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Abstract

Research suggests that disruption of brain networks might explain cognitive deficits in multiple sclerosis (MS). The
reliability and effectiveness of graph theoretic network metrics as measures of cognitive performance were tested in
37 people with MS and 23 controls. Specifically, relationships with cognitive performance (linear regression
against the paced auditory serial addition test-3 seconds [PASAT-3], symbol digit modalities test [SDMT], and at-
tention network test) and 1-month reliability (using the intraclass correlation coefficient [ICC]) of network metrics
were measured using both resting-state functional and diffusion magnetic resonance imaging data. Cognitive im-
pairment was directly related to measures of brain network segregation and inversely related to network integration
(prediction of PASAT-3 by small worldness, modularity, characteristic path length, R2 = 0.55; prediction of SDMT
by small worldness, global efficiency, and characteristic path length, R2 = 0.60). Reliability of the measures for 1
month in a subset of nine participants was mostly rated as good (ICC >0.6) for both controls and MS patients in both
functional and diffusion data, but was highly dependent on the chosen parcellation and graph density, with the 0.2–
0.5 density range being the most reliable. This suggests that disrupted network organization predicts cognitive im-
pairment in MS and its measurement is reliable for a 1-month period. These new findings support the hypothesis of
network disruption as a major determinant of cognitive deficits in MS and the future possibility of the application of
derived metrics as surrogate outcomes in trials of therapies for cognitive impairment.
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structural connectivity

Introduction

Dysfunction of brain networks is increasingly
thought to contribute to cognitive impairment in multi-

ple sclerosis (MS; Schoonheim et al., 2015). This occurs
through a loss of capacity for information transfer between
distal gray matter regions by degradation of the interconnect-
ing white matter (WM) tracts (Catani and ffytche, 2005;
Dineen et al., 2009). Because of this, and due to the distrib-
uted nature of focal and diffuse damage in the MS brain, a
holistic model of connectivity disruption is appropriate.
The network model based on graph theory (Bullmore and
Sporns, 2009) has been widely applied in the study of MS,
with many studies now showing whole brain abnormalities

at the group level (reviewed by Filippi et al., 2013; Schoon-
heim et al., 2015).

In graph theoretic analysis, brain regions are modeled as
‘‘nodes’’ and the connections between them are modeled as
‘‘edges’’ (Bullmore and Sporns, 2009). The edges, represent-
ing anatomical connections or functional synchronizations
within the brain, have an associated number describing their
strength. With a thresholding procedure, sometimes based on
the density of the graph (i.e., the ratio of edges to the total pos-
sible edges), weak connections can be ignored. From this
structure, summary descriptors of the graph’s organization
can be extracted; commonly, these include the clustering coef-
ficient, characteristic path length, global efficiency, small
worldness, and modularity (Bassett and Bullmore, 2017).
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These metrics describe the overall topology of the network
using standard formulae, as described in Rubinov and Sporns
(2010). The graph theoretic model can, therefore, look beyond
local changes at how the topology of an entire network is im-
pacted and is not dependent on regional hypotheses about rel-
evant seed regions or networks.

Studies comparing MS patients with controls have shown
that brain network metrics are altered in people with MS
(Fleischer et al., 2017; Kocevar et al., 2016; Li et al.,
2013; Liu et al., 2017; Schoonheim et al., 2012, 2013; Shu
et al., 2016; Tewarie et al., 2014b). There is some evidence
of a consensus that information transfer across networks in
people with MS is less efficient than in controls (He et al.,
2009; Shu et al., 2011), that graph measures of network seg-
regation are increased, and that measures of network integra-
tion are decreased (Gamboa et al., 2014; Llufriu et al., 2017;
Richiardi et al., 2012; Rocca et al., 2010; Tewarie et al.,
2014a). However, the effect of brain network disorganization
on cognitive performance in MS is much less well under-
stood. A small number of studies have found relationships
between functional and structural brain network measures
and cognitive performance (Hardmeier et al., 2012; Llufriu
et al., 2017; Meijer et al., 2017; Miri Ashtiani et al., 2018;
Van Schependom et al., 2014), but these studies show hetero-
geneity in terms of the direction and nature of the relation-
ships, and the variety of imaging measures used.

