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Amplicon sequencing (e.g. of the 16S rRNA gene) identifies the
presence and relative abundance of microbial community members;
however, metagenomic sequencing is needed to identify the genetic
content and functional potential of a community. Metagenomics is
challenging in samples dominated by host DN A such as those from the
skin, tissue, and respiratory tract. Within, we combine advances in
amplicon and metagenomic sequencing with culture-enriched molec-
ular profiling to study the human microbiota. Using the cystic fi-
brosis lung as an example, we culture an average of 82.13% of the
OTUs representing 99.3% of the relative abundance identified in di-
rect sequencing of sputum samples; importantly, culture-enrichment
identified 63.3% more OTUs than direct sequencing. We developed
the PLate Coverage Algorithm (PLCA) to determine a representa-
tive subset of culture plates on which to conduct culture-enriched
metagenomics, resulting in the recovery of greater taxonomic diver-
sity — including of low abundance taxa — with better metagenome-
assembled genomes, longer contigs, and better functional annotations
when compared to culture-independent methods. The PLCA is also
applied as a proof-of-principle to a previously published gut micro-
biota dataset. Culture-enriched molecular profiling can be used to
better understand the role of the human microbiota in health and
disease.

The field of microbiology began with the visualization of microbes [1], and
continued once we learned to control their growth. The advent of next-generation
sequencing revolutionized microbiology, by allowing microbial genomics and
community analysis without the requirement of culture. These technologies
have expanded our understanding of the human microbiome, identifying the
effect that environment, diet, and host genetics has on these complex commu-
nities [2, 3, 4, 5]. Culture-independent studies have made crucial contributions
to microbiome research; however, without bacterial culture, we lose the advan-
tages of classical microbiology, resulting in a lack of mechanistic studies and the
alternative focus on microbial “dysbiosis” and microbiome diversity [6, 7].

While it is commonly cited that the majority of the human microbiota is un-
culturable, numerous studies conclusively counter this. In 1974, Finegold et al.
cultured ~300 species from 40 fecal specimens using both aerobic and anaerobic
culture [8]. More recently, Goodman et al. cultured almost half of the human
gut microbiota, recovered 316 Operational Taxonomic Units (OTUs) by culture
of the 631 OTUs identified by culture-independent techniques [9]. Lagier et
al. cultured 340 species of bacteria from 3 stool samples [10]. Further, recent
studies recovered 88% of family-level OTUs [11] and 95% of all OTUs identi-
fied in fecal specimens [12]; importantly, both of these studies also identified
more OTUs via culture-dependent than culture-independent methods. Other
human-associated communities have been profiled with culture, including urine
[13], skin [14], oral [15], and cystic fibrosis communities [16].



Marker gene profiling (e.g. 16S rRNA gene sequencing) provides a simple
and rapid method to assess the taxonomic composition of a community. While
metagenomics can assess functional capacity in addition to taxonomy, the useful-
ness of these data is dependent on how well short-read sequences can be assem-
bled into contigs. The quality of assembly can be impacted by the complexity
of the community, the sequencing technology, and/or the proportions of host
DNA contamination [17, 18, 19]. Culture-enrichment is uniquely positioned to
improve metagenomic assembly by allowing the proliferation of microbes (thus
abating host DNA contamination) on media that “biologically bin” samples,
thus decreasing their complexity. Coupling culture-enrichment with computa-
tional approaches allows us to separate promiscuous and fastidious microbes to
better resolve these communities. Here, we use sputum from cystic fibrosis as
an example of a complex microbial community where host DNA can represent
a large proportion of the community (>99%) [20, 21, 22, 23]. We present a
culture-enriched metagenomic strategy which overcomes these limitations and
improves metagenomic results, providing a more comprehensive profile of the
microbial community.

In this study, we merge culture-dependent and -independent techniques to
better understand microbial communities. Culture-enriched 16S rRNA gene
sequencing established that 82.13% of all OTUs - representing 99.3% of the
relative abundance - in the cystic fibrosis lung microbiota are culturable. Fur-
ther, culture-enrichment increased OTU recovery when compared to culture-
independent sequencing. We introduce the PLate Coverage Algorithm (PLCA)
which uses 16S rRNA gene sequencing to optimize culture-enriched metage-
nomics, and show that culture-enriched metagenomics improves the recovery of
metagenomic-assembled genomes and produces more thorough functional an-
notations than direct metagenomic approaches. We identify the advantages of
culture-enriched metagenomics: increased taxonomic and functional informa-
tion due to a decrease in contaminating host DNA and the ability to computa-
tionally and biologically bin microbial species.

Results

In this study, we devised a strategy for culture-enriched metagenomic profiling
(Fig 1). This strategy is based on previous culture-enrichment for amplicon-
based sequencing conducted on the cystic fibrosis lung microbiome which was
able to culture 43 of 48 bacterial families identified in sputum [16]. Upon col-
lection, samples were immediately plated onto the 13 different media types
(Extended Data Fig 1) under aerobic and anaerobic conditions. 16S rRNA
gene sequencing was performed on the sputum sample (direct sequencing) as
well as on the collective organisms grown in each media/environment pairing
(culture-enriched sequencing) for a total of 26 culture-enriched samples per spu-
tum (Fig 1). The OTU diversity in the direct sequencing and distribution in



the culture-enriched sequencing was used in conjunction with the PLate Cov-
erage Algorithm (PLCA, details below) to determine a representative subset
of culture-enriched plates which adequately represent the sample. Shotgun
metagenomic sequencing was performed on the original sample and the culture-
enriched subset.

