
sensors

Article

Deep Learning with Dynamically Weighted Loss
Function for Sensor-Based Prognostics and
Health Management

Divish Rengasamy 1,*, Mina Jafari 2, Benjamin Rothwell 1, Xin Chen 2 and
Grazziela P. Figueredo 3

1 Gas Turbine and Transmissions Research Centre, The University of Nottingham, NG7 2RD, UK;
benjamin.rothwell@nottingham.ac.uk

2 Intelligent Modelling and Analysis Group, School of Computer Science, The University of Nottingham, NG8
1BB, UK; mina.jafari@nottingham.ac.uk; xin.chen@nottingham.ac.uk

3 The Advanced Data Analysis Centre, The University of Nottingham, NG8 1BB, UK;
grazziela.figueredo@nottingham.ac.uk

* Correspondence: divish.rengasamy@nottingham.ac.uk

Received: 02 December 2019 ; Accepted: 20 January 2020; Published: 28 January 2020
����������
�������

Abstract: Deep learning has been employed to prognostic and health management of automotive
and aerospace with promising results. Literature in this area has revealed that most contributions
regarding deep learning is largely focused on the model’s architecture. However, contributions
regarding improvement of different aspects in deep learning, such as custom loss function for
prognostic and health management are scarce. There is therefore an opportunity to improve upon
the effectiveness of deep learning for the system’s prognostics and diagnostics without modifying
the models’ architecture. To address this gap, the use of two different dynamically weighted loss
functions, a newly proposed weighting mechanism and a focal loss function for prognostics and
diagnostics task are investigated. A dynamically weighted loss function is expected to modify the
learning process by augmenting the loss function with a weight value corresponding to the learning
error of each data instance. The objective is to force deep learning models to focus on those instances
where larger learning errors occur in order to improve their performance. The two loss functions
used are evaluated using four popular deep learning architectures, namely, deep feedforward neural
network, one-dimensional convolutional neural network, bidirectional gated recurrent unit and
bidirectional long short-term memory on the commercial modular aero-propulsion system simulation
data from NASA and air pressure system failure data for Scania trucks. Experimental results show
that dynamically-weighted loss functions helps us achieve significant improvement for remaining
useful life prediction and fault detection rate over non-weighted loss function predictions.

Keywords: predictive maintenance; deep learning; prognostics and health management; loss function;
weighted loss function

1. Introduction

Prognostic and health management (PHM) has become increasingly important in maintaining
the integrity of automotive, aerospace, and manufacturing systems [1–4]. Machines are now fully
equipped with sensors that constantly gather information regarding their status. The ability to utilize
sensor data to accurately predict and diagnose problems facilitates effective maintenance management.
In addition, the widespread use of sensors in machines has allowed for the transition from time-based
maintenance to condition-based maintenance, where decision making is based on data collected via
sensor monitoring, allowing for more flexible, reliable and robust maintenance services.

Sensors 2020, 20, 723; doi:10.3390/s20030723 www.mdpi.com/journal/sensors

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@Nottingham

https://core.ac.uk/display/288429989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/20/3/723?type=check_update&version=1
http://dx.doi.org/10.3390/s20030723
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 723 2 of 21

The increased number of successful examples of applications of deep learning in manufacturing,
automotive, and aerospace industry has shown that it is a viable tool for condition-based
maintenance [5–9]. Current deep learning research for these application areas, however, mostly
focuses on changing the model architectures to improve remaining useful life (RUL) or fault prediction
accuracy. The literature regarding improvement of other components of the deep learning model
is scarce. Aspects such as custom loss function and hyperparameter optimization are not largely
investigated in PHM research. In particular, this paper is interested in establishing the means to
improve the standard loss function calculation to achieve better prediction accuracy. This approach
modifies the loss function so that the weights associated with it are dynamically calculated. The error
calculated from the dynamically weighted loss function can be viewed as a mechanism to force the
learning process to focus on those instances that has the poorest prediction outcomes from the deep
learning model. The objective is to improve the overall predictive performance of the deep learning
systems investigated. The weighted loss function proposed works by generating a weight map [10],
which is calculated based on the predicted value and error obtained for each instance. This method is
therefore applicable to both prognostic and diagnostic tasks. In addition to the proposed weighted
loss function, an existing dynamically weighted loss function, focal loss [11] (FL), that is designed
for predicting probabilistic outputs which are more suited for diagnostics task such as fault detection
were investigated. FL is an extension of cross entropy (CE) loss with dynamically weighted loss.
The hypothesis is that the deep learning models using dynamically weighted loss function will learn
more effectively compared to a standard loss function.

