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Abstract

We develop a new framework of optimal consumption and portfolio choice at industry

portfolio level under dynamic and asymmetric correlations between industry and market

portfolios. We derive in closed-form the optimal consumption and investment strategies

under regime-dependent correlations environment. Overall, we find that ignoring time-

varying and asymmetric correlations between portfolios can be costly to investors when

applied to a construction of the optimal portfolio. Finally, we empirically test the perfor-

mance of the model-based investment strategy.
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1. Introduction

What determines a satisfactory investment portfolio? Markowitz (1959) and Merton

(1969, 1971) provide a benchmark against which investment decisions can be rationalized:

the risk (or volatility) and return must be balanced optimally. In this framework, an opti-
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mal investment decision is to achieve the best risk-return combination across all attainable

combinations of risk and return (or in the entire investment opportunity set) offered by

portfolios.

Standard investment literature (e.g., Markowitz, 1959; Merton, 1969, 1971) assumes

that the investment opportunity is constant, and therefore faces a limitation by neglecting

one major dimension of financial risk: time-varying and asymmetric correlations between

portfolios. In our study, we overcome this limitation and solve the optimal consumption

and investment model in a regime switching market with regime-dependent correlations

between portfolios. We hope this paper will lend itself to the study of investment strategies

for investors, industry, and academic professions as well.

Since the seminal work of Hamilton (1989), many studies have widely adopted his

regime switching framework in economic modeling. As Cochrane (2017) arguably states

that

Asset prices and returns are correlated with business cycles. Stocks rise in

good times, and fall in bad times. Real and nominal interest rates rise and

fall with the business cycle. Stock returns and bond yield also help to forecast

macroeconomic events such as GDP growth and inflation.

As to the regime switching model applications to the investment strategies, Ang and

Bekaert (2002) thoroughly investigate international asset allocation with regime switch-

ing. Jang et al. (2007) use the regime switching model showing that the variability of

an investment opportunity significantly changes the optimal consumption and investment
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decisions in the presence of transaction costs. Liu and Loewenstein (2013) take market

crashes into account the asset allocation framework by extending Jang et al. (2007)’s

regime switching model. Dai et al. (2016) investigate the effects of market closure on

optimal investment when an investment opportunity set fluctuates across regimes. More

recently, Dai et al. (2018) study the effects of capital gains tax on portfolio selection using

the regime switching framework.

Our work also sits squarely within such a regime switching model application with em-

pirical evidence supporting our modeling of regime-switching correlations across portfolios.

While existing symmetric models do not distinguish two different market situations and

calculate correlations between portfolios, our asymmetric model does consider two different

market environments as the bull market and the bear market, and calculates time-varying

and asymmetric correlations. Indeed, the conditional correlations between industry and

market portfolio are time varying and asymmetric, relying on the current state of the

regime: the bull regime or the bear regime (Figure C.1).1 More specifically, we support

the existence of substantial heterogeneity across magnitudes of conditional correlations.

For example, correlations between S&P 500 and health industry show a dramatic plunge

at times of economic recessions, while correlations between S&P 500 and hi-tech indus-

try show a modest decrease. We also find that the presence of the asymmetric dynamic

conditional correlation (ADCC) expands the efficient frontier, and thus the investment

1In this empirical analysis, we have applied the asymmetric dynamic conditional correlation (ADCC)
to estimate the conditional correlations (Cappiello et al., 2006).
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opportunities under a dynamic mean-variance framework (Figure C.2).2

[Insert Figure C.1 here.]

[Insert Figure C.2 here.]

In this paper, we develop a new framework of optimal consumption and portfolio choice

at industry portfolio level under dynamic and asymmetric correlations between industry

and market portfolios. We derive in closed-form the optimal consumption and investment

strategies under regime-dependent correlations environment. We carry out an in-depth

quantitative analysis to illustrate various properties of the optimal strategies. We find

that time variations in correlation in the investment opportunity set, depending upon the

current status of the regime, can play a role in explaining the asset pricing implications

further. Intuitively, the risk associated with random fluctuations in correlation cannot be

fully diversified and hence, investors should require a premium to compensate for their

exposure to dynamic and asymmetric correlation. Such a risk compensation, thus, should

be reflected in the optimal investment portfolio, adjusting its amount substantially in

response to variations in correlation across the bull and bear regimes.

We empirically evaluate whether our model-based investment strategy can generate

meaningful performance. We first provide empirical evidence supporting the use of regime-

dependent correlation for managing portfolios. Similar to Gomes et al. (2009), we consider

two industry portfolios: durable sector A and non-durable sector B. We then examine the

2The low risk - low return area displays insignificant differences, whereas the high risk - high return
area presents a clear expansion heading to the northwest. Further, Figure C.2 supports the existence of
substantial heterogeneity on risk-return profiles across different industries.

4



empirical performance of our proposed investment strategy, compared to other heuristic

strategies such as 1/n, maximum diversification, inverse volatility, equal risk parity, and

two tail-risk parity strategies.

In the empirical application, we find that correlations between consumer durables and

non-durables are inclined to rise at times of economic recessions including Great Depression

(1929-1939), Oil Shock (1973-1974), and Global Financial Crisis (2007-2009). We also find

that our proposed portfolio incorporating regime-dependent dynamic correlations outper-

forms, especially during the Global Financial Crisis period, other heuristic portfolios in the

aspect of cumulative return, standard deviation, Sharpe ratio, and maximum drawdown.

Our analysis therefore suggests that consideration of dynamic and asymmetric correlations

between industry and market portfolios is an important factor in the attainment of suc-

cessful investment return in the crisis period. Loosely speaking, the greater the change in

the investment opportunity set after regime switching from the bull (bear) regime to the

bear (bull) regime just as economic recessions, the greater the benefit of considering time-

varying correlation dynamics. This inversely implies that misestimating or overlooking

such a regime-dependent correlation can be costly to investors. For instance, if an investor

underestimates the correlation and adopts the corresponding heuristic investment strate-

gies under the wrong estimation, the expected wealth loss from these trading strategies

would be very high.

Closely related works include the literature on sector-level investment without corre-

lation fluctuations (e.g., Gomes et al., 2009; Phylaktis and Xia 2009; Kalotychou et al.,

2014; Chava et al., 2018), and the literature on portfolio selection with correlation fluc-
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tuations but without sector-level investment (e.g. Buraschi et al., 2010). Existing works,

however, do not consider sector-level investment and correlation fluctuations jointly. It is

thus, unclear what a model of optimal investment with such a joint consideration would

deliver. We view our analytically tractable model as a complement for our better under-

standing of mainly numerically solved existing models with either sector-level investment

or time-varying and asymmetric correlations between portfolios.

The paper is organized as follows. In Section 2, we develop a model of optimal consump-

tion and portfolio choice under a regime switching environment with regime-dependent

correlations between portfolios. In Section 3, we derive analytically tractable results for

the optimal consumption and investment strategies. In Section 4, we carry out an in-depth

quantitative analysis to investigate various properties of the optimal strategies further. In

Section 5, we empirically test the performance of the model-based investment strategy. In

Section 6, we conclude the paper.

2. The Model

Utility Function. As proposed by Duffie and Epstein (1992), an investor has the following

continuous-time formulation of non-expected utility:

Vt=Et

[ ∫ ∞
t

f
(
cs, Vs

)
ds
]
,
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where Et is the expectation taken at time t and f(c, V ) is the normalized aggregator for

consumption c and utility V . The aggregator f(c, V ) follows

f(c, V ) =
ρ∗

1− ψ−1
c1−ψ

−1 −
(
(1− γ)V

)θ(
(1− γ)V

)θ−1 ,

and

θ =
1− ψ−1

1− γ
.

Here, ψ > 0 is the elasticity of intertemporal substitution (EIS), γ > 0 is the coefficient of

relative risk aversion (CRRA), and ρ∗ > 0 is the subjective discount rate. When γ = ψ−1,

implying θ = 1, the recursive utility f(c, V ) reduces to the widely used time-additive

separable CRRA utility. In this case, f(c, V ) = U(c) − ρ∗V with U(c) = ρ∗c1−γ/(1 − γ)

and thus, it is additively separable in c and V . For θ 6= 1, the general specification of the

recursive utility f(c, V ) is non-separable in c and V .

