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Abstract

Whole genome sequencing of pathogens in outbreaks of infectious disease provides the poten-
tial to reconstruct transmission pathways and enhance the information contained in conventional
epidemiological data. In recent years there have been numerous new methods and models devel-
oped to exploit such high-resolution genetic data. However, corresponding methods for model
assessment have been largely overlooked. In this paper we develop both new modelling meth-
ods and new model assessment methods, specifically by building on the work of Worby et al.1

Although the methods are generic in nature, we focus specifically on nosocomial pathogens, and
analyse a data set collected during an outbreak of MRSA in a hospital setting.
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1 Introduction

Recent years have seen intense research activity directed towards methods for analysing data on
outbreaks of communicable diseases where the data contain high-resolution genetic information,
such as whole-genome sequences. Particular attention has been given to methods for reconstruct-
ing transmission trees.1–9 Broadly speaking, such methods fall into two categories, namely those
which require an initial reconstruction of a phylogenetic tree, which itself may be topologically
dissimilar to the transmission tree itself10, and those which do not. Among the latter are those in
which statistical inference is carried out by defining a probability model conditional on the observed
data, meaning that there is no underlying model that fully describes how the data were generated.
For example, a probability model for possible transmission trees can be defined conditional upon
observed symptom appearance times, but with no explicit model for the times themselves.6,11 Con-
versely, both Lau et al.12 and Worby et al.1 provide such data-generating models that incorporate
both the transmission dynamics of the epidemic and the genetic component. The Lau et al. model
assumes an underlying model for the within-host evolution of the pathogen while the Worby et al.
model uses a phenomenological model for the observed genetic distances in the data. One advan-
tage of the latter approach is that it avoids detailed assumptions about micro-evolution processes,
which are often not well-understood.

An attractive aspect of using data-generating models is that they can be used to assess the model
fit by quantifying how plausible the observed data are under the proposed model. However, to
our knowledge there have been no attempts to date to develop model assessment techniques for
transmission tree reconstruction methods which involve some kind of statistical model. The only
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partial exception is in Worby et al.1 in which a Bayesian posterior predictive approach is used to
assess model fit, but the focus is on the epidemiological aspects of the observed data rather than
the genetic part. One objective of the current paper is to develop a model assessment method for
high-resolution genetic data.

Roughly speaking, the models described in Worby et al.1 are defined by taking a standard individual-
based stochastic epidemic model, such as a Susceptible-Infective-Removed (SIR) model, and then
generating a random distance between each pair of infective individuals. Such a distance represents
a genetic difference between the pathogen in the two individuals, and its distribution depends on
the relationship between the individuals in the transmission tree. A typical genetic distance model
assumes that distances between pathogens will be positively correlated with some measure of the
individuals’ separation in the transmission tree. However, the Worby et al. models draw genetic
distances in a completely independent manner, which is somewhat unrealistic. For example, in an
infection chain of individuals in which A infects B infects C, one might reasonably expect that
the genetic distance between the pathogens in A and C should not be independent of the AB and
BC distances. A second objective of this paper is to provide new genetic distance models which
overcome this problem by incorporating a natural dependence structure.

Our methods will be illustrated via application to a patient-level data set taken from an outbreak
of Methicillin-resistant Staphylococcus aureus (MRSA) in a hospital in Thailand. The data include
both epidemiological information such as the admission and discharge times of patients, and the
dates and results of screening tests, and also genetic information in the form of whole-genome-
sequence data taken from isolates. The latter include examples of multiple isolates taken from the
same patient. Our analysis will provide estimates of both transmission rates and likely transmission
routes of the pathogen.

The paper is structured as follows. The transmission model and associated genetic distance models
are introduced in section 2, and inference methods are described in section 3. Model assessment
methods are described in section 4, along with an associated simulation study. The MRSA data
set and subsequent analysis can be found in section 5 and we finish with conclusions and discussion
in section 6.

2 Stochastic transmission models with genetic components

We now describe a general stochastic model which describes both the transmission of a pathogen
within a single hospital ward, and the way in which observed genetic distances between isolates
arise. The model contains parameters which will be estimated using data that consist of admission
and discharge times of individual patients, and the dates and results of diagnostic tests to detect
the pathogen, the latter including genetic data. Since our focus is not on the timing of admissions,
discharges or diagnostic tests, the model will assume such events to be determined by the data.
Some of the underlying assumptions of the model are discussed in more detail in section 6.

2.1 Transmission model

The model is discrete-time with days as time-units. We assume a study period starting on day TS
and ending on day TE . The ward is assumed to consist of a fixed number of beds, each of which
may be empty or be assigned to one patient. As mentioned above, the times at which patients enter
and leave the ward are assumed to be known from data, and thus can be regarded as deterministic
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events within the model.

At any time, each patient present on the ward is either susceptible, meaning that they are free from
the pathogen in question, or else colonised, meaning that they carry the pathogen at a detectable
level. Note that colonisation status only refers to the presence of the pathogen and does not indicate
whether or not the patient has any symptoms or illness as a result of colonisation. We assume that
once a patient is colonised, they remain so for the remainder of their time on the ward. Each
patient who enters the ward is, independently of all other patients, assumed to be already colonised
with probability p, and otherwise susceptible. Patients who enter the ward as colonised are said to
be colonised on admission.

