Böing AN, Romijn FP, Hack CE, Sturk A. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb. Haemost. 2001;85:639–46.
- Berckmans RJ, Nieuwland R, Tak PP, Böing AN, Romijn FPHTM, Kraan MC, et al. Cell-derived microparticles in
 synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor VII-dependent
 mechanism. Arthritis Rheum. 2002;46:2857–66.
- 4. Sossdorf M, Otto GP, Claus RA, Gabriel HHW, Lösche W. Cell-derived microparticles promote coagulation after
 moderate exercise. Med. Sci. Sport. Exerc. 2011;43:1169–76.
- 5. Curtis AM, Wilkinson PF, Gui M, Gales TL, Hu E, Edelberg JM. p38 mitogen-activated protein kinase targets the
 production of proinflammatory endothelial microparticles. J. Thromb. Haemost. 2009;7:701–9.
- 6. Mause SF, Ritzel E, Liehn EA, Hristov M, Bidzhekov K, Muller-Newen G, et al. Platelet microparticles enhance
 the vasoregenerative potential of angiogenic early outgrowth cells after vascular injury. Circulation.
 2010;122:495–506.
- 7. Kim HK, Song KS, Chung J, Lee KR, Lee S. Platelet microparticles induce angiogenesis in vitro. Br. J. Haematol.
 2004;124:376–84.
- 8. Bernal-Mizrachi L, Jy W, Jimenez JJ, Pastor J, Mauro LM, Horstman LL, et al. High levels of circulating
 endothelial microparticles in patients with acute coronary syndromes. Am. Heart J. 2003;145:962–70.
- 9. Dimassi S, Chahed K, Boumiza S, Canault M, Tabka Z, Laurant P, et al. Role of eNOS- and NOX-containing
 microparticles in endothelial dysfunction in patients with obesity. Obesity. 2016;24:1305–12.
- 10. Feng B, Chen Y, Luo Y, Chen M, Li X, Ni Y. Circulating level of microparticles and their correlation with arterial
 elasticity and endothelium-dependent dilation in patients with type 2 diabetes mellitus. Atherosclerosis.
 2010;208:264–9.
- Horn P, Cortese-krott MM, Amabile N, Hundsöfer C, Kröncke K-D, Kelm M, et al. Circulating microparticles
 carry a functional endothelial nitric oxide that is decreased in patients with endothelial dysfunction. J. Am. Heart
 Assoc. 2012;2:1–12.
- 12. Esposito K, Ciotola M, Schisano B, Gualdiero R, Sardelli L, Misso L, et al. Endothelial microparticles correlate
 with endothelial dysfunction in obese women. J. Clin. Endocrinol. Metab. 2006;91:3676–9.
- 41 13. Sossdorf M, Otto GP, Claus R a, Gabriel HH, Lösche W. Release of pro-coagulant microparticles after

1 moderate endurance exercise. Platelets. 2010;21:389–91.

2 14. Rakobowchuk M, Ritter O, Wilhelm EN, Isacco L, Bouhaddi M, Degano B, et al. Divergent endothelial function

but similar platelet microvesicle responses following eccentric and concentric cycling at a similar aerobic power
 output. J. Appl. Physiol. 2017;122:1031–9.

5 15. Wilhelm EN, González-Alonso J, Parris C, Rakobowchuk M. Exercise intensity modulates the appearance of
 6 circulating microvesicles with proangiogenic potential upon endothelial cells. Am. J. Physiol. - Hear. Circ. Physiol.
 7 2016;311:H1297–310.

8 16. Lansford KA, Shill DD, Dicks AB, Marshburn MP, Southern WM, Jenkins NT. Effect of acute exercise on
 9 circulating angiogenic cell and microparticle populations. Exp. Physiol. 2016;101:155–67.

17. Wilhelm EN, González-Alonso J, Chiesa ST, Trangmar SJ, Kalsi KK, Rakobowchuk M. Whole-body heat stress
 and exercise stimulate the appearance of platelet microvesicles in plasma with limited influence of vascular
 shear stress. Physiol. Rep. 2017;5:e13496.