A Regime Switching Model. To examine the impact of macroeconomic conditions on

optimal investment in the simplest possible environment, we assume that there are two

regimes: “Bull” (regime 0) and “bear” (regime 1). The fundamental parameters in the

financial market are regime dependent. We let i ∈ {0, 1} denote the current state of the

regime, which is assumed to be governed by a two-state Markov chain with generators as
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the following:  λ0 −λ0

−λ1 λ1


Similar to Jang et al. (2007), we assume that an investor can observe the regime changing.

According to the assumed two-state Markov chain, regime i switches into regime j at the

first jump time of a Poisson jump process with intensity λi > 0, for i, j ∈ {0, 1}. Within

the present model, the time Ti to leave regime i follows an exponential distribution with

intensity λi:

probability of {Ti > t} = e−λit, i ∈ {0, 1},

which implies that there is some probability of λidt that regime i switches into regime j

over an infinitesimal time interval dt. Note that the expected duration of regime i is 1/λi

and the average fraction of time spent in regime i is λj/(λi + λj).

Financial Market. An investor can trade the following assets in the financial market.

In regime i (i ∈ {0, 1}), the investor can invest in a bond (or a risk-free asset) growing at

a continuously compounded, constant rate ri > 0. She can also trade three risky assets:

Public market portfolio M , Industry A stock, and Industry B stock. In regime i, the value

of public market portfolio, SMt , follows the widely adopted geometric Brownian motion

(GBM):

dSMt = µMi S
M
t dt+ σMi S

M
t dW

M
t ,

where µMi (µMi > ri) and σMi (σMi > 0) are the regime-dependent drift and volatility
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parameters, respectively, and WM
t is a standard Brownian motion defined on a suitable

probability space. The price process of Industry A stock, SAt , follows the GBM:

dSAt = µAi S
A
t dt+ σAi S

A
t dW

A
t ,

where µAi (µAi > ri) is the expected rate of Industry A stock return, σAi (σAi > 0) is the

volatility of the return on Industry A stock, and WA
t is a standard Brownian motion with

a correlation ρ̃Ai (|ρ̃Ai | < 1) with WM
t . Similarly, the price process of Industry B stock, SBt ,

evolves by the following GBM:

dSBt = µBi S
B
t dt+ σBi S

B
t dW

B
t ,

where µBi (µBi > ri) is the expected rate of Industry B stock return, σBi (σBi > 0) is the

volatility of the return on Industry B stock, and WB
t is a standard Brownian motion with a

correlation ρ̃Bi (|ρ̃Bi | < 1) with WM
t , and a correlation ρi (|ρi| < 1) with WA

t . The Brownian

motions W j
t (j ∈ {M,A,B}) and the Poisson process representing the regime switching

risk are assumed to be independent.

In our regime switching model, the investment opportunity is comprised of risk-free

interest rate ri (i ∈ {0, 1}), expected rates µki (k ∈ {M,A,B}) of stock returns, volatilities

σki of the returns on stocks, correlation ρ̃ki between market portfolio and industry port-

folio, and correlation ρi between Industry A and Industry B stocks, which are all regime

dependent.
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Systematic Risk. Given the correlations |ρ̃ki | < 1 (k ∈ {A,B}) in regime i (i ∈ {0, 1})

between market portfolio and industry stocks, the risks associated with industry stocks are

not fully diversified by only dynamically trading market portfolio. In regime i (i ∈ {0, 1}),

the beta of Industry k stock (k ∈ {A,B}) relative to market portfolio can be defined as

βki =
ρ̃ki σ

k
i

σMi
.

Next, we define the systematic risk of industry stocks in terms of industry beta. The

total volatility (or risk) of Industry k (k ∈ {A,B}) stock is σki . The part of this volatility

(spanned by the market portfolio) is ρ̃ki σ
k
i . The remaining volatility is denoted by εi, which

is given by:

εi =
√

(σki )2 − (ρ̃ki )
2(σki )2 =

√
(σki )2 − (βki )2(σMi )2. (1)

The undiversified volatility presents extra risk in an investor’s overall portfolio. Thus, the

investor requires different risk premia for bearing diversified and undiversified risks.

In the context of risk-return trade-off, an investor is able to earn excess risk-adjusted

returns, known as called alphas, by investing in industry stocks. More specifically, the

alphas are defined as follows: for Industry k ∈ {A,B},

αki = µki − ri − βki (µMi − ri).

Intuitively, the alphas are the capital asset pricing model (CAPM)-model-based risk-
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adjusted excess returns of the portfolio that consists of Industry A and Industry B stocks.

An Optimal Consumption and Portfolio Choice Problem. An investor’s optimal

consumption and portfolio choice problem is to maximize her recursive utility by controlling

per-period consumption c and stock holdings πM , πA, and πB. This results in the following

stochastic optimization problem with a nonnegative wealth constraint: in regime i (i ∈

{0, 1}),

V i(x) ≡ max
(c,πM ,πA,πB)

Et

[ ∫ ∞
t

{ ρ∗

1− ψ−1
c1−ψ

−1

s −
(
(1− γ)V i

s

)θ(
(1− γ)V i

s

)θ−1 }
ds
]
,

subject to the following dynamic wealth constraints: with X0 = x ≥ 0,

dXt = (riXt − ct)dt+ πMt σ
M
i (dWM

t + κMi dt) + πAt σ
A
i (dWA

t + κAi dt) + πBt σ
B
i (dWB

t + κBi dt),

Xt > 0, ∀ t ≥ 0, 3

where πM represents the dollar amount invested in the market portfolio M , and πA and

πB are the dollar amount invested in the Industry A and Industry B stocks, respectively.

Moreover, κki (k ∈ {M,A,B}) are the Sharpe ratios, (µki − ri)/σki , in regime i.

At time t, an investor consumes at the rate equal to ct and receives interest at the

rate ri proportional to her wealth by investing in a risk-free bond, resulting in wealth

3This shows that the investor cannot consume and invest in the financial market any more as her wealth
approaches zero. We exclude such a trivial case and thus, only consider the cases in which wealth is above
zero so that the investor can consume and invest. We call the consumption and investment strategies
satisfying this wealth constraint admissible strategies.
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accumulation at the rate of (riXt − ct). As the investor is exposed to systematic risk

stemming from investments in market portfolio and industry stocks, i.e., when she faces

random fluctuations of her wealth given by πkt σ
k
i dW

k
t for k ∈ {M,A,B}, the risk taking

compensation is πkt σ
k
i κ

k
i dt = πkt (µki − ri)dt for k ∈ {M,A,B}.

3. Optimal Strategies

We derive in closed-form optimal consumption and investment strategies under a regime

switching environment, where dynamic and asymmetric correlations between industry and

market portfolios are incorporated.

Theorem 3.1. In regime i (i ∈ {0, 1}), optimal consumption c∗t and optimal stock holdings
(πMt )∗, (πAt )∗, and (πBt )∗ are derived in closed-form: for any x > 0,

c∗t = (ρ∗)ψK−θψi x,

(πMt )∗ =
[
{1− (ρi)

2} κ
M
i

γσMi
x+

(
ρ̃Ai ρi

σBi
σMi
− ρ̃Bi

σBi
σMi

) κBi
γσBi

x

+
(
ρ̃Bi ρi

σAi
σMi
− ρ̃Ai

σAi
σMi

) κAi
γσAi

x
]/
{1− (ρi)

2 − (ρ̃Ai )2 − (ρ̃Bi )2 + 2ρiρ̃
A
i ρ̃

B
i },

(πAt )∗ =
[
{1− (ρ̃Bi )2} κ

A
i

γσAi
x+

(
ρ̃Ai ρ̃

B
i

σBi
σAi
− ρi

σBi
σAi

) κBi
γσBi

x

+
(
ρ̃Bi ρi

σMi
σAi
− ρ̃Ai

σMi
σAi

) κMi
γσMi

x
]/
{1− (ρi)

2 − (ρ̃Ai )2 − (ρ̃Bi )2 + 2ρiρ̃
A
i ρ̃

B
i },

(πBt )∗ =
[
{1− (ρ̃Ai )2} κ

B
i

γσBi
x+

(
ρ̃Ai ρ̃

B
i

σAi
σBi
− ρi

σAi
σBi

) κAi
γσAi

x

+
(
ρ̃Ai ρi

σMi
σBi
− ρ̃Bi

σMi
σBi

) κMi
γσMi

x
]/
{1− (ρi)

2 − (ρ̃Ai )2 − (ρ̃Bi )2 + 2ρiρ̃
A
i ρ̃

B
i },

(2)
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where Ki is a solution to the following system of equations for i, j ∈ {0, 1}:

0 =
ψ−1

1− ψ−1
(ρ∗)ψK−θψi − ρ∗

1− ψ−1
+ ri −

1

2
γ(σMi )2(consM)2 + σMi κ

M
i cons

M

− 1

2
γ(σAi )2(consA)2 + σAi κ

A
i cons

A − 1

2
γ(σBi )2(consB)2 + σBi κ

B
i cons

B − γρ̃AσMi σAi consMconsA

− γρ̃Bi σMi σBi consMconsB − γρiσAi σBi consAconsB + λi

(Kj

Ki

− 1
) 1

1− γ
.