The majority of the cystic fibrosis lung microbiota is cul-
turable

We first identified the culturable fraction of the cystic fibrosis lung microbial
community in 20 sputum samples from 10 patients. We defined an OTU to
be culturable if it contained > 10 reads and was recovered from > 1 culture-
enriched plate at a relative abundance of > 0.01%. Across the dataset, an
average of 82.13% (range: 64.6-100%) of OTUs identified by direct sequencing
were culturable; this culturable fraction represents an average of 99.3% (range:
97.8-100%) of the relative abundance in the associated direct sequencing results
(Fig 2a).When the genus-level OTU taxonomic assignments were compared to
a list of species previously identified via culture-enrichment [24], and to previ-
ous culture-enrichment of the cystic fibrosis lung [16] and gut [12], we identified
18 genera cultured in this study which had not previously been identified via
large-scale culture-enrichment (Supplementary Table 1). Of the OTUs which
were never cultured across the dataset, we observe an over-representation of the
Spirochaetes (7 of 7 OTUs identified in culture-independent sequencing) and
the SR1 (1 of 1), and many members of the Tenericutes (7 of 22), and TM7 (2
of 3) phyla (Fig 2b, blue ring). Together, these results indicate that most
OTUs in the cystic fibrosis lung microbiota are culturable and that those OTUs
which are not cultured are taxonomically restricted, and historically challenging
to culture groups. Importantly, culture-independent methods do not distinguish
DNA from viable versus non-viable organisms; therefore, some bacteria not re-
covered may not be viable in these samples. These results still hold if a more
stringent definition of culturable is used (Extended Data Fig 2a-b).

Culture-enrichment increases OTU recovery

Culture-enriched 16S rRNA gene sequencing consistently recovered more OTUs
then direct sequencing (Fig 2b, Extended Data Fig 2c-e). For example, in
the direct sequencing of Sample 1, 49 OTUs were recovered, 42 of which were
also identified by culture-enrichment (Fig 2a); in addition to these 42 OTUs, an
additional 124 OTUs were identified by culture-enrichment (Extended Data
Fig 2c). This enrichment in OTU recovery did not correlate with variability
in a-diversity of the original sample (Extended Data Fig 2e). We hypoth-
esized that the ability to enrich may be due to the recovery of low abundance
taxa. To test this hypothesis, we re-sequenced a sample to a depth 24x deeper
than the original direct sequencing (972,834 vs. 41,199 reads) and rarefied at



decreasing depths (range: 500,000-1,000 reads). We observed that the number
of OTUs recovered only by culture decreases as the sequencing depth increases
(Extended Data Fig 3). These cultured OTUs were typical members of the
cystic fibrosis lung microbiota including Streptococcus sp., Prevotella sp., and
Veillonella sp, indicating that culture allows for the enrichment of taxa present
at low abundance in the original sample.

Culture-enrichment’s increase in OTU recovery is depen-
dent on media type and oxygen availability.

The variety of media, and environmental conditions used is important in cap-
turing the diversity of microbial communities. The use of both anaerobic and
aerobic conditions encourage the recovery of different taxa as evident in the
taxonomic distribution and S-diversity relationships of the 16S rRNA gene se-
quencing results of direct and culture-enriched sequencing (Fig 3a-b). For
example, Veillonella sp., and Prevotella sp. were recovered exclusively under
anaerobic conditions; conversely, Rothia sp. and Pseudomonas sp. were ob-
tained at greater abundances in aerobic culture (Fig 3a). The a-diversity of
each culture condition (media + aerobic/anaerobic environment) varied with
each sample (Supplementary Fig 2), and no single condition consistently
best recapitulated the originating sputum sample (Extended Data Fig 4).
Hierarchical clustering of the taxa recovered from each culture condition fur-
ther indicates the importance of using both selective and non-selective culture
conditions (Fig 3c, Extended Data Figs 5-6). While some organisms, such
as Streptococcus sp., will grow under many conditions, others, such as Neisseria
sp., Rothia sp., and Stenotrophomonas sp. were only recovered from a subset
of culture conditions. Further, there were also OTU-dependent differences in
growth patterns within some genera (e.g. Prevotella OTUs, Fig 3d; Extended
Data Fig 6). Across the dataset, anaerobic culture recovered almost half of all
cultured OTUs; further, we nearly doubled the number of recovered OTUs by
expanding our culture conditions beyond the 4 typically employed in a clinical
laboratory (Fig 3e).

Another advantage of culture-enrichment is that it allows for the post-hoc
recovery of organisms of interest from frozen bacterial stocks (see Methods).
As an example, Stenotrophomonas sp. were isolated from two bacterial stocks
in which it accounted for relatively low relative abundances (1.3 and 1.5%).
To facilitate recovery, the stocks were replated on a media type specific to
Stenotrophomonas sp. (Fig 3f). Taxonomic assignment of isolated colonies
as Stenotrophomonas maltophilia were confirmed via full-length 16S rRNA gene
sequencing (Supplementary Table 2).



