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Abstract

We develop a monitoring procedure to detect changes in a large approximate factor model.
Letting r be the number of common factors, we base our statistics on the fact that the
(r + 1)-th eigenvalue of the sample covariance matrix is bounded under the null of no
change, whereas it becomes spiked under changes. Given that sample eigenvalues cannot be
estimated consistently under the null, we randomise the test statistic, obtaining a sequence
of i.i.d statistics, which are used for the monitoring scheme. Numerical evidence shows a
very small probability of false detections, and tight detection times of change-points.
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1. Introduction

In this paper, we investigate the issue of testing for the stability of a large factor model:

Xi,t = a′ift + ui,t, (1)

where {Xi,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T} is a panel of N time series observed for T periods; ai
and ft are latent vectors of loadings and factors, respectively, both of dimension r < N and
representing the “signal” component of the data, as opposed to the idiosyncratic “noise”
ui,t. In particular, we focus on the sequential monitoring of the stability of (1) - that
is, we propose a test to check whether there are any breaks in (1) as new data come in.
Factor models have been paid significant attention in virtually all applied sciences, as a
tool to reduce dimensionality while preserving the information content of a large dataset.
In particular, in the context of social sciences and economics, the use of factor models has
been popularised by the seminal paper by Chamberlain and Rothschild [19]; thereafter,
factor models have acquired a huge popularity in various applications, such as business
cycle analysis, asset pricing and economic monitoring and forecasting – see the review by
Stock and Watson [61] for a comprehensive list of references.

Model (1) is usually characterized by the identifying assumption that, as N → ∞,
the covariance matrix of {Xi,t}Ni=1 has r spiked eigenvalues diverging to infinity, while
the remaining ones stay bounded for any N . Numerous contributions have developed a
full-fledged inferential theory for (1) under general assumptions, such as weak serial and
cross-correlation of the error terms ui,t. In particular, in the case of stationary data the
estimation by means of principal component analysis of the “signal” part of (1) has been
developed for high-dimensional, i.e. large N , data, e.g. by Bai [6] and Fan et al. [29]. The
literature has also produced many results on the determination of the number of common
factors r – see, inter alia, Bai and Ng [8], Alessi et al. [2], Onatski [52], Ahn and Horenstein
[1], and Trapani [62]. The factors in equation (1) have also proven to be very effective to
forecast large datasets, overcoming the curse of dimensionality issue – see e.g. Stock and
Watson [58]. Extensions to the case in which the common factors ft are explicitly allowed
to have a linear process representation, have been studied also – see e.g. Forni et al. [31].

In comparison with this huge body of literature, the issue of testing for the structural
stability of (1) can be still considered underdeveloped, with some notable exceptions. In-
deed, Stock and Watson [58] and Bates et al. [13] argue that, at least in the presence
of “small” breaks and a constant number of factors, inference on the factor space is not
hampered, thus making the change-point problem less compelling than in other contexts.
Nevertheless, stylised facts show that in many applications the assumptions of a negligible
break size and a stable number of factors are not, in general, correct. Most importantly,
it has been argued that, in presence of a crisis, co-movements become stronger, which may
suggest that the economy is driven by a different number of factors than in quieter periods
– see e.g. Stock and Watson [60], Cheng et al. [22] and Li et al. [47]. In such cases, the
impact of a change-point is bound to invalidate standard inference and subsequent appli-
cations such as forecasting. Recently, the literature has proposed a series of tests for the
in-sample detection of breaks in factor structures: examples include the works by Breitung
and Eickmeier [16], Chen et al. [20], Han and Inoue [33], Corradi and Swanson [25], Ya-
mamoto and Tanaka [65], Cheng et al. [22], Baltagi et al. [10], Massacci [48] and Barigozzi
et al. [12].
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Sequential detection of breaks in (1) is important for at least four reasons. First, the
general motivation put forward by Chu et al. [23] holds true in the context of factor models
also: it is important to verify whether a model, which has been valid thus far, is still capable
of adequately approximate the behaviour of new data. Second, the aforementioned (sub-
stantial) empirical evidence that factor structures do tend to change over time, especially
in presence of a crisis, illustrates the importance of a timely detection of such changes.
Third, inference on factor models can be severely marred by the presence of a break (see
the comments in Baltagi et al. [10]), which again shows the importance of detecting a break
in real time, rather than realising this a posteriori after inference has been carried out and
employed, e.g. for the purpose of forecasting. Finally, in the context of economics and
finance, data are collected and made available automatically, so that the cost of monitoring
is almost negligible, especially if compared with the potential costs of employing a model
which is no longer valid. Sequential detection of breaks in a univariate or small dimensional,
i.e. finite N , setting has been studied e.g. in Lai [45], Chu et al. [23], Aue and Horváth [4],
Horváth et al. [37], Andreou and Ghysels [3], Horváth et al. [38], Brodsky [17], Aue et al.
[5], Kirch and Tadjuidje Kamgaing [41], and Groen et al. [32].

1.1. Hypotheses of interest and main results of the paper

There are several possible ways in which model (1) may undergo a change at a point
in time τ ; however, despite such a wide variety, in all cases it may be argued that a
change in the factor structure of the data will result in a change in the covariance matrix
of {Xi,t}Ni=1. More specifically, since common factors determine the presence and number
of spiked eigenvalue of the covariance of {Xi,t}Ni=1 (defined as eigenvalues which are not
bounded, but grow with the dimension of the dataset), it is natural to investigate whether
a change has occurred in the factor structure of (1) by verifying whether changes have
occurred in the spectrum of the covariance matrix. Formally, in this paper we test for the
null hypothesis that the factor structure does not change, viz.:

H0 : Xi,t =

r∑
j=1

aijfj,t + ui,t, 1 ≤ t ≤ T.

As far as alternatives are concerned, we focus on two different possible breaks at a point in
time τ : (1) changes in the loadings attached to one or more common factor:

HA,1 :

{
Xi,t =

∑r
j=1 aijfj,t + ui,t

Xi,t =
∑r

j=1 ãijfj,t + ui,t
for

1 ≤ t < τ
τ ≤ t ≤ T , (2)

where ãij 6= aij for all i and at least one value of j, and (2) the appearance of q ≥ 1 new
factors:

HA,2 :

{
Xi,t =

∑r
j=1 aijfj,t + ui,t

Xi,t =
∑r

j=1 aijfj,t +
∑q

j=1 bijgj,t + ui,t
for

1 ≤ t < τ
τ ≤ t ≤ T . (3)

Hypothesis HA,1 is the typical case considered in all the above cited literature on change-
points in factor models. A consequence of (2) is that, under the alternative, a model with
r common factors and changing loadings can be re-written as a model with a total number
of factors ranging between r + 1 and 2r common factors, defined as the original common
factors multiplied by a pre- and post-break dummy variable. This key property is heavily

3



exploited in the literature. On the other hand hypothesis HA,2 has received less attention
from the literature – see for example Cheng et al. [22] and Barigozzi et al. [12]. Whilst in
this paper we mainly focus on HA,1 and HA,2, other alternatives, as disappearing factors or
less pervasive changes in the loadings, can also be accommodated in our framework – see
the discussion in Section 4.

We show that, under both HA,1 and HA,2, the (r + 1)-th largest eigenvalue of the
covariance matrix of {Xi,t}Ni=1 becomes unbounded at time τ , passing to infinity as fast as
the sample size N . Conversely, it stays bounded under the null of no break. Thus, we base
our test on the estimated (r + 1)-th eigenvalue of the sample covariance matrix of {Xi,t}Ni=1

computed using a rolling window. Although using the sample eigenvalues of the sample
covariance matrix for testing is not uncommon in the context of factor models (Onatski
[52], Trapani [62]), in our context such an approach is fraught with difficulties. The main
issue is that, under the null of no break, the (r + 1)-th sample eigenvalue does not have a
known distribution, and indeed it cannot even be estimated consistently: as Wang and Fan
[63] explain, there is too much noise (due to N being large) to be able to identify the small
signal coming from a bounded eigenvalue.

Given that the only thing we know is that the (r + 1)-th sample eigenvalue may be
bounded or unbounded, we propose to use a randomised test in order to regularize the
problem. Randomisation is a widely employed approach, dating back at least to Pearson
[56]; various authors have employed different ways of introducing randomness into a statis-
tic – see e.g. Corradi and Swanson [24], Bandi and Corradi [11], and Trapani [62]. Our
methodology is based on the same approach, but with a different scope. In essence, the
approach which we propose takes, at each point in time t, the (r + 1)-th sample eigenvalue
as input, and returns, as output, an i.i.d. sequence, with known (asymptotic) distribu-
tion, first and second moments that can be approximated with a negligible error, and finite
moments up to any order. Such sequence is then used to replace the (r + 1)-th sample
eigenvalue in the construction of the monitoring process, thus allowing us to use the stan-
dard asymptotic theory already developed for partial sum processes of i.i.d. sequences
– see Horváth et al. [37] and Kirch and Tadjuidje Kamgaing [41]. Although our results
are derived conditionally on the sample (see the comments in Section 3 on the meaning
of randomisation under sample conditioning), we construct a monitoring procedure which
falsely identifies a break under the null with probability smaller than a prescribed level,
and which identifies a break with probability one when this is present. This is a desirable
feature of sequential testing since as more data come in the probability of type I errors is
anyway likely to increase – see for example the comments in Chapter 9 by Sen [57]. Indeed,
numerical evidence suggests that our procedure works extremely well, with a short delay in
finding breaks. In principle, our test can be applied also under more general circumstances,
including the presence of weak factors or less pervasive loadings changes, the case of het-
eroskedastic idiosyncratic components, and the disappearance of one or more factors. All
these extensions are discussed in Sections 4 and 7.

The rest of the paper is organised as follows. In Section 2 we spell out the main
assumptions, and we study the inference on the (r + 1)-th eigenvalue of the covariance
matrix. Section 3 discusses the construction of the test statistic, including the double
randomisation procedure and all the relevant intermediate results. Some straightforward
extensions of our framework to more general circumstances are discussed in Section 4.
Numerical evidence from Monte Carlo experiments and a real data application on US
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industrial production monthly data are given in Sections 5 and 6, respectively. Section 7
discusses further possible extensions and concludes. All proofs are in the Appendix.

NOTATION. We let C0, C1, ... denote generic, finite positive constants that do not
depend on the sample size, and whose value may change from line to line; “→” denotes the
ordinary limit; orders of magnitude for an a.s. convergent sequence (say sT ) are denoted as

Oa.s. (T
ς) and oa.s. (T

ς) when, for some ε > 0 and T̃ <∞, P
[
|T−ςsT | < ε for all T ≥ T̃

]
= 1

and T−ςsT → 0 a.s., respectively; IA (x) is the indicator function of a set A. Finally, we
assume without loss of generality that all random variables and processes are defined on a
common probability space (Ω,F , P ) with outcomes ω ∈ Ω.

2. Assumptions and preliminary theory

Consider the factor model in (1), where we now make explicit the possibility of changes
over time in the “signal” component

Xi,t = a′i(t)ft + ui,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T. (4)

We use r (t) to denote the number of factors at a given time t, i.e. the vectors of loadings
ai(t) and of factors ft have dimension r(t). Consider also the matrix form of (4):

Xt = A(t)ft + ut, 1 ≤ t ≤ T, (5)

where, A(t) = [a1(t)|...|aN (t)]′ is the N × r(t) loadings matrix and ut = [u1,t, ..., uN,t]
′

is the idiosyncratic component. Under HA,1 and HA,2 (see also (2) and (3)), we define

ãi = (ãi,1, ..., ãi,r)
′ and Ã = [ã1|...|ãN ]′, and bi = (bi,1, ..., bi,q)

′ and B = [b1|...|bN ]′. Using
this notation, we are interested in testing the null-hypothesis

H0 : A(t) = A, 1 ≤ t ≤ T,

versus the alternatives

HA,1 :

{
A(t) = A

A(t) = Ã
for

1 ≤ t < τ
τ ≤ t ≤ T ,

and

HA,2 :

{
A(t) = A
A(t) = [A|B]

for
1 ≤ t < τ
τ ≤ t ≤ T

We define the covariance matrix of the data at time t as ΣX (t) = E (XtX
′
t), assuming for

simplicity, and without loss of generality, that Xt has zero-mean. Consider the (population)
rolling covariance matrix

Σm (t) =
1

m

t∑
k=t−m+1

ΣX (k) , m ≤ t ≤ T, (6)

and its sample counterpart

Σ̂m (t) =
1

m

t∑
k=t−m+1

XkX
′
k, m ≤ t ≤ T. (7)
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Based on (6) and (7), in what follows m will denote our sample size when estimating the
model; hence, our asymptotics is for m → ∞. We assume that for the first m periods no
change-point is present and we have r(t) = r factors for all t ≤ m. Moreover, for simplicity,
we also assume that our monitoring procedure will last until T > m. Therefore, the total
number of observations T includes both the estimation and the monitoring period. Note
that, in real applications, the monitoring may be expected to go on indefinitely, so that
T →∞.

We start with the following assumption.

Assumption 1. It holds that (i) E (Xi,t) = 0 for all 1 ≤ i ≤ N and 1 ≤ t ≤ T ; (ii)
E(fj,tui,t) = 0 for all i, j, t; (iii) r(t) = r for 1 ≤ t ≤ m; (iv) r(t) < N and finite for
1 ≤ t ≤ T and for all N ∈ N.