Here, the terms of consM , conA, and conB are constants defined in Appendix A.

Proof. Refer to Appendix A. Q.E.D.

The optimal strategies given in (2) show that consumption and stock holdings have

a linear relation with an investor’s initial wealth. The investor formulates a non-myopic

optimal consumption plan in the sense that future regime changes affect the consumption

amount through the regime-dependent constant Ki for i ∈ {0, 1}. Specifically, the con-

sumption strategy is affected by not only the regime intensity λi, but also key parameters

involving the coefficient γ of CRRA and the EIS ψ.

Next, we determine some interesting implications of an investor’s optimal investment

strategies. To have a benchmark, we consider the simplest possible situation in which the

market portfolio, Industry A and Industry B stocks are all independent i.e., ρ̃ki = ρi = 0.

Then, in regime i (i ∈ {0, 1}), the optimal stock holdings reduce to the following:

(πMt )∗ =
κMi
γσMi

x, (πAt )∗ =
κAi
γσAi

x, and (πBt )∗ =
κBi
γσBi

x. (3)

These optimal investment strategies follow the traditional investment rule given by Merton
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(1969, 1971): an investor tends to invest more in stocks as the Sharpe ratio κki (k ∈

{M,A,B}) increases or the coefficient γ of CRRA decreases.

When we consider only the systematic risk of Industry A and Industry B stocks i.e.,

|ρ̃ki | < 1 (k ∈ {A,B}, i ∈ {0, 1}), ρ̃ki 6= 0, and ρi = 0, the market portfolio and Industry

A and Industry B stocks are not perfectly correlated. The risks associated with industry

stocks are not fully diversified by dynamically trading only the bond and market portfolio.

Such undiversified risks have a significant influence on an investor’s overall optimal port-

folio strategy, inducing extra demand for hedging. More precisely, the optimal investment

strategy reduces to the following:

(πMt )∗ =
[ κMi
γσMi

x− ρ̃Bi
κBi
γσMi

x− ρ̃Ai
κAi
γσMi

x
]/
{1− (ρ̃Ai )2 − (ρ̃Bi )2}, (4)

(πAt )∗ =
[
{1− (ρ̃Bi )2} κ

A
i

γσAi
x+ ρ̃Ai ρ̃

B
i

κBi
γσAi

x− ρ̃Ai
κMi
γσAi

x
]/
{1− (ρ̃Ai )2 − (ρ̃Bi )2}, (5)

and

(πBt )∗ =
[
{1− (ρ̃Ai )2} κ

B
i

γσBi
x+ ρ̃Ai ρ̃

B
i

κAi
γσBi

x− ρ̃Bi
κMi
γσBi

x
]/
{1− (ρ̃Ai )2 − (ρ̃Bi )2}. (6)

The hedging demand against undiversified systematic risk is measured by the differences

between optimal strategies given in (3) and (4), (5), (6). It is either increased or decreased

depending upon the sign of correlations ρ̃Ai and ρ̃Bi . Thus, an investor demands different

risk premia for bearing diversified and undiversified risks.

When we consider the case in which systematic risk no longer exists, but dynamic
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and asymmetric correlations between industry portfolios exist, i.e., when ρ̃ki = 0 (k ∈

{A,B}, i ∈ {0, 1}), |ρi| < 1, and ρi 6= 0,4 the optimal investment strategy reduces to the

following:

(πMt )∗ =
κMi
γσMi

x, (πAt )∗ =
1

1− (ρi)2

[ κAi
γσAi
−ρi

κBi
γσAi

]
x, and (πBt )∗ =

1

1− (ρi)2

[ κBi
γσBi
−ρi

κAi
γσBi

]
x.

In this case, an optimal portfolio comprised of industry stocks is affected by both Sharpe

ratios κAi and κBi . Compared to (3), the correlations ρi between industry stocks would be

crucial in deriving the optimal portfolio.

4. Quantitative Analysis

In this section, we perform an extensive quantitative analysis to discuss various prop-

erties of analytically tractable optimal investment strategies.

Baseline Parameter Values. Our modeling focus is on the effects of regime-dependent

asymmetric correlations, abstracting away complex issues of other parameters. In light of

such an objective, we assume symmetric values for other parameters. Reflecting today’s

low interest rate environment, we set risk-free interest rate to 1%, i.e., r0 = r1 = 0.01. We

set equity premium to 7%, i.e., expected rates of returns on the public market portfolio

are µM0 = µM1 = 0.08. We set market volatility to 23.5%, i.e., σM0 = σM1 = 0.235. Industry

4By assuming ρ̃ki = 0 (k ∈ {A,B}, i ∈ {0, 1}), industry portfolios do not have any exposure to systematic
risk as industry beta becomes zero.
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A stock is assumed to have lower expected return and volatility than Industry B stock,

i.e., expected rates of returns on Industry A and B stocks are µA0 = µA1 = 0.05, and

µB0 = µB1 = 0.11, volatilities are σA0 = σA1 = 0.2, and σB0 = σB1 = 0.25. Following the

parameter values of relative risk aversion and regime intensities in Jang et al. (2007), we

fix γ = ψ−1 = 2, λ0 = 0.2353, and λ1 = 1.7391.

Benchmark. We first consider the simplest possible situation in which the market port-

folio, Industry A and Industry B stocks are all independent i.e., ρ̃ki (k ∈ {A,B}, i ∈ {0, 1})

and ρi are all zero. Then, the optimal portfolio proportions given in (3) are

(πMt )∗/x = 63.4%, (πAt )∗/x = 50.0%, (πBt )∗/x = 80.0%.

An investor is willing to invest more in Industry B stock than in the market portfolio and

Industry A stock. In the spirit of Merton (1969, 1971), the investor is highly dependent

on Sharpe ratios when investing in the stock market.

Effects of Systematic Risk. Now, if we consider the systematic risk of Industry A and

Industry B stocks, i.e., |ρ̃ki | < 1 (k ∈ {A,B}, i ∈ {0, 1}), ρ̃ki 6= 0, and ρi = 0, the market

portfolio and Industry A and Industry B stocks are not perfectly correlated. We set the

correlations ρ̃A (≡ ρ̃A0 = ρ̃A1 ) and ρ̃B (≡ ρ̃B0 = ρ̃B1 ) across regime 0 (“Bull”) and regime 1

(“bear”) to 0.5 and 0.1, respectively. Then the optimal portfolio proportions given in (4),
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(5), and (6) are

(πMt )∗/x = 45.4%, (πAt )∗/x = 23.3%, (πBt )∗/x = 75.7%.

As a result of undiversified systematic risk given by (1), the optimal risky investment will

reduce significantly compared to the benchmark case. This implies that the benchmark

case does make sense only if an investor should be compensated by no more than the

undiversifed systematic risk premium.

Effects of Dynamic and Asymmetric Correlations at Market Portfolio Level.

Next, we consider the case in which industry stocks are mutually independent i.e., ρi = 0

(i ∈ {0, 1}), but they have dynamic and asymmetric correlations with the market portfolio

according to a regime switching environment. In this quantitative analysis, an investor is

assumed to infer the status of the current regime by observing correlations, which are the

parameters that change across regimes. We average the correlations across regime 0 and

regime 1 by using the average fraction of time spent in each regime. With the Poisson

jump intensities λ0 and λ1, the regime 0 (or the Bull regime) lasts on average 1/λ0 and

the regime 1 (or the bear regime) lasts on average 1/λ1. Thus, the average fraction of time

spent in the regime 0 and the regime 1 are given by

1/λ0
1/λ0 + 1/λ1

=
λ1

λ0 + λ1
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and

1/λ1
1/λ0 + 1/λ1

=
λ0

λ0 + λ1
,

respectively. The average correlation ρ̃k (k ∈ {A,B}) is then

ρ̃k =
λ1

λ0 + λ1
ρ̃k0 +

λ0
λ0 + λ1

ρ̃k1. (7)

The parameter values reflecting the case of dynamic and asymmetric correlations with

the market portfolio can be chosen in the following two steps. First, correlations ρ̃A and

ρ̃B across regime 0 (“Bull”) and regime 1 (“bear”) are set to 0.5 and 0.1, respectively.