By providing summary measures of whole brain network
integrity, network metrics have potential to be used as interme-
diate outcome measures for therapies aiming to improve (or at
least slow degradation of) brain network integrity in people
with MS. However, before use in this way, it is essential that
the reliability of the commonly applied summary brain net-
work metrics applied in people with MS is known. In the con-
text of neurological disease, more abnormal anatomy and a
presumed greater level of in-scanner head motion have the po-
tential to degrade the quality and reliability of the resulting
magnetic resonance imaging (MRI) measurements (Van
Dijk et al., 2012). Although reliability of network organization
measures has been reported previously in healthy volunteer
studies (Andreotti et al., 2014; Welton et al., 2015), reliability
of these measures in people with MS has not been reported.

It is, therefore, pertinent to investigate whether MRI-based
measures of network integrity in MS are relevant for cogni-
tive performance and reliable over time. We hypothesized
that graph theoretic brain network metrics based on both dif-
fusion and functional MRI (fMRI) would (1) correlate with
commonly used standardized neuropsychological tests for
cognitive performance (specifically those sensitive to infor-
mation processing speed) in people with MS (Korakas and
Tsolaki, 2016), (2) be reliable for a 1-month time period
(as defined by intraclass correlation coefficient [ICC] scores
above a conventional threshold), and (3) confirm previous
findings that graph theoretic brain network metrics based
on both diffusion and fMRI significantly differ in people
with MS relative to controls, with measures of segregation
being higher and measures of integration being lower in MS.

Materials and Methods

Recruitment

The study protocol was approved by the U.K. National
Research Ethics Service Nottingham 2 Committee (Ref 14/

EM/0064). People with MS were recruited from MS clinics at
the Nottingham University Hospitals NHS Trust, a regional
clinical neurosciences center. Details of the sample size calcu-
lation are given in the Supplementary Data. MS participants met
the following criteria: aged 18–65 years; clinically definite diag-
nosis of relapsing-remmiting MS or secondary progressive MS
(as defined by the treating neurologist using standard clinical
guidelines); no other neurological, neurosurgical, or psychiat-
ric conditions, no relapses or changes in medication within
the past 30 days; and no contraindication to MRI. For the pur-
poses of this study, depression, which is a common association
with MS, did not exclude participation. Healthy participants
were recruited through posters placed on approved notice
boards in specific hospital areas, according to the following cri-
teria: aged 18–65 years; no current or past neurological, neuro-
surgical, or psychiatric conditions; and no contraindication to
MRI. During recruitment, we attempted to match control and
MS groups for mean age, gender, and education level. We
planned for 15 of the MS group to return for a follow-up
after 4–6 weeks (assuming no clinical relapses), in which the
same protocol as the initial visit would be followed.

Neuropsychological testing protocol

All MS and control participants underwent neuropsycho-
logical assessment on the same day as the imaging. The pro-
tocol comprised the following tests: (1) the multiple sclerosis
functional composite (MSFC; Fischer et al., 1999), which
includes the Nine-Hole Peg Test (measures finger dexterity),
timed 25-foot walk (measures mobility and leg function),
and paced auditory serial addition test-3 seconds (PASAT-
3; rate and capacity for auditory information processing),
(2) attention network test (ANT; sustained attentional perfor-
mance) and its subscores: alerting, orienting, and conflicting
(Fan et al., 2002), (3) symbol digit modalities test (SDMT;
visual information processing speed; Smith, 1982), (4) mod-
ified fatigue impact scale (MFIS; Fisk et al., 1994), (5) Neu-
rological Fatigue Index (NFI-MS; Mills et al., 2010), (6)
Beck depression inventory 2nd edition (BDI-II; Beck et al.,
1996), and (7) Pittsburgh Sleep Quality Index (PSQI; Buysse
et al., 1989). Quantification of sleep quality and depressive
symptoms was included to identify any potential confound-
ing effect on cognitive performance (Hammar and Årdal,
2009; Nebes et al., 2009). The MSFC, ANT, and SDMT
were chosen as commonly used tests spanning multiple cog-
nitive domains. The BDI and PSQI were used to test known
confounds of cognitive performance with relevance to MS.
MFIS and NFI-MS were reported for further characterization
of the cohort. Demographic details were also recorded at this
time (gender,, ethnicity, age, handedness, education, sub-
type, age of onset, and disease duration).