The PLCA informs culture-enriched metagenomic sequenc-
ing

The conditions used for culture-enrichment are necessarily broad; the cystic
fibrosis lung microbiota, like other human-associated communities, can be com-
prised of a wide range of organisms, from common pathogens (e.g. Pseu-
domonas, Staphylococcus, and Haemophilus [25]) to anaerobes (e.g. Prevotella,
Fusobacterium, and Veillonella [26, 27, 28]) and emerging pathogens (Stenotrophomonas
maltophilia, and Achromobacter [29]). While the lung could harbor any of these
organisms, an individual’s microbiota is a unique subset of these possibilities.
This means that while the variety of culture conditions used is necessary to
capture the diversity across individuals, not every plate is needed to enrich
the microbiota of a given sample. This is also true of other human-associated
communities; the gut, for example, harbours many organisms which are preva-
lent across the population, whereas some species can be quite specific to the
individual [30]. It is not known a priori which subset of plates would best re-
capitulate a given community; however, we can use 16S rRNA gene sequencing
to identify the taxonomic distribution across cultured plates, and to choose the
subset of plates which best recapitulates the community on which to conduct
culture-enriched metagenomic sequencing. As such, we implemented the PLate
Coverage Algorithm (PLCA) which determines the minimum number of culture-
enriched plates necessary to capture the taxonomic diversity of a sample with
culture-enriched metagenomics. The PLCA is not specific to a particular set of
culture conditions, or particular microbiome, but instead can be used with any
community which contains a culturable majority.

There are two versions of the PLCA. The denovo PLCA recapitulates the
culture-enriched community independent of the direct sequencing, whereas the
adjusted PLCA focuses on the OTUs recovered from the direct sequencing re-
sults (Supplementary Fig 3). That is to say, the user can decide between
recovery of all cultured organisms (denovo PLCA), or of preferential recovery
of the abundant organisms from the original community (adjusted PLCA). The
use of either version is dependent on whether the user is interested in the com-
position of the original sample - for example, when answering clinically relevant
research questions - or in questions concerning sample biodiversity. Using these
algorithms at different thresholds (see Methods) across the dataset highlights
the uniqueness of these communities: no two samples have the same optimal
plate set, and every culture condition is necessary for at least one sample as in-
dicated by each condition in the denovo and adjusted outcomes being necessary
for the culture-enriched metagenomic sequencing of at least one sample in the
dataset (Fig 4ab, Extended Data Fig 7).



Culture-enriched metagenomics provides improved taxo-
nomic and functional resolution

To test the PLCA, we used both versions of the algorithm on a representa-
tive sample. The PLCA indicated culture-enriched metagenomics on 5 (denovo
PLCA) and 3 (adjusted PLCA) culture plates: Beef (aerobic) and ATA, KVLB,
MAC, and McKay (anaerobic) for denovo PLCA; TSY and McKay (aerobic)
and CHOC (anaerobic) for the adjusted PLCA. Moderate taxonomic concor-
dance was observed between the 16S rRNA gene and metagenomic sequencing,
with some differences in composition and relative abundance (Extended Data
Fig 8). Following metagenomic co-assembly, binning, and taxonomic assign-
ment (see below), we compared the observed versus expected results of each
algorithm. The denovo PLCA recovered 10 metagenomic bins with matching
taxonomic assignments to the 10 OTUs above the PLCA threshold in addition
to a further 6 bins matching OTUs below the threshold (Fig 4c, Supple-
mentary Table 3). Similarly, the adjusted PLCA recovered 10 of 11 expected
OTUs and matched an additional 14 OTUs below the adjusted PLCA threshold
(Fig 4c, Supplementary Table 4). When the adjusted PLCA was applied to
the other 19 samples in this dataset, culture-enriched metagenomic sequencing
of a collective 91 (of a possible 520) plates resulted in the recovery of 83.4% of
targeted species with an additional 413 metagenomic bins recovered from other
species (Extended Data Fig 9a). We also applied the PLCA to previously
published culture-enrichment data from the gut microbiota [12], establishing
that this algorithm is not specific to the lung microbiome or a specific set of
culture conditions (Extended Data Fig 9b).

For each of the denovo and adjusted PLCA plate sets and the direct se-
quencing, we co-assembled shotgun metagenomic reads into contigs which were
binned and defined as metagenome-assembled genomes (MAGs) or non-MAG
bins based on sequence composition (see Methods). Culture-enriched metage-
nomic sequencing resulted in 7 MAGs and 9 non-MAG bins (denovo PLCA) and
12 MAGs and 12 non-MAG bins (adjusted PLCA); in contrast, 1 MAG and 1
non-MAG bin were recovered from direct metagenomic sequencing (Fig 5).
When the direct sequencing metagenomic reads were mapped onto the culture-
enriched metagenomic bins, significant coverage was only observed in 1 bin in
both the denovo and adjusted PLCA results (Fig 5, blue dots). Both direct
sequencing metagenomic bins were taxonomically assigned as Pseudomonas sp.;
in contrast, the culture-enriched bins were taxonomically diverse, spanning 14
genera (Fig 5).