Second, we obtain the values of ρ̃A1 using the relationship (7) by varying values of ρ̃A0 from

0.44 to 0.56 at intervals of 0.01. The correlation pairs (ρ̃A0 , ρ̃
A
1 ) range from (0.44, 0.94) to

(0.56, 0.06). Similarly, we also obtain the correlation pairs (ρ̃B0 , ρ̃
B
1 ) by changing values of

ρ̃B0 from 0.04 to 0.16 at intervals of 0.01.

The optimal portfolio proportions are adjusted according to the perturbations from

above and below the baseline parameter values of correlation pairs (ρ̃k0, ρ̃
k
1) for industry

k ∈ {A,B}. The asymmetric correlation pairs result in asymmetric values of optimal

portfolio proportions in regime 0 (“Bull”) and regime 1 (“bear”), which are derived from

(4), (5), and (6). For details, see Table C.3.5

[Insert Table C.3 here.]

5In Appendix, we also provide the portfolio proportions in regime 0 and regime 1, and the weighted
average of portfolio proportions across both regimes (Table C.6).
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Interestingly, we find that when the current level of correlation pairs (ρ̃k0, ρ̃
k
1) is rela-

tively high as in the Industry A case and when the sum of correlation pairs drift up from

the baseline parameters, portfolio proportions
(
(πMt )∗/x, (πAt )∗/x, (πBt )∗/x

)
produce rad-

ical changes. While when the sum of correlation pairs linger below the baseline values,

portfolio proportions exhibit negligible changes. In contrast, when the current level of the

correlation pairs is low as in the Industry B case, portfolio proportions hardly change for

every correlation pairs.

Effects of Dynamic and Asymmetric Correlations at Industry Portfolio Level.

We allow for the case where there exist dynamic and asymmetric correlations between

industry portfolios. We assume that the correlation between market portfolio and Industry

stocks is zero, i.e., ρ̃ki = 0 for Industry k ∈ {A,B} in regime i ∈ {0, 1}, but the correlations

between industry stocks are nonzero, i.e., |ρi| < 1 and ρi 6= 0.

The parameter values reflecting this case can be chosen as follows. First, we set the

correlation ρ across regime 0 (“Bull”) and regime 1 (“bear”) to 0.3. Second, we use the

relationship between correlations in regime 0 and regime 1:

ρ =
λ1

λ0 + λ1
ρ0 +

λ0
λ0 + λ1

ρ1, (8)

which is the weighted average of correlations ρ0 and ρ1 by the average fraction of time

spent in regime i (i ∈ {0, 1}). Third, we vary the values of ρ0 from 0.21 to 0.39 at intervals

of 0.02, then the values of ρ1 are determined by the relationship (8). The correlation pairs
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(ρ0, ρ1) range from (0.21, 0.97) to (0.39,−0.37) as shown in Table C.4.6

[Insert Table C.4 here.]

We emphasize that a similar pattern emerges to that in Table C.3. That is, when

correlation pairs (ρ0, ρ1) drift up from the baseline parameters, portfolio proportions,

(
(πMt )∗/x, (πAt )∗/x, (πBt )∗/x

)
,

yield substantial changes, whereas when the correlation pairs submerge below the baseline

values, portfolio proportions exhibit small changes. The result is persistent for different

combinations of the current level of correlation pairs (ρ̃k0, ρ̃
k
1). Interestingly, asymmetric

effects show jump-type movements in both cases when the correlation pairs increase from

the baseline parameter values, which is hardly observed in Table C.3.

Sensitivity Analysis. We check in three ways the robustness of our quantitative results

obtained so far according to the changes in the baseline parameter values. In our sensitivity

analysis, we focus on the effects of dynamic and asymmetric correlations at the industry

portfolio level.

First, we consider more conservative equity premia of Industry A and B stocks than the

baseline equity premia. We set expected rates of returns on Industry A and B stocks to

4% and 10% rather than 5% and 11%, i.e., µA0 = µA1 = 0.04 and µB0 = µB1 = 0.10. Second,

6In Appendix, we also provide the portfolio proportions in regime 0 and regime 1, and the weighted
average of portfolio proportions across both regimes (Table C.7).
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we consider more volatile Industry A and B stocks than the baseline volatilities. We set

volatilities of Industry A and B stocks to 21% and 26% rather than 20% and 25%, i.e.,

σA0 = σA1 = 0.21 and σB0 = σB1 = 0.26. Finally, we consider a more risk-averse individual

by setting her risk aversion to 3 rather than 2, i.e., γ = 3.

Table C.5 reports the results of our sensitivity analysis. In the table, each column

on the right panel shows the results of portfolio proportions according to the changes in

the baseline parameter values stated above. For a fixed correlation pair, the portfolio

proportions are lower if the investment opportunity worsens as compared to those under

the baseline parameter values (Table C.4), i.e., when the expected returns on industry

stocks are lower or their volatilities are higher, or both. Increased risk aversion leads the

investor to take less risk on her risky investment in industry stocks. For various correlation

pairs, our sensitivity analysis confirms that there are quantitative differences according to

the changes of the parameter values, but the qualitative features of the effects of dynamic

and asymmetric correlations at the industry portfolio level are preserved. We can still

observe that portfolio proportions are inclined to be adjusted very much as the values of

correlation pair increase from the baseline value, while they tend to be relatively consistent

as the correlation values decrease from the baseline value.

5. Empirical Application

Data Description. For the empirical analysis of time-varying asymmetric correlation

between the S&P 500 and five industries (consumer, manufacture, hi-tech, health, and

others) and efficient frontiers with dynamic & asymmetric correlations, we have used the
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monthly data of industries from July 1990 to July 2015 by using Fama-French data library

(Figure C.1, Figure C.2). For obtaining regime-dependent time-varying correlations of

industry portfolios and filtered probabilities for two regimes, we have used the monthly

data of consumer durables and non-durables sectors from July 1926 to December 2015 by

using Fama-French data library. Finally, for the test of empirical performance of various

investment strategies, we have calculated the final wealth paths with a focus on the global

financial crisis period (from March 2007 to June 2009) using those strategies including ours

and the four performance measures (cumulative return, standard deviation, Sharpe ratio,

and maximum drawdown).

Empirical Analysis Design. We further test whether our theoretical derivations yield

meaningful investment performance. Amalgamating sector returns with feasible trading

strategies is not an easy task. To do so, we provide empirical evidence supporting the use of

regime-dependent correlation to manage portfolios using two industry portfolios. Following

Gomes et al. (2009), we consider a dynamic production economy with a nondurable-good

industry and a durable-good industry.7 Based on implications from our model solution,

we then calculate the optimal risky weights for durable sector A and non-durable sector

B. Then, we examine the empirical performance of our proposed strategy compared to

other heuristic portfolios such as 1/n, maximum diversification, inverse volatility, equal

7Given that the demand for non-durable goods and services is less cyclical than that for durable goods,
we are likely to capture significant investment performance by adopting our regime-dependent investment
strategies.
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risk parity, and two tail-risk parity strategies. Note that the optimal risky weights for

sectors A and B are adjusted by the regime-dependent correlation ρi. For the detailed

algorithms of parameter estimation, refer to Appendix B.

Specifically, we construct our portfolio based on our derived equations 5 and 6 in which

we only consider systematic risk part. That is, the amount of investment in the Industry A

stock is adjusted by Sharpe ratio κBi for Industry B stock due to its hedging effect against

negative outcomes of Industry A stock. We select consumer durables and non-durables as

our test industry portfolios following Gomes et al. (2009). Consumer durables consists of

furniture and household equipment, motor vehicles and parts, and other durable goods.

Nondurable goods consists of clothing and shoes, food, fuel oil and coal, gasoline and oil,

and other nondurable goods.