Imaging protocol

Magnetic resonance imaging was performed at 3T on a GE
Discovery 750 (General Electric Healthcare, Milwaukee, WI)
with 32-channel head coil. The protocol included T1-weighted
axial fast-spoiled gradient echo (flip angle = 8�, matrix 256 ·
256 · 156, voxel size 1 · 1 · 1 mm, TE = 3.17 ms, TI = 900 ms,
TR = 8200 ms, FOV = 256 mm, number of excitations = 1),
T2-weighted fluid attenuated inversion recovery (FLAIR; flip
angle = 111�, TE = 120 ms, TR = 8000 ms, TI = 2250 ms, ma-
trix 512 · 512 · 46, voxel size 0.46 · 0.46 · 3 mm, FOV =
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235.5 mm), diffusion tensor imaging (DTI; 4 b = 0 volumes
and 32 diffusion-weighted volumes, matrix 128 · 128 · 66,
voxel size 2 · 2 · 2 mm), and resting-state fMRI (flip angle =
80�, TE = 36 ms, TR = 2200 ms, matrix 64 · 64 · 37, voxel
size 3.75 · 3.75 · 3.6 mm, 191 volumes, *7 min).

Image processing

The volume of T2-hyperintense lesions was measured on
the FLAIR images using the JIM software package (version
5.0; Xinapse Systems, Essex, UK) fuzzy semiautomatic le-
sion segmentation tool, by filling lesions in three dimen-
sions, given a manually created set of points placed in the
center of lesions. All T1-weighted images underwent seg-
mentation using the FreeSurfer software package (version
5.3.0; Fischl, 2012) to generate sets of 164 cortical and sub-
cortical gray matter regions of interest (ROIs) defined in the
Destrieux atlas (Destrieux et al., 2010). The data used for
the analysis of reliability were also segmented using the
Harvard-Oxford Atlas (Desikan et al., 2006) for 126 cortical
and subcortical ROIs. WM and CSF masks were extracted
using FSL FAST (version 4.0; Zhang et al., 2001).

The quality of the fMRI data was ascertained using a cus-
tom script implemented in MATLAB (version 2013a; The-
MathWorks, Natick, MA) that incorporated data quality
best practices from other studies like the Function Biomedi-
cal Informatics Research Network initiative (Friedman and
Glover, 2006), and included inspection of power spectra.
Processing of the fMRI data was performed using tools in
FSL (version 5.0.7; Jenkinson et al., 2012). The first two vol-
umes (4.4 sec) of each data set were removed to allow for the
brain tissue to reach a steady state of radiofrequency excita-
tion. Head motion was corrected for by affine registration to
volume 96 (the center of the resting state) using MCFLIRT.
Data sets were checked for excessive motion (defined as a
cumulative rotation of >3� or translation >4 mm). Brain
extraction tool was applied to remove nonbrain structures.
Spatial smoothing was not applied, so that local correlations
between adjacent ROIs were not introduced. The skull-
stripped T1-weighted images were registered to the skull-
stripped fMRI data sets using a rigid-body transformation
in FSL FLIRT and the resulting transformation was applied
to the FreeSurfer ROI volumes to map them to fMRI space.

The mean blood oxygen level dependent signal within each
ROI over the timecourse was extracted. Using MATLAB, the
linear trend was removed from the extracted time series to ac-
count for scanner drift. The following variables were then
regressed from the time series: three translation and three ro-
tation parameters, the mean signal from the ventricles, and the
mean signal from the WM. The WM and ventricle ROIs were
from the FAST segmentation already described but eroded to
ensure that no partial volumes were included and to avoid
global demeaning and introduction of spurious anticorrela-
tions. These regressors were used because they represent a
good balance between denoising and signal loss for data sets
of a similar number of time points as ours (Bright and Murphy,
2015). To create association matrices, functional connectivity
between every pair of ROIs was quantified by the Pearson cor-
relation coefficient. Finally, Fisher’s r-to-Z transformation
was applied to linearize the r values.

