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Abstract 

Riparian tree planting is increasingly being used as a strategy to shade river corridors and offset the impact 

of climate change on river temperature. Because the circumstances under which tree planting generates the 

greatest impact are still largely unknown, researchers are increasingly using process-based models to 

simulate the impacts of tree planting (or felling) on river temperature. However, the high-resolution data on 

existing riparian tree cover needed to parameterise these models can be difficult to obtain, especially in data-

sparse areas. In this paper, we compare the performance of a river temperature model parameterised with 

a range of different tree cover datasets, to assess whether tree cover data extracted from readily available 

GIS databases or coarser (ie. 2 – 5 m) digital elevation products are able to generate river temperature 

simulations approaching the accuracy of higher resolution SfM or LiDAR datasets. Our results show that 

model performance for simulations incorporating these data is generally degraded in relation to LiDAR/SfM 

inputs, and that tree cover data from ‘alternative’ sources can lead to unexpected temperature model 

outcomes. We subsequently use our model to simulate the addition/removal of riparian tree cover from 

alongside the river channel. Simulations indicate that the vast majority of the ‘shading effect’ is generated 

by tree cover within the 5 m zone immediately adjacent to the river channel, a key finding with regards to 

developing efficient riparian tree planting strategies. These results further emphasise the importance of 

incorporating the highest-possible resolution tree cover data when running tree planting/clearcutting 

scenario simulations. 

 

  



1. Introduction 

There is increasing concern that climate change could alter the suitability of rivers for socio-economically 

important fish species, in particular salmonids which are adapted to cold water environments (Ficke et al. 

2007; Isaak et al. 2012; Jonsson and Jonsson 2009). It is increasingly accepted that riparian woodland reduces 

the sensitivity of rivers to climate forcing and is a potentially valuable climate mitigation measure (Battin et 

al. 2007; Bowler et al. 2012; Hannah et al. 2008; Seixas et al. 2018). However, the circumstances and 

geographical context under which riparian woodland has greatest impact on stream temperature are less 

well understood. One of the ways in which researchers are currently addressing this lack of knowledge is 

through the use of process-based models which simulate river temperature as a function of input 

meteorological (eg. air temperature, humidity, solar radiation) and hydromorphic (eg. discharge, basin 

topography, channel morphology) data. While the majority of these input variables are relatively 

straightforward to measure in the field or can be derived from meteorological databases or GIS repositories, 

some of the information required to run river temperature models can be more difficult to obtain. This is 

particularly the case for data characterising riparian tree cover. To provide accurate stream temperature 

predictions in tree-covered reaches, many stream temperature models contain routines capable of 

simulating this effect, given appropriate data on riparian tree cover and height (see Dugdale et al. 2017). 

However, the availability, quality and source of these input data can vary substantially (eg. Garner et al. 2014; 

Loicq et al. 2018; Trimmel et al. 2018). Consequently, tree cover data are often a considerable source of 

uncertainty when modelling river temperature in forested reaches (Dugdale et al. 2019; Loicq et al. 2018). 

Given that scientists and practitioners are currently involved in both the planting (eg. Davies‐Colley et al. 

2009; Guillozet 2015; Holzapfel et al. 2013) and removal (eg. CASS 2010; Kiffney et al. 2003) of riparian 

vegetation with a view to managing stream temperature and/or water quality, a better understanding of this 

uncertainty is important for accurately simulating the thermal response of rivers to management. 

The majority of studies incorporating riparian shading in river temperature models have used GIS polygons 

to denote the 2D extent of tree cover (eg. Chen et al. 1998; Cox and Bolte 2007; Fabris et al. 2018; Sridhar et 

al. 2004), with heights subsequently informed either by attributing sparse field measurements (eg. 

Rutherford et al. 1997; Theurer et al. 1984) to the polygons or through look-up tables (eg. Bond et al. 2015; 

Trimmel et al. 2018) which relate tree height to species and/or stand age. Although such methods have been 

demonstrated to produce reasonable model performance metrics, the use of coarse GIS data can sometimes 

result in an imprecise representation of true riparian shading (Loicq et al. 2018), contributing to model 

uncertainty. To address these shortcomings, recent research has demonstrated the efficacy of remotely-

sensed digital elevation products from LiDAR (eg. Justice et al. 2017; Loicq et al. 2018; Wawrzyniak et al. 

2017) or structure from motion (SfM) photogrammetry (Dugdale et al. 2019) for parameterising the shading 

routines of process-based temperature models. These methods provide accurate and finely resolved (0.1 – 1 

m) data on the extent and height of riparian tree cover and largely address the shortcomings of polygon-

based approaches. However, such data can be either a) costly to obtain (LiDAR) or (b) require specialist 

software and hardware to assemble (SfM). There also exists a third potential source of riparian tree cover 

data which occupies an intermediate ground between the GIS polygons and the finer LiDAR/SfM products, 

namely medium resolution (1 - 10 m) digital elevation products derived from conventional photogrammetric 

(Landmap and GetMapping 2014) or interferometric synthetic aperture radar (IFSAR) approaches (Intermap 

Technologies 2007). Given that such data are often freely available from national mapping agencies for entire 

countries and are generally of a reasonable horizontal and vertical accuracy, it is possible that such data may 

also be reasonably well-suited for parametrising the riparian shading routines of river temperature models. 

However, the ability of these data to generate reasonable predictions of tree height is largely unknown, and 

the authors are not aware of any current temperature modelling studies incorporating such data. 