To construct real-time portfolios with given information, one iteration of the rolling

sample approach has several steps. Starting at time t = M, the parameters required for

each of the portfolio strategies over the estimation window of the M previous months are

estimated. For example, this step entails estimating the sample volatility and variance-

covariance matrix and relevant correlations on excess returns over the previous 36 months

when M = 36. The next step involves solving the constrained optimization problem for

each of the portfolio strategies. The final step is to compute the portfolio return in period

t, based on the optimal set of asset weights at time t-1. In the first iteration, the portfolio’s

return would be the excess returns on risky assets at time t = 60 with asset weights t =

59 when M = 60. This rolling window approach involves adding the return for the next

month in the data set and dropping the earliest return, which keeps the estimation window
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length fixed.

Empirical Results. The two panels in Figure C.3 exhibit the main estimation results of

the regime-dependent dynamic correlations and the filtered probabilities for two distinc-

tive regimes, respectively. The former panel confirms that correlations between consumer

durables and non-durables tend to increase in highly volatile bear markets. The latter

panel displays a higher probability of increased correlation during the Oil Shock period

(1973-1974) as well as of decreased correlation during the Great Moderation period (from

the mid-1980s to the financial crisis in 2007). Compared to the Great Depression (1929-

1939) and the Oil Shock periods , surprisingly, the filtered probability of higher correlation

status during the Global Financial Crisis period (March 2007 to June 2009) looks mild.

[Insert Figure C.3 here.]

We examine the empirical performance of our proposed strategy compared to other asset

allocation strategies with a special focus on the Global Financial Crisis period (March 2007

to June 2009).8 The performance is well confirmed by Figure C.4 in which the thick black

line captures the final wealth path of our portfolio and other lines display the final wealth

paths for corresponding heuristic portfolios and all portfolios that are constructed by using

two reference indices, namely consumer durables and non-durables. Our proposed portfolio

indicated by the thick black line outperforms other heuristic portfolios in terms of defending

8Our choice of the data period with a focus on the Global Financial Crisis (March 2007 to June 2009) is
to investigate the empirical performance of our optimal strategies especially at times of economic recessions.
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the final wealth as well as four widely accepted measures including cumulative return,

standard deviation, Sharpe ratio, and maximum drawdown during the Global Financial

Crisis. One notable finding is that the final wealth path of the portfolio incorporating

regime-dependent correlations dominated other final wealth paths for the whole period.

The Value-at-Risk (VaR) based tail-risk parity portfolio seemed to work better only for

the first half of the sample period with the lowest final wealth at the end of the cited

period. Contrary to approximately 30% of maximum drawdown for the latter half period,

our proposed portfolio confines its maximum loss to 10%.

We have confirmed the superior empirical performance of our strategies to others when

applied to the full sample data from January 1980 to July 2015 (Figure C.5). Interest-

ingly, over the full sample data, we could also find that our proposed portfolio considering

regime-dependent dynamic correlations outperforms, especially in the Global Financial

Crisis period, others in the aspect of the final wealth. Our analysis therefore suggests

that consideration of dynamic and asymmetric correlations between industry and market

portfolios is an important factor in the attainment of successful investment return in the

crisis period. In contrast to standard symmetric model, changes in the investment oppor-

tunities in one regime have an influence on the optimal investment strategy in another

regime. Loosely speaking, the greater the change in the investment opportunity set after

regime switching from the bull (bear) regime to the bear (bull) regime just as economic

recessions, the greater the benefit of considering time-varying correlation dynamics. This

inversely implies that misestimating or overlooking such a regime-dependent correlation

can be costly to investors. For instance, if an investor underestimates the correlation and
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adopts the corresponding heuristic investment strategies under the wrong estimation, the

expected wealth loss from these trading strategies would be very high.

[Insert Figure C.4 here.]

6. Conclusion

We develop a tractable investment model at industry portfolio level under dynamic and

asymmetric correlations between portfolios. In our regime-dependent correlations environ-

ment, we derive in closed-form the optimal consumption and investment strategies. We

find significant adjustments in the optimal investment portfolio, reflecting a compensation

for the exposure to dynamic and asymmetric correlation. This implies that ignoring such

time-varying and asymmetric correlations between portfolios can be costly to investors

when applied to a construction of the optimal portfolio. Our empirical test of overall per-

formance of the model-based investment strategy shows that ours can outperform other

heuristic strategies such as such as 1/n, maximum diversification, inverse volatility, equal

risk parity, and two tail-risk parity strategies.
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Appendix A. Appendix

The dynamic programming approach leads to the following system of Hamilton-Jacobi-

Bellman (HJB) equations for i, j ∈ {0, 1} (Merton, 1971):

0 = max
(c,πM ,πA,πB)

[
f(c, Vi) + (rix− c)

∂Vi
∂x

+
1

2
(πM)2(σMi )2

∂2Vi
∂x2

+ πMσMi κ
M
i

∂Vi
∂x

+
1

2
(πA)2(σAi )2

∂2Vi
∂x2

+ πAσAi κ
A
i

∂Vi
∂x

+
1

2
(πB)2(σBi )2

∂2Vi
∂x2

+ πBσBi κ
B
i

∂Vi
∂x

+ ρ̃Ai π
MσMi π

AσAi
∂2Vi
∂x2

+ ρ̃Bi π
MσMi π

BσBi
∂2Vi
∂x2

+ ρiπ
AσAi π

BσBi
∂2Vi
∂x2

+ λi(Vj − Vi)
]
,

where Vi(x) represents the value function with respect to an investor’s initial wealth x in

regime i. The optimality conditions for consumption c and stock holdings πM , πA, and πB

follow

c∗t =
{ 1

ρ∗
(
(1− γ)Vi

)θ−1∂Vi
∂x

}−ψ
,

(πMt )∗ = −κ
M
i

σMi

∂Vi
∂x

/∂2Vi
∂x2
− ρ̃Ai

σAi
σMi

(πAt )∗ − ρ̃Bi
σBi
σMi

(πBt )∗,

(πAt )∗ = −κ
A
i

σAi

∂Vi
∂x

/∂2Vi
∂x2
− ρi

σBi
σAi

(πB)∗, and,

(πBt )∗ = −κ
B
i

σBi

∂Vi
∂x

/∂2Vi
∂x2
− ρi

σAi
σBi

(πA)∗.

We conjecture the form of Vi as the following: for any x > 0,

Vi(x) = Ki
x1−γ

1− γ
,

where Ki is a constant to be determined for i ∈ {0, 1}. A straightforward calculation

leads to optimal consumption and optimal stock holdings in the theorem in which Ki is a

solution to the following system of equations for i, j ∈ {0, 1}: for notational simplicity, we

30



let

consM ≡
[
{1− (ρi)

2} κ
M
i

γσMi
+
(
ρ̃Ai ρi

σBi
σMi
− ρ̃Bi

σBi
σMi

) κBi
γσBi

+
(
ρ̃Bi ρi

σAi
σMi
− ρ̃Ai

σAi
σMi

) κAi
γσAi

]/
{1− (ρi)

2 − (ρ̃Ai )2 − (ρ̃Bi )2 + 2ρiρ̃
A
i ρ̃

B
i },

consA ≡
[
{1− (ρ̃Bi )2

κAi
γσAi

+
(
ρ̃Ai ρ̃

B
i

σBi
σAi
− ρi

σBi
σAi

) κBi
γσBi

+
(
ρ̃Bi ρi

σMi
σAi
− ρ̃Ai

σMi
σAi

) κMi
γσMi

}
]/
{1− (ρi)

2 − (ρ̃Ai )2 − (ρ̃Bi )2 + 2ρiρ̃
A
i ρ̃

B
i },

consB ≡
[
{1− (ρ̃Ai )2} κ

B
i

γσBi
+
(
ρ̃Ai ρ̃

B
i

σAi
σBi
− ρi

σAi
σBi

) κAi
γσAi

+
(
ρ̃Ai ρi

σMi
σBi
− ρ̃Bi

σMi
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) κMi
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]/
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A
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B
i },

then

0 =
ψ−1

1− ψ−1
(ρ∗)ψK−θψi − ρ∗

1− ψ−1
+ ri −

1

2
γ(σMi )2(consM)2 + σMi κ

M
i cons

M

− 1

2
γ(σAi )2(consA)2 + σAi κ

A
i cons

A − 1

2
γ(σBi )2(consB)2 + σBi κ

B
i cons

B − γρ̃AσMi σAi consMconsA

− γρ̃Bi σMi σBi consMconsB − γρiσAi σBi consAconsB + λi

(Kj

Ki

− 1
) 1

1− γ
. Q.E.D.
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Appendix B. Parameter Estimation Algorithm Details