Diffusion data were processed using FMRIB’s Diffusion
Toolbox (Behrens et al., 2003). First, eddy current-induced

distortions and subject motion were corrected using Eddy
(Andersson and Sotiropoulos, 2016). All image volumes
were registered to the average b = 0 image by affine transfor-
mation. BET was applied to remove nonbrain structures. Dif-
fusion parameters were estimated and ROIs from the two
atlases were registered to the DTI space by registering the
T1 brain image to the average b = 0 image by affine transfor-
mation and applying the transformation matrix to the ROIs.
Deterministic fiber tracking was applied to every pair of
ROIs to create matrices of the number of reconstructed stream-
lines between them. This was measured twice (A-to-B and
B-to-A) because the number of streamlines between seed
and terminal ROIs could vary depending on direction, that
is, the connectivity matrix was not symmetric. The following
standard formula was then applied, which sums the streamline
counts for each direction and scales the result by their volumes
(Buchanan et al., 2014; Cheng et al., 2012; Owen et al., 2013):

aij =
sijþ sji

miþmj

,

where aij is the corrected summary streamline count, sij and
sji are streamline counts in each direction between ROIs i and
j, and mi and mj are voxel counts in each ROI.

Graph analysis

The association matrices contained all the information
necessary to describe graphs where each ROI is modeled
by a node and each connectivity value is modeled by a
weighted edge. To remove spurious or weak connections
and retain the strong connections, we applied a minimum
density threshold to each graph (density was defined as the
ratio of the number of existing edges to the number of possi-
ble edges). To avoid arbitrarily selecting a single threshold
and to improve the robustness of the results, a range of den-
sity thresholds was applied. The range of thresholds used was
0.2–0.5, in increments of 0.02, giving 15 total densities. This
range was chosen with the aim of producing results that were
reliable and were not based on graphs that were (1) frag-
mented and (2) too dense to have small world properties
(Bassett and Bullmore, 2006; Fornito et al., 2010). The inte-
gral of each metric score across this range produced a sum-
mary score, as in Hosseini et al. (2012). Once a graph had
been appropriately thresholded, it was used to calculate a
set of global metrics using the Brain Connectivity Toolbox
(Rubinov and Sporns, 2010). The chosen metrics were se-
lected based on their reliability and frequency of use in pre-
vious literature (Welton et al., 2015): clustering coefficient,
characteristic path length, global efficiency, small worldness,
and modularity (each detailed in the appendix to Rubinov
and Sporns, 2010). The data used for the analysis of reliabil-
ity underwent the same procedure using the additional range
of densities 0–1, so that the impact of graph density on reli-
ability over time could be investigated.

We verified that the thresholded graphs followed the defin-
ing properties of small world networks: a low characteristic
path length, a high clustering coefficient, and the presence of
high-degree hubs (Watts and Strogatz, 1998). Deviation from
these characteristics may indicate pathological networks
(Stam, 2014). To investigate this, 1000 random and 1 regular
lattice graph of the same average size and order as the brain
MRI graphs for MS participants were first generated at each
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density using MATLAB and the BCT methods for random-
ization. The same integration procedure as for the human
MRI data was then applied to ascertain a summary score
for the random and lattice graphs to serve as controls.

Statistical analysis

All variables were first tested for normality using
Kolmogorov–Smirnov tests and by visual inspection of his-
tograms. The level of statistical significance for all tests
was set at 5%. For the analysis of group differences in sum-
mary network metrics, the normalized metric scores were en-
tered into a two-way analysis of covariance (ANCOVA) with
group and metric type as factors and age, gender, and educa-
tion as covariates.

To test for relationships between network metrics and neu-
ropsychological measures in the MS group, we first checked
for linear relationships between the variables of interest using
scatter plots and tests for correlation. We then performed linear
regression analyses with the neuropsychological measures
(PASAT-3, SDMT, and ANT subscores) as the dependent var-
iables and the network metrics entered into the model in one
block as the independents. Supplementary Figure S1 illustrates
fulfillment of assumptions for linear regression.