Furthermore, despite the large potential differences between these different sources of riparian tree extent 



and height data, no-one has yet conducted a systematic inter-comparison of their utility for parameterising 

stream temperature models. Consequently there is a concerning lack of information on the relative accuracy 

of temperature simulations resulting from these different approaches. 

This paper presents the results of a study to assess the relative performance of river temperature models 

parameterised with riparian tree cover data from a variety of different sources. We implemented the Heat 

Source process-based temperature model (Boyd and Kasper 2003) on a salmon stream in Scotland and 

systematically parameterised the model with tree cover from different sources, each time comparing 

simulated and observed water temperature from a series of loggers installed within the stream. Our specific 

objectives were: 

1. To parameterise a river temperature model using tree height data derived from a range of different 

geospatial datasets. 

2. To compare how model performance varies between these different input tree height data and to 

what extent estimates of the ‘riparian woodland effect’ vary as a function of input tree height data 

3. To understand whether the choice of input tree height data influences the simulated addition or 

removal of tree cover and its impact on stream temperature (with a view to determining whether 

the choice of tree cover data affects management advice) 

The findings of this study provide useful guidance on the advantages and limitations of different riparian 

woodland datasets for characterising shading in river temperature models. 

 

2. Methods 

2.1 Study site 

We conducted our study in the lower 2.2 km of the Girnock Burn, a tributary of the Aberdeenshire River Dee, 

Scotland (57.0515° N, 3.1048° W; figure 1). Topography in the catchment ranges from 230 m to 862 m ASL 

and geology consists of impermeable bedrock overlain with glacio-fluvial sediments (Malcolm et al. 2005). 

Prevailing meteorology is typical of the Cairngorm mountains, with mean daily air temperatures ranging 

between 0.5-4.0 °C in winter and 11.0 - 13.5 °C in summer and a mean annual precipitation of ~1100 mm 

(Hannah et al. 2004; Langan et al. 2001; Tetzlaff et al. 2005b). Mean discharge within the Girnock Burn is 0.52 

m3s-1 (Scottish Environmental Protection Agency gauging station gauge ID 12004). The study reach contains 

a transition from open heather moorland to semi-natural deciduous woodland with small areas of 

commercial conifer plantation, typically set back from the riparian zone. Tree cover in the lower reach creates 

extensive shading which is known to have a significant moderating effects on stream temperature during the 

summer months (Garner et al. 2014; Hannah et al. 2008; Malcolm et al. 2004). Further details of the study 

area can be found in Langan et al. (2001), Malcolm et al. (2005), Moir et al. (2002) and Tetzlaff et al. (2005b). 

Details of the riparian woodland characteristics can be found in Imholt et al. (2013). 



 

Figure 1. Girnock Burn study reach showing location of temperature loggers, automated weather stations and Marine Scotland 
gauging station. 

 

2.2 Temperature model 

Heat Source version 9.0.0b19 was used to simulate stream temperatures within the 2.2 km stretch of Girnock 

Burn. Heat Source is a process-based model that simulates river temperature as a function of input 

meteorological and hydromorphic data. It computes the gain (loss) of energy at each model node using the 

equation: 

(1) 𝐻𝑡𝑜𝑡𝑎𝑙 = 𝐻𝑠𝑤 + 𝐻𝑙𝑤 +𝐻𝑒 +𝐻𝑠 +𝐻𝑏 + 𝐻𝑎 

where Htotal is total energy gain (loss) by the river channel, Hsw is net shortwave radiation flux, Hlw is net 

longwave radiation flux, He is latent heat flux, Hs is sensible heat flux, Hb is heat conducted to or from the 

river bed and Ha is advective flux from tributaries or groundwater/hyporheic exchange (all in W m-2). The 

contribution of these energy gains (losses) to stream temperature is calculated as a function of Htotal and the 

volume, density, velocity and specific heat capacity of water passing each model node at each timestep. In 

our implementation of Heat Source, Hsw, Hb and the tributary inflow components of Ha were directly input 

into the model from field observations, while the remaining energy fluxes were simulated from input 



meteorological/hydromorphic data using routines contained within the model. For further details about Heat 

Source and the equations used to estimate the various heat fluxes, we refer the reader to Boyd and Kasper 

(2003) and Trimmel et al. (2018). More information on the specific implementation of Heat Source on the 

Girnock Burn can be found in Dugdale et al. (2019). 

 

2.3 Input data 

2.3.1 Field data 

Heat Source was driven using hydrometeorological and geomorphological data relating to the 2.2 km study 

stretch of Girnock Burn. These data are outlined in detail in Garner et al. (2014) and Dugdale et al. (2019) and 

are available for download from Garner et al. (2018). In brief, meteorological data needed to run the model 

(ie. air temperature (°C), relative humidity (%), wind speed (ms-1), incoming shortwave radiation and bed heat 

flux (both Wm-2)) were recorded at four automated weather stations (AWSs) located alongside the Burn 

(figure 1). Geomorphic data (ie. channel width, azimuth and gradient) were measured from an orthophoto 

and digital elevation model of the site, while discharge was derived from a Marine Scotland Science stage 

logger installed at ~0.65 km upstream from the Burn’s mouth (velocity-area rating curve R2 = 0.97). 

Discharges were subsequently scaled by basin areas to drive both an upstream discharge boundary condition 

and an inflow for the Bruntland Burn, a small tributary that joins the Girnock Burn at 1.3 km upstream from 

its mouth. Velocities needed to calibrate Heat Source’s hydraulic model predictions were derived from a 

discharge-mean-velocity function (Tetzlaff et al. 2005a) applied to the discharge data. The remaining model 

parameters needed to run Heat Source (eg. streambed thermal conductivity, % hyporheic exchange, 

Manning’s coefficient) were tuned during model calibration (see section 2.4). 