The performance of the new approach is examined by observing deep learning models’ predictive
performance for two case studies: (1) Gas turbine engine remaining useful life (RUL) prediction using
commercial modular aero-propulsion system simulation (CMAPSS) with the weighted loss function
proposed in this paper and (2) air pressure system (APS) fault detection in trucks using the FL. CMAPSS
is a run-to-failure gas turbine engine dataset openly sourced by NASA [12] and it is the standard
dataset to compare different machine learning models for aerospace prognostics [13,14]. The APS fault
detection dataset is collected from heavy Scania trucks in everyday usage. APS is a crucial part that
helps in the braking and gear changing of trucks. The goal is to accurately detect the fault in APS
and, most importantly, not to omit a fault when it is present. Results show that the proposed loss
function and FL outperforms non-weighted loss function using deep feedforward neural network
(DNN), one-dimensional convolutional neural network (CNN1D), bidirectional gated recurrent unit
(Bi-GRU) and bidirectional long short-term memory (Bi-LSTM) deep learning architectures for the
CMAPSS and APS results.

This paper is organized as follows. Section 2 provides a background on neural networks and
their learning processes. In addition, it introduces the deep learning architectures used in this paper
together with a review of their applications to PHM. Section 3 introduces our proposed weighted loss
function as well as FL. Section 4 outlines the experimental design. Section 5 presents the results and
discussions. Finally, the conclusions and future work are drawn in Section 6.

2. Background

This section provides a background on the basic structure of a neural network and how its
learning process takes place. In addition, we introduce the deep learning architectures used in this
paper and review how they are used for PHM. From our survey, we observed that most work focuses
on modifying the networks’ architecture, with little focus given to the loss function.

2.1. How Neural Network Learning Is Performed

To illustrate how the learning process of a neural network typically occurs, a simple architecture
known as perceptron is employed. A perceptron consists of an input layer with its units as shown in
Figure 1. Each neuron unit learns to assign a weight value (w) to each of its inputs (x). As expressed in
Equation (1), the output is the sum of the multiplication of the inputs and their corresponding weights,

Sensors 2020, 20, 723 3 of 21

and it is followed by adding a constant value bias, b. The inputs in the context of PHM are the sensors
data collected and the output will produce a prediction according to the task at hand.

Figure 1. Basic components in a perceptron comprises of the input layer that can take in an arbitrary
number of inputs, s, the weight, w that maps the inputs to the subsequent layer, a bias, b, activation
function H to introduce non-linearity into the function and the output, Z.

Zθ(xi) = xi ∗ wi + b (1)

where θ is the weight, w and bias, b. Subsequently, there is an activation function before the final
output. The purpose of the activation function is to introduce non-linearity into the output of a neuron.
To learn, first the weights wi and bias b are randomly initialized. A widely used activation function is
the rectified linear unit (ReLU), as calculated in Equation (2).

Hθ(xi) = max(0, Z(xi, θi)) (2)

Furthermore, the output from activation function is equivalent to the predicted output, ŷi,

ŷi = Hθ(xi) (3)

Once the predicted output, ŷi is obtained, the error, E of prediction can be evaluated using the
perceptron’s output against the actual value, yi.

E =
n

∑
i=1

[ŷi − yi] (4)

The error, E calculated in (4) as an input to calculate the loss using a loss function. Equation (5) is a
mean square loss function for this application.

l(θi) =
1

2n

n

∑
i=1

E2 (5)

Subsequently, gradient descent is used to update the weights and biases based on the magnitude of the
loss. Gradient descent is an iterative optimization algorithm used to minimize the loss by updating
the weights as shown in Equation (6)

wi = wi − α
∂

∂wi
l(wi) (6)

Sensors 2020, 20, 723 4 of 21

The partial derivative in Equation (6) takes the derivative of the loss function with respect to weight is
the equivalent of calculating the gradient of loss. The learning rate α controls the magnitude of change
in each iteration. Through the iteration, gradient descent will converge on the minima and provide the
best value for each weight parameter as illustrated in Figure 2.

Figure 2. An initial weight value iteratively minimized based on the partial derivative of a loss function
to achieve global minima in loss.