- 18. Birk GK, Dawson EA, Atkinson C, Haynes A, Cable NT, Thijssen DHJ, et al. Brachial artery adaptation to lower
 limb exercise training: role of shear stress. J. Appl. Physiol. 2012;112:1653–8.
- 15 19. Tinken TM, Thijssen DHJ, Hopkins N, Dawson EA, Cable NT, Green DJ. Shear Stress Mediates Endothelial
 Adaptations to Exercise Training in Humans. Hypertension. 2010;55:312–8.
- 20. Credeur DP, Hollis BC, Welsch MA. Effects of handgrip training with venous restriction on brachial artery
 vasodilation. Med. Sci. Sports Exerc. 2010;42:1296–302.
- 21. Padilla J, Simmons GH, Bender SB, Arce-Esquivel AA, Whyte JJ, Laughlin MH. Vascular effects of exercise:
 endothelial adaptations beyond active muscle beds. Physiology. 2011;26:132–45.
- 22. Hargett LA, Bauer NN. On the origin of microparticles: From "platelet dust" to mediators of intercellular
 communication. Pulm. Circ. 2013;3:329–40.
- 23. Shantsila E, Kamphuisen PW, Lip GYH. Circulating microparticles in cardiovascular disease: implications for
 atherogenesis and atherothrombosis. J. Thromb. Haemost. 2010;8:2358–68.
- 24. Safdar A, Saleem A, Tarnopolsky MA. The potential of endurance exercise-derived exosomes to treat
 metabolic diseases. Nat. Rev. Endocrinol. 2016;12:504–17.
- 27 25. Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol.
 28 2002;2:569–79.
- 29 26. Wolf P. The nature and significance of platelet products in human plasma. Br. J. Haematol. 1967;13:269–88.
- 27. Webber AJ, Johnson SA. Platelet participation in blood coagulation aspects of hemostasis. Am. J. Pathol.
 1970;60:19–42.
- 32 28. Berckmans RJ, Sturk A, van Tienen LM, Schaap MCL, Nieuwland R. Cell-derived vesicles exposing coagulant
 33 tissue factor in saliva. Blood. 2011;117:3172–80.
- 29. van der Pol E, van Gemert MJC, Sturk A, Nieuwland R, van Leeuwen TG. Single vs. swarm detection of
 microparticles and exosomes by flow cytometry. J. Thromb. Haemost. 2012;10:919–30.
- 30. Amabile N, Cheng S, Renard JM, Larson MG, Ghorbani A, McCabe E, et al. Association of circulating
 endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study. Eur. Heart J.
 2014;35:2972–9.
- 31. Amabile N, Guerin AP, Tedgui A, Boulanger CM, London GM. Predictive value of circulating endothelial
 microparticles for cardiovascular mortality in end-stage renal failure: a pilot study. Nephrol. Dial. Transplant.
 2012;27:1873–80.
- 32. Simak J, Gelderman MP, Yu H, Wright V, Baird AE. Circulating endothelial microparticles in acute ischemic
 stroke: A link to severity, lesion volume and outcome. J. Thromb. Haemost. 2006;4:1296–302.
- 44 33. Jimenez JJ, Jy W, Mauro LM, Soderland C, Horstman LL, Ahn YS. Endothelial cells release phenotypically and