 

Figure 2. Schematic of tree cover input to Heat Source showing tree height sampling points superimposed on LiDAR tree height map 

 



2.3.2 Tree cover data 

Heat Source simulates the effect of riparian canopy shading on stream temperature by computing the 

attenuation of incoming solar radiation by vegetation (Boyd and Kasper 2003). This is accomplished by 

supplying Heat Source with observations of vegetation height along a series of transects radiating out from 

each model node at 45° intervals (figure 2); we used the TTools GIS package that accompanies Heat Source 

to sample vegetation using an along-transect spacing of 5 m (ie. 1 sample of vegetation height/cover every 5 

m from 5 to 45 m from the stream node). Heat Source then uses these data to calculate (for each timestep) 

the position of the sun along its arc relative to tree cover, and hence whether solar radiation will reach the 

stream or be blocked (direct Hsw) or attenuated (diffuse Hsw) by the canopy. Heat Source also computes the 

impact of tree cover on wind speed using the Prandtl–von Karman universal-velocity distribution law 

(Dingman 2002) which approximates the frictional reduction in wind speed as a function of land cover height. 

Given that wind speed is a key determinant of turbulent heat fluxes, Heat Source thus simulates the effect 

of tree cover on latent (Qe) and sensible (Qs) heat gains (losses). In order to compare the performance of 

stream temperature simulations produced using different tree cover data, we successively parameterised 

Heat Source with data from six different geospatial datasets (as well as a ‘no trees’ scenario to illustrate the 

impact of excluding tree height data from the model): 

Structure from motion photogrammetry (SfM; 10 cm resolution; figure 3a): We used a small unoccupied aerial 

system (sUAS, also known as a drone) to acquire ~3cm aerial photography of the ~4 km by ~250 m area 

bounding the study reach. Agisoft PhotoScan Professional (Agisoft 2017) was subsequently used to generate 

a 10 cm digital surface model (DSM) of the reach from the imagery. DSM accuracy was assessed as 0.11 m, 

0.17 m and 0.10 m (x-, y- and z-coordinates respectively) by calculating the RMSE against 61 ground control 

points surveyed using a Leica Viva GS15 dGPS. We also used a Leica Viva TS12 total station (reflectorless 

mode) positioned overlooking the reach to measure the elevation of 64 tree crowns; comparison of these 

data against canopy elevations reconstructed from the SfM DSM showed a very good degree of 

correspondence (R2 = 0.91). A SfM tree height map was subsequently calculated by subtracting a ‘bare earth’ 

digital terrain model (DTM) from the DSM. The DTM was generated by using PhotoScan’s point cloud 

classifier to identify ground points in the SfM dataset. For further details on the development of the SfM tree 

height map (including details on accuracy assessment of the ‘bare earth’ digital terrain model), we refer the 

reader to Dugdale et al. (2019). 

LiDAR (1 m resolution; figure 3b): We obtained LiDAR data for the lower 1.7 km of Glen Girnock from the 

LiDAR for Scotland Phase I dataset (Scottish Government 2012). The LiDAR data was separated into tree 

canopy points (LiDAR first returns) and ground points (last returns), and a DSM and DTM created from these 

datasets. Finally, a LiDAR tree height map was generated by subtracting the LiDAR DTM from the DSM. 

Because LiDAR data was only available for the lower ~1.7 km of Girnock Burn (rather than the full 2.2 km 

reach), we used elevations derived from the SfM dataset for the remaining ~0.5 km upstream section. Land 

use in this upper ~0.5 km section is predominantly open heather moorland, and the absence of LiDAR-derived 

tree height measurements for this location is therefore unlikely to have impacted results. 

GetMapping photogrammetry (2m DSM, 5m DTM; figure 3c): Digital surface and terrain models derived using 

a ‘conventional’ stereo photogrammetry approach (based on aerial photography) were obtained from the 

GetMapping 2 m DSM and 5 m DTM products downloaded from the Natural Environment Research Council 

(NERC) Earth Observation Data Centre (Landmap and GetMapping 2014). Although information regarding 

the ‘bare earth’ DTM generation process is limited, details available at 

http://www.getmapping.com/support/height-lidar-data/how-digital-terrain-mode-dtm-height-data-

produced (accessed 2018-06-19) indicate that the process involves the semi-automated classification of 

http://www.getmapping.com/support/height-lidar-data/how-digital-terrain-mode-dtm-height-data-produced
http://www.getmapping.com/support/height-lidar-data/how-digital-terrain-mode-dtm-height-data-produced


photogrammetric points into ground and non-ground categories prior to raster DTM generation (stated 

vertical accuracy <60 cm RMSE). A tree height map (hereafter referred to as the GetMapping tree height 

map) was subsequently created by subtracting the the 5 m DTM (resampled to 2 m resolution) from the 2 m 

DSM. 

NEXTMap Interferometric Synthetic Aperture Radar (IfSAR; 5m; figure 3d): IfSAR-derived DSM and DTM 

rasters of the study area commissioned as part of the NEXTMap Britain program (Intermap Technologies 

2007) were used to create a 5 m tree height map (hereafter referred to as the NEXTMap tree height map) by 

subtracting the DTM from the DSM (after Scholefield et al. 2016). The NEXTMap DTM is derived using a 

proprietary algorithm (TerrainFit) which fits a ‘bare earth’ surface to a multi-resolution image ‘pyramid’ of 

the original IfSAR DSM (Coleman and Mercer 2002; Wang et al. 2001). Although this method produces a 

stated vertical accuracy (RMSE) of 60 cm in relatively flat/urban areas, reported accuracy in forested areas is 

lower (1.33 m – 3.16 m; Wang et al. 2001), meaning that this error will likely propagate into the NEXTMap 

tree height map. 