We performed a second set of regression analyses that
were the same but with covariates of no interest (age, gender,
education, PSQI, and BDI) entered as a first block of inde-
pendents and the network metrics entered as a second
block. This was done separately because of the potential
for overfitting when the number of subjects per independent

variable is low; therefore, there was a likelihood of overesti-
mating the model R2 in these tests (Austin and Steyerberg,
2015).

Reliability between the first and second visits was quanti-
fied using the ICC statistic (two-way random effects, single
measures, and consistency) and compared with the ICCs
reported in our previous systematic review of reliability of
network metrics in healthy people (Welton et al., 2015).
Reliability was tested under both parcellation schemes and
at each density interval, as well as using the area-under-
the-curve between the densities 0.2–0.5 as a summary mea-
sure. The formula for the ICC used was

ICC consistencyð Þ= BMS�MSE

BMSþ k� 1ð ÞMSE
,

where k is the number of observers, BMS is the between-
subjects mean squared, and MSE is the mean squared error.
The ICCs are generally interpreted as follows: <0.40,
‘‘poor’’; 0.40–0.59, ‘‘fair’’; 0.60–0.74, ‘‘good’’; >0.74, ‘‘ex-
cellent’’ (Shrout and Fleiss, 1979).

Results

Sample characteristics

A total of 37 people with MS and 23 control subjects were
recruited. A summary of demographic and neuropsycholog-
ical data is given in Table 1. Of the MS group, 12 (37%) were
taking disease modifying drugs, 17 (46%) were taking anti-
depressants, and 18 (49%) were taking other medications

Table 1. Demographic and Neuropsychological Data for the Sample

Multiple sclerosis Control
One-way ANOVA

for the group difference: p

Gender (%, female) 81 73 n/s
Handedness (%, Right) 84 87 n/s
Ethnicity WE = 37 WE = 21, A = 1, BI = 1
TWMLL (mL) 7.77 (8.87) 0.42 (0.87) <0.001
Age at date of first scan (years) 48 (11) 42 (12) n/s
Years of full-time education after age 16 (years)a 2 (2) 3 (2) n/s
MS subtype RR = 22, SP = 15
Age of onset (years) 31 (6)
Disease duration (years) 17 (10)
Use of disease modifying drugs, n (%) 12 (37)
MSFC �0.38 (0.69) 0.64 (0.43) <0.001

PASAT 36.31 (2.44) 44.87 (2.43) 0.020
9HPT 25.03 (7.09) 22.23 (6.71) <0.001
T25FW 7.5 (3.3) 4.6 (0.8) <0.001

PSQI 8.35 (3.42) 4.50 (1.41) 0.003
MFIS 54.25 (19.98) 11.00 (10.08) <0.001
BDI 18.21 (12.37) 2.00 (3.22) <0.001
SDMT 41.91 (13.09) 57.00 (10.74) <0.001
NFI-MS 48.24 (10.57) 13.95 (12.16) <0.001
ANT

Alerting �0.97 (14.53) 17.33 (18.57) <0.001
Orienting 20.58 (24.19) 36.29 (23.95) 0.023
Conflicting 99.12 (49.05) 170.90 (72.45) <0.001

All measures of center and spread are given as mean (SD) except where indicated.
aCompulsory schooling in the United Kingdom lasts until age 16 years.
9HPT, Nine-Hole Peg Test; A, Arabic; ANOVA, analysis of covariance; ANT, attention network test; BDI, Beck depression inventory II;

BI, British Indian; MFIS, Modified Fatigue Impact Scale; MSFC, multiple sclerosis functional composite; n/s, nonsignificant; NFI-MS, Neu-
rological Fatigue Index; PASAT, paced auditory serial addition test; PSQI, Pittsburgh Sleep Quality Index; RR, relapsing-remitting; SD,
standard deviation; SDMT, symbol digit modalities test; SP, secondary progressive; T25FW, timed 25-foot walk; TWMLL, total white mat-
ter lesion load; WE, white European.
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for symptom relief. One-way analysis of variance (Table 1)
confirmed significant differences between MS and control
groups for all tests of cognition and fatigue and suggested
that the groups were adequately matched for age, gender,
and education (i.e., without significant group differences).
A comparison of our neuropsychological test scores with
normative MS samples showed that our sample performed
significantly worse in all tests of cognition and fatigue but
was not significantly different in terms of physical disability,
sleep quality, or depression (Supplementary Table S1).