Patients who are colonised are able to colonise susceptible patients who are on the ward at the same
time. In reality such transmission of the pathogen is likely to be indirect, for instance via healthcare
workers who attend the patients on the ward. We assume that each susceptible patient on day t
avoids colonisation on that day with probability exp(−βC(t)), where C(t) denotes the number of
colonised patients on the ward on day t, and otherwise is colonised. If colonisation occurs, then
(i) the susceptible patient is regarded as being colonised on day t + 1, and able to colonise other
patients; (ii) the patient responsible for the transmission event, who we refer to as the source of
the event, is selected uniformly at random from the C(t) colonised patients in the ward. Patients
who become colonised via transmission events on the ward are said to be colonised on the ward.

Our assumptions regarding transmission correspond to homogenous mixing insofar as every colonised
patient is equally likely to be able to colonise any susceptible patient. Note also that exp(−β) is
the probability that a given susceptible patient avoids colonisation from a given colonised patient
during a single day.

2.2 Diagnostic tests and genetic distances

Whilst on the ward, patients may have diagnostic tests to identify the pathogen. Following Worby
et al.1 we assume that the tests have perfect specificity, so that a susceptible patient never tests
positive, and sensitivity z, meaning that a colonised patient has probability z of testing positive.
The assumption of perfect specificity can easily be relaxed if required. Test outcomes are assumed
to be mutually independent given the underlying colonisation states. Some of the isolates obtained
via tests may be sequenced. Note that a single patient may have multiple sequenced isolates.

In order to construct a model that describes genetic distances between isolates, i.e. between ob-
served sequences, we instead define a more general model that describes distances between all
sequences, whether they are observed or not. An implicit assumption is that each colonised patient
has one associated sequence if they either have zero or one isolate, or n sequences if they have n ≥ 2
isolates.

If a patient A has a sequence i as a result of an isolate obtained on day t, then draw a distance
ψi,j to each sequence j generated on or before day t, where ψi,j is a realisation of a non-negative
integer-valued random variable Ψi,j . Here, Ψi,j may depend on both the relative position of the
patients associated with i and j in the chain of transmission between them, if any, and other genetic
distances already generated. Specific examples of Ψi,j are given in section 2.4 below. Note that A
may have multiple sequences due to tests on different days, and for each one we generate associated
distances to other sequences. Conversely, for a patient B who first enters colonised status on day t
and never has an isolate taken, we suppose that they have an unobserved sequence i on day t and
draw distances to all sequences j generated on day t or earlier in the same manner as for patient
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A.

Note that although we have described the generation of genetic distances as occurring through
time as the outbreak unfolds according to the transmission model, it is also possible to generate
the distances conditional upon the entire outbreak, since the transmission dynamics do not explicitly
depend on the distances. Either way, the genetic distances have to be generated in time-order if Ψi,j

allows dependencies on existing genetic distances, which is the case for the models in this paper.

2.3 Transmission forest and transmission distance

Recall that the model description includes sources, i.e. the identities of patients responsible for
transmission events. Thus the model also specifies the transmission forest, i.e. a directed graph
made up of disconnected components, each of which has a tree structure in which nodes correspond
to colonised patients and an edge from one node to another corresponds to a transmission event.
The root of each tree corresponds to a patient who is colonised on admission. We refer to a directed
path starting at one node and terminating at another as a transmission chain.

For two sequences i and j respectively associated with patients A and B we define the transmission
distance k = k(i, j) = k(j, i) to be the length of the transmission chain, if any, from A to B or vice
versa in the transmission forest. Thus k = 1 if A colonised B or vice versa, k = 2 if A colonised
C who colonised B or vice versa, and so on. We set k =∞ if there is no such transmission chain;
note that this is automatically true if A and B are in different trees, but can also be true if A and
B are in the same tree. For example, if C colonises A and B, then there is no directed path from
A to B or vice versa and so k =∞. We also define k = 0 if A and B are the same patient, in order
to account for patients who have multiple sequenced isolates.

Suppose now that k(i, j) > 1 and that the transmission chain from A to B is A,C1, . . . , Cm, B for
some m ≥ 1. For k = 1, . . . ,m denote by σ(k) the first (i.e. earliest in time) sequence associated
with patient Ck, and define

D = D(i, j) = ψi,σ(1) +
m−1∑
k=1

ψσ(k),σ(k+1) + ψσ(m),j

where ψk,l denotes the genetic distance between k and l. Thus D is the sum of the genetic distances
associated with direct colonisation events along the chain, where we take one pair of sequences for
each such event. We will use D to define Ψi,j in a way that incorporates dependencies on existing
genetic differences.

2.4 Specific models for genetic distances

We now provide two basic models for the Ψi,j random variable used to generate genetic distances.
Both models involve the Poisson distribution, which is natural in this context if one assumes that the
genetic mutations leading to differences between sequences are rare events in some sense. However,
other desired distributions can also be used, as illustrated in the MRSA application in section 5.
Both models also include an explicit dependence on existing genetic differences, unlike the models
described in Worby et al.1 in which all Ψi,j values are mutually independent.
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2.4.1 The Poisson Error Dependence Model