Parts (i) and (ii) of the assumption are made only for convenience and could be relaxed.
Clearly from part (iii) we have that, in presence of breaks, the change-point location τ is
such that τ > m. Finally, part (iv) is a reasonable requirement for the number of factors
to be finite at any point in time. Note that, under H0 and HA,1 we have that r(t) = r for
all m ≤ t ≤ T , while under HA,2 r(t) = r for 1 ≤ t < τ and r(t) = (r + q) for τ ≤ t ≤ T .

By Assumption 1 the covariance is decomposed as

ΣX (t) = A (t) ΣF (t)A (t)′ + Σu (t) ,

having defined ΣF (t) = E (ftf
′
t) and Σu (t) = E (utu

′
t). Henceforth, we denote the k-th

largest eigenvalue of Σm (t) as λ(k) (t), the k-th eigenvalue of A (t) ΣF (t)A (t)′ as γ(k) (t);
and, finally, the k-th eigenvalue of Σu (t) as ω(k) (t); similarly, we denote the k-th largest
eigenvalue of Σ̂m (t) as λ̂(k) (t).

In order to derive our results on the population and sample eigenvalues, we make the
following assumptions.

Assumption 2. It holds that (i) Ck(t)N ≤ γ(k) (t) ≤ Ck (t)N for all 1 ≤ k ≤ r (t), and
0 < Ck(t) ≤ Ck(t) < ∞ and for m ≤ t ≤ T ; (ii) ω(k) (t) ≤ C0 for all 1 ≤ k ≤ N and
m ≤ t ≤ T .

Assumption 3. It holds that (i) E |Xi,t|4+ε ≤ C0 for all 1 ≤ i ≤ N , 1 ≤ t ≤ T and some

ε > 0; (ii) E

[
maxt0≤t̃≤t0+m−1

∣∣∣∑t̃
t=t0

Xh,tXj,t − E (Xh,tXj,t)
∣∣∣2] ≤ C1m for all 1 ≤ h, j ≤

N and 1 ≤ t0 ≤ T −m+ 1.

Assumption 2 is typical of high-dimensional factor analysis and is analogous to the
assumptions in Chamberlain and Rothschild [19] and Forni et al. [31]. In particular, as
far as the non-zero γ(k) (t)’s are concerned, part (i) of the assumption requires that they
diverge to positive infinity, as N →∞, at a rate N .

Equivalently, we could follow Bai and Ng [8] and Fan et al. [29] and require the more
primitive assumptions that ΣF (t) is positive definite (which entails that common factors are
identified), and that N−1A (t)′A (t) tends to a positive definite matrix. This is tantamount
to assuming that γ(k) (t) passes to infinity at a rate N . Indeed, consider - for the sake of
the notation - the case of constant loadings, viz. A (t) = A, and constant covariance matrix
for the common factors, viz. ΣF (t) = ΣF ; then, using Theorem 7 in Merikoski and Kumar
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[49]

Nν(min) (ΣF ) ν(k)
(
A′A

N

)
≤ ν(k)

(
AΣFA

′) ≤ Nν(max) (ΣF ) ν(k)
(
A′A

N

)
,

where ν(k) (·) denotes the k-th largest eigenvalue of a matrix. When following the same
reasoning in the presence of change-points, the above result provides a link between γ(k) (t)
and the k-th largest eigenvalue of N−1A′(t)A(t). Note that it is also possible to assume
that γ(k) (t) → ∞ as N → ∞ at a slower rate than N , which is known as having “weak
factors”; we discuss this case in Section 4.1.

As far as the ω(k) (t)’s are concerned, in part (ii) of the assumption, the same condition
could be derived from the assumptions in Fan et al. [29] – see also Bai and Ng [8]. Note also
that we do not require the ω(k) (t)’s to be constant over t: unconditional heteroskedasticity
is allowed for, in principle – see also the comments in Section 4. Assumption 2 determines
the behaviour of the population eigenvalues of Σm (t). In particular, at t = m, by Weyl’s
inequality we have that λ(k) (m) ≥ Ck(m)N for 1 ≤ k ≤ r, while λ(k) (m) ≤ C0 for
r + 1 ≤ k ≤ N . This condition implies the existence of an eigen-gap which allows us to
identify r in the pre-break sample.

As far as Assumption 3 is concerned, part (ii) is a high-level condition which, in essence,
poses a constraint on the amount of serial correlation that one can have in the process
{Xh,tXj,t}Tt=1 and therefore, albeit indirectly, in {Xi,t}Tt=1. In general, this assumption is
satisfied by any linear process with summable fourth cumulants (see e.g., Hannan [34],
Theorem 6, page 210). Some examples under which Assumption 3 holds are reported
in Trapani [62] and include the case of stationary, causal processes – see Wu [64]. This
family of processes in turn includes several popular examples such as Volterra series and
ARCH/GARCH processes, thus allowing for the case of conditional heteroskedasticity.

Finally, note that Assumptions 2 and 3 allow for some degree of cross-sectional and
serial dependence in the panel of idiosyncratic components, {ui,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T};
thus, (1) defines an “approximate” factor model, as opposed to an “exact” one, which would
require cross-sectionally and serially i.i.d. errors.

The following result characterizes the behaviour of the (r + 1)-th eigenvalue of Σm(t).

Lemma 1. Under Assumptions 1 and 2, it holds that

λ(r+1) (t) ≤ C0, m ≤ t ≤ T, under H0. (8)

Further, it holds that

λ(r+1) (t)


≤ C0 m ≤ t < τ,
≥ C1 min{ t−τ+1

m , τ+m−t−1m }N τ ≤ t < τ +m− 1,
≤ C0 τ +m− 1 ≤ t ≤ T, under HA,1,

(9)

λ(r+1) (t)


≤ C0 m ≤ t < τ,
≥ C1

t−τ+1
m N τ ≤ t < τ +m− 1,

≥ C1N τ +m− 1 ≤ t ≤ T, under HA,2.
(10)

The sample counterpart to Lemma 1 is the following result, derived in Trapani [62].
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Lemma 2. Under Assumptions 1 and 3, it holds that

λ̂(r+1) (t) = λ(r+1) (t) +Oa.s.

(
N

m1/2
l (m,N)

)
, m ≤ t ≤ T, (11)

where
l (m,N) = (lnN)1+ε (lnm)

1+ε
2 ,

for any ε > 0.

Lemma 2 provides a strong rate for the estimation error (λ̂(r+1) (t)− λ(r+1) (t)), which
is valid for any combination of N and m, and indeed for all estimated eigenvalues, λ̂(k) (t)
for 1 ≤ k ≤ N . The lemma does not require any assumption on λ(k) (t): some of these
may be non-distinct, non well-separated, or even equal to zero. Equation (11) states that
the estimation error can be quite large. It is, however, comparatively small for the spiked
eigenvalues, which, by Assumption 2, are of order N . Conversely, the error term in (11)
can be quite large for the bounded eigenvalues; in this case, the rate is probably not the
sharpest one, although it suffices for the construction of the monitoring procedure. The
result of Lemma 2 can also be compared with the results from Random Matrix literature for
spiked covariance models where however λ(k) is finite for all 1 ≤ k ≤ N and N ∈ N – see e.g.
El Karoui [28], Paul [55], Johnstone and Lu [39], Jung and Marron [40], Benaych-Georges
and Nadakuditi [14, 15], Bai and Yao [9], and Onatski et al. [54].

3. Testing procedure and asymptotics

In this section, we propose an algorithm to “regularise” the behaviour of the eigenvalues
so as to be able to construct a monitoring procedure. As a consequence of Lemmas 1 and
2, we are unable to use λ̂(r+1) (t), due to the lack of a known limiting distribution under
the null, and of the dependence structure across t. We therefore propose a randomisation
algorithm, whose output is a sequence of i.i.d. random variables with finite moments of
arbitrarily high order and, under the null, (asymptotically) chi-square distributed. We
subsequently employ (the standardised version of) such random variables to construct a
partial sum process, which we use as the relevant test statistic in an analogous way as
Horváth et al. [37] and Horváth et al. [38].

3.1. The randomisation algorithm

Define δ ∈ (0, 1) such that

δ

{
> 0

> 1− 1
2
lnm
lnN

according as
N ≤ m1/2

N > m1/2 ; (12)

note that the choice of δ is uniquely determined by N and m, with no need to estimate it.
We consider the statistic

φN,m (t) = g

(
N−δλ̂(r+1) (t)
1
N

∑N
k=1 λ̂

(k) (t)

)
, m ≤ t ≤ T, (13)

where g (·) is a monotonically increasing function such that g (0) = 0 and limx→∞ g (x) =∞;
in this paper, we use g(a) = a, but other choices are also possible. The denominator in
(13) makes the argument of g (·) scale invariant.
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The quantity δ, defined in (12), plays a very important role in the remainder of the
paper. Based on Lemma 2, it can be expected that λ̂(r+1) (t) may diverge to positive
infinity even when λ(r+1) (t) is bounded; in this case, the divergence rate is O

(
Nm−1/2

)
,

modulo the logarithmic terms. On the other hand, λ̂(r+1) (t) diverges at the faster rate
O (N) under the alternative. The purpose of δ is to annihilate the estimation error: based
on (12), it can be seen that N δ is larger than Nm−1/2l (m,N): thus, under the null of no
break, it can be expected that N−δλ̂(r+1) (t) will drift to zero. Under the alternative, it
still passes to infinity (since δ < 1), albeit at a slower rate than λ(r+1) (t) itself. Note that
this would hold also for very large values of N : indeed, no restriction is required between
the relative rate of divergence of N and m as they pass to infinity, and one could also allow
for N = exp (m); in this case, after some algebra it can be shown that δ ∈

(
1− 1

2
lnm
m , 1

)
,

which still yields that N−δλ̂(r+1) (t) drifts to zero or diverges to infinity according as the
null or the alternative is true.

On account of the comments above, and of Lemmas 1 and 2, it holds that

lim
N,m→∞

φN,m (t) = g (0) = 0, w.p. 1, when N−δλ(r+1) (t)→ 0,

lim
N,m→∞

φN,m (t) = g (∞) =∞, w.p. 1, when N−δλ(r+1) (t)→∞.

We therefore have that

lim
N,m→∞

φN,m (t) = 0, m ≤ t ≤ T, under H0.

Henceforth, we define t∗N,m as the point in time such that t∗N,m ≥ τ and

lim
N,m→∞

N1−δ

m

(
t∗N,m − τ + 1

)
=∞. (14)

Similarly, we define the point in time t∗∗N,m ≤ τ +m− 1 such that

lim
N,m→∞

φN,m (t) =


0 m ≤ t < τ,
∞ t∗N,m ≤ t < t∗∗N,m,

0 τ +m− 1 ≤ t ≤ T,
, under HA,1.

Clearly

lim
N,m→∞

φN,m (t) =

{
0 m ≤ t < τ,
∞ t∗N,m ≤ t < τ +m− 1,

, under HA,2;

Under HA,1 for τ ≤ t < t∗N,m, φN,m (t) is growing from 0 to∞, and viceversa for t∗∗N,m ≤ t <
τ +m− 1, while under HA,2 for τ ≤ t < t∗N,m, φN,m (t) is growing from 0 to ∞. Therefore,
t∗N,m represents the first point in time in which we can hope to detect the change, hence is
a lower bound for the delay in detection, while under HA,1 (t∗∗N,m − 1) represents the last
point in time in which we can hope to detect the change. In light of (14) and the results
that follow, we show in Section 3.3 below that t∗N,m is at least of order m1/2 regardless of
the values of m and N .

Given that the results above entail that we only have rates for φN,m (t), we propose a
to use a randomised version of it, built according to the following steps.
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Step A1. At each given t ≥ m, generate an i.i.d. sample
{
ξj(t)

}R
j=1

with common

distribution Gφ such that Gφ(0) 6= 0 or 1.

Step A2. For any u drawn from a distribution Fφ (u), define

ζj (u; t) = I
[
ξj(t) ≤ uφ−1N,m (t)

]
.

Step A3. Compute

ϑ (u; t) =
1√
R

R∑
j=1

ζj (u; t)−Gφ (0)√
Gφ (0) [1−Gφ (0)]

.

Step A4. Compute

Θt =

∫ +∞

−∞
|ϑ (u; t)|2 dFφ (u) .

Although the details of the behaviour of Θt under the null and the alternative are
spelt out later on, a heuristic preview of the main argument may be helpful. In essence,
under the alternative the Bernoulli random variable ζj (u; t) should be equal to 1 or 0
with probability Gφ (0) and 1 − Gφ (0) respectively, and thus have mean Gφ (0). In this
case, when constructing ϑ (u; t), a Central Limit Theorem holds and therefore we expect
Θt to have a chi-square distribution. On the other hand, under the null ζj (u; t) should be
(heuristically) 0 or 1 with probability 0 or 1 (depending on the sign of u) - thus, its mean
should be different than Gφ (0) (and equal to 0 or 1 depending on the sign of u) and a Law
of Large Numbers should hold. Note that, by construction, conditionally on the sample
the sequence {Θt}Tt=m is independent across t. In order to study Θt, we need the following
assumptions.

Assumption 4. It holds that: (i) Gφ (·) has a bounded density; (ii)
∫ +∞
−∞ u2dFφ (u) < ∞;

(iii) Fφ (0) < 1.