The increased taxonomic diversity obtained via culture-enrichment directly
translates into increased functional information about this microbial commu-
nity (Fig 6). Consistently, across Clusters of Orthologous Groups (COG)
functional categories and predictions of virulence genes, phage, antibiotic resis-
tance, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs),
and secondary metabolites, culture-enriched metagenomic sequencing provides



a greater diversity and number of functional identifications. For example, genes
contributing to the GacS/GacA two-component system were identified in Pseu-
domonas sp. bins from both culture-enrichment datasets but not in the direct
sequencing of the sputum sample. Previous research has shown that strains of
P. aeruginosa lacking this system are less able to colonize in mouse models [31],
indicating their importance for P. aeruginosa virulence. The detection of these
genes in the culture-enriched data suggests that this system is present in the
cystic fibrosis lung microbiota but is not identified in the direct metagenomic
sequencing due to poor sequencing depth/assembly. Among the Pseudomonas
sp. results, there were 10, 16, and 17 “Perfect” hits against the Comprehensive
Antibiotic Resistance Database (CARD) in the direct, denovo PLCA, and ad-
justed PLCA datasets, respectively; among these, 2 beta-lactamases (OXA-50,
PDC-1), and 2 repressors (nalD, nfxB) were found only in the culture-enriched
sequencing. These Pseudomonas-specific results indicate that even when bins
overlap in taxonomic assignment between techniques, that culture enriches for
functional annotation; in addition to this, the functional characterisations of all
other bins (15 and 23 in the denovo and adjustedPLCA, respectively) would not
have been possible from direct sequencing alone.

Previous research has established the presence of heterogeneous populations
of single species in cystic fibrosis airways (e.g. in P. aeruginosa [32], Burkholde-
ria cepacia complex [33], and Stenotrophomonas maltophilia [34]) as well as in
the human microbiome as a whole (e.g. Bifidobacterium longum populations
in the infant gut microbiome [35], various strains following fecal microbiota
transplantation [36]). As such, we calculated the genetic variability within each
metagenomic bin by identifying haplotypes within open reading frames (ORF's)
([37]; Fig 6d). In some metagenomic bins, we identify a consistent and small
number of ORF haplotypes, suggesting that the bin represents a single genomic
population (i.e. one strain). However, in most bins, we see great haplotype
diversity indicative of heterogeneous populations (i.e. multiple strains). As
expected, the number of haplotypes per gene within these bins is diverse, indi-
cating the known spectrum of evolutionary pressures within bacterial genomes
[38]. On average, more gene haplotypes were identified in the Pseudomonas sp.
culture-enriched bins then in the direct sequencing; however, the direct sequenc-
ing identified a greater number of prevalent haplotype gene outliers. There was
no correlation between bin completeness or MAG status and mean haplotype
frequency.

Discussion

The decrease in cost and increase in massively parallelized sequencing technol-
ogy has revolutionized the way that we study the human microbiota, leading to
an increased understanding of these communities and how they relate to health
and disease. The gut has arguably been the most well-studied human micro-
biome, with numerous studies linking it to various diseases (e.g. IBD [39], and



IBS [40]) and conditions (e.g. obesity [41] and pregnancy [42]). This commu-
nity lends itself well to these investigations; its composition can be approxi-
mated via fecal matter — readily available without intervention — and consists
of a dense microbial community with little host DNA contamination. However,
many other important human-associated communities have high-levels of non-
microbial DNA, including communities of the skin [45], tissue biopsies [19], and
oral microbiome samples [46]. The respiratory microbiome is a low biomass
community, often contaminated with DNA from endothelial cells or from the
DNA associated with an acute immune response in diseases such as asthma
and cystic fibrosis [47]. Because of the nature of such samples, metagenomic
sequencing must be paired with the in silico removal of most sequencing reads
due to host contamination, meaning that only the most abundant members of
the community can be assembled into MAGs. We demonstrate that culture-
enriched metagenomics - in conjunction with traditional, culture-independent
sequencing - can improve the resolution of these communities.

Within, we show that the cystic fibrosis lung microbiota is culturable, and
that culture-enrichment increases OTU diversity (Fig 2). This follows directly
from Sibley et al. who, using T-RFLP and 454 sequencing, were also able to
identify a culturable majority within the cystic fibrosis lung microbiota [16].
Although culture-enrichment consistently recapitulated > 97% of the direct se-
quencing results, a few organisms were not cultured. Many, including members
of the Spirochaetes, SR1, Tenericutes, and TM?7, consist of organisms which are
difficult to culture [48, 49, 50], but were also at low abundance in these samples.
In contrast, the organisms recovered only by culture are common members of
the cystic fibrosis lung microbiota [25], including Rothia, Prevotella, Veillonella,
Fusobacterium, and Streptococcus species. Selective media allow for the prolif-
eration of low abundance organisms which can be below the level of detection
of standard sequencing approaches. It is not uncommon, for example, for the
cystic fibrosis lung microbiota to reach a density of at least 10® CFUs/mL
[61, 52, 53]. If amplicon sequencing produces 50,000 reads per sample, an or-
ganism identified by a single read would equate to < 0.002% relative abundance
or 2x10* CFUs/mL. This is not to dismiss culture-independent approaches;
culture-enrichment benefits from being combined with direct sequencing in or-
der to maintain the relative abundance ratios of the original community and to
recover important uncultured organisms.