National Forest Inventory (NFI; GIS polygon; figure 3e): GIS polygons created as part of the UK Forestry 

Commission’s National Forest Inventory programme (Forestry Commission 2017) delineate the spatial extent 

of riparian tree cover in the lower Girnock Burn. The NFI polygons are derived from manual interpretation of 

colour orthophotos taken within the preceding 3-year period and as such should be reasonably 

representative of current tree cover in Girnock Burn; the dataset covers all areas of contiguous woodland 

>0.5 ha. We selected all polygons in the following categories: broadleaved, conifer, mixed (predominantly 

broadleaved), mixed (predominantly conifer), and subsequently converted them to a 1 m raster. Raster pixels 

corresponding to the locations of the woodland polygons were assigned a uniform height of 10m as this value 

closely approximated the mean non-zero tree height computed from the LiDAR and SfM tree height maps 

(9.95 m and 9.79 m respectively). This dataset is hereafter referred to as the NFI tree height map. 

OS MasterMap (GIS polygon; figure 3f): GIS polygons from the UK Ordnance Survey’s (OS) MasterMap 

Topography Layer product (Ordnance Survey 2018) were used to define the spatial extent of riparian tree 

cover. MasterMap tree cover is derived through manual orthophoto interpretation in a similar manner to the 

NFI data above; tree cover in our study section of Glen Girnock was last updated in 2014 and was therefore 

deemed representative of current tree cover in the Burn. We selected all polygons containing the terms 

coniferous trees or non-coniferous trees and converted them to a 1 m raster. Raster pixels corresponding to 

tree cover were again assigned a uniform height of 10m (hereafter referred to as the MasterMap tree height 

map). 

Prior to inputting these data to Heat Source, we also compared tree heights from the various datasets with 

a view to understand the cause of potential variability between temperature model simulations. This was 

achieved through sampling the various tree height maps using a grid of points spaced at 10 m intervals within 

a 100 m buffer of the channel, and then comparing them to the SfM dataset (determined to be the closest 

representation of true riparian tree height in Girnock Burn; see Dugdale et al. 2019). Only points that 

occurred under tree canopy (defined as > 0.5 m in the SfM dataset) were sampled, to avoid the selection of 

bare ground elevations which would otherwise bias the comparison. We subsequently calculated the R2 and 

RMSE between the SfM dataset and the other tree height maps. 

 



 

Figure 3(a) SfM (b) LiDAR, (c) GetMapping, (d) NEXTMap, (e) NFI and (f) MasterMap tree height maps. Girnock Burn centreline 
denoted by blue line. Note north offset of -30 °. 

 

2.4 Model implementation and calibration 

We implemented Heat Source on a 7-day period in July 2013 (1-7 July) characterised by relatively high air 

temperatures (15.6±5.2 °C) and low flows (0.12 m3s-1). The model was used to simulate hourly water 

temperature at a streamwise resolution of 50 m. Wind speed, air temperature and bed heat flux were 

assigned to each model node from the closest AWS while solar radiation was derived from only the upstream-

most AWS (values unaffected by tree cover). Heat Source’s shading routines subsequently enabled the 

generation of shade-corrected solar radiation fluxes and turbulent fluxes for each model node as a function 

of the various input tree cover data sources.   

For the purposes of model calibration, Heat Source was parameterised using the SfM tree height map as this 

shading data was deemed to be the most accurate available. Calibration was achieved during a 2-stage 

process. First, model calibration parameters (eg. bed sediment conductivity, % hyporheic exchange, wind 

function; see Boyd & Kasper (2003) for full list) were manually adjusted to minimise root mean square error 

between simulated stream temperatures and temperatures observed at 14 water temperature observation 

sites located within the burn (12 TinyTag Aquatic 2 data loggers cross-calibrated to give accuracy of ±0.2 °C 

and 2x Campbell Scientific 107 thermistor probes with accuracy of ±0.2 °C); this manual phase allowed us to 

explore the parameter combinations that allowed the model parameters to stay within ‘real world’ values. 

Model optimisation was achieved by iteratively searching 5000 randomly-generated (via Latin hypercube 

sampling) parameter combinations falling within these ‘real world’ values to find the combination that 

produced the optimum stream temperature simulation (ie. the smallest RMSE value). Results of the 

calibration/optimisation process demonstrated that the Heat Source model (parameterised with the SfM 

tree height map) is able to reproduce stream temperature in the lower 2.2 km of the Girnock Burn with a 



very high degree of accuracy (RMSE ≈ 0.18 – 0.69 °C; see Dugdale et al. (2019) for further details on model 

optimisation/calibration). 

 

2.5 Evaluation of model performance and sensitivity testing 

2.5.1 Comparing temperature model performance under varying tree cover data 

Following calibration, the model was sequentially re-parameterised with tree cover data from each of the 

sources detailed in 2.3.2. All other parameters optimised during model calibration were held constant to 

ensure that any variations in simulated temperature were solely the result of differences in the input tree 

cover data and not due to uncertainty in other model parameters. For each different tree height map, Heat 

Source was re-run for the simulation period detailed in 2.4. Model RMSE was again calculated at each of the 

14 temperature observation sites; these data were subsequently tabulated to aid understanding of how 

differences in quality and resolution of input tree cover data impact the resulting stream temperature 

simulations. 