Assumption 5. It holds that, as min (N,m,R)→∞:

(i) R1/2

[
g

(
N1−δ t− τ + 1

m

)]−1
→ 0,

under HA,1, for t∗N,m ≤ t < t∗∗N,m,

under HA,2, for t∗N,m ≤ t ≤ T ;

(ii) R1/2
[
g
(
N1−δ)]−1 → 0 under HA,1, for τ +m− 1 ≤ t ≤ T .

Considering Assumption 4, Gφ can be chosen as the standard normal distribution, and
Fφ as a discrete uniform distribution. Assumption 5 provides a selection rule for R.

Let now P ∗ represent the conditional probability with respect to {Xi,t, 1 ≤ i ≤ N ,

1 ≤ t ≤ T}; “
D∗→” and “

P ∗→” denote, respectively, conditional convergence in distribution
and in probability according to P ∗.

Theorem 1. Under Assumptions 1-5, as min (N,m,R)→∞, it holds that

Θt
D∗→ χ2

1,
under HA,1, for t∗N,m ≤ t < t∗∗N,m,

under HA,2, for t∗N,m ≤ t ≤ T,
(15)
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for almost all realisations of {Xi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T}.
Under Assumptions 1-4, as min (N,m,R)→∞, it holds that

1

R
Θt

P ∗→
∫ +∞
−∞

∣∣I[0,∞) (u)−Gφ (0)
∣∣2 dFφ (u)

Gφ (0) [1−Gφ (0)]
,

under H0, for m ≤ t ≤ T,
under HA,1, for m ≤ t < τ,

and τ +m− 1 ≤ t ≤ T,
under HA,2, for m ≤ t < τ,

(16)

for almost all realisations of {Xi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T}.

Theorem 1 is an intermediate result: in order to be able to construct a test for the
“classical” null of no changes in the factor structure, it is necessary to have a statistic
which diverges under the null and is bounded under the alternative. In particular, the
behaviour under the null is - clearly - very important to ensure size control of the monitoring
procedure. As can be noted, the reason why Θt is bounded under the null is because we have
constructed a statistic based on randomising the estimated eigenvalue λ̂(r+1) (t). Thus, it
can be envisaged that randomising its reciprocal would yield the desired behaviour. Whilst
this is theoretically possible, we recommend against it: as Lemma 2 shows, in this case,
under the null, the behaviour of Θt would be driven by a term proportional to (the inverse
of) N−δ N

m1/2 : but since this estimate is only an upper bound, and thus not sharp (contrary

to the case of randomising λ̂(r+1) (t) directly), it is unclear what the rate of divergence
would be in this case.
We therefore propose to randomise Θt, with a second randomisation based on

ψN,m,R (t) = h

(
Θt

l̃ (N,m,R)

)
, m ≤ t ≤ T, (17)

where
l̃ (N,m,R) = (lnN)2+ε (lnm)2+ε (lnR)2+ε ,

for some ε > 0 - in practice, any small value of ε works well.
In (17), the function h (·), similarly to g (·) in (13), is a monotonically increasing function

such that h (0) = 0 and limx→∞ h (x) =∞; again, we use h (a) = a.
Similarly to the case of φN,m (t), Theorem 1 entails that

lim
N,m,R→∞

ψN,m,R (t) =∞, m ≤ t ≤ T, under H0,

and

lim
N,m,R→∞

ψN,m,R (t) =


∞ m ≤ t < τ,
0 t∗N,m ≤ t < t∗∗N,m,

∞ τ +m− 1 ≤ t ≤ T,
, under HA,1,

while

lim
N,m,R→∞

ψN,m,R (t) =

{
∞ m ≤ t < τ,
0 t∗N,m ≤ t < τ +m− 1,

, under HA,2.

Consider now the second randomisation.

Step B1. At each given t ≥ m, generate an i.i.d. sample
{
ξ̃j(t)

}W
j=1

with common

distribution Gψ such that Gψ(0) 6= 0 or 1.
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Step B2. For any u drawn from a distribution Fψ (u), define

ζ̃j (u; t) = I
[
ξ̃j(t) ≤ uψ−1N,m,R (t)

]
.

Step B3. Compute

γ (u; t) =
1√
W

W∑
j=1

ζ̃j (u; t)−Gψ (0)√
Gψ (0) [1−Gψ (0)]

.

Step B4. Compute

Γt =

∫ +∞

−∞
|γ (u; t)|2 dFψ (u) .

The following assumptions are needed in order to study the asymptotic behavior of Γt;
note their similarity with Assumptions 4 and 5.

Assumption 6. It holds that: (i) Gψ (·) has a bounded density; (ii)
∫ +∞
−∞ u4dFψ (u) <∞;

(iii) Fψ (0) < 1.

Assumption 7. It holds that, as min (N,m,R,W )→∞

W 1/2

[
h

(
R

l̃ (N,m,R)

)]−1
→ 0.

As above, in Assumption 6 we can choose Gψ to be the standard normal distribution,
and Fψ to be a discrete uniform distribution. The restrictions in Assumption 7 provide a
selection rule for W .

Let P † represent the conditional probability with respect to {Xi,t, 1 ≤ i ≤ N , 1 ≤
t ≤ T} and {ξj(t), 1 ≤ j ≤ R, m ≤ t ≤ T}; we use the notation “

D†→” and “
P †→” to define,

respectively, conditional convergence in distribution and in probability according to P †.

Theorem 2. Under Assumptions 1-7, as min (N,m,R,W )→∞, it holds that

Γt
D†→ χ2

1,
under H0, for m ≤ t ≤ T,
under HA,1, for m ≤ t < τ and τ +m− 1 ≤ t ≤ T,
under HA,2, for m ≤ t < τ,

(18)

for almost all realisations of {Xi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T} and {ξj(t), 1 ≤ j ≤ R, m ≤ t ≤
T}.
Under Assumptions 1-5, as min (N,m,R,W )→∞, it holds that

1

W
Γt

P †→
∫ +∞
−∞

∣∣I[0,∞) (u)−Gψ (0)
∣∣2 dFψ (u)

Gψ (0) [1−Gψ (0)]
,

under HA,1, for t∗N,m ≤ t < t∗∗N,m,

under HA,2, for t∗N,m ≤ t ≤ T,
(19)

for almost all realisations of {Xi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T} and {ξj(t), 1 ≤ j ≤ R, m ≤ t ≤
T}.

Theorem 2 is, again, an intermediate result. It states that Γt has (asymptotically) a
chi-square distribution under the null of no breaks; further, by construction the sequence

12



{
Γt
}T
t=m

is independent across t conditional on the sample. We now discuss how these
two basic facts can be employed in order to propose a monitoring scheme for the on-line
detection of breaks in the factor structure.

3.2. Sequential monitoring of factor models

We base our sequential monitoring procedure on the theory developed in Horváth et al.
[37]. Recall that, after collecting m observations, we monitor our model over the period
m + 1 ≤ t ≤ T , which has size denoted as Tm = T −m. We then consider a monitoring
procedure based on the detector

d (k;m) =

∣∣∣∣∣
m+k∑
t=m+1

Γt − 1√
2

∣∣∣∣∣ , 1 ≤ k ≤ Tm, (20)

which covers the entire monitoring period. In other words our detector is made of the
cumulative sum of the centered and standardized version of the sequence {Γt}Tt=m, obtained
by double randomisation. Other detectors, differing form (20) only with respect to the
start of the monitoring period, could be also suggested. In particular, Kirch and Weber [42]
suggest to use a rolling window, thus starting the monitoring procedure at t = m+k−h+1
for some h < h < k, with h large enough. The asymptotic properties of such alternative
detector can be derived in a way similar to the results proved in this section and therefore
are not discussed in this paper. In light of Theorem 2, a break implies a shift in the mean
of Γt and therefore in the detector (20). Therefore, our monitoring scheme looks for large
deviations of d(k;m) from its null-distribution.

Given the stopping rule

k̂m =

{
inf {1 ≤ k ≤ Tm, such that d (k;m) ≥ ν (k;m)} ,
Tm if the above does not hold in 1 ≤ k ≤ Tm,

(21)

we define the estimated change-point location as τ̂m = k̂m +m. The threshold function in
(21) is defined as (see Horváth et al. [37] and Horváth et al. [38])

ν (k;m) = cα,mν
∗ (k;m) , (22)

ν∗ (k;m) = m1/2

(
1 +

k

m

)(
k

k +m

)η
, η ∈

[
0,

1

2

]
, (23)

where cα,m is a critical value corresponding to a pre-specified level α. Depending on the
choice of η, the critical value is defined as

P

(
sup

0≤t≤1

|B (t)|
tη

≤ cα,m
)

= 1− α, for η ∈
[
0,

1

2

)
, (24)

where {B (t) , 0 ≤ t ≤ 1} denotes a standard Wiener process, or

cα,m =
Dm − ln [− ln (1− α)]

Am
, for η =

1

2
, (25)

with Am = (2 ln lnm)1/2 and Dm = 2 ln lnm+ 1
2 ln ln lnm− 1

2 lnπ. Note that in (24) cα,m
does not depend on m, whilst it does in (25). Note also that Chu et al. [23], albeit in a
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different context, choose η = 0. It is well known that tests based on η = 0 have the smallest
power, which on the contrary increases as η increases (see the discussion in Horváth et al.
[37]).

In order to derive our main theorem, we also need the following assumptions.

Assumption 8. It holds that (i) Tm = O (mκ) for some κ ≥ 1; (ii) lim infm→∞
Tm
m > 0;

(iii) Tm > τ + C0m
1/2+ε for ε > 0 such that N1−δ

m1/2−ε → C1.

Assumption 9. It holds that (i)
∫ +∞
−∞ |u|

4+2δ dFψ (u) <∞;

(ii) m1/2+ε

W−1 +W

[
h

(
R

l̃ (N,m,R)

)]−2
+

[
h

(
R

l̃ (N,m,R)

)]−1→ 0,

for some ε > 0.

Assumption 8 is the same as equation (1.12) in Horváth et al. [38], and it essentially
requires that the monitoring goes on for a sufficiently long time, longer than the initial
training period m. In particular, we need to monitor for a number of periods of order at
least m1/2. Assumption 9 strengthens Assumption 6(ii), and it is needed to prove a moment
condition for the sequence {Γt}Tt=m which will enable a Central Limit Theory to hold. Our
main result follows.

Theorem 3. Let Assumptions 1-9 hold. Under H0 it holds that, as min (N,m,R,W )→∞

P †
(

max
1≤k≤Tm

d (k;m)

ν∗ (k;m)
≤ x

)
→ P

(
sup

0≤t≤1

|B (t)|
tη

≤ x
)
, for η ∈

[
0,

1

2

)
, (26)

P †
(

max
1≤k≤Tm

d (k;m)

ν∗ (k;m)
≤ x+Dm

Am

)
→ e−e

−x
, for η =

1

2
, (27)

for almost all realisations of {Xi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T} and {ξj(t), 1 ≤ j ≤ R, m ≤ t ≤
T} and for x ∈ R+.
Under HA,1 and HA,2, as min (N,m,R,W ) → ∞, and for a given significance level α, it
holds that

c−1α,m max
1≤k≤Tm

d (k;m)

ν∗ (k;m)

P †→∞, for all η ∈
[
0,

1

2

]
, (28)

for almost all realisations of {Xi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T} and {ξj(t), 1 ≤ j ≤ R, m ≤ t ≤
T}, where cα,m is defined in (24) when η < 1

2 and in (25) when η = 1
2 .

The main implication of Theorem 3 is summarized in the following result (recall that
T = Tm −m):

Corollary 1. Under the assumptions of Theorem 3 it holds that, as min (N,m,R,W )→∞

P † (τ̂m < T ) ≤ α, under H0, (29)

P †
(
t∗N,m ≤ τ̂m < t∗∗N,m

)
= 1, under HA,1 (30)

P †
(
t∗N,m ≤ τ̂m ≤ T

)
= 1, under HA,2, (31)

for almost all realisations of {Xi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T} and {ξj(t), 1 ≤ j ≤ R, m ≤ t ≤
T}.
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The notion of size implied by (29), in this context, is very different from the one usually
considered in the literature. The purpose of the procedure is to keep the false rejection
probability as little as possible, and therefore (at a minimum) below the threshold α,
rather than making it close to α. This makes the monitoring procedure different from the
standard Neyman-Pearson paradigm (and, in general, from a multiple testing exercise):
given that the monitoring horizon keeps expanding, the purpose of cα,m is to ensure that
the chance of a false break detection is as little as possible – see also similar comments in
Horváth et al. [38].

3.3. Delay in change-point detection

A consequence of our approach is that monitoring for a structural change (despite being
in a high-dimensional set-up) can be treated as in a classical time series framework. In
particular, in addition to the consistency of the procedure, a natural question is how much
would the delay be in detecting a break. In order to formally address this issue, one can
directly use the results by Aue and Horváth [4]; hereafter, we provide a heuristic discussion
of the magnitude of the delay within our setup.