- 1 quantitatively distinct microparticles in activation and apoptosis. Thromb. Res. 2003;109:175–80.
- 34. Jenkins NT, Padilla J, Boyle LJ, Credeur DP, Laughlin MH, Fadel PJ. Disturbed blood flow acutely induces
 activation and apoptosis of the human vascular endothelium. Hypertens. (Dallas, Tex. 1979). 2013;61:615–21.
- 35. Navasiolava NM, Dignat-George F, Sabatier F, Larina IM, Demiot C, Fortrat J-O, et al. Enforced physical
 inactivity increases endothelial microparticle levels in healthy volunteers. Am. J. Physiol. Hear. Circ. Physiol.
 2010;299:H248–56.
- 36. Boyle LJ, Credeur DP, Jenkins NT, Padilla J, Leidy HJ, Thyfault JP, et al. Impact of reduced daily physical activity
 on conduit artery flow-mediated dilation and circulating endothelial microparticles. J. Appl. Physiol.
 2013;115:1519–25.
- 37. Chang CP, Zhao J, Wiedmer T, Sims PJ. Contribution of platelet microparticle formation and granule secretion
 to the transmembrane migration of phosphatidylserine. J. Biol. Chem. 1993;268:7171–8.
- 38. Morel O, Jesel L, Freyssinet JM, Toti F. Cellular mechanisms underlying the formation of circulating
 microparticles. Arterioscler. Thromb. Vasc. Biol. 2011;31:15–26.
- 39. Dachary-Prigent J, Pasquet JM, Freyssinet JM, Nurden AT. Calcium involvement in aminophospholipid
 exposure and microparticle formation during platelet activation: a study using Ca2+-ATPase inhibitors.
 Biochemistry. 1995;34:11625–34.
- 40. Fox JE, Austin CD, Reynolds CC, Steffen PK. Evidence that agonist-induced activation of calpain causes the
 shedding of procoagulant-containing microvesicles from the membrane of aggregating platelets. J. Biol. Chem.
 1991;266:13289–95.
- 41. Cauwenberghs S, Feijge MAH, Harper AGS, Sage SO, Curvers J, Heemskerk JWM. Shedding of procoagulant
 microparticles from unstimulated platelets by integrin-mediated destabilization of actin cytoskeleton. FEBS Lett.
 2006;580:5313–20.
- 42. Miyazaki Y, Nomura S, Miyake T, Kagawa H, Kitada C, Taniguchi H, et al. High shear stress can initiate both
 platelet aggregation and shedding of procoagulant containing microparticles. Blood. 1996;88:3456–64.
- 43. Tschuor C, Asmis LM, Lenzlinger PM, Tanner M, Härter L, Keel M, et al. In vitro norepinephrine significantly
 activates isolated platelets from healthy volunteers and critically ill patients following severe traumatic brain
 injury. Crit. Care. 2008;12:R80.
- 44. Horstman LL, Ahn YS. Platelet microparticles: a wide-angle perspective. Crit. Rev. Oncol. Hematol.
 1999;30:111–42.
- 45. Vion A-C, Ramkhelawon B, Loyer X, Chironi G, Devue C, Loirand G, et al. Shear stress regulates endothelial
 microparticle release. Circ. Res. 2013;112:1323–33.
- 32 46. Harrison P, Gardiner C. Invisible vesicles swarm within the iceberg. J. Thromb. Haemost. 2012;10:916–8.
- 47. Headland SE, Jones HR, D'Sa AS V., Perretti M, Norling L V. Cutting-edge analysis of extracellular
 microparticles using ImageStream(X) imaging flow cytometry. Sci. Rep. 2014;4:5237.
- 48. Connor DE, Exner T, Ma DDF, Joseph JE. The majority of circulating platelet-derived microparticles fail to bind
 annexin V , lack phospholipid-dependent procoagulant activity and demonstrate greater expression of
 glycoprotein lb. Thromb. Haemost. 2010;103:1044–52.
- 49. Yuana Y, Bertina R, Osanto S. Pre-analytical and analytical issues in the analysis of blood microparticles.
 Thromb. Haemost. 2011;105:396–408.
- 50. Chaar V, Romana M, Tripette J, Broquere C, Huisse MG, Hue O, et al. Effect of strenuous physical exercise on
 circulating cell-derived microparticles. Clin. Hemorheol. Microcirc. 2011;47:15–25.
- 42 51. Kirk RJ, Peart DJ, Madden LA, Vince R V. Repeated supra-maximal sprint cycling with and without sodium
 43 bicarbonate supplementation induces endothelial microparticle release. Eur. J. Sport Sci. 2014;14:345–52.
- 44 52. Terrisse AD, Puech N, Allart S, Gourdy P, Xuereb JM, Payrastre B, et al. Internalization of microparticles by