The first new model, the Poisson error model, assumes that the genetic distance between sequences
i and j follows a Poisson distribution with parameter θG, θI or θ if the corresponding patients are,
respectively, not connected by a transmission chain (k(i, j) = ∞), the same patient (k(i, j) = 0),
or adjacent in a transmission chain (k(i, j) = 1). It is also assumed that all these distances are
mutually independent. Conversely if k(i, j) > 1, the genetic distance is defined as D(i, j) + ξW ,
where P (ξ = 1) = P (ξ = −1) = 0.5, W is a Poisson random variable with parameter k(i, j)γ
truncated at D(i, j), and ξ and W are independent. The truncation ensures that the genetic
distance cannot be negative. The motivation for this part of the model is that Ψij will equal D(i, j)
on average, and have a variance that will increase with k(i, j). It follows that for x = 0, 1, . . .,

P(Ψi,j = x) =


(θxG/x!) exp(−θG) if k(i, j) =∞,
(θxI /x!) exp(−θI) if k(i, j) = 0,
(θx/x!) exp(−θ) if k(i, j) = 1,
(k(i,j)γ)|x−D(i,j)|

|x−D(i,j)|!CD

(
1
2

)1{x 6=D(i,j)} 1{x≤2D(i,j)} if k(i, j) > 1,

(1)

where 1A denotes the indicator function of the event A, and CD =
∑D(i,j)

l=0 (kγ)l/l!. Note that
although (1) only specifies the marginal distribution of each Ψi,j , the joint distribution is simply the
product of (i) the marginal distributions for k(i, j) = 0, 1 and∞ and (ii) the marginal distributions
for k(i, j) > 1 conditional on (i). An explicit formula for the joint distribution is given in section
3.2 below.

2.4.2 The Poisson Chain Dependence Model

Our second model has a similar structure to the first but now assumes that for sequences i and j
where k(i, j) > 1, the genetic distance is simply modelled as a Poisson random variable with mean
D(i, j). Thus Ψij will equal D(i, j) on average, and with a variance that will increase with D(i, j).
For x = 0, 1, . . ., we define

P(Ψi,j = x) =


(θxG/x!) exp(−θG) if k(i, j) =∞,
(θxI /x!) exp(−θI) if k(i, j) = 0,
(θx/x!) exp(−θ) if k(i, j) = 1,
(D(i, j)x/x!) exp(−D(i, j)) if k(i, j) > 1.

(2)

3 Inference methods

We now describe methods for fitting our models to data. We use a Bayesian framework and employ
data-augmented Markov chain Monte Carlo (MCMC) methods.

3.1 Data

We assume that the available data contain three components, denoted y, x and ψ. Component
y is the set of dates of admission and discharge, plus the dates of any diagnostic tests, for every
patient in the study. These dates are assumed to be known accurately and we make no attempt
to model them. Component x is the set of results, i.e. positive or negative, of all diagnostic tests.
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Component ψ is the set of sequenced isolates obtained during the study. For our purposes it is
sufficient for this to be summarised as the set of all observed genetic distances ψ = {ψi,j : i < j}.
Such distances are typically obtained by counting the number of single nucleotide polymorphisms
(SNPs) between a pair of sequences.1,8

It is possible for a single patient to be admitted to the ward several times during the study. For
simplicity we regard such readmissions as being different patients in the sense that we take no
explicit account of a patient’s previous history if they are readmitted. In other words, we will
use the term patient to refer to patient episode. However, our methods can easily be extended to
introduce dependencies between readmissions of the same patient, for instance by assuming that a
patient previously colonised will still be colonised if readmitted within a given length of time.13 In
practice the benefit of such additional modelling depends on the proportion of admissions that are
readmissions.

3.2 Bayesian inference and data augmentation

Both models defined in section 2 have parameters ρ = {p, β, z,Θ}, where Θ denotes the parameters
of the genetic distance model. In a Bayesian framework, the object of interest is the posterior
density π(ρ|x,y,ψ) ∝ π(x,ψ|y, ρ)π(ρ), where π(x,ψ|y, ρ) is the likelihood and π(ρ) is the prior
density of ρ, assumed to be independent of y a priori. However, the likelihood is analytically and
computationally intractable in practice, because its evaluation involves summing over all possible
colonisation events and unobserved sequences, both of which are found in the underlying stochastic
model. We therefore proceed by introducing additional parameters T and ψu, corresponding to
unobserved colonisation events and unobserved genetic sequences, in order to obtain a tractable
augmented likelihood. Specifically we use the decomposition

π(ρ, T,ψu|x,y,ψ) ∝ π(x,ψ,ψu|ρ, T,y)π(T |ρ,y)π(ρ). (3)

Here, π(T |ρ,y) is the likelihood of colonisation events while π(x,ψ,ψu|ρ, T,y) is the likelihood of
the test results and both observed and unobserved genetic differences conditioned on the colonisa-
tion events.

Let P denote the set of all patients in the study. For patient k let tak and tdk denote respectively the
date of their admission and discharge from the ward. If k is ever colonised set tck as the date on which
they first enter the colonised state, and otherwise set tck = ∞. Note that tck is not observed, and
neither is the actual number of colonised patients, since a colonised patient may avoid detection by
never having a diagnostic test or by testing negative. For patient k define φk = 1 if k is colonised on
admission and φk = 0 otherwise, and let Pc = {k ∈ P : φk = 0, tck 6=∞} denote the set of patients
who are colonised on the ward. For patient k ∈ Pc set sk = l if k is colonised by source patient l.
Let C(t) =

{
k ∈ P : tck ≤ t ≤ tdk

}
denote the set of patients in the colonised state on day t. Thus

the number of colonised patients on day t is given by C(t) = |C(t)|.