 

2.5.2 Simulating the addition and removal of riparian vegetation under varying tree cover data 

In addition to characterising differences in model performance associated with the various tree height maps, 

we also conducted sensitivity testing to determine the suitability of the different geospatial datasets for 

simulating the effect of planting (addition of trees to a bare landscape) or clearcutting (removal of trees from 

an afforested landscape) on river temperature simulations. Specifically, we were interested in understanding 

the proximity to the river at which the addition or removal of riparian vegetation influences stream 

temperature, and whether the choice of tree height map affects these simulations. We accomplished this by 

successively adding (removing) tree height data to (from) the model at 5m intervals (between 5 m and 45 m) 

starting from the stream centreline and working outwards (figure 2); the channel was sufficiently narrow to 

ensure that the innermost ‘ring’ of tree cover (ie. 5 m) was always located on the banks. Our decision to use 

an interval of 5 m stems from the fact that the crown diameter of mature deciduous and coniferous forest 

similar to that of the Girnock Burn usually exceeds 5 m (see Evans et al. 2015; Gill et al. 2000; Hemery et al. 

2005; Pretzsch et al. 2019 for allometric data). Furthermore, 5 m corresponds to the horizontal spatial 

resolution of the coarsest dataset used in this study (NEXTMap tree height map), and was therefore chosen 

to ensure comparability between datasets. We subsequently calculated the reach-averaged RMSE and 

temperature for each tree height map at each 5m step, aiding understanding of a) proximity at which the 

addition (removal) of riparian vegetation has the largest impact on stream temperature and b) to what extent 

the choice of input tree height data influences these simulations. 

 

3. Results 

3.1 Accuracy of tree heights calculated from varying geospatial data 

The tree height maps computed in section 2.3.2 exhibit strong variability in calculated height (figure 4). When 

compared to the SfM tree heights, the LiDAR-derived tree height map is most similar (R2 = 0.61; RMSE = 3.25 

m), with a coefficient of determination broadly similar to other studies comparing SfM and LiDAR-derived 

tree heights (eg. Dandois & Ellis, 2010; Iglhaut et al. 2019; Wallace et al. 2016). Scatter in this relationship is 

presumably a function of the passage of time and seasonal differences between acquisition of the two 



datasets (see Dugdale et al. 2019). Visual inspection of the GetMapping tree height map indicates a 

reasonable degree of similarity with the SfM data (R2 = 0.42; RMSE = 4.40 m). Closer analysis indicates that 

the increased error associated with this dataset (discussed further in section 4.2) is likely due to the large 

number of ‘zero’ tree heights in the GetMapping dataset. Contrary to these promising results, the NEXTMap 

dataset bears very little resemblance to the SfM data, with an extremely low coefficient of determination 

and greatly increased error (R2 = 0.05). Unsurprisingly, the two polygon-based datasets (NFI and MasterMap 

tree height maps) also correlate poorly with the SfM data (R2 = 0.10 and 0.04 respectively), given that tree 

heights within the ‘forest’ polygons of these datasets were assigned a uniform value of 10 m. However, the 

RMSE associated with these tree height maps (6.54 m and 5.35 m respectively) is nonetheless better than 

the NEXTMap dataset (8.80 m). 

 

Figure 4. Comparison of heights from a) LiDAR, b) GetMapping, c) NEXTMap, d) NFI and e) MasterMap tree heights map against 

SfM dataset, considered to be the most accurate/up-to-date map of riparian tree heights in Girnock Burn. Tree heights for NFI and 

MasterMap datasets are either 0 m or 10 m based on values assigned to polygons. Linear regression shown as solid black line, grey 

dashed line gives 1:1. 

 

 



3.2 Model performance under varying tree cover data 

Results of the stream temperature simulations indicate that the Heat Source model of Girnock Burn performs 

best when parameterised using either the SfM or LiDAR-derived tree height maps (Table 1). This result is 

unsurprising given a) the relative similarity of these datasets and b) that the model was initially calibrated 

using the SfM dataset. The next-best performing stream temperature model is that parameterised with the 

(GIS polygon-based) NFI tree height map, yielding only a small decrease in RMSE (8%) compared to the 

SfM/LiDAR-based models (RMSE = 0.51 °C vs 0.47 °C). However, despite this initially promising outcome for 

the ‘alternative’ tree height maps, the remaining datasets performed markedly worse with a ~44 – 47% 

decline in RMSE to the next-best models (GetMapping and MasterMap). These models were characterised 

by similarly poor reach-averaged RMSE values of 0.68 and 0.69 °C respectively (Table 1), despite marked 

differences in provenance (ie. photogrammetry-based tree heights vs. GIS polygons). The temperature model 

parameterised using the NEXTMap tree height map performed worst, with an RMSE in excess of 62% poorer 

than the best (SfM-derived) model. Nonetheless, even this result still compares favourably to the ‘no-trees’ 

model (RMSE = 0.86). 