2.2. Deep Feedforward Neural Network

Early form of feedforward neural network are multi-layer perceptron (MLP). A MLP consists of
three layer types, namely the input, hidden, and the output layer. Each layer is composed of several
neuron units. The neurons in each layer are fully connected to the neurons in the subsequent layer and
the connection holds a weight value that will contribute the output value. The connections’ weights are
randomly initialized and then updated using the gradient descent method (introduced in Section 2.1)
during training. As shown in Figure 3, the MLP neural network can be extended to a deep neural
network by increasing the number of hidden layers, which allows for learning more complicated
relationships between inputs.

Figure 3. A deep feedforward neural network (DNN) similar to the perceptron has the input layer
along with the output layer. However, the DNN has a large number of hidden layers and neuron units.

Sensors 2020, 20, 723 5 of 21

2.3. Convolutional Neural Networks

Convolutional neural networks (CNNs) [15] are neural networks that contain different layers
such as the convolution, max pooling, and fully connected layer. The purpose of max pooling layer is
to downsample the input and reduce the dimension while the convolution layer extracts high-level
features from the input. This allows CNN to perform better on data that has high spatial correlation
with its neighborhood data-points. Figure 4 shows how the spatial relationship within data are
preserved through convolution and max pooling using a filter. Furthermore, CNN1D uses a filter that
is the same height as the input and the convolution operation occur in a single direction as illustrated
in the bottom part of Figure 4.

Figure 4. The top part of the figure illustrates a normal two dimensional convolutional neural network
(CNN) with its convolutional layer and max pooling layer. The max pooling layer is subsequently
flattened to feed the data into a fully connected layer. The bottom figure is a one-dimensional
convolutional neural network (CNN1D) network where the filter is moving in only one direction
to perform the convolution and max-pooling operations.

2.4. Long Short-Term Memory

The long short-term memory (LSTM) network [16] is a variant of the recurrent neural network [17]
(RNN) designed with chain units consisting of input, forget, and output gates as shown in Figure 5.
Gates are responsible for regulating what information is passed through to the next unit. The input
gate controls the influence of the current input. The forget gate within each unit controls how much
information needs to be retained. The output gate controls whether the flow is passed on to the next
LSTM unit. This architecture allows for the learning of data with long-term dependencies. Furthermore,
a bidirectional LSTM as shown in Figure 6 connects two hidden layer of LSTM in the opposite direction
to increase the information available to the network by using the past and future states.

Sensors 2020, 20, 723 6 of 21

Figure 5. The long short-term memory (LSTM) unit contain a forget gate, output gate and input gate.
The yellow circle represents the sigmoid activation function while the pink circle represents a tanh
activation function. Additionally, the ”x” and “+” symbols are the element-wise multiplication and
addition operator.

Figure 6. The Bi-LSTM and Bi-GRU are structurally the same except for the LSTM and GRU unit.
The red arrows indicate the input value flow, blue arrows are the output values, and the grey arrows
represent the information flow between the LSTM/GRU units.

2.5. Gated Recurrent Unit

The gated recurrent unit (GRU) [18] is proposed as alternative to LSTM. While GRU and LSTM are
similar, they differs in the number of parameters and type of gates. GRU uses only two gates as shown
in Figure 7. The two gates are (1) the reset gate to control the memory retention from previous unit
and addition of new memory into the unit and (2) the update gate to control input and to remove new
information. Therefore, GRU has fewer parameters in its design than LSTM, thus reducing the model
complexity while improving on computational efficiency. Similar to LSTM, GRU can be extended to
Bi-GRU as shown in Figure 6.

Sensors 2020, 20, 723 7 of 21

Figure 7. The gated recurrent unit (GRU) unit contain a reset gate and update gate. The yellow
circle represents the sigmoid activation function while the pink circle represents a tanh activation
function. Additionally, the ”x”, “+”, and ”1−” symbols are the element-wise multiplication, addition,
and inversion operator.

2.6. Current Deep Learning Solutions

Tamilselvan et al. [19] uses a deep belief network (DBN) to identify the health state of aero-engine
also using CMAPSS. The DBN classifier used consists of three hidden-layers. The conjugate gradient
approach from Hinton et al. [20] is used to fine-tune the DBN classifier after it has been pretrained and
trained. The DBN fault classification of aero-engines is compared to SVM, backpropagation neural
network (BNN), self-organizing maps [21] and Mahalanobis distance. Results show that DBN achieves
the best classification accuracy for five of the six operating conditions.