1. GJR-GARCH Model Parameters

Glosten, Jagannathan, and Runkle (1993, hereafter GJR) have proposed the GJR-

GARCH (Generalized Autoregressive Conditional Heteroskedasticity) as the following:

rt = µ+ εt,

εt = σtzt, zt ∼ N (µ, σ2),

σ2
t = ω + (α + γIt−1)ε

2
t−1 + βσ2

t−1,

It−1 =


0 if rt−1 ≥ µ

1 if rt−1 < µ

In the GJR-GARCH model, the market shock ε2t−1 at time t − 1 affects the volatility σt

at time t via a non-linear relation represented by the following key parameters: α, γ, ω,

and β. More specifically, the market shock εt at time t responds to the positive shocks

(α) and the negative shocks (γ) in the stock market with the market shock εt−1 at time

t − 1. In particular, when γ > 0 such a response of the volatility to the market shocks

becomes asymmetric. The other two parameters of ω and β summarize respectively the

volatility mean and the linear coefficient of a relation between σt and σt−1. The following

table shows our estimation results of the parameters of the GJR-GARCH model.
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Table B.1: GJR-GARCH Model Parameters

Index ω α γ β
SP500 0.897 0.048 0.120 0.859
Cnsmr 0.923 0.044 0.095 0.880
Manuf 1.143 0.043 0.111 0.863
HiTec 1.384 0.057 0.158 0.831
Hlth 8.063 0.000 0.214 0.598
Other 1.886 0.022 0.176 0.845

2. DDC- and ADDC-GARCH Model Parameters

The dynamic conditional correlation (DCC)-GARCH model by Engle (2002) differs

from the GARCH model in that it incorporates dynamic and time-varying features of

conditional correlation. Cappiello et al. (2006) have extended the DCC-GARCH to include

asymmetric features of conditional correlation and named it as the ADCC-GARCH model.

The detailed formulation of the ADCC-GARCH model is represented by the following

equations:

Qt = (P̄ − a2P̄ + b2P̄ − g2N̄) + a2εt−1ε
′
t−1 + g2nt−1n

′
t−1 + b2Qt−1,

Pt = Q∗−1t QtQ
∗−1, P̄ = E[εtε

′
t] , nt = I[εt < 0]εt, N̄ = E[ntn

′
t],

where Pt is the conditional correlation matrix of the standardized errors εt at time t, P̄ =

cov[εtε
′
t] = E[εtε

′
t] is the unconditional covariance matrix of εt at time t, Q∗t is the diagonal

matrix with the square root of the diagonal elements of Qt. Note that the covariance

matrix P̄ is positive definite when a ≥ 0, b ≥ 0, and a + b < 1. Further, Qt is positive

definite when a+b+δg < 1, where δ is the maximum eigenvalue of P̄ 1/2N̄P̄ . Pt is then also

positive definite. The ADDC-GARCH model reduces to the DCC-GARCH model when
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g = 0. The following table shows our estimation results of the parameters of the DCC-

and ADCC-GARCH model.

Table B.2: DDC- and ADDC-GARCH Model Parameters

Parameter DDC Model ADDC Model
a 0.053 0.041
g 0.046
b 0.920 0.916

3. Regime Switching Model Parameters

The two-state Markov chain regime switching model allows for the transition between

bull and bear regimes, which captures an intrinsic property of the stock market with

business cycles. For the dependent variable yt, we consider two different states of s: s = 0

(Bull) and s = 1 (bear). Then,

yst = µs + εst,

where µs is the state-dependent mean of the dependent variable yst. The transition of

states is stochastic and governed by the following transition probability matrix P :

P =

p0,0 p1,0

p0,1 p1,1

 =

0.94 0.22

0.06 0.78

 ,

where pi,j represents the probability of a switch from state i to state j for i, j ∈ {0, 1}.
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Appendix C. Figures and Tables

Figure C.1: Time-varying asymmetric correlation between S&P 500 and five industries

Note. This figure illustrates time-varying asymmetric correlation between the S&P 500 and five
industries. Data span from July 1990 to July 2015. Industry portfolios are obtained from Fama-
French data library and industries are consumer, manufacture, hi-tech, health and others. The
shaded area represents recession as determined by the National Bureau of Economic Research
(NBER).
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Figure C.2: Efficient frontiers with dynamic & asymmetric correlations
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Note. This figure illustrates two efficient frontiers using 12 industry portfolios obtained from
Fama-French data library. Data span from July 1950 to July 2015. Panel A depicts efficient
frontier using 3 month T-bill proxy for risk-free rate, S&P 500 for market return, 12 industry
portfolios, and two aggregate industry portfolios constructed under the dynamic conditional cor-
relation (DCC) and asymmetric DCC (ADCC) assumptions, respectively. Panel B exhibits an
efficient frontier expansion after the asymmetric effect is employed to the forward-looking optimal
risky asset weights. We plot the efficient frontier using the same risk-free rate, market return,
and two aggregate industry portfolios as described in Panel A. Red dots represent the efficient
frontier using a DCC aggregate industry portfolio and blue dots represent the efficient frontier
using an ADCC aggregate industry portfolio. To capture the asymmetric effect, we apply 300
randomly generated weights.

36



Figure C.3: Regime-dependent correlations and filtered probabilities

(a) Regime-dependent time-varying correlations

(b) Filtered probabilities for two regimes

Note. Panel (a) depicts monthly time-series of dynamic correlations across different regimes from

July 1926 to December 2015. Panel (b) exhibits the corresponding filtered probabilities for the
cited period. In this panel, State1 and State2 represent the bull market and the bear market,
respectively. 37



Figure C.4: Final wealth path and various performance measures

(a) Final wealth paths for various trading strategies

(b) Four performance measures

Note. Panel (a) displays the final wealth paths for various portfolios during the global financial

crisis period, spanning March 2007 to June 2009. The thick black line (K&P) captures the final
wealth path of the proposed methodology. Panel (b) presents the four widely accepted perfor-
mance measures including cumulative return, standard deviation, Sharpe ratio, and maximum
drawdown.
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Figure C.5: Final wealth paths with the data period from January 1980 to July 2015

Note. This figure displays the final wealth paths for various portfolios with the data period from
January 1980 to July 2015.
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Table C.3: Portfolio proportions
(
(πM

t )∗/x, (πA
t )∗/x, (πB

t )∗/x
)

according to correlation pairs

ρ̃A0 = ρ̃A1 = 0.5 ρ̃B0 = ρ̃B1 = 0.1
Correlation Pairs (ρ̃A0 , ρ̃

A
1 ) Portfolio Proportions Correlation Pairs (ρ̃B0 , ρ̃

B
1 ) Portfolio Proportions

(0.44, 0.94) (57.5%, 9.9%, 74.6%) (0.04, 0.54) (44.5%, 23.9%, 78.8%)
(0.45, 0.87) (49.1%, 19.6%, 75.4%) (0.05, 0.47) (45.1%, 23.5%, 77.7%)
(0.46, 0.80) (47.0%, 21.9%, 75.6%) (0.06, 0.40) (45.4%, 23.3%, 76.4%)
(0.47, 0.72) (46.1%, 22.7%, 75.7%) (0.07, 0.32) (45.4%, 23.3%, 76.4%)
(0.48, 0.65) (45.6%, 23.1%, 75.7%) (0.08, 0.25) (45.4%, 23.3%, 76.0%)
(0.49, 0.57) (45.4%, 23.3%, 75.7%) (0.09, 0.17) (45.4%, 23.3%, 75.8%)
(0.50, 0.50) (45.4%, 23.3%, 75.7%) (0.10, 0.10) (45.4%, 23.3%, 75.7%)
(0.51, 0.43) (45.4%, 23.3%, 75.7%) (0.11, 0.03) (45.4%, 23.3%, 75.8%)
(0.52, 0.35) (45.6%, 23.2%, 75.7%) (0.12, -0.05) (45.5%, 23.2%, 76.0%)
(0.53, 0.28) (45.8%, 23.2%, 75.7%) (0.13, -0.12) (45.8%, 23.1%, 76.4%)
(0.54, 0.20) (46.0%, 23.1%, 75.7%) (0.14, -0.20) (46.2%, 22.8%, 77.0%)
(0.55, 0.13) (46.3%, 23.0%, 75.6%) (0.15, -0.27) (47.0%, 22.4%, 77.9%)
(0.56, 0.06) (46.8%, 23.0%, 75.6%) (0.16, -0.34) (48.1%, 21.8%, 79.1%)