In order to most effectively combine culture-independent and -dependent ap-
proaches, we designed the PLate Coverage Algorithm (PLCA) which determines
the cultured metagenomic sequencing necessary to recapitulate the original mi-
crobial community as determined by amplicon sequencing. We show that the
PLCA recovers targeted OTUs as well as a substantial number of additional
OTUs (Fig 4). Importantly, PLCA-assisted culture-enriched metagenomics
vastly improved the taxonomic and functional outputs of sequencing. The in-
ability of traditional metagenomic sequencing to distinguish microbe from host
can result in the need for incredible sequencing depths of samples with high



host contamination. Combining culture with culture-independent sequencing is
one way of mitigating host contamination due to culture’s ability to enrich for
viable microbes.

The PLCA is not specific to the cystic fibrosis microbiome and can be used
on any microbial community in which most of its membership is culturable. The
culture conditions chosen will impact the ability to culture the sample and the
performance of the PLCA. Ideally, a combination of selective, non-selective, and
enrichment media should be used. Further, the PLLCA is also not specific to any
one 16S rRNA gene processing pipeline. Within, we have used a 16S rRNA gene
sequencing pipeline which has been previously validated against other available
approaches [54]; however, 16S rRNA gene sequencing processing is a moving
target, with new (or improved) methodologies constantly being published, and
compared /validated against already existing methods. Because the PLCA is
agnostic to how the data is processed, it can be applied to datasets processed
with any method. As the field continues to progress, the PLCA will only benefit
from the improvements in taxonomic resolution available from these technolog-
ical improvements.

The combination of culture-enrichment with direct sequencing enhances the
observed taxonomic diversity and provides greater insight into human-associated
microbial communities. We have shown that culture-enriched metagenomics
provides deeper resolution of these communities. With this data, we can better
predict, for example, mechanisms of antimicrobial resistance, virulence factors,
and - in general - gain a better understanding of each organism’s gene reper-
toire. Further, having these organisms in culture means that we can carry out in
vitro, mechanistic studies to better understand these communities in the context
of human health and disease. Culture-enriched metagenomics, as exemplified
here for cystic fibrosis sputum, provides an approach for the study of microbiome
samples which are comprised mostly of human rather than microbial DNA. This
method can be applied to any community where the majority of its members
are culturable.

Methods

Sputum collection and culture-enrichment

Upon receiving informed consent, sputum samples were collected from Decem-
ber 4th 2013 to October 6th 2014 from willing participants visiting the Calgary
Adult Cystic Fibrosis Clinic (ethical approval granted by the Calgary Health
Region Ethics Board, REB-24123). Two samples were collected from each pa-
tient (with the noted exceptions): one at the onset of pulmonary exacerbation
(as defined by Fuchs et al. [55]) and a second during a follow up appointment
(1 week-4 months) following the resolution of symptoms and antibiotic discon-
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tinuation. In one case, a patient wasn’t able to produce a followup sputum
sample; in another, a patient experienced two exacerbations before a follow up
appointment so 3 samples were collected.

Samples were transported to an anaerobic environment within 1 minute of
expectoration and plated within 4 hours of production. Samples were homog-
enized by passage through a 18 gauge needle and 1 mL syringe. Once homo-
geneous, 300uL was set aside for direct sequencing. The remainder was used
for culture enrichment. The thirteen solid agar media used in this study in-
cluded (Extended Data Fig 1): Actinomycetes isolation agar (AIA; BD),
brain heart infusion agar (BHI; BD), cooked meat broth with 1.5% agar (Beef;
Fluka), Columbia agar base with 5% sheep’s blood (CBA; BD), GC powder (BD)
with 5% hemoglobin, and 0.5% IsoVitaleX (CHOC; BD), Columbia CNA agar
with 5% sheep’s blood (CNA; BD), fastidious anaerobe agar (FAA; Acumedia),
tryptic soy agar with 0.1ug/mL kanamycin, 7.5ug/mL vancomyin, 10ug/mL
Vitamin K, 0.05ng/mL hemin, and 5% laked blood (KVLB), MacConkey agar
(MAC; BD), mannitol salt agar (MSA; BD), McKay media [56], phenylethyl
alcohol agar with 5% sheep’s blood (PEA; BD), and tryptic soy agar with 1.5%
yeast extract (TSY; BD). To Beef, BHI, and TSY, the following additional addi-
tives were included: 10ug/mL colisitin sulfate, 0.5mg/mL L-Cysteine, 1.0ng/mL
Vitamin K, and 10ng/mL hemin. These media were chosen based on previous
successful isolation of bacterial species from cystic fibrosis sputum by Sibley et
al. [16], and include non-selective, selecitive, and enrichment media types (as
defined in [57]; Extended Data Fig 1). Comparisons of this culturing method
to that employed by a typical microbiology lab in Figure 3 included the fol-
lowing media types: aerobic CBA, MAC, MSA, and anaerobic CHOC.

Culture enrichment was performed by placing 100uL of sputum diluted in
BHI with 0.05% L-Cysteine to 1072 and 10~° on to each of the above media.
Two sets of plating were performed, one which was incubated aerobically (5%
COg, 37°C) and another anaerobically (5% COs, 5% Ha, 90% NOy, 37°C), re-
sulting in 52 plates per sample.