Define tc = {tck : k ∈ P}, φ = {φk : k ∈ P}, s = {sk : k ∈ Pc} and define ψu as the set of genetic
distances involving unobserved sequences. Finally let T = {tc,φ, s}.

Under the assumption of perfect specificity of the diagnostic test, each positive test in the data x
must be a true positive. Given T , we can also evaluate the number of false negative tests in x since
we know the true colonisation status of every patient at every time. Denote the numbers of true
positive and false negative tests by TP and FN respectively. Then the first term on the right hand
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side of (3) is

π(x,ψ,ψu|ρ, T,y) = zTP(1− z)FNP

 ⋂
(i,j)∈S

{Ψi,j = ψi,j}

 , (4)

where S = {(i, j) : i < j, ψi,j ∈ ψ ∪ψu} is the set of all pairs of sequences.

The joint distribution of genetic distances can be evaluated as

P

 ⋂
(i,j)∈S

{Ψi,j = ψi,j}


=

 ∏
(i,j)∈S1

P (Ψi,j = ψi,j)

 ∏
(i,j)∈S2

P (Ψi,j = ψi,j | {Ψu,v = ψu,v : (u, v) ∈ S1})


where S1 = S ∩ {(i, j) : k(i, j) ∈ {0, 1,∞}} and S2 = S ∩ {(i, j) : k(i, j) > 1}, and where the terms
in the products are given by (1) or (2) depending on the choice of model.

The likelihood of colonisation events is given by

π(T |ρ,y) = p
∑

k φk(1− p)
∑

k(1−φk)

×
∏
k∈P

1{tck=tak} + 1{tck 6=tak} exp

−min(tck−1,t
d
k)∑

t=tak

βC(t)

 (5)

×
∏
l∈Pc

(
1− exp(−βC(tcl ))

C(tcl )

)
1{sl∈C(t)}.

The three terms on the right hand side of (5) give the probabilities of (i) the admission status of each
patient, (ii) patients avoiding colonisation and (iii) patients being colonised by the source specified
in s. Note that the indicator function ensures that the source of a patient l who is colonised on
the ward must themselves be colonised when l becomes colonised; otherwise, the likelihood will be
zero.

3.3 Markov chain Monte Carlo methods

In order to explore the posterior density defined at (3) we use a Markov chain Monte Carlo (MCMC)
algorithm to sample from it. Our setting is sufficiently complex to make the use of standard
MCMC software packages infeasible in practice. The algorithm updates in turn the epidemiological
parameters (p, z and β), the genetic parameters Θ, and the latent (i.e. unobserved) variables T
and ψu. Our algorithm is related to that described in Worby et al.1, but includes some extensions
and refinements as well as a number of additional steps to improve the mixing properties of the
resulting Markov chain. Full details of the algorithm can be found in the supplementary material,
but here we describe it in outline for the Poisson chain dependence model.

All assigned prior distributions are assumed to be mutually independent. We assume a priori that
p and z follow Beta distributions, β and γ follow improper Uniform prior distributions on (0,∞),
and θ, θI , θG follow Gamma distributions. We use the notation ρ−p to denote ρ with p removed,
etc.
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Algorithm 1 MCMC algorithm to sample from π(ρ, T,ψu|x,y,ψ)

Epidemiological parameter updates

Update p by sampling directly from π(p|ρ−p, T,ψu,x,y,ψ);
Update z by sampling directly from π(z|ρ−z, T,ψu,x,y,ψ);
Update β using a Metropolis-Hastings (M-H) step.

Genetic parameter updates

Update θ by sampling directly from π(θ|ρ−θ, T,ψu,x,y,ψ);
Update θI by sampling directly from π(θI |ρ−θI , T,ψu,x,y,ψ);
Update θG by sampling directly from π(θG|ρ−θG , T,ψu,x,y,ψ);

Latent variable updates

Propose to add a colonisation time;
Propose to remove a colonisation time;
Update an existing colonisation time;
Change unobserved genetic distances ψu.

Updating the epidemiological and genetic parameters is fairly straightforward; these steps consist
of Gibbs updates of all the corresponding parameters, except β, where a Gaussian random-walk
M-H is employed instead. Updating T is much less straightforward. For example, proposing to add
a colonisation time is implemented by (i) selecting uniformly at random a currently uncolonised
patient and propose that they become colonised, (ii) selecting a source of colonisation from the set
of colonised patients on this day, also uniformly at random, and (iii) drawing a set of proposed
distances to every other sequence from every colonised patient. To update the genetic distances we
first pick a patient uniformly at random from all those with one or more imputed sequences. We
then pick one of their sequences, uniformly at random, and propose a new set of genetic distances
according to the underlying genetic distance models.

We also perform additional updates which we found improved the mixing of the Markov chain; in
particular, updating the genetic parameters and distances simultaneously, swapping a patient and
their source and changing a source without changing colonisation times.

Full details of all steps of the MCMC algorithm can be found in the supplementary material.

4 Model assessment methods

Within the Bayesian framework, one natural way to undertake model assessment is to compare
one or more summaries of the observed data with the corresponding quantities under the posterior
predictive distribution. This is achieved by (i) fitting the model to data and generating samples
from the posterior distribution of the model parameters ρ; (ii) simulating a number of new data sets
using these samples as parameter values in the model; (iii) comparing the observed data summaries
to the distribution of summaries obtained by simulation, typically checking whether or not the
former lies within the central region or the tails of the latter.