Consider the notation an = Ω (bn) to indicate that the magnitude of the sequence an is
not smaller than that of bn, viz. an > Cbn > 0. Then, by construction, {Γt}Tt=m has, under
the alternative, a “large” shift in the mean after t∗N,m, where t∗N,m is such that (recall (14))

t∗N,m − τ = Ω
( m

N1−δ

)
. (32)

Defining β such that N = mβ, and using (12), it is possible to analyse (32) for various
relative rates of divergence of m and N as they pass to infinity. When β > 1

2 , we have that
δ = 1− 1

2β + ε for an arbitrarily small value of ε. Thus, by (32)

t∗N,m = τ + Ω
( m

mβ(1−δ)

)
= τ + Ω

(
m1/2+ε′

)
,

where ε′ > 0 is arbitrarily small. Thus, when N is not much smaller than m, or even larger,
the change-point is detected with a delay, t∗N,m− τ , which is of order at least m1/2. By the

same token, whenever β ≤ 1
2 , i.e. N is much smaller than m, we have that δ = ε for an

arbitrarily small value of ε, so that

t∗N,m = τ + Ω
(
m1−β(1−δ)

)
,

and, by elementary arguments, it follows that m1−β(1−δ) = Ω(m1/2+ε′): the delay, in this
case, might be bigger. This is in line with the intuition that a break will cause Γt - and
consequently the detector - to diverge as fast as N : the lower N , the lower the divergence
rate, and the less effective the detecion of breaks. Finally, it is interesting to consider the
ultra high-dimensional case, N = exp (m). By (12), it holds that δ = 1− (1− ε) lnm

2m for an
arbitrarily small value of ε. Hence, (32) yields

t∗N,m = τ + Ω

(
m

exp ((1− δ)m)

)
= τ + Ω

(
m1/2+ε′

)
,

again. In essence, in all cases considered there is a delay in the detection of breaks which
is greater than C0m

1/2, but smaller than C0m - that is, rescaling the delay by the sample
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size, this vanishes.

4. Applying the test under general circumstances

The purpose of this section is to discuss how the test could be applied under slightly
different assumptions than the ones above, and up to which extent such assumptions can
be relaxed. More substantive extensions, which involve modifications of the test, are briefly
discussed in the concluding remarks in Section 7.

4.1. Weak factors and local alternatives

The theory developed in this paper - starting from Assumption 2 - implicitly requires
that, when a new factor appears as a consequence of a break, this should be a pervasive
factor. Indeed, part (i) of the assumption entails that spiked eigenvalues must diverge at
a rate N , i.e. a “strong” factor model. However, the literature has also considered cases
in which one or more common factor may be less pervasive, thus leading to a covariance
matrix which has some eigenvalues passing to infinity at a rate Nκ, for κ ∈ (0, 1). A
possible example of weak factors arises when considering jointly macroeconomic data of
different countries: global factors are strong since they are likely to affect all countries;
however national factors, although strong within a given country, will affect only a subset
of all variables considered and can be seen as weak – see e.g. the empirical study in Moench
et al. [50]. Estimation of factor models in the presence of such “weak” or “local” factors
have been paid considerable attention by the literature - see De Mol et al. [27], Onatski [53],
in the same setting as ours and, in a slightly different context, Lam and Yao [46]. The notion
of weak factors is intertwined with that of a local alternative hypothesis where the break
does happen but it is “small”, for example when a break is caused by a change of only some,
but not all, loadings. We focus on the (algebraically simpler) case of HA,2. Consistently
with the literature on weak factors, we allow the (r + 1)-th eigenvalue to behave as

λ(r+1) (t) = C0N
κ, for τ ≤ t ≤ T, (33)

for κ ∈ (0, 1), while it is bounded for all other values of t.
We now discuss heuristically under which conditions such small breaks can be detected;

we consider for simplicity the case η < 1
2 . We know that, based on Theorem 2, a break in

the (r + 1)-th largest eigenvalue enters the sequence {Γt}Tt=m as a shift in its mean: this
is essentially the way in which the monitoring procedure picks up the presence of a break.
In particular, by analysing the proof of Theorem 1 and using a Mean Value argument, it
follows that

Θt ≈ R
∫ +∞

−∞

∣∣∣Gφ (uφ−1N,m (t)
)
−Gφ (0)

∣∣∣2 dFφ (u) ≈ C0Rφ
−2
N,m (t) , (34)

for any t ≥ t∗N,m for which HA,2 holds. Then, from (19), for the same values of t ≥ t∗N,m for
which (34) holds we have

Γt ≈W
∫ +∞

−∞

∣∣∣Gψ (uψ−1N,m,R (t)
)
−Gψ (0)

∣∣∣2 dFψ (u) ≈ C0Wψ−2N,m,R (t) . (35)
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Consider now the case where g(·) in (13) and h (·) in (17) are both the identity function.
Recalling the notation N = mβ, and noting that by (33) we have φN,m (t) ≈ Nκ−δ, by (17),
(34), and (35), we have

Γt ≈ C0WR−2(lnN)8+ε(lnR)4+εN4(κ−δ) = ∆N,R,W .

Upon inspecting the proof of Theorem 3, in order for the procedure to detect a break, it
is required that m1/2∆N,R,W →∞, as min(m,N,R,W )→∞. Therefore, if ∆N,R,W →∞
the break is always detectable. If instead ∆N,R,W → 0, we are in presence of a shrinking
break. By Assumption 7, a sufficient condition to have a shrinking break is

κ ≤ δ, (36)

and a necessary condition for the break to be detectable is

κ > δ − 1

8β
. (37)

Consider first the case N > m1/2. Then, by definition of δ we always have a shrinking
break whenever κ ≤ 1− 1

2β and moreover a new weak factor is detected if at least κ > 1− 5
8β .

This entails that we can hope to detect new weak factor for any κ > 0 only if β < 5
8 ;

conversely, for larger values of β the range of values of κ for which we can detect a new
factor is reduced, e.g. for N = m, we must have at least κ > 3

8 .

Turning to the case N ≤ m1/2, since we can choose δ to be infinitesimally small, (36)
is never satisfied but (37) is always satisfied and in general we cannot say more about the
ability of our procedure to detect a shrinking break. However, we note that in the case the
case N = R = W , as in Sections 5 and 6 below, a necessary and sufficient condition for a
break to be shrinking and detectable is δ+ 1

4 −
1
8β < κ < δ+ 1

4 , and when N ≤ m1/2 a new
factor is always detected regardless of κ.

4.2. Heteroskedasticity in the idiosyncratic component

The main assumptions in the paper are spelt out with respect to Xi,t, avoiding to make
any comments on the properties of ui,t across time. We now discuss the behaviour of the test
in the presence of heteroskedasticity, which is not explicitly considered (although not ruled
out) by Assumption 2. For the sake of simplicity, we consider the case of an abrupt change
in the covariance matrix of {ui,t}Ni=1, although more general forms of heteroskedasticity
could also be considered.

To illustrate this, we consider a simple example where the covariance matrix E (utu
′
t)

undergoes an abrupt change of size ∆u after a point in time, say τ∗:

E
(
utu
′
t

)
=

{
Σu

Σu + ∆u
for

m ≤ t < τ∗,
τ∗ ≤ t ≤ T,

where ∆u affects some or even all covariances. The only condition we require in order for
our test to be applicable is ω(1)

(
m−1

∑t
k=t−m+1E (utu

′
t)
)
≤ C0 for each t ≥ m, where the

notation ω(1) (A) is understood to represent the largest eigenvalue of a matrix A. This
holds, when t < τ∗, as long as ω(1) (Σu) ≤ C0. When t ≥ τ∗, using Weyl’s inequality it
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follows that

ω(1)

(
1

m

t∑
k=t−m+1

E
(
utu
′
t

))
≤ ω(1) (Σu) + ω(1) (∆u) , (38)

which is bounded as long as ω(1) (Σu) ≤ C0 and ω(1) (∆u) ≤ C1. In essence, as long as
the perturbation matrix ∆u is not too big, and therefore as long as the changes in the
covariance structure of the idiosyncratic are not too big, our test can still be applied.

Condition (38) has interesting implications. Consider a break such that ∆u = diag {di},
with 0 ≤ di ≤ C0 for all 1 ≤ i ≤ N . In such a case, where the variances of the error
terms all undergo a change (potentially), but the covariance structure does not change,
it would hold that ω(1) (∆u) ≤ C0: even a large (but of finite size) break in the vari-
ance of the idiosyncratic components does not alter the structure of the eigenvalues of
E (XtX

′
t), by introducing a spurious spiked eigenvalue. Thus, an interesting question about

the robustness of our procedure is: when is a break in the idiosyncratic component strong
enough to be confused with a break in the factor structure? By the same (heuristic) to-
ken as above, the eigenvalue structure of E (XtX

′
t) would change if, for argument’s sake,

ω(1)
(
m−1

∑t
k=t−m+1E (utu

′
t)
)

= C0N
ε with ε ∈ (0, 1]. By Weyl’s inequality assuming for

simplicity that there is no break in the factor component

ω(1)

(
1

m

t∑
k=t−m+1

E
(
utu
′
t

))
≥ ω(N) (Σu) + ω(1) (∆u) ≥ ω(1) (∆u) . (39)

Therefore, a sufficient condition would be ω(1) (∆u) = C0N
ε. Moreover, given that ω(1) (∆u) ≥

N−1
∑N

i=1

∑N
j=1 {∆u}i,j , then (39) suggests that a break which is “sufficiently pervasive”,

so that it affects not merely the variances of the idiosyncratic components, but also their
covariances (without needing to be necessarily huge), could introduce a spiked eigenvalue in
E (XtX

′
t). In such cases our procedure might detect τ∗ as a change-point even if the signal

component does not change - see also the same phenomenon documented in the off-line
case by Barigozzi et al. [12].

4.3. Extensions to consider further alternative hypotheses

So far, we have focused our attention onto two empirically relevant but very specific
forms of alternative hypotheses: a possible change in the loadings - HA,1 - and a possible
increase in the number of factors - HA,2. However, our methodology is sufficiently general
to be adapted (with minor modifications) to other cases also. A leading example is the case
in which q ≥ 1 factors vanish, viz.

HA,3 :

{
Xi,t =

∑r
j=1 aijfjt + ui,t

Xi,t =
∑r−q

j=1 ãijfjt + ui,t
for

1 ≤ t < τ
τ ≤ t ≤ T . (40)

Note that, in (40), we can entertain the possibility that the loadings of the non-vanishing
factors may also be subject to changes, although this is not required. For simplicity consider
the case q = 1, then under (40), it can be noted that the r-th eigenvalue of the covariance
matrix of Xi,t is spiked before τ , and bounded thereafter. This suggests that testing for

(40) can be based on λ̂(r) (t). Since under the null (in essence, on account of Lemma 2)
N−δλ̂(r) (t)→∞, whereas under the alternative N−δλ̂(r) (t)→ 0, one round of randomisa-
tion is enough to have a sequence of test statistics which behaves like {Γt}Tt=m under the
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null - that is, which (conditional on the sample) is i.i.d., has moments that exist up to any
order, and has an asymptotic chi-square distribution, with mean and variance that can be
approximated with a polynomially vanishing error. Hence, monitoring can be again carried
out as proposed in Section 3.

5. Monte Carlo simulations

Under H0 we simulate data according to the stable factor model (4):

Xi,t = a′ift + ui,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T.

In particular, we fix N = 100, and we consider r ∈ {1, 2, 3, 4} factors. As far as the time
dimension is concerned, we consider burn-in periods and thus sample sizes of dimension
m ∈ {50, 75, 100, 125, 150, 175, 200, 225, 250}. We monitor our model for 1000 periods (that
is, we set T = 1000). We simulate each element of the loadings vector ai as i.i.d.N (0, 1);
we assume some time dependence in the common factors through a causal VAR(1) process

ft = Hft−1 + et, 1 ≤ t ≤ T,

where et ∼ i.i.d.N (0, Ir) and the matrix H has maximum absolute value of the eigenvalues
equal to 0.7. The N × T matrix of idiosyncratic components u is generated as u = DεG,
where the NT × 1 vector of stacked columns of ε is i.i.d.N (0, INT ) and D and G are two
N×N and T ×T Toeplitz matrices with entries, in the k-th diagonal place, given by 0.3k−1

and 0.5k−1 respectively. Finally, we have set the signal-to-noise ratio to
V ar(Xi,t)
V ar(ui,t)

= 2 for

all 1 ≤ i ≤ N .
Under the alternative, we consider breaks to occur at the change-point τ = 500 under

the two schemes:

Xi,t = a′ift I[t < τ ] + ã′ift I[t ≥ τ ] + ui,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (41)

Xi,t = a′ift + bigt I[t ≥ τ ] + ui,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T. (42)

In (41), we consider the case in which all loadings undergo a change, i.e. HA,1; all the
elements of ai and ãi are generated as i.i.d.N (0, 1). Scheme (42) refers to a break owing to
a new common factor, gt, appearing, i.e. HA,2; the loadings bi are generated as i.i.d.N (0, 1),
and we simulate gt as the causal AR(1)

gt = ϕgt−1 + vt, 1 ≤ t ≤ T,

with vt ∼ i.i.d.N (0, 1) and ϕ = 0.7. The idiosyncratic components are generated as before.
All results of the test are computed when setting η = 0.45 and η = 0.5. The critical

values used in the case η = 0.45 are taken from Horváth et al. [37]; in particular, when the
significance level is α = 0.05 the critical value is c0.05 = 2.7992 and when α = 0.1 we have
c0.1 = 2.5437. Regarding the double randomisation, we choose the functions g(·) in (13)
and h(·) in (17) to be the identity, we set W = R = N , the distributions Gφ and Gψ in
steps A1 and B1 are chosen to be standard normals, while Fφ and Fψ in steps A2 and B2
are chosen to have non-zero and equal mass at ±

√
2.