To further extend the capability of DBN, Zhang et al. [22] apply multiobjective deep belief
networks ensemble (MODBNE) to CMAPSS. The trained DBNs aimed at minimizing of the DBNs
prediction error and maximizing the diversity of outputs between DBNs. The optimized DBNs are
combined using single-objective differential evolution to create the ensemble. Results show that
MODBNE achieves the most accurate estimation of RUL when compared to 10 other data-driven
methods, e.g., DBN, sequential Kalman filter, MLP, extreme learning machine (ELM), hierarchical ELM,
SVM, LASSO, extra tree regressor, k neighbours regressor, gradient boosting and random forest.

LSTM is a popular architecture choice for sensor data as it is specially designed to perform
predictions on sequential data such as text and time series data. Yuan et al. [23] and Zheng et al. [24]
employ LSTM to predict RUL on CMAPSS. Both groups of authors convert the RUL to piece-wise
RUL. Initially, the RUL is set to a constant value to mimic the condition before degradation and
subsequently it linearly decreases to show degradation. LSTM are compared with standard RNN,
GRU AdaBoost LSTM, CNN, SVM, relevance vector regression (RVR), and MLP. The results reveal that
the LSTM outperforms all other methods investigated for both RUL estimation and fault occurrence
predictions. Ellefsen et al. [25] first uses the restricted Boltzmann machine (RBM) to pretrain the model
in an unsupervised manner to automatically generate new degradation-related features from the raw
data. Subsequently, the newly generated features are used as input for LSTM to predict the RUL.
The hyperparameters of the model are tuned and optimized by Genetic Algorithms (GA). The results
showed that the combination of RBM and LSTM achieves the state-of-the-art score function (SF) and
root mean squared error (RMSE) (Wang et al. [26]). The authors showed that Bi-LSTM’s hidden layers
are able to implicitly extract degradation features without unsupervised pretraining of the model.
The results obtained from Bi-LSTM without pretraining and GA optimized hyperparameter were
similar to the state-of-the-art performance.

Sensors 2020, 20, 723 8 of 21

Furthermore, Babu et al. [27], through using the CMAPSS dataset, showed that CNN increases
prediction accuracy when compared results to MLP, SVM, and RVR. Li et al. [28] used deep CNN
to estimate both the RUL and fault diagnosis of aircraft turbofan engines. The authors employed a
conventional CNN and training was conducted using mini-batch gradient descent [29]. Results from
the CNN were compared to LSTM, RULCLIPPER [14], random forest, gradient boosting, SVM, echo
state network with Kalman filter [30], multi-objective deep belief networks ensemble [22] and time
window-based NN [31]. Results revealed that CNN outperforms the LSTM, RNN, and DNN for RMSE.
The authors also showed that training time increases proportionally to the number of convolutional
layers, and concluded that the optimal number of layers for their problem is five.

3. Dynamically Weighted Loss Function

This section discusses how the proposed loss function and FL are constructed mathematically
and the reasoning behind these methods.

3.1. Proposed Dynamically Weighted Loss Function

In machine learning, the loss function is the difference between the ground truth and the predicted
output of the model. The goal of the learning algorithm is to minimize the error produced by the loss
function during training. For the first case study of predicting RUL of gas turbine engine degradation,
mean square error (MSE) was selected as the choice of loss function as it is more suitable for the
regression task. Other types of loss function for regression task include mean absolute error (MAE) and
Huber loss. However, the gradient of MAE loss remained constant throughout training and did not
decrease when loss was close to zero, making it unsuitable for a neural network to learn, as the large
gradient could miss the minima as the error approaches zero. Furthermore, Huber loss was not chosen
as the loss function as it required tuning of the hyperparameter. This introduces additional complexity
when losses are dynamically weighted. The MSE loss function can be represented mathematically as,

l(f (x), y) = (f (x)− y)2 (7)

where f (x) is the model output and x is input while y is the ground truth label. Next, the MSE is
simply multiplied by a weight variable D to be converted to a weighted MSE.

l(f (x), y) = D ∗ (f (x)− y)2 (8)

As mentioned in Section 2.1, a large error is an indication of poor learning on a particular instance
in the dataset. To place more importance on instances with larger error, the weight variable from
Equation (8) is updated to a function of f (x) and y as follows,

l(f (x), y) = D(f (x), y) ∗ (f (x)− y)2 (9)

The specific weight used in this paper scale according to the following condition,

D(f (x), y) =

| f (x)− y|

2
if | f (x)− y| is < C

| f (x)− y| otherwise
(10)

The weighting is halved when the absolute difference between predicted value and ground truth is
less than a particular constant, C. The constant is set to 10 as it is assumed that the model has learned
this particular instances. In addition, the weight function can be generalized to take in different input
on different loss function.

l(θ, f (x), y)′ = D(θ) ∗ l(f (x), y) (11)

The overall flow of the data from input to the new loss function is shown in Figure 8.