Table 1. Average RMSE computed between 14 temperature observation sites and stream temperature model parameterised with 
given tree height map  

Tree height map (resolution) 
Reach-averaged 
RMSE (°C) 

Standard deviation 
of RMSE (°C) 

% decline in RMSE 
vs. best model 

SfM (10 cm) 0.47 0.13 - 

LiDAR (1 m) 0.47 0.13 0.01 

NFI (GIS polygons) 0.51 0.25 8.0 

Getmapping (2 m) 0.68 0.34 43.9 

MasterMap (GIS polygons) 0.69 0.15 46.7 

NEXTMap (5 m) 0.76 0.25 62.2 

No trees 0.86 0.13 83.0 

 

While these reach-averaged RMSE values provide a broad indication of the performance of models 

parametrised from different tree cover data sources, closer inspection of the RMSE computed at each logger 

site reveals spatial patterns in model performance (figure 5). As expected, the source of tree cover data 

makes little difference to model performance or mean temperature in the upper reach (2.2 km - 1.9 km 

upstream from the confluence with the Dee), because tree cover in these upper reaches is almost entirely 

absent. However, in the lower reach (< 1.9 km from the Dee), the models start to diverge, coincident with an 

increase in forest cover. This divergence is apparent from increasingly different RMSE values between the 

various models (figure 5a), but is most clearly evident in the time-averaged temperature series (figure 5b). 

Indeed, while the models parameterised with the SfM, LiDAR and NFI tree height maps yield similar stream 

temperature values even at the downstream end of the modelled reach, the MasterMap and GetMapping-

parameterised models display positive bias (overly warm values, although still cooler than the ‘no trees’ 

model), while the NEXTMap model is negatively biased (excessive stream cooling). Taken together, this result 

suggests that while the models parameterised with the SfM, LiDAR and NFI datasets are capable of 

adequately representing true stream temperature in the Girnock Burn, the other models are not adequate 

for this purpose. 

 



 

Figure 5. Variability in (a) streamwise RMSE computed against temperature loggers and (b) time-averaged stream temperature long 

profile generated by Heat Source model parameterised using various sources of tree cover data 

 

3.3 Addition and removal of riparian vegetation 

When tree cover data was systematically added to the riparian zone, model performance (as indicated by 

RMSE) improved most rapidly within 5m of the channel, although smaller effects were still observed at 

distances of 10m (figure 6a). These results indicate that almost all of the effect of shading on stream 

temperature is generated by a relatively narrow strip of trees in close (≤10 m) proximity to the stream 

centreline. This finding is supported by the reach/time-averaged temperature data (figure 6b) which also 

indicates that the overwhelming majority of stream temperature reductions occur where tree cover is added 

to the 5 m and 10 m zones (with the addition of tree cover in subsequent zones not generating a substantial 

thermal response). Closer inspection of the individual models reveals that while the SfM, LiDAR and NFI-

parameterised models generated very similar trends in RMSE and stream temperature, the other models do 

not. Indeed, the NEXTMap model shows a substantial decrease in temperature with the addition of the tree 

cover within the 5 m zone, while results of the GetMapping and MasterMap-parameterised models suggest 

that the 10 m zone of tree cover generates a greater reduction in stream temperature (and hence, reduction 

in RMSE) than that the addition of tree cover at 5 m (which actually appears to generate a slight warming 

response). Taken together, these results indicate that models parameterised with these data perform poorly 

when used to simulate real data (see section 3.2) and that they are poorly suited to simulating ‘hypothetical’ 

riparian tree planting scenarios. 



 

 

Figure 6. Tree planting simulation showing variation in (a) reach-averaged RMSE and (b) reach/time averaged stream temperature 

produced by the addition of tree cover within successive 5 m zones for each Heat Source model. 

 

Unsurprisingly, results of the tree removal (clearcutting) scenarios largely mirrored those of the tree addition 

(figure 7a). However, unlike the simulated addition of vegetation, the removal of vegetation from more 

distant zones (>10m) continues to have a notable impact on stream temperature. Although the simulated 

removal of vegetation within the initial 5 m zone causes the largest deterioration in RMSE for the SfM, LiDAR 

and NFI-parameterised models, the other models were characterised by little change or only marginal 

improvement in RMSE. Beyond 5 m, all models showed a similar deterioration in RMSE as vegetation was 

removed up to a distance of 15-20 m where RMSE values stabilised. In terms of the reach/time-averaged 

temperature data (figure 7b), the SfM, LiDAR and NFI-parameterised models show a steady increase in 

temperature associated with the removal of vegetation from each successive 5 m zone. However, the other 

models bely these results, with the removal of vegetation in the 5 m buffer strip actually causing a slight 

decrease in temperature for the MasterMap and GetMapping-parameterised models, but a substantial 

increase for the NEXTMap model (essentially, an inversion of the results for the simulated addition of tree 

cover). This disparity again suggests that the NEXTMap, MasterMap and GetMapping-parameterised models 

are less well-suited to simulating the hypothetical removal of riparian vegetation. 

 

Figure 7. Clearcutting simulation showing variation in (a) reach-averaged RMSE and (b) reach/time averaged stream temperature 

produced by the removal of tree cover from successive 5 m zones for each Heat Source model. 

 



Patterns in the simulated radiative and turbulent heat fluxes associated with the best model (SfM) match 

patterns in the RMSE and temperature results for the tree planting and removal scenarios. In terms of tree 

planting, figure 8a indicates that the bulk of the reduction of shortwave fluxes occurs within the 5 m riparian 

buffer strip closest to the channel, with subsequent ‘rows’ of tree cover contributing relatively little to 

shortwave attenuation. In terms of tree removal (figure 8b), shortwave radiation received at the stream 

surface steadily increases as a function of the removal of successive ‘strips’ of vegetation up to distances of 

~25-30 m either side of the channel. Longwave and turbulent heat fluxes show similar, but negative, trends. 

Interestingly, these results also show the impacts of tree cover addition on turbulent exchanges, with a 

reduction (increase) in latent and sensible heat fluxes associated with the addition (removal) of riparian 

shading. This likely reflects the fact that the cooler water temperatures engendered by shading will drive 

lower turbulent exchanges, but is also partially due to routines within Heat Source which simulate the 

reduction in wind speed (and hence latent and sensible heat fluxes; see section 2.3.2) under tree cover. 