For the epidemiological aspects of the data, suitable data summaries include the proportion of
patients with a positive test result or with a positive test on admission.1 Although a similar approach
can be taken for the genetic aspects of the data, we found that in practice this can be problematic.
Specifically, we considered five summaries of the genetic data, namely the mean, median, range,
interquartile range and sum of the genetic distances. In each case we first simulated a number of
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data sets, then carried out the model fitting and assessment procedure, fitting both the true model
used to create the data set and also an alternative model with a different model for the genetic
distances. We found that using these posterior predictive checks provided evidence against the fit
of the wrong model, but also, for some data sets, gave evidence against the fit of the true model.14

A key reason why single summaries of genetic distance may be misleading is that the distances
are conditional upon the transmission forest, and even simulating the correct model with the true
parameter values may only rarely lead to a transmission forest compatible with the observed data.
This motivates us to consider an alternative approach in which simulations are generated using
samples from the posterior distribution of both ρ and the transmission forest described by T .

4.1 Model assessment for genetic distances

The following procedure produces N simulated sets of genetic distances ψ̃1, . . . , ψ̃N which can be
compared with the observed data ψ. Suppose we have M posterior samples of (ρ, T ) from the
MCMC algorithm. We assume that the population of patients P and the dates contained in y are
the same as in the observed data.

1. For k = 1, . . . , N , choose a posterior sample (ρ, T ) uniformly at random from the M available.
2. Simulate a set of genetic distances ψk between all colonised patients using Θ, tc and s from
(ρ, T ).
3. Set ψ̃k as the restriction of ψk to the distances corresponding to those in ψ.

Note that step 3 is necessary because the transmission forest described by T may well include
patients who do not correspond to any of the observed sequenced isolates. Conversely, since T
has to be compatible with the observed data then for every ψi,j ∈ ψ there is a corresponding
ψ̃(i,j)k ∈ ψ̃k, k = 1, . . . , N . Thus each of ψ̃1, . . . , ψ̃N are sets of simulated distances for the same
set of sequenced isolates as the data ψ.

In order to compare ψ̃1, . . . , ψ̃N with ψ we assign each ψi,j ∈ ψ a value αi,j that describes how
typical it is with respect to the distribution of simulated values ψ̃i,j = (ψ̃(i,j)1 , . . . , ψ̃(i,j)N ). Ways
to do this include a binary cut-off (e.g. set αi,j as the indicator function of the event that ψi,j lies
within the 90% highest probability region of ψ̃ ) or setting αi,j as the smallest α such that ψi,j lies
within the (100×α)% highest probability region of ψ̃ (so the smaller αi,j , the more typical ψi,j is.)
Finally, the set of αi,j values can be presented graphically; an example is given below.

4.2 Simulation study

We conducted a brief simulation study to evaluate the model assessment method described above.
Three data sets were simulated, with parameters as shown in table 1. Admission dates for patients
were chosen uniformly at random and independently from the study period, and each patient’s
length of stay was independently drawn from a Poisson distribution with a given mean. Swabs
were taken from all patients on the ward every other day. Each positive swab was assumed to
produce an observed sequence. Genetic distances were generated using either the Poisson error
model or the Poisson chain model.

For each simulated data set we fitted three models, namely the two Poisson models and also a
Geometric model described in section 5.2 below, and carried out the model assessment procedure for
genetic distances defined in section 4.1. The results are shown graphically in Figure 1 where we use
a binary cut-off. Each subfigure shows, for each pair of sequences in the simulated data, whether or
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not the observed genetic distance lies within the central 95% posterior predictive probability region,
with light shading used to indicate that it does. The first column shows results when the fitted
model is the same as the model used to produce the simulated data, with the other columns showing
results when the fitted model is different. It can be seen that the model assessment procedure is
largely successful in identifying the true model in each case.

Simulation 1 Simulation 2 Simulation 3

Study length (days) 100 200 100
Number of patients 100 200 100
Average length of stay (days) 7 5 7
True model Poisson Error Poisson Chain Poisson Error
p 0.06 0.06 0.06
z 0.8 0.8 0.8
β 0.01 0.02 0.02
θ 40 40 2
θG 200 200 200
γ 30 - 40

Table 1: Models and parameters used in simulation study

5 Application to MRSA

5.1 Data

We now apply our methods to data on an outbreak of MRSA in a hospital in Thailand in 2008.
These data were collected during a study on two intensive care units in the same 1000 bed hospital
in northeast Thailand.15 The data include 83 MRSA genome sequences from 51 distinct patients,
which were aligned to a reference genome of the dominant lineage (ST 239 strain TW20) of MRSA in
the hospital. A total of 2591 nucleotides changed from the reference genome in at least one patient
sequence. The data were collected by repeat screening for MRSA of patients on two intensive care
units (ICUs), one surgical and one paediatric, over three months. Table 2 summarises the data
from each ICU and Figure 2 displays timelines for each of the patients who ever had a positive
swab test. Further details of the data set can be found in Tong et al.15

ICU 1 ICU 2

Ward type Surgery Paediatric
Number of patients admitted 170 114
Number of distinct patients 169 98
Number of patients with at least one positive swab 20 29
Total number of positive swabs collected 51 89
Total number of swabs sequenced 43 40