Data quality

The mean relative displacement between successive fMRI
volumes was 0.203 mm (standard deviation [SD] 0.344) for
the MS group and 0.125 mm (SD 0.051) for the control
group (t = 1.08, p = 0.286). Based on the outputs of the
fMRI quality script, two data sets were excluded from the
MS group and all further analyses due to excessive motion.
After removal of these data sets, the mean relative displace-
ment of the MS group was 0.159 mm. No data sets were ex-
cluded based on inspection of power spectra. Supplementary
Figure S2 demonstrates the small world structure of the brain
networks by comparison with random and lattice networks.

Group differences in network organization

The distribution of network metrics did not significantly
differ from a normal distribution as assessed by Shapiro–
Wilk test. ANCOVA revealed that, for resting functional
connectivity, when correcting for age, gender, and education,
there were significant differences in network metrics be-
tween groups (Table 2; Fig. 1) in the clustering coefficient,
characteristic path length, global efficiency, and modularity
metrics, but not in small worldness. For streamline density
networks, only the clustering coefficient was significantly
different (Table 2).

Relationship with cognitive impairment

For people with MS, the linear regression models using
network metrics derived from functional connectivity net-
works were significantly predictive for the PASAT-3 and
SDMT but not for the ANT subscores (Table 3). The vari-
ables that significantly contributed to predicting 55.6% of
the variance for the PASAT-3 were small worldness, modu-
larity, characteristic path length, and clustering coefficient
(each having p < 0.05 in a one-sample t-test on the unstan-
dardized coefficients). The direction of the relationships indi-
cated that individuals with greater levels of impairment on
the PASAT-3 had increased clustering and modularity, lon-
ger average path lengths, and less small worldness. The var-
iables that significantly contributed to predicting 60% of the
variance for the SDMT were small worldness, global effi-
ciency, and characteristic path length. The direction of the
relationships indicated that individuals with greater levels
of impairment on the SDMT had less small worldness,
lower global efficiency, and longer average path lengths.
For the tests using streamline density data, no model was sig-
nificant (Table 3). In the tests including the covariates of no
interest (age, gender, education, PSQI, and BDI), the R2 es-
timates were higher, suggesting that the demographic vari-
ables were strong predictors, but were likely overestimated
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(Supplementary Table S2). In controls, the linear regressions
showed no significant predictions for any of the independents
(Supplementary Table S3).

Reliability

Follow-ups were carried out in 10 individuals with MS (se-
lected as the first 10 recruited, with another 5 subjects who did
not attend follow-up), but the data from one were excluded due
to motion, thus 18 MRI data sets from 9 individuals were in-
cluded in the reliability analysis. This subgroup had a mean
age of 41 years (SD 9), the mean follow-up time was
46.6 days (SD 14.8), and included seven females (78%). No
participant had clinical evidence of relapse during this interval.

For functional connectivity data and the Harvard-Oxford
atlas, reliability of network metrics over time in people with
MS over the range of densities 0.2–0.5 was graded as
‘‘good’’ for clustering coefficient and global efficiency, and
‘‘fair’’ for characteristic path length (Shrout and Fleiss,
1979; Table 4). For the Destrieaux parcellation, clustering co-
efficient and characteristic path length were graded as ‘‘fair,’’
whereas global efficiency was graded as ‘‘good.’’ For tests
with streamline density data, all ICCs were graded as
‘‘good,’’ except the characteristic path length reliability ICC
using the FreeSurfer atlas, which was graded as ‘‘excellent.’’

Compared with studies in healthy people, as we previously
reviewed (Welton et al., 2015), reliability of network metrics

in people with MS was only slightly lower in both atlases
(Fig. 2). Plots of reliability for the three metrics over the
range of densities, shown in Supplementary Figure S3, support
the chosen density range of 0.2–0.5 for our other analyses, in
that reliability is generally high for all metrics across this range.