- endothelial cells promotes platelet/endothelial cell interaction under flow. J. Thromb. Haemost. 2010;8:2810–
 9.
- 3 53. Dasgupta SK, Le A, Chavakis T, Rumbaut RE, Thiagarajan P. Developmental endothelial locus-1 (Del-1)
 4 mediates clearance of Platelet microparticles by the endothelium. Circulation. 2012;125:1664–72.
- 5 54. Abid Hussein MN, Böing AN, Biró É, Hoek FJ, Vogel GMT, Meuleman DG, et al. Phospholipid composition of
 6 in vitro endothelial microparticles and their in vivo thrombogenic properties. Thromb. Res. 2008;121:865–71.
- 55. Brodsky S V, Zhang F, Nasjletti A, Goligorsky MS. Endothelium-derived microparticles impair endothelial
 function in vitro. Am. J. Physiol. Hear. Circ. Physiol. 2004;286:H1910-5.
- 9 56. Yang C, Mwaikambo BR, Zhu T, Gagnon C, Lafleur J, Seshadri S, et al. Lymphocytic microparticles inhibit
 10 angiogenesis by stimulating oxidative stress and negatively regulating VEGF-induced pathways. Am. J. Physiol. 11 Regul. Integr. Comp. Physiol. 2008;5:467–76.
- 57. Boulanger CM, Scoazec A, Ebrahimian T, Henry P, Mathieu E, Tedgui A, et al. Circulating microparticles from
 patients with myocardial infarction cause endothelial dysfunction. Circulation. 2001;104:2649–52.
- 58. VanWijk MJ, Svedas E, Boer K, Nieuwland R, VanBavel E, Kublickiene KR. Isolated microparticles, but not
 whole plasma, from women with preeclampsia impair endothelium-dependent relaxation in isolated myometrial
 arteries from healthy pregnant women. Am. J. Obstet. Gynecol. 2002;187:1686–93.
- 17 59. Gasser O, Schifferli JA. Activated polymorphonuclear neutrophils disseminate anti-inflammatory
 18 microparticles by ectocytosis. Blood. 2004;104:2543–8.
- 60. Leroyer AS, Ebrahimian TG, Cochain C, Récalde A, Blanc-Brude O, Mees B, et al. Microparticles from ischemic
 muscle promotes postnatal vasculogenesis. Circulation. 2009;119:2808–17.
- Arderiu G, Peña E, Badimon L. Angiogenic Microvascular Endothelial Cells Release Microparticles Rich in
 Tissue Factor That Promotes Postischemic Collateral Vessel Formation. Arterioscler. Thromb. Vasc. Biol.
 2015;35:348–57.
- 62. Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D. Platelet-derived microparticles induce angiogenesis and
 stimulate post-ischemic revascularization. Cardiovasc. Res. 2005;67:30–8.
- Burrer C, Robinson E, Wan Z, Martinez N, Hummel ML, Jenkins NT, et al. Differential impact of acute high intensity exercise on circulating endothelial microparticles and insulin resistance between overweight/obese
 males and females. PLoS One. 2015;10:e0115860.
- 64. Schwarz V, Düsing P, Liman T, Werner C, Herm J, Bachelier K, et al. Marathon running increases circulating
 endothelial- and thrombocyte-derived microparticles. Eur. J. Prev. Cardiol. 2017;1–8.
- 65. Mobius-Winkler S, Hilberg T, Menzel K, Golla E, Burman A, Schuler G, et al. Time-dependent mobilization of
 circulating progenitor cells during strenuous exercise in healthy individuals. J. Appl. Physiol. 2009;107:1943–50.
- 66. Guiraud T, Gayda M, Juneau M, Bosquet L, Meyer P, Théberge-Julien G, et al. A single bout of high-intensity
 interval exercise does not increase endothelial or platelet microparticles in stable, physically fit men with
 coronary heart disease. Can. J. Cardiol. 2013;29:1285–91.
- 67. Ross MD, Wekesa AL, Phelan JP, Harrison M. Resistance exercise increases endothelial progenitor cells and
 angiogenic factors. Med. Sci. Sport. Exerc. 2014;46:16–23.
- 68. Wahl P, Jansen F, Achtzehn S, Schmitz T, Bloch W, Mester J, et al. Effects of high intensity training and high
 volume training on endothelial microparticles and angiogenic growth factors. Madeddu P, editor. PLoS One.
 2014;9:e96024.
- 41 69. Vion AC, Birukova A a, Boulanger CM, Birukov KG. Mechanical forces stimulate endothelial microparticle
 42 generation via caspase-dependent apoptosis-independent mechanism. Pulm. Circ. 2013;3:95–9.
- 43 70. Maruyama K, Kadono T, Morishita E. Plasma levels of platelet-derived microparticles are increased after 44 anaerobic exercise in healthy subjects. J. Atheroscler. Thromb. 2012;19:585–7.