After 3-5 days (aerobic) and 5-7 days (anaerobic) of growth, plates were im-
aged and growth acquired by adding 2mL of BHI broth to each plate and lifting
colonies. 1mL of this broth was frozen directly for DNA extraction while the
remaining 1mL was frozen in skim milk (final concentration 10%) for any po-
tential growth or re-isolation experiments. For the first few culture-enrichment
sample sets, plates with no visible growth were processed like any other plate
(see below); however, we consistently were unable to obtain visible PCR prod-
ucts on a 2% agarose gel from those plates which did not have visible growth.
Thus, any plate which resulted in no visible bacterial colonies was discarded
and omitted from all downstream processing.

In order to demonstrate the reproducibility of sputum sample collection and
culture-enrichment methods, we carried out an additional experiment where 2
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sputum samples from each of 3 patients were collected in the clinic before and
after physiotherapy (3x2 biological replicates). The consistency of these bio-
logical replicates indicate the similarity of sputum communities when collected
in quick succession. These samples were then plated on 6 media in triplicate
(6x3 technical replicates across 6 sputum samples, n=108). The results demon-
strate the consistency in replicate sputum samples and in culture enrichment
(Extended Data Fig 10).

DNA isolation and Illumina sequencing

Genomic DNA was isolated from culture-enriched plates and sputum as pre-
viously described [58] with the exception of use of lifted colonies/homogenized
sputum as input instead of Copan Swabs as performed in [16]. Dilutions re-
sulting from the same culture conditions were combined into one genomic DNA
isolation for a maximum of 26 culture-enriched samples per sputum sample. The
variable 3 region of the 16S rRNA gene was amplified using universal primers as
adapted from [58, 59]. The PCR reaction consisted of 5pmol of each primer, 1ng
template DNA, 200uM dNTPs, 1.5mM MgCl,, and 1 U Taq polymerase. The
PCR protocol used is as follows: 95°C for 5 minutes, followed by 30 cycles of
95°C for 30 seconds, 50°C for 30 seconds, and 72°C for 30 seconds, with a final
72°C for 7 minutes. Presence of a PCR product was verified by electrophore-
sis (2% agarose gel). PCR products were sequenced using the Illumina MiSeq
platform using 2x250 paired-end reads.

DNA from select culture-enriched samples and the sputum sample were son-
icated to 300bp and library preparations were made using the NEBNext DNA
Library Prep Master Mix Set for Illumina (New England Biolabs) and sequenced
using the Illumina HiSeq platform with 2x250 paired-end reads.

All sequencing results are publically available (BioProject ID: PRINA503799).

16S rRNA sequence processing and analysis

16S rRNA paired-end reads were processed using sllp [54]. Briefly, reads were
trimmed of any remaining primers using cutadapt [60] and discarded using sickle
based on a quality threshold of 30 (https://github.com/najoshi/sickle).
Paired-end reads were assembled using PANDAseq [61]. OTUs were picked us-
ing AbundantOTU+ with a 97% clustering threshold [62] and chimeras removed
using USEARCH [63] as implemented in QIIME [64]. The Ribosomal Database
Project classifier [65] was used to assign taxonomy against the 4th February
2011 release of the Greengenes database [66], and a phylogeny was created by
pruning the Greengenes phylogeny to those taxa present in the dataset. OTU
tables were created with QIIME [64]. Any OTU which was not assigned a bacte-
rial taxonomy or which only had one instance across the full dataset (singleton)
was culled. Any sample with < 1000 reads was discarded (Supplementary Ta-
ble 5). The result of this culling process, in combination with only sequencing
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plates with visual growth, resulted in a total of 531 samples (20 sputum samples
and 511 plates). The mean sequence depth across this dataset was 68,160 reads
per sample (range 2,032-159,381), with a mean number of OTUs of 94.1 (range
10-311).

Taxonomic summaries over multiple samples were performed by calculat-
ing the maximum relative abundance across samples, and normalizing to 100%.
Principal Coordinate Analysis (PCoA) plots were calculated using phyloseq [67]
and ggplot2 [68] in R after proportional normalization [69]. An OTU was con-
sidered present in the direct or culture-enriched sequencing if it had a rela-
tive abundance of > 0.01% (all exceptions noted). Phylogenies were decorated
with GraPhlAn [70]. Heatmaps were generated with pheatmap [71]. In the se-
quencing depth experiments shown in Extended Data Fig 3, rarefaction was
performed at varying depths using QIIME’s alpha rarefaction function.

Recovery of isolates from frozen culture-enriched stocks

Improved isolation of Stenotrophomonas maltophilia from frozen skim milk stocks
of select plates was performed using a selective medium as described in [72]. Iso-
lates were Sanger sequenced using the 8F (5-AGAGTTTGATCCTGGCTCAG-
3’) and 926R (5-CCGTCAATTCCTTTRAGTTT-3’) primers to the 16S rRNA
gene, resulting in a 900nt product. The identity of the isolates were confirmed by
comparisons to the Human Oral Microbiome Database (HOMD) and to NCBI’s
16S ribosomal RNA sequences (Bacteria and Archaea) Database.