Discussion

Using graph theory and MRI data, we were able to assess
summary measures of brain network organization for rela-
tionships with cognitive impairment and reliability in people
with MS. Group differences in functional network metrics
and relationships with cognitive measures were in accor-
dance with findings of previous studies: the brains of cogni-
tively impaired people with MS had longer average path
lengths, lower network efficiencies, and lower small world-
ness. The impact of disease status on reliability was low.
These results support the future use of network measures
in clinical studies and may provide insights into the underly-
ing mechanisms of cognitive impairment in MS.

Disrupted network topology in multiple sclerosis

Graph theoretic approaches using both functional and
structural networks are now widely applied in research on
neurological disease; for example, in epilepsy (Bernhardt
et al., 2011), Alzheimer’s (Tijms et al., 2013), albinism

FIG. 1. Boxplots of the normalized metric scores for each group. (Left) functional connectivity and (right) streamline den-
sity. Asterisks indicate significant differences.

Table 3. Outcomes from the Multiple Linear Regressions for Cognitive Measures

in People with Multiple Sclerosis, Not Including Covariates

Cognitive test, dependent

Functional connectivity network metrics model Streamline density network metrics model

F p R2 F p R2

PASAT 8.752 <0.001 0.556 1.980 0.115 0.276
SDMT 16.384 <0.001 0.600 0.244 0.939 0.134
ANT alerting 1.675 0.175 0.237 2.005 0.110 0.136
ANT orienting 0.583 0.713 0.097 1.796 0.147 0.111
ANT conflicting 0.760 0.586 0.123 0.677 0.644 0.053

All independents were entered into the model in one step.
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(Welton et al., 2017), and traumatic brain injury (Sharp et al.,
2014). In each of these examples, the observed network reor-
ganization represents a general deviation from the optimal
small world structure. However, so far, there is little consen-
sus on the exact nature of the deviation (Stam, 2014). In MS,
structural network disruption in comparison with healthy
controls has been characterized by reduced small worldness
(He et al., 2009); increased modularity localized to the cere-
bellum, cingulum, and temporoparietal regions (Fleischer
et al., 2016); reduced efficiency in frontal, parahippocampal,
motor, and occipital regions (Li et al., 2013); and decreased
efficiency in regions subserving motor, visual, and language
functions (Shu et al., 2011). The observed differences in
our findings between functional connectivity-based and
structural-based networks, and their relationship with cogni-
tive performance, are crucial for our understanding of brain

networks, how function emerges from structure, and how it
is impacted by disease (Park and Friston, 2013). In our
data, we found inverse group differences in characteristic
path length and modularity between functional and structural
networks, whereas in other metrics, differences were absent
(small worldness), or followed the same direction (global ef-
ficiency and clustering). In terms of reliability, there was a
slight bias toward structural networks being more reliable
(Fig. 2). However, it is currently difficult to interpret these
differences at a high level.

Our findings of longer average path lengths, increased
modularity, increased clustering, and reduced global effi-
ciency in functional networks in MS than controls are,
therefore, compatible with previous studies and with our hy-
pothesis. These changes imply a network that is more segre-
gated, with more distinct subnetworks that are, compared

Table 4. Intraclass Correlation Scores for Consistency of Network Metrics

Under Two Different Parcellation Schemes

Harvard-Oxford FreeSurfer Previous studies in healthy people (mean – SD)

Functional connectivity
Clustering coefficient 0.635* 0.499 0.644 – 0.231
Characteristic path length 0.489 0.573 0.710 – 0.164
Global efficiency 0.659* 0.676* 0.750 – 0.112

Streamline density
Clustering coefficient 0.722* 0.733* 0.644 – 0.231
Characteristic path length 0.714* 0.800** 0.710 – 0.164
Global efficiency 0.707* 0.689* 0.750 – 0.112

Previous studies data from Welton et al. (2015).
*ICCs in the ‘‘good’’ range.
**ICCs in the ‘‘excellent’’ range. All others were in the ‘‘fair’’ range.
ICC, intraclass correlation.