- 71. Gonzalez-Alonso J, Olsen DB, Saltin B. Erythrocyte and the regulation of human skeletal muscle blood flow
 and oxygen delivery: role of circulating ATP. Circ. Res. 2002;91:1046–55.
- 72. Yegutkin GG, Samburski SS, Mortensen SP, Jalkanen S, González-Alonso J. Intravascular ADP and soluble
 nucleotidases contribute to acute prothrombotic state during vigorous exercise in humans. J. Physiol.
 2007;2:553–64.
- 73. Padilla J, Simmons GH, Vianna LC, Davis MJ, Laughlin MH, Fadel PJ. Brachial artery vasodilatation during
 prolonged lower limb exercise: role of shear rate. Exp. Physiol. 2011;96:1019–27.
- 8 74. Lacroix R, Judicone C, Mooberry M, Boucekine M, Dignat-George F. Standardization of pre-analytical
 9 variables in plasma microparticle determination: results of the International Society on Thrombosis and
 10 Haemostasis SSC Collaborative workshop. J. Thromb. Haemost. 2013;11:1190–1193.
- 75. Cointe S, Judicone C, Robert S, Mooberry MJ, Poncelet P, Wauben M, et al. Standardization of microparticle
 enumeration across different flow cytometry platforms: results of a multicenter collaborative workshop. J.
 Thromb. Haemost. 2017;15:187–93.
- 76. Cantaluppi V, Gatti S, Medica D, Figliolini F, Bruno S, Deregibus MC, et al. Microvesicles derived from
 endothelial progenitor cells protect the kidney from ischemia reperfusion injury by microRNA-dependent
 reprogramming of resident renal cells. Kidney Int. Elsevier Masson SAS; 2012;82:412–27.
- 77. Faille D, El-assaad F, Mitchell AJ, Alessi M, Chimini G, Fusai T, et al. Endocytosis and intracellular processing
 of platelet microparticles by brain endothelial cells. J. Cell. Mol. Med. 2012;16:1731–8.
- 78. Ayers L, Nieuwland R, Kohler M, Kraenkel N, Ferry B, Leeson P. Dynamic microvesicle release and clearance
 within the cardiovascular system: triggers and mechanisms. Clin. Sci. 2015;129:915–31.
- 21 79. Flaumenhaft R. Formation and fate of platelet microparticles. Blood Cells, Mol. Dis. 2006;36:182–7.
- 80. Augustine D, Ayers L V., Lima E, Newton L, Lewandowski AJ, Davis EF, et al. Dynamic release and clearance
 of circulating microparticles during cardiac stress. Circ. Res. 2014;114:109–13.
- 81. Miller BJ, Pate RR, Burgess W. Foot impact force and intravascular hemolysis during distance running. Int. J.
 Sports Med. 1988;9:56–60.
- 82. Telford RD, Sly GJ, Hahn AG, Cunningham RB, Bryant C, Smith JA. Footstrike is the major cause of hemolysis
 during running. J. Appl. Physiol. 2003;94:38–42.
- 28 83. Ahmadizad S, El-sayed MS, MacLaren DP. Effects of time of day and acute resistance exercise on platelet
 29 activation and function. Clin. Hemorheol. Microcirc. 2010;45:391–9.
- 84. Ahmadizad S, El-sayed MS. The Effects of graded resistance exercise on platelet aggregation and activation.
 Med. Sci. Sport. Exerc. 2003;35:1026–32.
- 85. Kim HK, Song KS, Lee ES, Lee YJ, Park YS, Lee KR, et al. Optimized flow cytometric assay for the measurement
 of platelet microparticles in plasma : pre-analytic and analytic considerations. Blood Coagul. Fibrinolysis.
 2002;13:393–7.
- 35 86. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee I-M, et al. American College of Sports
- Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory,
 musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med.
- 38 Sci. Sports Exerc. 2011;43:1334–59.
- 87. El-Sayed MS, Sale C, Jones PG, Chester M. Blood hemostasis in exercise and training. Med. Sci. Sports Exerc.
 2000;32:918–25.
- 41 88. Ziche M, Morbidelli L, Choudhuri R, Zhang HT, Donnini S, Granger HJ, et al. Nitric oxide synthase lies
 42 downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced
 43 angiogenesis. J Clin Invest. 1997;99:2625–34.
- 44 89. Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun C-O, et al. Predominant role of endothelial nitric
 45 oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc. Natl.