Note. In the table, portfolio proportions denote the weighted average of portfolio proportions in regime 0
and regime 1 by the average fraction of time spent in regime 0 and regime 1. The portfolio proportions
given by bold type represent the portfolio proportions for the baseline parameter values. The baseline
parameter values are as follows: risk-free interest rate r0 = r1 = 0.01, expected rate of stock returns
µM
0 = µM

1 = 0.08, µA
0 = µB

1 = 0.05, and µB
0 = µB

1 = 0.11, stock volatilities σM
0 = σM

1 = 0.235,
σA
0 = σA

1 = 0.2, and σB
0 = σB

1 = 0.25, relative risk aversion γ = 2, regime intensities λ0 = 0.2353 and
λ1 = 1.7391, and correlation between industry stocks ρi = 0 for regime i ∈ {0, 1}.
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Table C.4: Portfolio proportions
(
(πA

t )∗/x, (πB
t )∗/x

)
according to correlation pairs (ρ0, ρ1)

(ρ0, ρ1) ρ̃Ai = 0 & ρ̃Bi = 0 ρ̃Ai = 0.5 & ρ̃Bi = 0.1
Correlation Pairs Portfolio Proportions Portfolio Proportions

(0.21, 0.97) (−54.3%, 138.1%) (87.7%, 7.8%)
(0.23, 0.82) (13.7%, 82.8%) (87.7%, 7.8%)
(0.25, 0.67) (19.8%, 77.3%) (−22.2%, 113.9%)
(0.27, 0.52) (21.5%, 75.4%) (−16.9%, 108.0%)
(0.29, 0.37) (21.9%, 74.8%) (−15.6%, 106.3%)
(0.30, 0.30) (22.0%, 74.7%) (-15.4%, 106.1%)
(0.31, 0.23) (22.0%, 74.8%) (−15.5%, 106.3%)
(0.33, 0.08) (21.9%, 75.2%) (−16.0%, 107.3%)

(0.35,−0.07) (21.9%, 76.2%) (−16.5%, 109.2%)
(0.37,−0.22) (22.2%, 77.6%) (−16.7%, 112.1%)
(0.39,−0.37) (23.3%, 79.9%) (−15.8%, 116.69%)

Note. In the table, portfolio proportions denote the weighted average of portfolio proportions in regime 0
and regime 1 by the average fraction of time spent in regime 0 and regime 1. The portfolio proportions
given by the bold type represent the portfolio proportions for the baseline parameter values. The baseline
parameter values are as follows: risk-free interest rate r0 = r1 = 0.01, expected rate of stock returns
µM
0 = µM

1 = 0.08, µA
0 = µB

1 = 0.05, and µB
0 = µB

1 = 0.11, stock volatilities σM
0 = σM

1 = 0.235,
σA
0 = σA

1 = 0.2, and σB
0 = σB

1 = 0.25, relative risk aversion γ = 2, regime intensities λ0 = 0.2353 and
λ1 = 1.7391, and correlation between Industry stocks ρi = 0.3 for regime i ∈ {0, 1}.

Table C.5: Portfolio proportions
(
(πA

t )∗/x, (πB
t )∗/x

)
according to changes in baseline parameter values

(ρ0, ρ1) µA
0 = µA

1 = 0.04 σA
0 = σA

1 = 0.21 γ = 3
µB
0 = µB

1 = 0.10 σB
0 = σB

1 = 0.26
Correlation Pairs Portfolio Proportions Portfolio Proportions Portfolio Proportions

(0.21, 0.97) (−69.8%, 135.5%) (−50.9%, 128.3%) (−36.2%, 92.1%)
(0.23, 0.82) (2.70%, 77.6%) (12.0%, 76.8%) (9.10%, 55.2%)
(0.25, 0.67) (9.20%, 71.8%) (17.7%, 71.6%) (13.2%, 51.5%)
(0.27, 0.52) (11.0%, 69.9%) (19.2%, 69.9%) (14.3%, 50.3%)
(0.29, 0.37) (11.5%, 69.3%) (19.6%, 69.3%) (14.6%, 49.9%)
(0.30, 0.30) (11.5%, 69.2%) (19.6%, 69.2%) (14.7%, 49.8%)
(0.31, 0.23) (11.5%, 69.3%) (19.6%, 69.3%) (14.6%, 49.9%)
(0.33, 0.08) (11.4%, 69.7%) (19.5%, 69.7%) (14.6%, 50.2%)

(0.35,−0.07) (11.3%, 70.6%) (19.5%, 70.5%) (14.6%, 50.8%)
(0.37,−0.22) (11.4%, 72.0%) (19.9%, 71.9%) (14.8%, 51.8%)
(0.39,−0.37) (12.2%, 74.0%) (20.8%, 74.0%) (15.5%, 53.3%)

Note. In the table, portfolio proportions denote the weighted average of portfolio proportions in regime 0
and regime 1 by the average fraction of time spent in regime 0 and regime 1. The portfolio proportions
given by the bold type represent the portfolio proportions for the baseline parameter values. The baseline
parameter values are as follows: risk-free interest rate r0 = r1 = 0.01, expected rate of stock returns
µM
0 = µM

1 = 0.08, µA
0 = µB

1 = 0.05, and µB
0 = µB

1 = 0.11, stock volatilities σM
0 = σM

1 = 0.235,
σA
0 = σA

1 = 0.2, and σB
0 = σB

1 = 0.25, relative risk aversion γ = 2, regime intensities λ0 = 0.2353 and
λ1 = 1.7391, and correlation between Industry stocks ρi = 0.3 for regime i ∈ {0, 1}.
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Table C.6: Table: Portfolio proportions according to correlation pairs.

Correlation Pairs Portfolio Proportions (Regime 0) Portfolio Proportions (Regime 1) Weighted Average Portfolio Proportions
(0.44, 0.94) (45.4%, 26.5%, 75.7%) (147.4%, -113.4%, 66.1%) (57.5%, 9.9%, 74.6%)
(0.45, 0.87) (45.4%, 26.0%, 75.7%) (76.4%, -28.0%, 72.8%) (49.1%, 19.6%, 75.4%)
(0.46, 0.80) (45.3%, 25.5%, 75.7%) (58.9%, -5.0%, 74.5%) (47.0%, 21.9%, 75.6%)
(0.47, 0.72) (45.3%, 25.0%, 75.7%) (51.5%, 6.3%, 75.2%) (46.1%, 22.7%, 75.7%)
(0.48, 0.65) (45.3%, 24.4%, 75.7%) (47.9%, 13.6%, 75.5%) (45.6%, 23.1%, 75.7%)
(0.49, 0.57) (45.4%, 23.9%, 75.7%) (46.1%, 18.9%, 75.7%) (45.4%, 23.3%, 75.7%)

(0.50, 0.50) (45.4%, 23.3%, 75.7%) (45.4%, 23.3%, 75.7%) (45.4%, 23.3%, 75.7%)
(0.51, 0.43) (45.4%, 22.8%, 75.7%) (45.4%, 27.3%, 75.7%) (45.4%, 23.3%, 75.7%)
(0.52, 0.35) (45.5%, 22.2%, 75.7%) (46.1%, 30.9%, 75.7%) (45.6%, 23.2%, 75.7%)
(0.53, 0.28) (45.6%, 21.6%, 75.7%) (47.1%, 34.6%, 75.6%) (45.8%, 23.2%, 75.7%)
(0.54, 0.20) (45.7%, 21.0%, 75.7%) (48.7%, 38.3%, 75.4%) (46.0%, 23.1%, 75.7%)
(0.55, 0.13) (45.8%, 20.4%, 75.7%) (50.7%, 42.2%, 75.2%) (46.3%, 23.0%, 75.6%)
(0.56, 0.06) (45.9%, 19.8%, 75.7%) (53.2%, 46.5%, 75.0%) (46.8%, 23.0%, 75.6%)