The PLate Coverage Algorithm (PLCA)

Taking 16S rRNA gene sequencing results as input, the PLCA calculates, for
each sample, the optimal subset of cultured plates which should be included in
culture-enriched metagenomics in order to recapitulate the microbial commu-
nity. The PLCA (Supplementary Fig 3a-b) first identifies any OTU above
the user-supplied relative abundance threshold that was only cultured on a single
plate, and that plate is added to the “plate set” for culture-enriched sequencing.
Next, for all OTUs not already identified in the plate set, the plate with the
most OTUs present above the threshold is added to the plate set. This continues
until all OTUs are accounted for in the plate set and this list is output to the
user. The PLCA incorporates a user-adjustable relative abundance threshold to
determine which cultured OTUs the algorithm should include in the resulting
plate set. In the adjusted PLCA, a second threshold determines the cutoff of
OTU inclusion from the direct sequencing. Altering these thresholds results in
varying plate and OTU recovery (including OTUs below the threshold which
are included by consequence of being present on a plate which is part of the op-
timal plate set; Fig 4a, Extended Data Fig 7). The plate set for the adjusted
PLCA is not always a direct subset of the denovo PLCA because when only the
organisms present in the sputum are considered, there is often a better combi-
nation of plates that minimizes the number of total plates needed for sequencing.
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The PLCA is freely available from http://github.com/fwhelan/PLCA.

Metagenomic sequence processing and analysis

Resultant Illumina paired-end reads from the 20 sputum samples and their
associated adjustedPLCA plate sets (and one additional denovoPLCA plate
set for comparison) were processed first by using cutadapt to trim Illumina
adapters and primers [60]. Sickle, with a quality threshold of 30, was used to
remove low-quality sequences (https://github.com/najoshi/sickle). The
direct sequencing was decontaminated of host-associated reads using DeconSeq
[73]. Metagenomic assembly of the direct sequencing reads was conducted using
Megahit [74]. A co-assembly of the culture-enriched reads (as determined by
the denovo PLCA and/or adjusted PLCA) was also conducted using Megahit
[74]. The results of all assemblies were separately binned using MaxBin-2.2.1
[75]; MaxBin was chosen based on its performance in the CAMI Challenge [76].
Quality was assessed with checkM [77], and taxonomic assignments for each bin
determined using KrakenUniq (formally KrakenHLL) [78] and supplementary
scripts (https://github.com/shekas3/BinTaxaAssigner). Assembly statis-
tics, including mean/maximum contig length, and N50 values are provided in
Supplementary Table 6. Metagenome-assembled genomes (MAGs) were de-
fined as metagenomic bins containing > 70% completeness and < 10% contam-
ination as previously described [79]; non-MAG bins are any bin which does not
meet the criteria of a MAG. Only contigs >1000bp were binned. Bowtie2 was
used to map direct sequencing reads onto culture-enriched metagenomic bins.
Even though extensive decontamination and quality control measures were per-
formed, the direct sequencing suffered from considerable host DNA contamina-
tion, resulting in reads within these bins mapping with high stringency to the
human genome. This resulted in bins from the direct sequencing which were
much larger than the size of the closest reference genome (Supplementary
Fig 4). In contrast, culture-enriched bins with high “contamination” indicated
the inability of the binning algorithm to differentiate between closely-related
species. For example, b6 in denovo and b9 in adjusted had bin lengths almost
double the closest reference and contained taxonomic signatures of two Strep-
tococcus sp. (Supplementary Fig 4).

To compare the taxonomic composition of 16S rRNA gene and metagenomic
sequencing, we used the Kraken2 (version 2.0.7) classifier [80] to classify metage-
nomic reads from each culture-enriched sample against the 2011 Greengenes
database [66].

To show that the PLCA was not specific to the cystic fibrosis lung micro-
biota, the algorithm was applied to a previously published culture-enrichment
study of the gut microbiota [12]. The denovo and adjusted PLCA were ap-
plied, with default thresholds, to sample IBS3, and the taxonomic recovery
from culture-enriched metagenomic sequencing was predicted based on the 163
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rRNA gene sequencing profiles of the resulting plate set.

Functional annotations of each metagenomic bin were performed with a va-
riety of software. Virulence gene counts were determined by use of blastn (E-
value cutoff of 1078) [81] against PATRIC’s virulence factor library [82] and
counting the number of hits to unique virulence genes per bin. COG functional
category counts were determined using eggnog-mapper with default parame-
ters [83, 84]. Phage counts were determined by Phaster [85] and predictions of
antibiotic resistance genes were conducted with CARD (2.0.2) in conjunction
with the RGI (4.1.0) [86]. Secondary metabolites were predicted with PRISM
3 [87]. The presence of Clustered Regularly Interspaced Short Palindromic Re-
peats (CRISPRs) were determined using MinCED [88]. The direct sequencing
was plagued with host DNA contamination resulting in excessive bin lengths,
and, possibly, abundant type I errors in the identified functionality of the com-
munity (Fig 6, Supplementary Fig 4, Supplementary Table 7). All bar
charts were made using R’s ggplot2 [68] and heatmaps were visualized using R’s
pheatmap [71]. Haplotype diversity of the open reading frames of each bin were
calculated using Hansel and Gretel [37].

Data availability

All sequencing results are publically available (BioProject ID: PRJNA503799).
The PLCA algorithm is available from https://github.com/fwhelan/PLCA.