Table 2: Summary of the MRSA data
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Figure 1: Results from simulation study on model assessment. The axes in each figure refer to
the sequences, and each point shows whether the observed genetic distance between a sequence
pair falls in the central 95% posterior predictive probability region (light shading) or not (dark
shading). Each row shows results of fitting three models with true model (either Poisson error
dependence or Poisson chain dependence) in first column, the other Poisson model in the second
column and a Geometric distribution version of the true model in the third column. Rows top to
bottom correspond to simulations 1-3, respectively (see table 1).
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Figure 2: MRSA data: Timelines for patients with a positive swab test. Each patient’s line
corresponds to their stay on the ward, with shading changing from light to dark on the date of
their positive swab test. Day 1 and Day 70 refer to real-time days during the study.
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5.2 Models

We initially fitted the two Poisson distribution models for genetic distance defined in sections
2.4.1 and 2.4.2. As shown below, these models did not provide a convincing fit to the data and
so we also developed four additional models. These four models have the same assumptions as
the Poisson models for distances between sequences in a chain of transmission with transmission
distance k(i, j) > 1, but differ by having alternative distributions for other distances. In particular
we used Geometric distributions, as employed in Worby et al.1, and Negative Binomial distributions,
to allow separate modelling of the mean and variance of those genetic distances that were not
well-described by one-parameter distributions. For each distribution we considered both error
dependence and chain dependence versions. A summary of all six models is given in table 3.

We assigned uninformative prior distributions to the model parameters; full details are given in the
supplementary material.

Poisson models Geometric models Negative Binomial models

k(i, j) =∞ Pois(θG) Geom(ϕG) NB(µG, σ
2
G)

k(i, j) = 0 Pois(θI) Geom(ϕI) Geom(ϕI)
k(i, j) = 1 Pois(θ) Geom(ϕ) NB(µ, σ2)

Table 3: Distribution of the genetic distance Ψi,j between sequences i and j for the six models used
for the MRSA data analysis. Here k(i, j) is the transmission distance between i and j as defined
in section 2.3, Pois(θ) is a Poisson distribution with mean θ, Geom(ϕ) is a Geometric distribution
with mean ϕ−1 and NB(µ, σ2) is a Negative Binomial distribution with mean µ and variance σ2.
For k(i, j) > 1, all models use the distributions specified in equations (1) or (2).

5.3 Results

Table 4 contains results from all six models for the epidemiological parameters. There is reasonable
agreement across all models, particularly for the transmission parameter β and test sensitivity z,
the latter being around 70% for Ward 1 and 80% for Ward 2. The proportion of patients estimated
to be colonised on admission shows more variability between models, ranging from 3% to 6% on
Ward 1 and from 3% to 12% on Ward 2.

It is of interest to see how much the whole-genome-sequence data tell us about the epidemiological
parameters. It is possible to fit the underlying transmission model without using any genetic data,
and this yields posterior mean estimates (p, z, β) = (0.046, 0.759, 0.012) and (0.193, 0.862, 0.007))
for wards 1 and 2 respectively.16 The sensitivity and transmission rate parameters are broadly
similar to those in table 4, but in Ward 2 the probability of being colonised on admission is far
higher if the genetic data are ignored. In this case the genetic data thus suggest more within-
ward transmission than that inferred from epidemiological data alone. The probability of being
colonised on admission and the within-ward transmission rate are typically negatively correlated a
posteriori when estimated solely by epidemiological data, since they represent competing ways of
explaining the test results, and our results show that the whole-genome-sequence data provide a
way of partially resolving this issue.

Table 5 shows genetic parameter estimates for all six models. The estimates for mean genetic
distance for within-patient isolates in a given ward are comparable across all models. The corre-
sponding variances are determined by the mean values, since the underlying assumed distribution
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Ward 1 Ward 2

Model p z β p z β

Poisson 0.048 0.72 0.013 0.067 0.79 0.010
Error (0.02,0.09) (0.59,0.83) (0.007,0.021) (0.028,0.12) (0.68,0.84) (0.006,0.014)

Poisson 0.049 0.71 0.012 0.033 0.81 0.013
Chain (0.019,0.092) (0.58,0.81) (0.007,0.019) (0.007,0.076) (0.71,0.90) (0.008,0.019)

Geometric 0.060 0.68 0.015 0.10 0.78 0.011
Error (0.024,0.11) (0.56,0.80) (0.008,0.025) (0.04,0.19) (0.68,0.88) (0.006,0.016)

Geometric 0.034 0.69 0.017 0.11 0.84 0.011
Chain (0.01,0.071) (0.57,0.80) (0.009,0.027) (0.053,0.19) (0.74,0.91) (0.007,0.018)

Neg Bin 0.038 0.72 0.016 0.084 0.83 0.012
Error (0.013,0.076) (0.60,0.83) (0.009,0.024) (0.036,0.15) (0.74,0.90) (0.007,0.018)

Neg Bin 0.030 0.71 0.016 0.12 0.79 0.011
Chain (0.008,0.066) (0.59,0.82) (0.009,0.024) (0.057,0.20) (0.70,0.87) (0.006,0.017)

Table 4: MRSA data: Posterior means and equal-tailed 95% credible intervals for the epidemiolog-
ical parameters.

is either Poisson or Geometric. The mean estimates for distances between patients in a given ward
who are in different transmission trees are broadly comparable. Again the corresponding variances
are determined for the Poisson and Geometric models, but for the Negative Binomial models the
variance can be estimated separately, and found to be considerably different from the Poisson mod-
els. This suggests that the Poisson models fit the data less well in this respect. Similar conclusions
hold for the parameters associated with direct transmission, although here the mean values are less
similar across the three model types.