Sensors 2020, 20, 723 9 of 21

Figure 8. The output f (x) from the deep learning model and the ground truth Y are used to calculate
the mean square error (MSE) for one instance. The MSE is then passed through a non-linear function to
produce the weight that will be used to dynamically adjust the loss function.

3.2. Focal Loss Function

For many fault detection tasks, the goal is to predict the fault and non-faulty condition given
the sensors value. In essence, this is a binary classification problem. A deep learning model typically
produces a probability value for each class using the softmax activation function, and the loss is
calculated using the CE loss function. CE loss is a measure of the difference between two probability
distributions. The first probability distribution is the actual class where the known class label has a
probability of 1.0 and there is a probability of 0.0 for all other class labels. Subsequently, the second
probability distribution is the predicted probability for each class. The CE loss function for binary
classification can be represented mathematically as follows:

CE(y, p) = −(y ∗ log(p) + (1− y) ∗ log(1− p)) (12)

where p is the deep learning model probabilistic output that ranges from [0, 1] and y is the ground
truth class either 0 or 1. Equation (12) can be simplified to the form:

CE(y, p) =

{
−log(p) if y = 1

−log(1− p) otherwise.
(13)

Sensors 2020, 20, 723 10 of 21

To further simplify the CE loss function, po can be defined as:

po =

{
p if y = 1

1− p otherwise.
(14)

Therefore, CE(po) = −log(po). Subsequently, a weighting factor term is added to convert the CE
loss function to FL,

FL(po) = −αo(1− p0)
γlog(po) (15)

where α is a value between [0, 1] and γ ≥ 0. Both α and γ are tunable hyperparameters to optimize
the performance of deep learning models. The α is a weighting parameter used to control the class
imbalance problem. Additionally, the γ is a focusing parameter that controls the loss. Larger values of
γ correspond to larger losses for badly learned instances. The data flow for the FL is the same as the
proposed loss function in Section 3.1 and is it summarized in Figure 9.

Figure 9. The output f (x) from the deep learning model and the ground truth Y are used to calculate
the cross entropy (CE) loss for one instance. The CE is then combined with the weighted function to
produce the weight that will be used to dynamically adjust the loss function.

4. Experimental Design

This section introduces the experimental design for both case studies, i.e., CMAPSS and APS
truck fault data. The data preprocessing, deep learning architectures employed and the evaluation
metrics step are described in this section.

Sensors 2020, 20, 723 11 of 21

4.1. Case Study 1: Remaining Useful Life Prediction of Gas Turbine Engine

4.1.1. Data Description

The gas turbine engine degradation data used in this paper is CMAPSS by Saxena and Goebel [12].
The data were established from a high fidelity simulation of a complex non-linear system that closely
models a real aerospace engine. The dataset contains one training set and one test set with an operating
condition and fault pattern. The training set is the complete engine life cycle data, i.e., run To failure,
but the testing set does not reach failure. The dataset consists of the engine unit number, the operating
cycle number of each unit, the operating settings and the raw sensor measurements. The raw sensor
features are shown in Table 1.

Table 1. Description of the commercial modular aero-propulsion system simulation (CMAPSS) dataset
sensor features.

Symbol Description Unit

T2 Total temperature at fan inlet ◦R
T24 Total temperature at Low Pressure Compressor outlet ◦R
T30 Total temperature at High Pressure Compressor (HPC) outlet ◦R
T50 Total temperature at Low Pressure Turbine outlet ◦R
P2 Pressure at fan inlet psia
P15 Total pressure in bypass-duct psia
P30 Total pressure at HPC outlet psia
Nf Physical fan speed rpm
Nc Physical core speed rpm
epr Engine pressure ratio (P50/P2) —
Ps30 Static pressure at HPC psia
phi Ratio of fuel flow to Ps30 pps/psi
NRf Corrected fan speed rpm
NRc Corrected core speed rpm
BPR Bypass Ratio —
farB Burner fuel-air ratio —
htBleed Bleed Enthalpy —
Nf_dmd Demanded fan speed rpm
PCNfR_dmd Demanded corrected fan speed rpm
W31 High Pressure Turbine coolant bleed lbm/s
W32 Low Pressure Turbine coolant bleed lbm/s

4.1.2. Data Preprocessing

The CMAPSS data consists of 3 operation settings and 21 sensors features. However, a total of
eight features are discarded as they remained constant throughout the gas turbine engine degradation
process and provided no useful information. Additionally, the data is normalized between [0, 1] to
ensure that each feature is represented equally in the learning process. Subsequently, the labels are
preprocessed. The labels are the remaining RUL cycle for each instance of the data and each complete
cycle is degraded linearly. Since the fault does not occur at the early stages of engine cycle, the value of
the maximum cycle is capped at 120 and remains constant until degradation has occurred. This allows
the models to differentiate between the healthy state, a RUL of 120 and under degradation, and a RUL
cycle of less than 120.