- 1 Acad. Sci. 2001;98:2604–9.
- 90. Whitham M, Parker BL, Friedrichsen M, Hingst JR, Hjorth M, Hughes WE, et al. Extracellular vesicles provide
 a means for tissue crosstalk during exercise. Cell Metab. Elsevier; 2018;27:237–251.e4.

91. Babbitt DM, Diaz KM, Feairheller DL, Sturgeon KM, Perkins AM, Veerabhadrappa P, et al. Endothelial
activation microparticles and inflammation status improve with exercise training in african Americans. Int. J.
Hypertens. 2013;2013:1–8.

- 92. Feairheller DL, Diaz KM, Kashem MA, Thakkar SR, Veerabhadrappa P, Sturgeon KM, et al. Effects of moderate
 aerobic exercise training on vascular health and blood pressure in African Americans. J. Clin. Hypertens.
 2014;16:504–10.
- 93. Duck MM, Hoffman RP. Impaired endothelial function in healthy African-American adolescents compared
 with Caucasians. J. Pediatr. 2007;150:400–6.
- 94. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke
 statistics—2016 Update. Circulation. 2016;133:e38–360.
- 95. Heffernan KS, Jae SY, Wilund KR, Woods JA, Fernhall B. Racial differences in central blood pressure and
 vascular function in young men. Am. J. Physiol. Hear. Circ. Physiol. 2008;61820:2380–7.
- 96. Puurunen MK, Hwang S, Larson MG, Vasan RS, O'Donnell CJ, Tofler G, et al. ADP platelet hyperreactivity
 predicts cardiovascular disease in the FHS (Framingham Heart Study). J. Am. Heart Assoc. 2018;7:e008522.
- 97. Thaulow E, Erikssen J, Sandvik L, Stormorken H, Cohn PF. Blood platelet count and function are related to
 total and cardiovascular death in apparently healthy men. Circulation. 1991;84:613–7.
- 98. Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, et al. Endothelial progenitor cell
 derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA.
- 22 Blood. 2007;110:2440–8.
 - 99. Diehl P, Fricke A, Sander L, Stamm J, Bassler N, Htun N, et al. Microparticles: major transport vehicles for
 distinct microRNAs in circulation. Cardiovasc. Res. 2012;93:633–44.
 - 100. Baggish AL, Hale A, Weiner RB, Lewis GD, Systrom D, Wang F, et al. Dynamic regulation of circulating
 microRNA during acute exhaustive exercise and sustained aerobic exercise training. J. Physiol. 2011;589:3983–
 94.
 - 101. Pauw K De, Roelands B, Cheung SS, de Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups
 in sport-science research. Int. J. Sports Physiol. Perform. 2013;8:111–22.
 - 102. Decroix L, De Pauw K, Foster C, Meeusen R. Guidelines to classify female subject groups in sport-science
 research. Int. J. Sports Physiol. Perform. 2016;11:204–13.
- 32

1 FIGURE LEGENDS

2

Figure 1. Projected time-course of circulating microvesicle (MV) appearance during and after an endurance exercise session based on the current literature. A 2 to 3-fold increase in plasma platelet MV (PMV) concentrations during and few hours after exercise have been consistently reported, but data supporting an increase in activation-derived endothelial MV (EMV) concentrations are inconsistent. The concentration of EMVs carrying apoptotic markers may be decreased in the circulation hours to days after exercise.

8

- 9 Figure 2. Exercise-derived microvesicle formation and release in the circulation, and their putative role as
- 10 ubiquitous mediators of adjustments and adaptations to exercise. Representative figure not to scale. Schematic
- 11 figure developed using images from the Servier Medical Art image bank.