Figures 3 and 4 show inferred transmission forests for each model. Broadly speaking, the error
dependence and chain dependence versions of each model give similar results, whereas more vari-
ation is seen across the three different distributions. In particular, the Negative Binomial models
suggest slightly more transmission within the ward, and fewer imported cases, than the Poisson or
Geometric models. This is most likely due to the fact that the former allow for greater variance
in the genetic distances in direct transmission, which in turn makes such transmission more likely
given the observed data.

Within ward 1, all models suggest that there are two principle transmission chains, initiated by
patients T0771.1 and T126.1. Patient T126.1 in particular appears to be the source of colonisation
for numerous other patients; one possible reason for this is that particular patient was present on
the ward for far longer than any of the others. A previous analysis, using completely different
methods, also found patient T126.1 to be responsible for many of the colonisation events.15 Within
ward 2 the results are more variable across models, although there is still evidence of patients who
act as the source of colonisation for several other patients, such as patients T012.2 and T159.1, the
former again being present on the ward for longer than most other patients.

5.4 Model assessment

We carried out model assessment of both the epidemiological and genetic aspects of the models. For
the former we first compared the observed total number of patients with a positive swab test result,
namely 30 patients in ward 1 and 22 in ward 2, with the corresponding number obtained from the
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(f) Negative Binomial Chain Model

Figure 3: MRSA data: Estimated transmission forest under each model for Ward 1
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ICU 2: Inferred transmission network
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(d) Geometric Chain Model
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(e) Negative Binomial Error Model

ICU 2: Inferred transmission network
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(f) Negative Binomial Chain Model

Figure 4: MRSA data: Estimated transmission forest under each model for Ward 2
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Ward 1 Separate Within-patient Direct

Model Mean Variance Mean Variance Mean Variance

Poisson 380.9 380.9 37.2 37.2 39.6 39.6
Error (378.8,383.2) (378.8,383.2) (36.3,38.1) (36.3,38.1) (38.1,41.1) (38.1,41.1)

Poisson 380.6 380.6 37.2 37.2 40.2 40.2
Chain (378.9,382.2) (378.9,382.2) (36.3,38.1) (36.3,38.1) (39.1,41.4) (39.1,41.4)

Geometric 367.1 1.35 ×105 38.2 1.43 ×103 47.5 2.30 ×103

Error (335.1,401.5) (1.12,1.61)×105 (33.1,44.2) (1.06,1.91)×103 (32.5,69.0) (1.02,4.70)×103

Geometric 369.2 1.36 ×105 38.2 1.43 ×103 93.7 9.63 ×103

Chain (338.7,402.2) (1.15,1.62)×105 (33.0,44.1) (1.06,1.92) ×103 (48.3,134.6) (2.52,18.1)×103

Neg Bin 386.1 4.72 ×104 38.2 1.43 ×103 120.5 1.95×104

Error (365.6,406.8) (3.52,5.82)×104 (33.1,44.3) (1.10,1.92)×103 (96.7,155.5) (1.15,3.50)×104

Neg Bin 383.60 4.55 ×104 38.2 1.43×103 131.5 2.38×104

Chain (364.1,404.0) (3.82,5.40)×104 (33.0,44.2) (1.10,1.92)×103 (106.7,157.1) (1.41,3.63)×104

Ward 2 Separate Within-patient Direct

Model Mean Variance Mean Variance Mean Variance

Poisson 339.0 339.0 8.0 8.0 52.3 52.3
Error (337.1,341.2) (337.1,341.2) (6.33,9.84) (6.33,9.84) (50.3,54.3) (50.3,54.3)

Poisson 212.0 212.0 8.0 8.0 61.7 61.7
Chain (209.5,214.5) (209.5,214.5) (6.32,9.87) (6.32,9.87) (59.3,68.4) (59.3,68.4)

Geometric 223.6 4.99 ×104 9.11 80.6 65.6 2.34 ×103

Error (204.7,243.1) (4.17,5.88) ×104 (5.18,16.1) (21.6, 231.7) (41.2,124.6) (1.09,4.69) ×103

Geometric 222.0 4.92 ×104 9.10 81.9 42.0 2.02 ×103

Chain (204.7,240.0) (4.18,5.73)×104 (5.16,16.1) (21.6,242.9) (20.5,79.5) (4.00,62.7)×103

Neg Bin 217.7 6.70 ×104 9.10 82.2 55.2 2.51 ×103

Error (196.7,240.3) (5.29,8.35) ×104 (5.18,16.3) (21.7,248.5) (41.6,76.2) (1.10,6.17) ×103

Neg Bin 208.0 5.81 ×104 9.09 81.8 183.2 9.27 ×104

Chain (190.0,228.9) (4.72,7.22) ×104 (5.18,16.1) (21.8,237.6) (95.4,365.2) (1.81,37.2) ×104

Table 5: MRSA data: Posterior means and equal-tailed 95% credible intervals for the mean and
variance of the genetic distance between sequenced isolates that are in different transmission chains
(separate), taken from the same patient (within-patient) or taken from patients directly connected
in a transmission tree (direct).

posterior predictive distribution. Specifically, we performed 1000 simulations of each model with
all admission, discharge and test dates fixed to the known values from the data, with parameters
drawn from the posterior distribution, i.e. from the MCMC algorithm output for the model in
question. Table 6 shows 95% probability intervals from the simulations, all of which contain the
observed values.