In order to evaluate the performance of our procedure, we repeat simulations 500 times,
and we consider a series of indicators.
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Table 1: Empirical size - 5% and 10% significance

Fraction of detections in [m+ 1, T ]

m = 50 m = 75 m = 100
η = 0.45 η = 0.5 η = 0.45 η = 0.5 η = 0.45 η = 0.5

r 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
1 0.03 0.05 0.03 0.06 0.04 0.05 0.03 0.05 0.04 0.06 0.03 0.06
2 0.04 0.05 0.04 0.06 0.03 0.04 0.02 0.05 0.04 0.06 0.04 0.06
3 0.03 0.05 0.03 0.05 0.03 0.05 0.03 0.06 0.04 0.06 0.04 0.06
4 0.03 0.05 0.03 0.06 0.02 0.05 0.02 0.06 0.04 0.05 0.03 0.06

m = 125 m = 150 m = 175
η = 0.45 η = 0.5 η = 0.45 η = 0.5 η = 0.45 η = 0.5

r 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
1 0.05 0.06 0.05 0.06 0.04 0.05 0.03 0.05 0.04 0.07 0.04 0.06
2 0.03 0.05 0.03 0.06 0.04 0.05 0.03 0.05 0.05 0.06 0.04 0.07
3 0.03 0.05 0.03 0.05 0.03 0.05 0.03 0.05 0.04 0.08 0.04 0.08
4 0.03 0.06 0.03 0.07 0.04 0.07 0.05 0.08 0.04 0.06 0.05 0.06

m = 200 m = 225 m = 250
η = 0.45 η = 0.5 η = 0.45 η = 0.5 η = 0.45 η = 0.5

r 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
1 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.04 0.07 0.04 0.08
2 0.04 0.05 0.03 0.05 0.04 0.06 0.04 0.07 0.04 0.07 0.04 0.07
3 0.05 0.07 0.04 0.08 0.03 0.04 0.03 0.04 0.03 0.05 0.04 0.05
4 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.07 0.04 0.07 0.04 0.08

Table 2: Power - loadings change - 5% significance

Fraction of detections in [τ, τ +m)

η = 0.45 m
r 50 75 100 125 150 175 200 225 250
1 0.96 0.95 0.96 0.96 0.96 0.96 0.96 0.95 0.95
2 0.58 0.97 0.97 0.96 0.96 0.96 0.97 0.95 0.98
3 0.01 0.74 0.97 0.97 0.96 0.97 0.96 0.97 0.96
4 0.00 0.03 0.80 0.94 0.96 0.94 0.96 0.96 0.96

η = 0.5 m
r 50 75 100 125 150 175 200 225 250
1 0.96 0.95 0.96 0.96 0.97 0.95 0.96 0.96 0.96
2 0.44 0.97 0.97 0.96 0.96 0.96 0.97 0.95 0.98
3 0.00 0.62 0.97 0.97 0.96 0.96 0.97 0.96 0.97
4 0.00 0.01 0.65 0.95 0.97 0.95 0.96 0.96 0.97

(1) In Table 1 we report the fraction of false rejections over the whole monitoring period
(m + 1 ≤ t ≤ T ), when no break is present, i.e. under H0, and when testing at
5% and 10% significance levels. As expected the empirical size is always below the
significance level.

(2) In Tables 2, 3, 4 and 5 we show the fraction of detections for which τ ≤ τ̂m < τ+m−1,
when a break takes place under HA,1 or HA,2 and when testing at 5% and 10%
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Table 3: Power - loadings change - 10% significance

Fraction of detections in [τ, τ +m)

η = 0.45 m
r 50 75 100 125 150 175 200 225 250
1 0.94 0.93 0.95 0.93 0.94 0.93 0.94 0.94 0.93
2 0.66 0.95 0.95 0.93 0.95 0.93 0.94 0.94 0.95
3 0.01 0.81 0.95 0.95 0.94 0.95 0.95 0.94 0.94
4 0.00 0.06 0.87 0.94 0.95 0.92 0.93 0.94 0.94

η = 0.5 m
r 50 75 100 125 150 175 200 225 250
1 0.94 0.93 0.95 0.92 0.93 0.93 0.93 0.93 0.93
2 0.59 0.94 0.95 0.92 0.94 0.93 0.94 0.93 0.95
3 0.01 0.73 0.94 0.95 0.94 0.95 0.94 0.93 0.94
4 0.00 0.03 0.80 0.93 0.94 0.91 0.93 0.94 0.93

Table 4: Power - new factor appears - 5% significance

Fraction of detections in [τ, τ +m)

η = 0.45 m
r 50 75 100 125 150 175 200 225 250
1 0.93 0.93 0.92 0.95 0.92 0.95 0.93 0.93 0.92
2 0.78 0.96 0.97 0.95 0.95 0.96 0.96 0.95 0.96
3 0.10 0.89 0.97 0.98 0.96 0.97 0.95 0.95 0.97
4 0.00 0.27 0.91 0.96 0.96 0.96 0.95 0.95 0.96

η = 0.5 m
r 50 75 100 125 150 175 200 225 250
1 0.95 0.94 0.93 0.96 0.95 0.96 0.95 0.93 0.94
2 0.71 0.96 0.97 0.96 0.95 0.96 0.96 0.96 0.97
3 0.06 0.85 0.97 0.98 0.96 0.98 0.96 0.96 0.98
4 0.00 0.16 0.89 0.96 0.96 0.95 0.95 0.96 0.97

significance levels, setting either η = 0.45 or η = 0.5. Results show that the test does
have power versus the two alternative hypotheses considered in this paper. As the
construction of the test and the theory would suggest, the power declines as r, the
original, pre-break number of factors, increases: in essence, the test checks whether
an eigenvalue is large, and the magnitude of the (r+ 1)-th largest eigenvalue declines
with r. Still, even when r = 4, the test has high power when m ≥ 100 in all cases
considered, and, in presence of a new factor appearing (see Tables 4 and 5), even
when m ≥ 50. An interesting feature of the test is the case η = 0.5: although
in theory this choice yields the highest power, it is well known that convergence to
the extreme value distribution is very slow, leading to larger than correct critical
values, and, consequently, to lower power (see the comments in Csörgő and Horváth
[26]). However, considering the discrepancy between the power when η = 0.45 and
η = 0.5, this is not always the case: tests based on the choice η = 0.5 have roughly
the same power as for the case η = 0.45 whenever there is a change in the loadings,
and also when there is a new factor appearing (at least for a sample size m ≥ 100).
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Table 5: Power - new factor appears - 10% significance

Fraction of detections in [τ, τ +m)

η = 0.45 m
r 50 75 100 125 150 175 200 225 250
1 0.89 0.88 0.88 0.90 0.88 0.91 0.92 0.88 0.88
2 0.81 0.94 0.95 0.93 0.91 0.93 0.93 0.93 0.93
3 0.14 0.88 0.94 0.95 0.94 0.95 0.92 0.93 0.95
4 0.00 0.36 0.92 0.94 0.94 0.93 0.93 0.93 0.94

η = 0.5 m
r 50 75 100 125 150 175 200 225 250
1 0.90 0.89 0.88 0.91 0.89 0.92 0.91 0.89 0.89
2 0.76 0.94 0.95 0.92 0.92 0.93 0.93 0.93 0.93
3 0.10 0.86 0.94 0.96 0.94 0.95 0.93 0.93 0.94
4 0.00 0.27 0.89 0.94 0.93 0.93 0.92 0.92 0.94

Last, notice that when considering HA,2 (a new factor appearing), then we could also
detect a change-point when τ + m − 1 ≤ t ≤ T , but we do not report results in this
case since power can only increase with respect to what shown in Tables 4 and 5.

(3) In Tables 6 and 7 we report the minimum, maximum, the 25th, 50th and 75th percentiles
of the distribution of the estimated change-point locations, whenever under HA,1 or
HA,2 a break is detected at τ̂m such that τ ≤ τ̂m ≤ T and when testing at 10%
significance levels. Given the results in Tables 3 and 5 we report those statistics only
for m = 100, 175, 250. It is evident that the test detects a break with a delay which
increases as r increases - this is in line with the comments in Section 4.1, since, as r
grows, the r-th eigenvalue becomes smaller and smaller, thus being closer to a weak
factor. Interestingly, there are virtually no differences between the cases of η = 0.45
and η = 0.5; similarly, different values of m also do not seem to alter results. Note
that, as expected, the minimum values of the distribution of the estimated locations
are, roughly speaking, of order m1/2 all across the table.

6. An application to US industrial production data

We conclude with an application to a panel of US industrial production indexes. Specif-
ically, we consider monthly growth rates for N = 224 sectorial indices, over the period from
January 1972 to November 2015, for a total of T = 527 observations. Estimation is based
on a sample of size m = 60, i.e. 5 years. Analysis of the whole dataset using rolling samples
of size m suggests between one and two factors throughout - this result consistently follows
using different procedures - namely, Trapani [62] testing procedure and the criteria by Bai
and Ng [8] and Alessi et al. [2]. Therefore, we run our sequential testing procedure moni-
toring the first four factors, thus accounting both for at most two new factors emerging and
for a change in all loadings. The test is run at 5% significance level and setting η = 0.5,
hence using the critical values in (25).

The monitoring is implemented as follows. We begin at t = m+1; once the first change-
point is detected at τ̂1 ≥ m+ 1, we restart the estimation at t = τ̂1 and after m periods we
restart monitoring at t = τ̂1 +m+ 1. In general, given an estimated change-point τ̂j , with
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Table 6: Location distribution - loadings change

(true change-point at τ = 500)

η = 0.45 η = 0.5

m r min 25th 50th 75th max min 25th 50th 75th max
100 1 504 516 520 526 551 505 516 521 526 551

2 507 523 528 533 553 507 524 529 534 554
3 509 529 536 543 573 509 531 538 545 586
4 520 548 559 571 > T 520 553 563 578 > T

175 1 504 516 522 528 550 505 517 523 529 550
2 508 523 529 535 553 509 524 530 537 555
3 507 531 537 543 564 507 532 538 544 566
4 514 536 544 551 580 514 538 546 553 591

250 1 502 518 523 529 551 505 519 524 529 553
2 508 525 531 537 558 508 526 532 538 565
3 508 531 538 547 568 508 533 540 548 570
4 516 538 545 554 581 516 539 547 555 584

Table 7: Location distribution - new factor appears

(true change-point at τ = 500)

η = 0.45 η = 0.5

m r min 25th 50th 75th max min 25th 50th 75th max
100 1 502 514 519 525 547 505 515 520 525 548

2 505 522 530 537 574 506 523 531 538 576
3 513 532 541 550 598 514 534 542 552 598
4 519 546 557 569 648 520 548 560 574 669

175 1 501 515 520 525 546 502 516 521 526 552
2 507 524 531 537 564 507 524 532 539 572
3 508 532 541 550 578 508 534 542 552 579
4 518 543 552 562 598 518 544 555 565 599

250 1 502 514 520 527 552 502 514 521 527 553
2 508 524 531 540 571 508 525 532 541 571
3 510 533 542 551 590 510 534 543 552 589
4 515 542 552 562 600 515 544 553 564 603

j ≥ 1, we restart monitoring by computing the detector defined in (20) which in this case
is defined as

d(k;m) =

∣∣∣∣∣∣
m+k∑

t=τ̂j+m+1

Γt − 1√
2

∣∣∣∣∣∣ , τ̂j + 1 ≤ k ≤ T −m.

Therefore, the monitoring window after the j-th change-point is of size T − τ̂j − m and
the estimated change-points τ̂j are such that τ̂j+1 − τ̂j ≥ m + 1. We keep restarting the
procedure as long as we have a monitoring window of non-zero length, that is as long as
T− τ̂j > m; this allows the possibility for the last change-point to be detected in the interval
T −m ≤ t ≤ T .

We find evidence of two change-points dated: (i) τ̂1: August, 1983; and (ii) τ̂2: March,
2008. The estimated locations are also shown in Figure 1 together with the joint panel of
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Figure 1: Estimated change-point locations for US industrial production indexes

 Time
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Black line: cross-sectional median of the data (monthly growth rates on yearly basis); blue lines:

estimated change-point locations; red line: first period used for testing.

data. The first estimated change-point (τ̂1) clearly mark the start of the Great Moderation,
i.e. a period of decrease in volatility of output and inflation, while the second one (τ̂2) takes
place at the start of the US recession marked by the Great Financial Crisis. Last we discuss
the delay of the estimated change-points. Concerning τ̂1, there is a general consensus that
the start of the Great Moderation is to be dated in 1983, however a precise date is not
available, see for example Stock and Watson [59]. We note here that if we consider the
start of the Great Moderation to coincide with the end of the recession of the early 1980s,
then the National Bureau of Economic Research (NBER) dates the start of the expansion
of the US business cycle in December, 1982, thus the first change-point is detected with
a delay of 4 time-periods. Concerning τ̂2 the NBER dates the start of the recession in
December, 2007, therefore we detect the change-point with a delay of 3 time-points 3.