Code availability

All code developed by the authors is available under a GNU license at http://
github.com/fwhelan/PLCA and https://github.com/shekas3/BinTaxaAssigner.
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Figure Legends & Tables

Figure 1: The culture-enriched metagenomic sequencing work flow. Sputum sam-
ples collected from cystic fibrosis patients were plated onto 13 selective and non-selective media
and incubated either aerobically or anaerobically. 16S rRNA gene sequencing was conducted
on the sputum sample (direct sequencing) as well as on each media type (culture-enriched
sequencing).

Figure 2: The majority of the cystic fibrosis lung microbiota is culturable. a. The
majority of OTUs identified in the direct 16S rRNA gene sequencing were also recovered by
culture-enriched sequencing. b. In fact, 63.3% of OTUs across the dataset were identified only
by culture-enriched sequencing (green ring). In contrast, 5.7% of OTUs were not cultured
including many Tenericutes (*), and TM7 (*), and all Spirochaetes (&), and SR1 (+). Similar
results were obtained with a more stringent relative abundance cutoff (Extended Data Fig
la-b).
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Figure 3: Taxonomic diversity captured across culture-enrichment conditions.
The use of both anaerobic and aerobic conditions allows greater organism recovery as shown
by a pair of direct and culture-enriched sequencing of a representative sample (taxonomic
summaries (a) and Unweighted Unifrac S-diversity metric (n=26, b)). In a, culture-enriched
plates, indicated with circles as in Figure 1, are displayed alphabetically (Extended Data
Fig 1). In b, the direct sequencing clusters with some aerobic samples due to the abundance
of Pseudomonas sp., and not due to a lack of bacterial growth (Supplementary Fig 1). c. A
heatmap showing the maximum observed relative abundance (range 0-1) of each genus across
culturing conditions. Aerobic (Aer) and anaerobic (Ana) culture condition acronyms and
recipes are provided in the Methods. Genus-level labelling is available in Extended Data Fig
4. d. Within a genus, different OTUs can also have different culture preferences (also see Ex-
tended Data Fig 5). e. The number of OTUs obtained from culture-enrichment is compared
to the number obtained if only aerobic culturing was used, or if culture was restricted to that
of a standard clinical microbiology laboratory (CBA.Aer, MAC.Aer, MSA.Aer, CHOC.Ana).
f. Cultured organisms can be recovered from frozen bacterial stocks. Here, Stenotrophomonas
sp. were isolated from stocks with a relative abundance of 1.3% on CNA.Aer and 1.5% on
TSY.Aer, respectively. Plates with low abundance of Stenotrophomonas sp. were purposefully
chosen to indicate the power of this approach.

Figure 4: The PLCA determines an optimal plate set for culture-enriched metage-
nomics. a. The number of plates and OTUs necessary to capture the taxonomic diversity
above varying thresholds of a representative sample using the denovo and adjusted PLCAs.
The resultant OTUs are divided into those obtained above the threshold and those captured
by consequence of being present on plates within the optimal plate set. A similar output for
all other samples is available (Extended Data Fig 6). b. The plate subsets for the denovo
and adjusted PLCAs for each sample in the dataset. Each culture condition is represented
with a gray dot which is coloured in the samples (S) in which it is part of the PLCAs optimal
plate set. c. The number of identified OTUs obtained with the denovo (blue) and adjusted
PLCA (orange) when applied to Sample 1 with the thresholds (dotted lines) displayed in b.
Because the aim of the denovo PLCA is to recover the most abundant cultured organisms, the
OTUs identified by culture-enrichment are displayed; in contrast, the adjusted PLCA aims to
recover abundant OTUs from the original sample and thus the OTUs identified in the direct
sequencing are shown.

Figure 5: MAG and non-MAG bins resulting from culture-enriched and direct
metagenomic sequencing of the first sample in the dataset. Three sets of metagenomic
sequencing were performed on a representative sample in order to compare approaches. The
statistics for the bins resulting from direct (blue) and culture-enriched (green) metagenomic
sequencing. Culture-enriched metagenomics resulted in more metagenomic bins and more
MAGs (hashed overlay) compared to direct sequencing. The coverage and contamination
values (in parentheses) are displayed above each bin. Blue dots indicate the percent coverage
of direct sequencing reads to each bin.
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Figure 6: The taxonomic and functional diversity of direct and culture-enriched
metagenomic sequencing. a-c. Bins are ordered by completeness. From left to right,
estimations of virulence gene counts, the prevalence of proteins within COG functional cate-
gories, phage predictions, antibiotic resistance genes, counts of CRISPR genes, and secondary
metabolite predictions were estimated for direct (a) and culture-enriched (b-c) metagenomic
sequencing. Predictions are split into rows based on metagenomic bin assignments (bold as-
signments indicate MAGs). d. Haplotype diversity of the open reading frames within each bin.
Asterisks identify MAGs and bins are boxed if they correspond to Pseudomonas sp.. Sample
numbers are present on the x-axis. Boxplots display the 1st and 3rd quartiles, a horizontal
line to indicate the median, and whiskers extending to 1.5 times the interquartile range. 20
Metab. = Secondary Metabolites; NRP = Nonribosomal peptide; PK = Polyketide; NRP/PK
= Nonribosomal peptide/polyketide; UTCT = Unknown thiotemplated cluster type.
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