We next considered a time-dependent quantity for model assessment, namely the number of patients
on the ward on a given day who have had a positive swab on that day or any previous day. Figures
5 and 6 show 95% probability intervals from the simulations. In each case the observed data lie well
within the probability intervals for all, or all but a few days, and so there is no material evidence
against any of the models.

To assess the genetic part of the model we used the method described in section 4. Figure 7 shows
results based on 1000 genetic distance matrices drawn from the posterior predictive distribution for
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(b) Poisson Chain Model
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(c) Geometric Error Model
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(d) Geometric Chain Model
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(e) Negative Binomial Error Model
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(f) Negative Binomial Chain Model

Figure 5: Posterior prediction of the number of patients on the ward with a positive swab over
time under each model for Ward 1. The black step-function-like line shows the observed data,
the rapidly-varying line shows the posterior predictive mean, and the shaded area is the posterior
predictive 95% probability interval.
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(a) Poisson Error Model
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(b) Poisson Chain Model
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(c) Geometric Error Model
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(d) Geometric Chain Model
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(e) Negative Binomial Error Model
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(f) Negative Binomial Chain Model

Figure 6: Posterior prediction of the number of patients on the ward with a positive swab over
time under each model for Ward 2. The black step-function-like line shows the observed data,
the rapidly-varying line shows the posterior predictive mean, and the shaded area is the posterior
predictive 95% probability interval.
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Model Ward 1 Ward 2

Poisson Error (7,53) (5,28)
Poisson Chain (2,33) (1,32)

Geometric Error (2,53) (4,39)
Geometric Chain (1,34) (7,49)

Neg Bin Error (7,56) (6,33)
Neg Bin Chain (1,31) (7,44)

Table 6: MRSA data: 95% highest posterior predictive probability regions for the total number of
patients to have a positive swab. The observed values were 30 patients for ward 1 and 22 patients
for ward 2.

each model. It is clear that the Poisson models have inferior model fit compared to the Geometric
and Negative Binomial models, with the latter providing a reasonable fit to the data.

6 Conclusion and Discussion

We have developed new models for analysing whole-genome sequence data by introducing natural
dependencies into the class of models developed by Worby et al.1 In addition we have developed
model assessment methods that provide a means for quantifying how well the models fit the genetic
data. Although we have focused on nosocomial pathogens, the methods themselves are generic in
nature and could easily be adapted to other infectious disease settings.

Whole-genome-sequence data offer the potential to reconstruct transmission pathways in a disease
outbreak with less uncertainty than that provided by standard epidemiological data alone. In
healthcare settings, one clinically important consequence is that it becomes more feasible to accu-
rately identify which cases have arisen due to internal transmission as opposed to being imported
cases. Such information can be used to inform infection control policies and procedures.

We used Poisson, Geometric and Negative Binomial distributions for genetic distance models.
Choosing which distributions to use can be dependent on the data set under consideration, al-
though in our experience there is often little material difference in the resulting inference for who-
infected-whom. There is some loose justification for the use of Poisson distributions insofar as the
genetic mutations counted by SNPs could be reasonably thought of as rare events, for which the
Poisson distribution is a standard modelling choice. However, SNP data themselves arise via com-
plex sequencing procedures, and hence the distributions in our models are effectively attempting
to capture the output from the combination of underlying biological mechanisms and laboratory
methods.

The genetic distance models employed in this paper do not make explicit use of time, but instead
depend upon the number of links along transmission chains. However, it is natural to suppose
that the genetic distances along a transmission chain may depend on the times between successive
colonisation events. We found that incorporating this idea into our models had little material
impact on the results for the MRSA data.14 One reason for this is that most patients only remain
in the ward for a few days, so there is relatively little variability in the times between successive
colonisation events, and thus the number of links in the transmission chain is almost as informative
as the times themselves.

Our models are defined in discrete-time, although our methods can equally be applied to continuous-
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Figure 7: MRSA data: Model assessment using methods described in main text. The axes in
each figure refer to the observed sequences, and each point shows whether the observed genetic
distance between a sequence pair falls in the central 95% posterior predictive probability region
(light shading) or not (dark shading). Panels (a)-(f) are Ward 1 and (g)-(l) are Ward 2.
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time models.14 For hospital infection models, small estimation biases can arise if a discrete-time
model is used in a setting where the data are assumed to be generated from a continuous-time
model17, although some of the underlying assumptions in the transmission mechanisms of both
discrete-time and continuous-time models are questionable in reality. For instance, continuous-
time models typically assume that transmission potentially occurs at any time of day or night, but
most intensive care units see more potential colonisation opportunities during the day as healthcare
workers, other staff and visitors are far less likely to be active on the ward during the night.
Conversely, discrete-time models aggregate events together into time units such as days, but this
simplification can be unrealistic, particularly if multiple colonisation events are likely to occur
within one time unit. For the MRSA data we have considered, there are relatively few colonisation
events, which helps motivate our choice of discrete-time models.

We have assumed that if individuals become colonised then they remain so for the duration of their
time on the hospital ward. This is a fairly common assumption13,18,19 and is reasonable for wards
such as intensive care units where patient stays are typically fairly short, and in particular likely to
be shorter than the time taken for clearance of pathogen carriage. However, the methods we have
described could equally be applied to models that include carriage clearance, and also readmission
of patients, since the data-augmentation methods keep track of the required information such as
the transmission forest.
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