7. Conclusions

In this paper we develop a a family of monitoring procedures to detect a break in the
signal component of a large factor model; to the best of our knowledge, this is the first
contribution in high-dimensional factor models which proposes a sequential monitoring and
testing procedure, as opposed to the extant literature where ex-post detection of breaks
is usually considered. Our statistics are based on a well-known property of the (r + 1)-th
eigenvalue of the sample covariance matrix of the data: whilst under the null the (r + 1)-th
eigenvalue is bounded, under the alternative of a break (either in the loadings, or in the
number of factors itself) it becomes spiked. Given that the sample eigenvalue does not have

3See https://www.nber.org/cycles/US_Business_Cycle_Expansions_and_Contractions_20120423.

pdf
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a known limiting distribution under the null, we regularise the problem by (doubly) ran-
domising the test statistic in conjunction with sample conditioning, obtaining a sequence of
i.i.d., asymptotically chi-square statistics which are then employed to build the monitoring
scheme. Numerical evidence shows that our procedure works very well in finite samples,
with a very small probability of false detections and tight detection times in presence of a
genuine change-point.

Building on the methodology proposed in this paper, there are at least two possible
extensions which could be considered. Firstly, the results and methodology in this paper
could be also used in the context of a non-stationary factor model, similar to the one
considered in Bai [7], where the factors are allowed to have unit roots. In such case, the key
theoretical result would be to show that in presence of r factors the first r eigenvalues of the
matrix m−2

∑m
t=1XtX

′
t diverge to positive infinity almost surely at some rate, whereas the

remaining factors are a.s. bounded. Secondly, it is possible to extend the theory developed
in this paper to the context of the generalised dynamic factor model by Forni et al. [30]
or the factor model by Lam and Yao [46], which are based on the asymptotic behavior of
the eigenvalues of the spectral density or the long-run covariance matrices, respectively.
By studying the asymptotic behavior of the estimated eigenvalues of those matrices an
appropriate test statistic based on these can be built. These, and other, extensions are
under current investigations by the authors.
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[37] Horváth, L., Hušková, M., Kokoszka, P., and Steinebach, J. (2004). Monitoring changes
in linear models. Journal of Statistical Planning and Inference, 126, 225–251.
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Appendix A. Technical appendix

Appendix A.1. Preliminary lemmas

This section contains technical results which are useful to prove the main theorems in
the paper. Throughout this and the next section, E∗ denotes expectation calculated with
respect to P ∗; similarly, E† and V † denote expectation and variance calculated with respect
to P †. Also, whenever possible, we omit for ease of notation the dependence of ξj (t), and
of related quantities, on t.

Lemma A.1. Let

λN (t) =
1

N

N∑
p=1

λ(p) (t) and λ̂N (t) =
1

N

N∑
p=1

λ̂(p) (t) .

Under Assumptions 1 and 2, it holds that{
lim supN→∞ λN (t) = λ

sup
(t) <∞

lim infN→∞ λN (t) = λ
inf

(t) > 0
,

for all m ≤ t ≤ T . Furthermore, under Assumptions 1-3, it holds that, as min {N,m} → ∞{
lim supN→∞ λ̂N (t) = λ

sup
(t) <∞

lim infN→∞ λ̂N (t) = λ
inf

(t) > 0
.

Proof. See Lemmas 2.1 and A.1 in Trapani [62].

Lemma A.2. Under Assumptions 1-4, it holds that

lim sup
N,m,R→∞

Θt

l̃ (N,m,R)
= 0 a.s.,

under HA,1, for t∗N,m ≤ t < t∗∗N,m,

under HA,2, for t∗N,m ≤ t ≤ T,
(A.1)

and

l̃ (N,m,R)

R
× Θt

l̃ (N,m,R)
→ C > 0 a.s.,

under H0, for m ≤ t ≤ T,
under HA,1, for m ≤ t < τ,

and τ +m− 1 ≤ t ≤ T,
under HA,2, for m ≤ t < τ,

(A.2)

as min (N,m,R)→∞.

Proof. We begin with (A.1). For any 1 ≤ n ≤ N , 1 ≤ s ≤ m, 1 ≤ r ≤ R, define

Un,s,r =

∫ +∞

−∞

∣∣∣∣r−1/2 r∑
j=1

{
I
[
ξj ≤ uφ−1n,s (t)

]
−Gφ (0)

} ∣∣∣∣2dFφ (u) .

We begin by showing that

∞∑
N=1

∞∑
m=1

∞∑
R=1

1

mNR
P ∗
[

max
1≤n≤N,1≤s≤m,1≤r≤R

Un,s,r > εl̃ (N,m,R)

]
<∞, (A.3)
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for any ε > 0. Using the short-hand notation maxn,s,r for max1≤n≤N,1≤s≤m,1≤r≤R, Markov
inequality implies that (A.3) follows if

∞∑
N=1

∞∑
m=1

∞∑
R=1

1

mNRl̃ (N,m,R)
E∗
∣∣∣∣max
n,s,r

Un,s,r

∣∣∣∣ <∞. (A.4)

The maximal inequality contained in Theorem 2 in Moricz [51] entails that

E∗
∣∣∣∣max
n,s,r

Un,s,r

∣∣∣∣ ≤ C0E
∗ |UN,m,R| (lnN) (lnm) (lnR) . (A.5)

Further, combining (A.25) with (A.26)-(A.27), it is easy to see that

E∗ |UN,m,R| ≤ C0 + C1Rφ
−2
N,m (t) ,

which holds under HA,1 for t∗N,m ≤ t < t∗∗N,m and under HA,2 for t∗N,m ≤ t ≤ T . By
Assumption 5, it holds that E∗ |UN,m,R| is bounded. Then (A.3) follows immediately from
(A.4).

Note now that for every triple (N,m,R), there is a triple of positive integers (k1, k2, k3)
such that 2k1 ≤ N < 2k1+1, 2k2 ≤ m < 2k2+1, 2k3 ≤ R < 2k3+1. Further, there is also a
triple of real numbers defined over [0, 1), say (ρ1, ρ2, ρ3), such that N = 2k1+ρ1 , etc... Define
now the short-hand notation

Ak1,k2,k3 =

{
ω : max

1≤k1≤2k1+ρ1 ,1≤k2≤2k2+ρ2 ,1≤k3≤2k3+ρ3
|Uk1,k2,k3 | > εl̃ (k1, k2, k3)

}
.

By (A.3), it holds that

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

2k1+12k2+12k3+1

(2k1+1 − 1) (2k2+1 − 1) (2k3+1 − 1)
P ∗ (Ak1,k2,k3) <∞;

thus

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

P ∗ (Ak1,k2,k3) ≤ (A.6)

≤ 23
∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

2k12k22k3

(2k1+1 − 1) (2k2+1 − 1) (2k3+1 − 1)
P ∗ (Ak1,k2,k3) <∞.

This result entails that P ∗ (Ak1,k2,k3 i.o.) = 1, which is a conditional result. Let now
Xk1,k2,k3 be the indicator of Ak1,k2,k3 , and note that Ak1,k2,k3 is conditional on the σ-field
Fk1,k2,k3 = {Xi,t, 1 ≤ i ≤ N, 1 ≤ t ≤ m} ∪ {ξj , 1 ≤ j ≤ R}, which is non decreasing. Equa-
tion (A.6) implies that

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

E (Xk1,k2,k3 | Fk1,k2,k3) <∞;
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hence, by Theorem 1 in Chen [21], it holds that

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

Xk1,k2,k3 <∞ a.s. (A.7)

We note that the result by Chen [21] is for a series indexed by a single index, but his
arguments can be readily generalised to the case of multi-index series. Equation (A.7) can
be equivalently rewritten as

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

P (Ak1,k2,k3) <∞, (A.8)

which is an unconditional result. From (A.8), it is easy to see that

maxk1,k2,k3 |Uk1,k2,k3 |
l̃ (k1, k2, k3)

→ 0 a.s.;

this entails that

|UN,m,R|
l̃ (N,m,R)

≤
maxk1,k2,k3 |Uk1,k2,k3 |

l̃ (k1, k2, k3)

l̃ (k1, k2, k3)

l̃ (N,m,R)
≤

maxk1,k2,k3 |Uk1,k2,k3 |
l̃ (k1, k2, k3)

→ 0 a.s.,

so that finally

lim sup
N,m,R→∞

|UN,m,R|
l̃ (N,m,R)

= 0 a.s.,

from which (A.1) follows.
Consider now (A.2). Under H0, Lemma 1 entails that

P

{
ω : lim

N,m→∞
φN,m (t) = 0

}
= 1, m ≤ t ≤ T,

so that we can assume henceforth that limN,m→∞ φN,m (t) = 0 for m ≤ t ≤ T . Similarly this
holds also under HA,1 for m ≤ t < τ and τ +m− 1 ≤ t ≤ T and under HA,2 for m ≤ t < τ .
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Also, by definition it holds that E∗I
[
ξj ≤ uφ−1N,m (t)

]
= Gφ

(
uφ−1N,m (t)

)
. Therefore

Gφ (0) [1−Gφ (0)] Θt =

=

∫ +∞

−∞

∣∣∣∣∣∣R−1/2
R∑
j=1

{
I
[
ξj ≤ uφ−1N,m (t)

]
−Gφ

(
uφ−1N,m (t)

)
+Gφ

(
uφ−1N,m (t)

)
−Gφ (0)

}∣∣∣∣∣∣
2

dFφ (u) =

=

∫ +∞

−∞

∣∣∣∣∣∣R−1/2
R∑
j=1

{
I
[
ξj ≤ uφ−1N,m (t)

]
−Gφ

(
uφ−1N,m (t)

)}∣∣∣∣∣∣
2

dFφ (u) +

+R1/2

∫ +∞

−∞

∣∣∣Gφ (uφ−1N,m (t)
)
−Gφ (0)

∣∣∣2 dFφ (u) +

+ 2

∫ +∞

−∞
R−1/2

R∑
j=1

{
I
[
ξj ≤ uφ−1N,m (t)

]
−Gφ

(
uφ−1N,m (t)

)} [
Gφ

(
uφ−1N,m (t)

)
−Gφ (0)

]
dFφ (u) .

Note that, by (A.2), Gφ

(
uφ−1N,m (t)

)
− Gφ (0) = I[0,∞) (u) − Gφ (0) as N,m → ∞. Also,

using similar arguments as in the proof of (A.1), it is easy to see that

lim sup
N,m,R→∞

∫ +∞
−∞

∣∣∣R−1/2∑R
j=1

{
I
[
ξj ≤ uφ−1N,m (t)

]
−Gφ

(
uφ−1N,m (t)

)}∣∣∣2 dFφ (u)

l̃ (N,m,R)
= 0 a.s.;.

(A.9)
Equation (A.2) follows directly from (A.2), (A.9) (and the Cauchy-Schwartz inequality),
and Assumption 4(iii). We point out that the passages above follow closely to the proof of
Theorem 4 in Horváth and Trapani [36].

Lemma A.3. Under Assumptions 1-6 and 9(ii), it holds that, under H0

max
1≤k≤Tm

√
m

k (k +m)

∣∣∣∣∣
m+k∑
t=m+1

(
E† (Γt)− 1

)∣∣∣∣∣ = O
(
m−ε

)
, (A.10)

max
1≤k≤Tm

√
m

k (k +m)

∣∣∣∣∣
m+k∑
t=m+1

(
V † (Γt)− 2

)∣∣∣∣∣ = O
(
m−ε

)
, (A.11)

for some ε > 0. Also
E† |Γt|2+δ <∞, (A.12)

for some δ > 0.
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Proof. We start with equation (A.10). By construction

E† (Γt)

Gψ (0) [1−Gψ (0)]
=
E†
∫ +∞
−∞ |γ (u; t)|2 dFψ (u)

Gψ (0) [1−Gψ (0)]
=

= E†
∫ +∞

−∞

∣∣∣∣∣∣W−1/2
W∑
j=1

[
ζ̃j (u; t)−Gψ (0)

]∣∣∣∣∣∣
2

dFψ (u) =

= W−1
∫ +∞

−∞
E†
∣∣∣ζ̃j (u; t)−Gψ (0)

∣∣∣2 dFψ (u) ;

by similar passages as in the proof of Theorem 1, it can be shown that

E† (Γt)

Gψ (0) [1−Gψ (0)]
− 1 ≤ C0

[
Wh−2

(
R

lnR

)
+ h−1

(
R

lnR

)]
.

Thus

max
1≤k≤Tm

√
m

k (k +m)

∣∣∣∣∣
m+k∑
t=m+1

(
E† (Γt)− 1

)∣∣∣∣∣ ≤
≤ C0W

(
lnR

R

)2

max
1≤k≤Tm

√
m

k (k +m)
k ≤

≤ C0m
1/2

[
Wh−2

(
R

lnR

)
+ h−1

(
R

lnR

)]
,

which is O (m−ε) on account of Assumption 9(ii).