FIG. 2. Bar chart comparing reliability between network metrics in the cohort of MS participants and in healthy volunteers
from previously reported studies. A higher ICC reflects greater reliability. The bars for the Harvard-Oxford Atlas and Des-
trieaux atlas are from people with MS. (Left) functional connectivity and (right) streamline density. Previous studies data
from Welton et al. (2015). ICC, intraclass correlation; MS, multiple sclerosis.
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with controls, relatively weakly connected between them-
selves but more strongly connected within themselves. We
were able to verify the small world structure of our data com-
pared with randomized and regular graphs. Our results on
group differences, therefore, support the theory of the effi-
cient neuronal architecture in MS being disrupted.

Cognitive performance, as measured by both the PASAT-
3 and SDMT, was significantly predicted by network organi-
zation as hypothesized. For the PASAT-3, the best predictor
was the clustering coefficient. Three previous studies of cog-
nitive impairment in MS using an fMRI network model also
found that PASAT-3 performance in MS was related to in-
creased clustering (Schoonheim et al., 2013; Shu et al.,
2016; Van Schependom et al., 2014). Others found relation-
ships with increased nodal strength (Llufriu et al., 2017), in-
creased local and global efficiency (Shu et al., 2016), lower
mean degree (Rocca et al., 2016), lower hierarchy scores
(Rocca et al., 2016), longer average path lengths (Rocca
et al., 2016), and increased modularity (Gamboa et al.,
2014). A more highly clustered brain network indicates
that nodes’ neighbors become more closely connected within
themselves. This may be the brain’s response to the attenua-
tion of signals in WM tracts by focal lesions: as long-range
connections or connections between subnetworks become
disrupted, networks may instead become more tightly con-
nected to their strongest remaining neighbors.

In contrast, the SDMT focuses on fast processing of visual
information. The best predictors for the SDMT were small
worldness, efficiency, and path length. These differences
may, therefore, be related to the type of task that was per-
formed and may suggest that the relationships between the
network metrics (representing increased network segrega-
tion) and cognitive performance are specific to tasks that in-
volve fast complex processing of information and production
of speech. This is further reinforced by the tests with ANT
scores, which are mostly based on reaction time, and
which were not significantly predicted by network organiza-
tion measures.

Reliability of the network measures over time was good.
The reliability scores were comparable with those from pre-
vious studies in healthy individuals, suggesting a negligible
effect of disease status; although our sample size was small
for this test. Although an increased propensity for motion
in diseased cohorts is expected, for example, due to muscle
spasms in MS, this was not a large factor for reliability. It
is also known that even motion within the normal range for
healthy young adults significantly impacts individual con-
nectivity measurements (Van Dijk et al., 2012). This presum-
ably impacts network measurements to some degree;
however, no studies have specifically investigated the impact
of motion on network measurements. Overall, this evidence
supports the applicability of network measures in future clin-
ical studies. The reliability of these measures between differ-
ent sites has not yet been investigated, but will be crucial for
applications in multicenter studies. The large degree of var-
iability in reliability scores over the density range 0–1 dem-
onstrates the importance of testing a range of thresholds,
rather than arbitrarily selecting one fixed threshold. Accord-
ingly, our findings are specific to the chosen density range
(0.2–0.5), which appeared to be most reliable.

There were methodological issues that should be acknowl-
edged. First, there are some questions over the interpretation

of network topology measures. It is not known what drives
differences in specific metrics, and further studies should
be conducted toward that end. Until we have a stronger
basic understanding, researchers should be cautious when
drawing conclusions based on network topology. Our re-
sults may be less generalizable to the noncognitively im-
paired MS population due to the bias in our sample
toward cognitively impaired individuals and use of disease-
modifying or antidepressant drugs. We also acknowledge
the small number of enrolled subjects, especially for the
follow-up analysis, which should qualify interpretation of
these findings.

Conclusion

Our findings show that functional deficits in MS are asso-
ciated with disruption to macroscopic brain networks. We
present evidence that summary measures of network organi-
zation may be valid and reliable markers of cognitive impair-
ment in MS.
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