 

 

Figure 8. Reach-averaged shortwave, longwave, latent and sensible heat fluxes associated with (a) simulated tree cover addition 

and (b) simulated tree cover removal for best-performing Heat Source model (parameterised with SfM tree cover data) 

 

4. Discussion 

4.1 Influence of tree cover data source on model performance 

Our investigation reveals that the type of tree cover data used to parameterise a stream temperature model 

can have a substantial impact on the quality of stream temperature simulations. While this result is not 

unexpected, it is nonetheless illuminating that the use of ‘poorer’ (in terms of both spatial resolution and 

height accuracy) riparian vegetation data (eg. GetMappping, MasterMap, NEXTMap) can generate an RMSE 

increase on the order of 40-60% as compared to the best-performing models. While the good performance 

of the SfM and LiDAR models is not unexpected, the positive results generated by the NFI-derived model 

were somewhat surprising, given that this polygon-based tree height map is incapable of representing true 

spatial variability in riparian tree cover/height (see figure 3e and figure 4d). Indeed, RMSE and stream 

temperature computed using the NFI-parameterised model were very similar to the LiDAR model, despite 

the complete absence of spatial variability in tree heights within the polygon dataset. Closer inspection of 

the NFI polygons reveals that this positive result is largely coincidental, and results from georeferencing 

inaccuracies which act to directly ‘overlay’ the polygons on top of the Heat Source model nodes at key 

locations along the river (eg. 1.5 – 2 km upstream). This ‘overlaying’ causes positive tree heights to be 

assigned to the 5m tree cover zone, which results in the NFI model simulating notably cool temperatures 



between 1.5 and 2 km. The net outcome of this is the generation of a very similar stream temperature signal 

to the SfM and LiDAR models. However, given that this positive result occurs almost entirely by chance due 

to ‘beneficial’ georeferencing errors, it is unlikely that the NFI dataset would produce similarly-good results 

in other locations. Indeed, given the relatively poor results of the other polygon-based dataset (MasterMap) 

which did not incorporate similarly-fortuitous spatial referencing errors, these findings indicate that GIS 

polygons should not be relied upon to generate detailed estimates of riparian shading (and the subsequent 

stream temperature response). 

Unsurprisingly, even the poorest models (ie. GetMapping, MasterMap and NEXTMap) produced models with 

improved RMSE over the ‘no trees’ scenario. Although this may suggest that using ‘alternative’ tree cover 

data (of low resolution or height accuracy) is preferable to ignoring the presence of trees, we would urge 

caution. For example, while the GetMapping and MasterMap datasets show a plausible reduction in stream 

temperature (and associated improvement in RMSE) compared to the ‘no trees’ model, the NEXTMap-

derived model generates a substantially greater downstream cooling than is actually present in reality (see 

section 4.2 for explanation). As a result, we do not advocate the use of these ‘alternative’ data sources for 

parameterising the shading routines of stream temperature models, unless the simulated temperature 

response can be conclusively demonstrated to provide a good analogue of true river temperature. 

 

4.2 Performance of ‘alternative’ tree cover datasets 

In addition to the unexpectedly good performance of the NFI-derived model, the stream temperature models 

parameterised with ‘alternative’ tree height data generated other unforeseen results. Of primary interest is 

the relatively poor performance of the GetMapping-derived model. Visual inspection of the tree height maps 

(figure 3) indicates that the GetMapping-derived tree heights are relatively similar to those of the SfM and 

LiDAR datasets, a fact also supported by the reasonable correlation and RMSE (figure 4). We were therefore 

surprised that this model generated considerably poorer stream temperature predictions. However, close 

inspection of the initial GetMapping raster shows that the river channel has been clipped from the input 

DSM/DTM using a buffer of ~5 m. This means that tree cover in the 5 m ‘zone’ is generally absent within the 

resulting stream temperature model (apart from at a few sporadic locations where sampling nodes fall 

outside of this buffer). Given our finding that the majority of the tree shading effect on stream temperature 

occurs due to vegetation within this initial 5 m zone, it is therefore unsurprising that the performance of this 

model was suboptimal. The absence of vegetation in the 5 m zone also explains why the GetMapping-derived 

model showed the bulk of temperature reduction occurring with the addition of trees in the 10 m zone. 

Unfortunately, attempts to obtain an ‘unclipped’ DSM/DTM product were unsuccessful and it was therefore 

not possible to ascertain the performance of an unmodified GetMapping tree height map. 

This general absence of trees in the 5 m zone also explains the similar performance of the MasterMap-derived 

model (compared to the NFI dataset) and accounts for the minor (but unexpected) warming noted as a result 

of the simulated addition of vegetation within the 5 m zone for the MasterMap and GetMapping models 

(figures 6 and 7). Inspection of energy fluxes associated with tree planting (clearcutting) simulations (figure 

8) show that the addition of sporadic vegetation in this 5 m zone is accompanied by reduced windspeeds due 

to Heat Source’s implementation of the Prandtl–von Karman universal-velocity distribution law which drive 

a decrease (increase) in turbulent losses. This, in combination with decreased longwave losses owing to the 

presence of bankside vegetation, offsets the shading-driven reduction in shortwave inputs, thus causing the 

observed warming. 