We now turn to (A.11). Let γ (0; t) = W−1/2
∑W

j=1

[
ζ̃j (0; t)−Gψ (0)

]
; we have

(∫ +∞

−∞
|γ (u; t)|2 dFψ (u)

)2

−
(∫ +∞

−∞
|γ (0; t)|2 dFψ (u)

)2

= (A.13)

=

∫ +∞

−∞

∣∣∣∣∣∣W−1/2
W∑
j=1

[
ζ̃j (u; t)− ζ̃j (0; t)

]∣∣∣∣∣∣
2

+

+2W−1
W∑
j=1

[
ζ̃j (u; t)− ζ̃j (0; t)

] W∑
j=1

[
ζ̃j (0; t)−Gψ (0)

]22

dFψ (u) +

+ 2

∫ +∞

−∞
W−1/2

W∑
j=1

[
ζ̃j (0; t)−Gψ (0)

]
×

∣∣∣∣∣∣W−1/2
W∑
j=1

[
ζ̃j (u; t)− ζ̃j (0; t)

]∣∣∣∣∣∣
2

+

+ 2W−1
W∑
j=1

[
ζ̃j (u; t)− ζ̃j (0; t)

] W∑
j=1

[
ζ̃j (0; t)−Gψ (0)

] dFψ (u) .
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By Rosenthal’s inequality

W−2E†

∣∣∣∣∣∣
W∑
j=1

[
ζ̃j (u; t)− ζ̃j (0; t)

]∣∣∣∣∣∣
4

≤ (A.14)

≤ C0W
−2

∣∣∣∣∣∣
W∑
j=1

E†
(
ζ̃j (u; t)− ζ̃j (0; t)

)∣∣∣∣∣∣
4

+
W∑
j=1

E†
∣∣∣ζ̃j (u; t)− ζ̃j (0; t)

∣∣∣4
 ≤

≤ C0W
−2
[
W 4

∣∣∣E† (ζ̃j (u; t)− ζ̃j (0; t)
)∣∣∣4 + C1W

]
≤

≤ C0W
−2
[
W 4

∣∣∣Gψ (ψ−1N,m,R (t)
)
−Gψ (0)

∣∣∣4 + C1W

]
≤

≤ C0W
−1 + C1W

2u4ψ−4N,m,R (t) ;

the same logic also yields

W−1E†

∣∣∣∣∣∣
W∑
j=1

[
ζ̃j (u; t)− ζ̃j (0; t)

]∣∣∣∣∣∣
2

≤ C0uψ
−1
N,m,R (t) + C1Wu2ψ−2N,m,R (t) ,

E†

∣∣∣∣∣∣W−1/2
W∑
j=1

[
ζ̃j (0; t)−Gψ (0)

]∣∣∣∣∣∣
2

≤ C0.

Repeated applications of the Cr-inequality and of the Cauchy-Schwartz inequality to (A.13)
yield

E†
(∫ +∞

−∞
|γ (u; t)|2 dFψ (u)

)2

− E†
(∫ +∞

−∞
|γ (0; t)|2 dFψ (u)

)2

≤ C0Wψ−2N,m,R (t) .

Finally, tedious but elementary calculations yield

E†

∣∣∣∣∣∣W−1/2
W∑
j=1

[
ζ̃j (0; t)−Gψ (0)

]∣∣∣∣∣∣
4

= 3 (Gψ (0) [1−Gψ (0)])2 +O
(
W−1

)
.

Putting all together and using (A.10), it follows that

V † (Γt)− 2 ≤ C0

(
Wψ−2N,m,R (t) +W−1

)
,

whence (A.11) follows.
Consider now (A.12). By convexity∣∣∣∣∫ +∞

−∞
|γ (u; t)|2 dFψ (u)

∣∣∣∣2+δ ≤ ∫ +∞

−∞
|γ (u; t)|4+2δ dFψ (u) ;
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also, applying the Cr-inequality∫ +∞

−∞
|γ (u; t)|4+2δ dFψ (u) ≤

≤ C0

∫ +∞

−∞

∣∣∣∣∣∣W−1/2
W∑
j=1

[
ζ̃j (u; t)−Gψ

(
uψ−1N,m,R (t)

)]∣∣∣∣∣∣
4+2δ

dFψ (u) +

+ C0

∫ +∞

−∞

∣∣∣∣∣∣W−1/2
W∑
j=1

[
Gψ

(
uψ−1N,m,R (t)

)
−Gψ (0)

]∣∣∣∣∣∣
4+2δ

dFψ (u) .

Note that, by applying Burkholder’s inequality and convexity

∫ +∞

−∞
E†

∣∣∣∣∣∣W−1/2
W∑
j=1

[
ζ̃j (u; t)−Gψ

(
uψ−1N,m,R (t)

)]∣∣∣∣∣∣
4+2δ

dFψ (u) ≤

≤
∫ +∞

−∞
E†

∣∣∣∣∣∣W−1
W∑
j=1

[
ζ̃j (u; t)−Gψ

(
uψ−1N,m,R (t)

)]2∣∣∣∣∣∣
2+δ

dFψ (u) ≤

≤W−1
W∑
j=1

∫ +∞

−∞
E†
∣∣∣∣[ζ̃j (u; t)−Gψ

(
uψ−1N,m,R (t)

)]2∣∣∣∣2+δ dFψ (u) ≤ C0,

since ζ̃j (u; t) has finite moments of any order. Also

∫ +∞

−∞

∣∣∣∣∣∣W−1/2
W∑
j=1

[
Gψ

(
uψ−1N,m,R (t)

)
−Gψ (0)

]∣∣∣∣∣∣
4+2δ

dFψ (u) ≤

≤W 2+δ

∫ +∞

−∞

∣∣∣Gψ (uψ−1N,m,R (t)
)
−Gψ (0)

∣∣∣4+2δ
dFψ (u) ≤

≤W 2+δ

(
mG,ψ

ψN,m,R (t)

)4+2δ ∫ +∞

−∞
|u|4+2δ dFψ (u) ≤ C0,

where mG,ψ is the upper bound of the density of Gψ (·); the final estimate follows from
Assumptions 7 and 9(i). This proves (A.12).

Appendix A.2. Proofs of main results

Proof of Lemma 1. Recall the definition

Σm (t) =
1

m

t∑
k=t−m+1

E
(
XkX

′
k

)
.

When m ≤ t < τ and under HA,1 or HA,2, it is easy to see that there is no change in
the (r + 1)-th eigenvalue of E (XkX

′
k). Thus, the proof that λ(r+1) (t) is finite is exactly

the same as the proof of Lemma 2.1 in Trapani [62]. The same holds under H0 for all
m ≤ t ≤ T .
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We begin with studying HA,2. When τ ≤ t < τ +m− 1, it holds that

Σm (t) =
1

m

τ−1∑
k=t−m+1

E
(
XkX

′
k

)
+

1

m

t∑
k=τ

E
(
XkX

′
k

)
=
τ +m− t− 1

m
Σ(1)
m (t) +

t− τ + 1

m
Σ(2)
m (t) . (A.15)

Let λ
(r+1)
1 (t) and λ

(r+1)
2 (t) be the (r + 1)-th eigenvalue of Σ

(1)
m (t) and Σ

(2)
m (t) respec-

tively. Now λ
(r+1)
1 (t) depends only on observations before the break, therefore λ

(r+1)
1 (t) <

∞: this can be shown again by following the proof of Lemma 2.1 in Trapani [62]. As far as

λ
(r+1)
2 (t) is concerned, it depends only on post-break observations, which are driven by a

factors vector ft of size (r + q). In particular, Σ
(2)
m (t) = A(t)E (ftf

′
t)A(t)′ + Σu (t), where

A(t) = [A|B] is a constant N × (r + q) matrix. By Weyl’s inequality and Assumption 2

λ
(r+1)
2 (t) ≥ γ(r+1)(t) + ω(N)(t) ≥ Cr+1(t)N. (A.16)

Then, applying Weyl’s inequality and (A.16) to (A.15), it follows that

λ(r+1) (t) ≥ τ +m− t− 1

m
λ
(min)
1 (t) +

t− τ + 1

m
λ
(r+1)
2 (t) ,

which yields (10) immediately. When instead τ +m− 1 ≤ t ≤ T we have Σm(t) = Σ
(2)
m (t)

and the result follows directly from (A.16). Under HA,1, r(t) = r for m ≤ t ≤ T and
therefore ΣF (t) = E(ftf

′
t) is a r × r constant matrix and we denote it as ΣF . We have

ΣX(t) =
(
AΣFA

′) I[m,τ)(t) +
(
ÃΣF Ã

′) I[τ,T ](t) + Σu(t). (A.17)

Therefore, it holds that for τ ≤ t < τ +m− 1

Σm (t) =
1

m

t∑
k=t−m+1

ΣX(k) = A∗Σ∗F (t)A∗′ + Σu (t) ,

where we have defined A∗ = [A|Ã] and

Σ∗F (t) =

[
τ+m−t−1

m ΣF 0
0 t−τ+1

m ΣF

]
, (A.18)

with the off-diagonal blocks being r × r matrices of zeros. Denoting by ν(k)(·) the k-th
largest eigenvalues of a matrix, by Weyl’s inequality, we have

λ(r+1) (t) ≥ ν(r+1)
(
A∗Σ∗F (t)A∗′

)
+ ω(N)(t) ≥ ν(r+1)

(
A∗Σ∗F (t)A∗′

)
, (A.19)
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Now, since the spectrum of a block diagonal matrix is the union of the spectra of the blocks

ν(r+1)
(
A∗Σ∗F (t)A∗′

)
= ν(r+1)

( τ+m−t−1
m AΣFA

′ 0

0 t−τ+1
m ÃΣF Ã

′

)
= min

{
ν(r)

(
τ +m− t− 1

m
AΣFA

′
)
, ν(r)

(
t− τ + 1

m
ÃΣF Ã

′
)}

≥ min

{
τ +m− t− 1

m
,
t− τ + 1

m

}
min

{
ν(r)
(
AΣFA

′), ν(r)(ÃΣF Ã
′)}

≥ min

{
τ +m− t− 1

m
,
t− τ + 1

m

}
CrN, (A.20)

where the last inequality follows from the fact that by (A.17) and Assumption 2 we have

γ(r)(t) = ν(r)
(
AΣFA

′)I[m,τ)(t) + ν(r)
(
ÃΣF Ã

′)I[τ,T ](t) ≥ CrN,
which implies that ν(r)

(
AΣFA

′) ≥ CrN and ν(r)
(
ÃΣF Ã

′) ≥ CrN . Using (A.20) in (A.19),

equation (9) follows. Last, when τ +m− 1 ≤ t ≤ T , we have A∗ = Ã and Σ∗F (t) = ΣF and
the proof is the same as in Lemma 2.1 in Trapani [62].

Proof of Lemma 2. The proof is essentially the same as the proof of Lemma 2.2 in Tra-
pani [62], and we report it here in full for completeness. Consider the eigenvalue stability
inequality (see e.g. Horn and Johnson [35], p. 367), viz.∣∣∣λ̂(r+1) (t)− λ(r+1) (t)

∣∣∣ ≤ ∥∥∥Σ̂m (t)− Σm (t)
∥∥∥
op
, (A.21)

where ‖·‖op is the operator norm. By symmetry,
∥∥∥Σ̂m (t)− Σm (t)

∥∥∥
op
≤
∥∥∥Σ̂m (t)− Σm (t)

∥∥∥
F

,

where ‖·‖F denotes the Frobenius norm; hence, (A.21) becomes

∣∣∣λ̂(r+1) (t)− λ(r+1) (t)
∣∣∣ ≤

 N∑
i=1

N∑
j=1

(
1

m

t∑
k=t−m+1

Xi,kXj,k − E(Xi,kXj,k)

)2
1/2

. (A.22)

We now provide an estimate for
∣∣∣λ̂(r+1) (t)− λ(r+1) (t)

∣∣∣; the proof uses, in a multi-index

context, the same approach as Cai [18]. Let δh,j,k ≡ Xh,kXj,k − E(Xh,kXj,k), and t0 =
t−m+ 1; we begin by showing

∞∑
N=1

∞∑
N=1

∞∑
m=1

1

N2m
P

[
max

1≤h̃≤N,1≤j̃≤N,t0≤t̃≤t0+m−1

∣∣∣∣∣
h̃∑
h=1

j̃∑
j=1

(
1

m

t̃∑
k=t0

δh,j,k

)2∣∣∣∣∣
1/2

> ε
N√
m

ln1+εN ln
1+ε
2 m

]
<∞, (A.23)
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for some ε > 0 and any ε > 0. Equation (A.23) can be shown by noting that

E

 max
1≤h̃≤N,1≤j̃≤N,t0≤t̃≤t0+m−1

∣∣∣∣∣∣
h̃∑
h=1

j̃∑
j=1

 1

m

t̃∑
k=t0

δh,j,k

2∣∣∣∣∣∣


≤
N∑
h=1

N∑
j=1

E

 max
t0≤t̃≤t0+m−1

∣∣∣∣∣∣
 1

m

t̃∑
k=t0

δh,j,k

2∣∣∣∣∣∣
 ≤ C0

N2

m
,

by virtue of Assumption 3(ii). Thus, by Markov inequality, (A.23) holds since

∞∑
N=1

∞∑
N=1

∞∑
m=1

1

N2m

m

ε2N2
[
ln1+εN ln

1+ε
2 m

]2C0
N2

m
<∞.