Panel A: portfolio proportions
(
(πMt )∗/x, (πAt )∗/x, (πBt )∗/x

)
according to correlation pairs

(ρ̃A0 , ρ̃
A
1 )

Correlation Pairs Portfolio Proportions (Regime 0) Portfolio Proportions (Regime 1) Weighted Average Portfolio Proportions
(0.04, 0.54) (51.7%, 19.6%, 78.1%) (-9.1%, 55.4%, 84.7%) (44.5%, 23.9%, 78.8%)
(0.05, 0.47) (50.6%, 20.3%, 77.6%) (4.0%, 47.6%, 78.2%) (45.1%, 23.5%, 77.7%)
(0.06, 0.40) (49.6%, 20.9%, 77.2%) (14.2%, 41.7%, 74.7%) (45.3%, 23.4%, 76.9%)
(0.07, 0.32) (48.5%, 21.5%, 76.8%) (22.8%, 36.6%, 73.1%) (45.4%, 23.3%, 76.4%)
(0.08, 0.25) (47.5%, 22.1%, 76.4%) (30.5%, 32.1%, 72.9%) (45.4%, 23.3%, 76.0%)
(0.09, 0.17) (46.4%, 22.7%, 76.1%) (37.9%, 27.7%, 73.8%) (45.4%, 23.3%, 75.8%)

(0.10, 0.10) (45.4%, 23.3%, 75.7%) (45.4%, 23.3%, 75.7%) (45.4%, 23.3%, 75.7%)
(0.11, 0.03) (44.4%, 23.9%, 75.4%) (53.2%, 18.7%, 78.7%) (45.4%, 23.3%, 75.8%)
(0.12, -0.05) (43.3%, 24.5%, 75.1%) (61.7%, 13.7%, 82.8%) (45.5%, 23.2%, 76.0%)
(0.13, -0.12) (42.3%, 25.1%, 74.8%) (71.4%, 8.1%, 88.2%) (45.8%, 23.1%, 76.4%)
(0.14, -0.20) (41.3%, 25.7%, 74.6%) (82.5%, 1.5%, 95.2%) (46.2%, 22.8%, 77.0%)
(0.15, -0.27) (40.3%, 26.3%, 74.3%) (96.0%, -6.4%, 104.3%) (47.0%, 22.4%, 77.9%)
(0.16, -0.34) (39.3%, 26.9%, 74.1%) (112.9%, -16.3%, 116.4%) (48.1%, 21.8%, 79.1%)

Panel B: portfolio proportions
(
(πMt )∗/x, (πAt )∗/x, (πBt )∗/x

)
according to correlation pairs

(ρ̃B0 , ρ̃
B
1 )

Note. In the table, the weighted average of portfolio proportions in regime 0 and regime 1
by the average fraction of time spent in regime 0 and regime 1 yield the values of weighted
average portfolio proportions. The portfolio proportions given by bold type represent the
portfolio proportions for the baseline parameter values. The baseline parameter values are
as follows: risk-free interest rate r0 = r1 = 0.01, expected rate of stock returns µM0 =
µM1 = 0.08, µA0 = µB1 = 0.05, and µB0 = µB1 = 0.11, stock volatilities σM0 = σM1 = 0.235,
σA0 = σA1 = 0.2, and σB0 = σB1 = 0.25, relative risk aversion γ = 2, regime intensities
λ0 = 0.2353 and λ1 = 1.7391, correlation between industry stocks ρi = 0, and correlations
between market portfolio and industry stocks ρ̃Ai = 0.5 and ρ̃Bi = 0.1 for regime i ∈ {0, 1}.
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Table C.7: Table: Portfolio proportions according to correlation pairs.

Correlation Pairs Portfolio Proportions (Regime 0) Portfolio Proportions (Regime 1) Weighted Average Portfolio Proportions
(0.21, 0.97) (30.3%, 74.9%) (-680.0%, 605.1%) (-54.3%, 138.1%)
(0.23, 0.82) (28.5%, 74.8%) (-95.6%, 142.5%) (13.7%, 82.8%)
(0.25, 0.67) (26.7%, 74.7%) (-30.7%, 96.5%) (19.8%, 77.3%)
(0.27, 0.52) (24.8%, 74.6%) (-3.0%, 81.2%) (21.5%, 75.4%)
(0.29, 0.37) (22.9%, 74.7%) (14.7%, 75.6%) (21.9%, 74.8%)

(0.30, 0.30) (22.0%, 74.7%) (22.0%, 74.7%) (22.0%, 74.7%)
(0.31, 0.23) (21.0%, 74.8%) (28.9%, 74.8%) (22.0%, 74.8%)
(0.33, 0.08) (19.1%, 75.0%) (42.4%, 77.3%) (21.9%, 75.2%)
(0.35, -0.07) (17.1%, 75.2%) (57.2%, 83.2%) (21.9%, 76.2%)
(0.37, -0.22) (15.1%, 75.5%) (75.3%, 93.1%) (22.2%, 77.6%)
(0.39, -0.37) (13.0%, 76.0%) (99.8%, 109.2%) (23.3%, 79.9%)

Panel A: portfolio proportions
(
(πAt )∗/x, (πBt )∗/x

)
according to correlation pairs (ρ0, ρ1)

when ρ̃ki = 0 for Industry k ∈ {A,B} in regime i ∈ {0, 1}

Correlation Pairs Portfolio Proportions (Regime 0) Portfolio Proportions (Regime 1) Weighted Average Portfolio Proportions
(0.21, 0.97) (56.7%, -3.0%, 102.0%) (-207.5%, 758.0%, -687.8%) (251.8%, 87.7%, 7.8%)
(0.23, 0.82) (57.7%, -5.7%, 102.7%) (192.1%, -380.0%, 435.4%) (73.7%, -50.3%, 142.3%)
(0.25, 0.67) (58.8%, -8.4%, 103.5%) (101.8%, -124.6%, 190.7%) (64.0%, -22.2%, 113.9%)
(0.27, 0.52) (59.9%, -11.1%, 104.4%) (78.4%, -59.7%, 134.5%) (62.1%, -16.9%, 108.0%)
(0.29, 0.37) (61.1%, -14.0%, 105.5%) (66.2%, -27.2%, 112.0%) (61.7%, -15.6%, 106.3%)

(0.30, 0.30) (61.7%, -15.4%, 106.1%) (61.7%, -15.4%, 106.1%) (61.7%, -15.4%, 106.1%)
(0.31, 0.23) (62.2%, -16.9%, 106.8%) (57.5%, -5.1%, 102.5%) (61.7%, -15.5%, 106.3%)
(0.33, 0.08) (63.4%, -20.0%, 108.2%) (49.7%, 13.5%, 100.4%) (61.8%, -16.0%, 107.3%)
(0.35, -0.07) (64.7%, -23.2%, 109.8%) (41.2%, 32.5%, 104.3%) (61.9%, -16.5%, 109.2%)
(0.37, -0.22) (66.0%, -26.5%, 111.6%) (30.4%, 55.7%, 115.4%) (61.7%, -16.7%, 112.1%)
(0.39, -0.37) (67.3%, -30.0%, 113.7%) (14.1%, 89.6%, 138.5%) (61.0%, -15.8%, 116.69%)

Panel B: portfolio proportions
(
(πMt )∗/x, (πAt )∗/x, (πBt )∗/x

)
according to correlation pairs

(ρ0, ρ1) when ρ̃Ai = 0.5 and ρ̃Bi = 0.1 in regime i ∈ {0, 1}

Note. In the table, the weighted average of portfolio proportions in regime 0 and regime 1
by the average fraction of time spent in regime 0 and regime 1 yield the values of weighted
average portfolio proportions. In Panel A, we do not report stock holdings in market
portfolio because they are invariant with correlation pairs. The portfolio proportions given
by bold type represent the portfolio proportions for the baseline parameter values. The
baseline parameter values are as follows: risk-free interest rate r0 = r1 = 0.01, expected
rate of stock returns µM0 = µM1 = 0.08, µA0 = µB1 = 0.05, and µB0 = µB1 = 0.11, stock
volatilities σM0 = σM1 = 0.235, σA0 = σA1 = 0.2, and σB0 = σB1 = 0.25, relative risk aversion
γ = 2, regime intensities λ0 = 0.2353 and λ1 = 1.7391, and correlation between industry
stocks ρi = 0.3 for regime i ∈ {0, 1}.
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