Turbulent fluxes also partially account for the anomalously high cooling observed in the NEXTMap-derived 

model. Average tree height computed from the NEXTMap data is considerably lower than from the other 

databases. Although this would normally mean that the shading effect is reduced in comparison to these 

other sources, the reduced tree height also drives an increase in turbulent losses that offsets a proportion of 

the reduction in shading-driven shortwave fluxes. However, these increased turbulent losses are not able to 

account for all of the observed cooling. Instead, the anomalously cool temperature is also a function of 

inaccuracies in the NEXTMap dataset which mean that the model is parameterised with falsely low height 

values for ‘emergent vegetation’ (ie. vegetation growing from within the channel or on point bars, etc; see 

Boyd and Kasper 2003). The presence of this artificially low emergent vegetation essentially acts as a ‘parasol’ 

over the river channel, blocking a moderate amount of direct solar radiation at all hours of the day, rather 

than a larger amount of radiation over only 2-3 hours (as is generally the case with taller vegetation), thus 

explaining the excessive reduction in stream temperature. 

Taken together, these findings demonstrate that process-based stream temperature models may behave in 

an unexpected manner when parameterised with unsuitable or inaccurate riparian vegetation data, and may 

even generate results which, due to the way in which the model is programmed, do not have any real physical 

basis. As a result, we urge caution when working with coarser or less accurate tree height products, and again 

stress that when their use is unavoidable, particular attention is paid to ensuring that simulated temperatures 

are reasonable and physically plausible. 

 

4.3 Implications of findings for river management 

Our findings emphasise the importance of using high quality riparian vegetation data (in terms of spatial 

resolution and height accuracy) to parameterise process-based models of stream temperature. This is of 

particular importance when devising thermal management strategies for climate change to ensure that 

proposed management activities do not generate unwanted consequences. Indeed, the results of our tree 

planting/clearcutting simulations highlight that even when modelling ‘conceptual’ land cover scenarios (as 

opposed to real world situations), the injection of realistic tree height data is essential in order to minimise 

unexpected model results or scenario outcomes (see section 4.2; figures 6 and 7). 

The results of our tree planting/clearcutting scenario simulations using SfM or LiDAR data provide useful 

information for river managers wishing to implement river temperature management strategies. In terms of 

tree planting, our results indicate that the bulk of the tree shading effect on stream temperature occurs with 

the addition of trees in the initial 5 m zone alongside the river channel, confirming the results of Garner et 

al. (2017) and Malcolm et al. (2008) which indicate that the addition of a narrow ‘strip’ of riparian vegetation 

only 1-2 trees in width can constitute an effective method for moderating temperature extremes. The 

knowledge that relatively narrow strips of riparian planting are able to produce reasonable stream 

temperature outcomes is also useful with regards to achieving a compromise between the competing 

demands of river managers (who are tasked with maintaining water temperature within optimal limits) and 

landowners/farmers (who want to minimise the loss of useable agricultural land to buffer strips), while 

simultaneously accomplishing maximum tree planting effectiveness within limited financial constraints. 

However, given that in the UK (and possibly other jurisdictions) it is often easier to obtain financing for the 

planting of woodland ‘blocks’ rather than buffer strips (due in part to the higher fencing costs and lower 

woodland production associated with strips; Scottish Government, 2018), our findings regarding a single 

narrow strip of riparian planting may nonetheless require compromises to be made alongside other logistical 

concerns when conducting tree planting. 



In terms of clearcutting, our results are of lesser relevance to agroforestery activities (eg. Moore et al. 2005) 

which are generally compelled by legislation to leave a riparian buffer strip in excess of the 5 m limit discussed 

above (eg. Davies et al. 2009; González et al. 2017; Lee et al. 2004). However, our findings have significant 

implications for jurisdictions where riparian buffers are actively managed (ie. felling of riparian woodland) to 

increase mean temperature with a view to improving productivity or taxonomic richness (eg. CASS 2010). 

Results of our tree removal scenarios actually indicate that removal of just a single strip of vegetation located 

nearest to the river channel may only drive a relatively moderate increase in temperature. Indeed, to 

maximise the impact of clearcutting on stream temperature, it may therefore be necessary to fell trees as 

distant as 15-20 m from the channel centreline, presumably because even when located further from the 

channel, tall trees are able to generate substantial amounts of shading. Taken together, these results provide 

further information regarding riparian buffer management strategies for moderating stream temperature, 

and add to the growing body of literature looking to better understand the nested drivers of stream 

temperature heterogeneity. 

 

5. Conclusions 

River scientists and managers are increasingly using riparian tree planting to moderate high summer river 

temperatures with a view to mitigating some of the expected impacts of climate change. However, 

understanding the exact impacts of these activities requires simulation experiments within process-based 

stream temperature models. The results of our study show that, unless parameterised with high quality 

riparian tree cover data, such models are unable to adequately represent the effects of riparian shading on 

stream temperature. Indeed, when parameterised with sub-optimal tree cover data, models not only 

generate less accurate temperature simulations, but may also act unexpectedly, producing unforeseen 

temperature outcomes. In our study, SfM and LiDAR tree cover data produced the best-performing stream 

temperature simulations, with ‘alternative’ tree height sources generating sub-optimal temperature 

simulations. This reduction in simulation quality results predominantly from inadequacies in their 

georeferencing and tree height data, rather than as a function of their reduced spatial resolution. Were these 

georeferencing and height errors to be negated, it is plausible that these coarser data would produce stream 

temperature simulations approaching a similar (but lower) accuracy to those of the SfM and LiDAR tree cover. 

However, river scientists or managers should nevertheless look to use the tree cover data of the highest 

possible resolution and accuracy, with a view to producing optimal climate change adaptation strategies. 
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