We now show that (A.23) entails

lim sup
N,m→∞

∣∣∣∣∑N
h=1

∑N
j=1

(∑t0+m−1
k=t0

δh,j,k

)2∣∣∣∣1/2
N
√
m ln1+εN ln

1+ε
2 m

= 0 a.s. (A.24)

Similarly to the proof of Lemma A.2, note that for every triple (N,N,m), there is a triple
of positive integers (k′1, k

′
2, k
′
3) such that 2k

′
1 ≤ N < 2k

′
1+1, 2k

′
2 ≤ N < 2k

′
2+1, 2k

′
3 ≤ m <

2k
′
3+1. Further, there is also a triple of real numbers defined over [0, 1), say (ρ′1, ρ

′
2, ρ
′
3), such

that N = 2k
′
1+ρ

′
1 , etc... Define now the short-hand notation

L
(
k′1, k

′
2, k
′
3

)
≡
√

2k
′
1+1
√

2k
′
2+1

√
2k
′
3+1

ln
1+ε
2

(
2k
′
1+ρ

′
1

)
ln

1+ε
2

(
2k
′
2+ρ

′
2

)
ln

1+ε
2

(
2k
′
3+ρ

′
3

)
,

S
(
k′1, k

′
2, k
′
3

)
≡

∣∣∣∣∣∣
k′1∑
h=1

k′2∑
j=1

t0+k′3−1∑
k=t0

δh,j,k

2∣∣∣∣∣∣
1/2

,

Pk′1,k′2,k′3 ≡ P

[
max

1≤k′1≤2
k′1+ρ

′
1 ,1≤k′2≤2

k′2+ρ
′
2 ,1≤k′3≤2

k′3+ρ
′
3

∣∣S (k′1, k′2, k′3)∣∣ > εL
(
k′1, k

′
2, k
′
3

)]
.

Equation (A.23) entails that

∞∑
k′1=0

∞∑
k′2=0

∞∑
k′3=0

2k
′
12k

′
22k

′
3(

2k
′
1+1 − 1

) (
2k
′
2+1 − 1

) (
2k
′
3+1 − 1

)Pk′1,k′2,k′3 <∞;

thus

∞∑
k′1=0

∞∑
k′2=0

∞∑
k′3=0

Pk′1,k′2,k′3 ≤ 23
∞∑
k′1=0

∞∑
k′2=0

∞∑
k′3=0

2k
′
12k

′
22k

′
3(

2k
′
1+1 − 1

) (
2k
′
2+1 − 1

) (
2k
′
3+1 − 1

)Pk′1,k′2,k′3 <∞,
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so that the Borel-Cantelli Lemma yields

maxk′1,k′2,k′3 |S (k′1, k
′
2, k
′
3)|

L (k′1, k
′
2, k
′
3)

→ 0 a.s.,

whence

|S (N,N, T )|
L (N,N, T )

≤
maxk′1,k′2,k′3 |S (k′1, k

′
2, k
′
3)|

L (k′1, k
′
2, k
′
3)

L (k′1, k
′
2, k
′
3)

L (N,N, T )
≤
√

2
maxk′1,k′2,k′3 |S (k′1, k

′
2, k
′
3)|

L (k′1, k
′
2, k
′
3)

→ 0 a.s.,

so that finally

lim sup
N,T→∞

|S (N,N, T )|
L (N,N, T )

= 0 a.s..

The desired result now follows immediately.

Proof of Theorem 1. Consider (15); we report its proof, which is a refinement of the proof
of Theorem 3 in Horváth and Trapani [36], in full. In the presence of a break, it follows
from Lemmas 1 and 2 that

P

{
ω : lim

N,m→∞
φN,m (t) =∞

}
= 1,

for each t ≥ τ , as long as

N1−δ min

{
t− τ + 1

m
,
τ +m− t− 1

m

}
→ ∞ for τ ≤ t < τ +m− 1,

N1−δ → ∞ for t ≥ τ +m− 1,

hold. By definition, this holds true within the intervals t∗N,m ≤ t ≤ t∗N,m under HA,1, and
t∗N,m ≤ t ≤ T under HA,2. Thus, we can assume from now on that limN,m→∞ φN,m (t) =∞
holds in the prescribed intervals. Note that

R−1/2
R∑
i=1

[ζi(u; t)−Gφ (0)] = R−1/2
R∑
i=1

[I{ξi ≤ 0} −Gφ (0)] +

+R−1/2
R∑
i=1

[
I{ξi ≤ uφ−1N,m (t)} − I{ξi ≤ 0} − (Gφ(uφ−1N,m (t))−Gφ(0))

]
+

+R−1/2
R∑
i=1

[
Gφ(uφ−1N,m (t))−Gφ(0)

]
. (A.25)

By construction,

E∗ζj(u; t) = Gφ(uφ−1N,m (t)),

E∗(ζj(u; t)− E∗ζj(u; t))2 = Gφ(uφ−1N,m (t))
[
1−Gφ(uφ−1N,m (t))

]
.
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Consider now the following passages:

E∗

∫ ∞
−∞

(
R−1/2

R∑
i=1

[
I{ξi ≤ uφ−1N,m (t)} − I{ξi ≤ 0} − (Gφ(uφ−1N,m (t))−Gφ(0))

])2

dFφ(u)

 =

=

∫ ∞
−∞

E∗
[
I{ξ1 ≤ uφ−1N,m (t)} − I{ξ1 ≤ 0} − (Gφ(uφ−1N,m (t))−Gφ(0))

]2
dFφ(u),

on account of the independence of the ξis. Also, note that the random variable I{ξ1 ≤
uφ−1N,m (t)} − I{ξ1 ≤ 0} has expected value given by Gφ(uφ−1N,m (t)) − Gφ(0), and variance
equal to

E∗
[
I{ξ1 ≤ uφ−1N,m (t)} − I{ξ1 ≤ 0} −Gφ(uφ−1N,m (t))−Gφ(0)

]2
=

=
(
Gφ(uφ−1N,m (t))−Gφ(0)

) [
1−Gφ(uφ−1N,m (t))−Gφ(0)

]
≤

≤ Gφ(uφ−1N,m (t))−Gφ(0).

Hence, we have∫ ∞
−∞

E∗
[
I{ξ1 ≤ uφ−1N,m (t)} − I{ξ1 ≤ 0} − (Gφ(uφ−1N,m (t))−Gφ(0))

]2
dFφ(u) ≤

≤
∫ ∞
−∞

[
Gφ(uφ−1N,m (t))−Gφ(0)

]
dFφ(u) ≤ mG

φN,m (t)

∫ ∞
−∞
|u|dFφ(u), (A.26)

where the last passage follows from Assumption 6(i), with mG an upper bound for the
density of G. Also∫ ∞

−∞

(
R1/2

[
Gφ(uφ−1N,m (t))−Gφ(0)

])2
dFφ (u) ≤ R

φ2N,m (t)
mG

∫ ∞
−∞

u2dFφ(u). (A.27)

Hence, using Assumptions 4 and 5, we conclude via Markov’s inequality that

Θt =

∫ ∞
−∞

{
1√

Gφ(0) [1−Gφ(0)]R1/2

R∑
i=1

[I{ξi ≤ 0} −Gφ(0)]

}2

dFφ(u) + oP ∗(1) =

=

{
1√

Gφ(0) [1−Gφ(0)]R1/2

R∑
i=1

[I{ξi ≤ 0} −Gφ(0)]

}2

+ oP ∗(1),

and therefore the result follows from the Central Limit Theorem for Bernoulli random
variables.

Equation (16) can be shown by exactly the same logic as the proof of (A.2), and of
Theorem 4 in Horváth and Trapani [36], and is therefore omitted.

Proof of Theorem 2. The proof of the theorem is exactly the same as that of Theorem 1,
but this time based on Lemma A.2.
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Proof of Theorem 3. By (A.10) and (A.11), we have

max
1≤k≤Tm

√
m

k (k +m)

∣∣∣∣∣
m+k∑
t=m+1

Γt − 1√
2

∣∣∣∣∣ = max
1≤k≤Tm

√
m

k (k +m)

∣∣∣∣∣
m+k∑
t=m+1

Zt

∣∣∣∣∣+O
(
m−ε

)
, (A.28)

where

Zt =
Γt − E† (Γt)√

V † (Γt)

is an i.i.d. sequence with mean zero, unit variance and finite moments of order 2 + δ.
Consider (26); on account of (A.28), this holds immediately, following the same passages
as in the proof of Theorem 2.1 in Horváth et al. [37]. As far as (27) is concerned, due to
the polynomial rate of approximation in (A.28), it suffices to prove that

P †

(
Am max

1≤k≤Tm

√
m

k (k +m)

∣∣∣∣∣
m+k∑
t=m+1

Zt

∣∣∣∣∣ ≥ x+Dm

)
= e−e

−x
,

as min (N,m,R,W ) → ∞. This is a relatively standard exercise, and it is very similar to
the proof of Theorem 1.1 in Horváth et al. [38]; we therefore report only the main passages.
Let a (m) = (lnm)2; by virtue of (A.12), it holds that

sup
a(m)≤k<∞

√
m

k (k +m)

∣∣∣∣∣
m+k∑
t=m+1

Zt −B (k)

∣∣∣∣∣ = OP †
(
a (m)

− ε
2(2+ε)

)
, (A.29)

where {B (t) , 0 ≤ t <∞} is a standard Wiener process – see Komlós et al. [43, 44]. We
now show that

max
a(m)≤k≤ cm

lnm

B
(

k
k+m

)
√

k
m

= max
a(m)≤k≤ cm

lnm

B
(

k
k+m

)
√

k
k+m

+OP †

(
(ln lnm)1/2

lnm

)
; (A.30)

given that ∣∣∣∣ km − k

k +m

∣∣∣∣ ≤ ( km
)2

,

using the modulus of continuity of the Wiener process we obtain

max
a(m)≤k≤ cm

lnm

∣∣∣∣∣∣
B
(

k
k+m

)
√

k
m

−
B
(

k
k+m

)
√

k
k+m

∣∣∣∣∣∣ = OP † (1) max
a(m)≤k≤ cm

lnm

k

m

(
ln
m

k

)1/2
,
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whence (A.30) follows. Consequently, the following results hold:

1√
2 ln lnm

max
1≤k≤Tm

B
(

k
k+m

)
√

k
m

P †→ 1, (A.31)

Am max
1≤k≤a(m)

B
(

k
k+m

)
√

k
m

−Dm
P †→ −∞, (A.32)

Am max
cm
lnm
≤k≤Tm

B
(

k
k+m

)
√

k
m

−Dm
P †→ −∞; (A.33)

the results above are shown, for
√

k+m
m B

(
k

k+m

)
, in Lemmas 3.4, 3.5 and (in the proof of)

Lemma 3.6 in Horváth et al. [38]; in (A.33) we have used the fact that, by Assumption 8,
there exists a c > 0 such that Tm > cm. Combining (A.29), (A.31), (A.32), (A.33) and
(A.30) together, we obtain

P †

(
Am max

1≤k≤Tm

1√
k (k +m)

∣∣∣∣∣
m+k∑
t=m+1

Zt

∣∣∣∣∣ ≥ x+Dm

)
=

= P †

Am max
a(m)≤k≤ cm

lnm

∣∣∣B ( k
k+m

)∣∣∣√
k

k+m

≥ x+Dm

+ o (1) ;

then the desired result follows from Lemma 3.6 in Horváth et al. [38].
Consider now (28); it is convenient to prove the result under HA,2 first. On account of

(9), Lemmas 1 and 2, Assumption 4(i) and (19), it holds that

Γt = C0W + oP † (W ) , for t ≥ τ + C1m
1/2+ε,

where ε > 0 is such that N1−δ

m1/2−ε → C2 ∈ (0,+∞) and

C0 =

∫ +∞

−∞

|Gψ (u)−Gψ (0)|2

Gψ (0) [1−Gψ (0)]
dFψ (u) .

Thus, standard algebra yields that under HA,2

m+k∑
m+1

Γt − 1√
2

= OP † (1)
[
m+ k −

(
τ + C1m

1/2+ε
)]
W + oP † (W ) ,

whenever k ≥ τ + C1m
1/2+ε. Therefore,

Λm = OP † (1)m1/2W max
1≤k≤Tm

m+ k −
(
τ + C1m

1/2+ε
)

k1/2 (m+ k)1/2
+ oP † (W ) ;
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elementary algebra yields

max
1≤k≤Tm

m+ k −
(
τ + C1m

1/2+ε
)

k1/2 (m+ k)1/2
≥ C2 > 0;

thus, Assumption 8 implies (28). Under HA,1 the logic is similar, and therefore only the
main passages are reported. Under HA,1 we have

Γt = C0W + oP † (W ) , for τ + C1m
1/2+ε ≤ t ≤ τ +m− C1m

1/2+ε,

with the same notation as above; it is then easy to see that

max
1≤k≤Tm

m+ k −
(
τ + C1m

1/2+ε
)

k1/2 (m+ k)1/2
≥ C2 > 0;

the proof is now the same as before.

Proof of Corollary 1. The corollary is an immediate consequence of Theorem 3 and its
proof. Considering (29), note that P † (τ̂m < T ) is monotonically nondecreasing in T ; by
definition

P † (τ̂m < T ) = P

(
max
1≤k≤T

d (k;m)

ν∗ (k;m)
> cα,m

)
≤ P

(
max

1≤k<∞

d (k;m)

ν∗ (k;m)
> cα,m

)
=

= P

(
sup

0≤t≤1

|B (t)|
tη

> cα,m

)
+ o (1) = α,

which proves (26); (27) follows from the same passages. Similarly, as far as (30) is concerned,
note that

P †
(
t∗N,m ≤ τ̂m < T

)
= P

(
c−1α,m max

1≤k≤Tm

d (k;m)

ν∗ (k;m)
> 1

)
= 1,

by (28).
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