4.1.3. Deep Learning Architectures Investigated

The following deep learning model architectures are employed to test the loss function in
Equation (11), (1) bidirectional LSTM, (2) DNN, (3) CNN1D, and (4) bidirectional GRU. Their
hyperparameters are listed in Table 2.

Sensors 2020, 20, 723 12 of 21

Table 2. Hyperparameters of all models used to test the new loss function presented in Section 3.1.

Deep Learning Architecture Hyperparameters

Bi-LSTM Number of layers: 2
Layer 1 units: 100
Layer 2 units: 50
Activation function: Leaky ReLU

DNN Number of layers: 6
Layer 1 units: 100
Layer 2 units: 500
Layer 3 units: 100
Layer 4 units: 250
Layer 5 units: 12
Layer 6 units: 6
Activation function: ReLU

CNN1D Number of layers: 2
Layer 1 units: 64
Layer 2 units: 64
Activation function: ReLU
Filter size: 3 x Features

Bi-GRU Number of layers: 2
Layer 1 units: 100
Layer 2 units: 50
Activation function: Leaky ReLU

An L2 regularizer is added to the layers of all model shown in Table 2 to reduce overfitting. In the
context of neural network, an L2 regularizer is mathematically equivalent to weight decays. The L2
regularizer prevents overfitting by limiting the complexity of the network through the penalization of
larger weights, which keeps the weights smaller. Additionally, a dropout [32] rate of 0.5 is also added
to all models tested to mitigate overfitting. Dropout is a technique for regularizing the network by
randomly setting the output to zero (equivalent to setting the weight of the unit to 0).

4.1.4. Evaluation Metrics

Performance evaluation is the key step to identify and compare the performance between different
methods. NASA published a preferred method of performance evaluation for CMAPSS using the idea
of asymmetric scoring. In the context of predictive maintenance, it is desirable to predict the time
of failure early. Therefore, the scoring is asymmetric around the true time of failure such that late
predictions are more heavily penalized than early predictions. The asymmetric scoring function is
as follows:

Scoring Function =

n

∑
i=1

e
−d
10 − 1 if d < 0

n

∑
i=1

e
d
13 − 1 if d ≥ 0

(16)

where d is f (x)− y. In addition, RMSE was employed as the second evaluation metrics:

RMSE =

√√√√ 1
N

N

∑
i=1

(f (xi)− yi)2 (17)

The scoring function (SF) along with RMSE provides a suitable measure of the different deep
learning models’ accuracy.

The evaluation metrics alone do not indicate if a result improvement is statistically significant or
not. Therefore, the Mann–Whitney–Wilcoxon non-parametric test is used at a 0.05 significance level
to test if result improvements are significant. The Mann–Whitney–Wilcoxon non-parametric test is

Sensors 2020, 20, 723 13 of 21

employed for this test because the two results distribution are independent. In addition, the experiment
is run 20 times to ensure that the results are more reliable and accurately represent the true distribution.

4.2. Case Study 2: Fault Detection in Air Pressure System of Heavy Trucks

4.2.1. Data Description

The function of an APS is to produce pressurized air for braking and gear changes. Therefore,
it is important that the APS’ fault are accurately detected as a miss in a truck’s fault could lead to
undesirable outcome. The APS failure data has a total of 171 features from sensors on the truck.
However, the name for the features have been anonymized for proprietary reasons. The training data
consists of 60,000 instances of which 59,000 belong to the negative class (no fault) and 1000 to the
positive class (fault present). As for the testing data, it consists of 16,000 instances of which 15,625
belong to the no fault class and 375 to the fault class. The number of instances between the positive
class and negative class is highly imbalanced as shown in Table 3.

Table 3. Number of instances and percentage of minority class in training and testing data of air
pressure system (APS) failure dataset.

Data Number of Positive Instance Number of Negative Instance Percentage of Minority Class

Training 1000 59,000 1.67%
Testing 375 16,000 2.34%

4.2.2. Data Preprocessing

The APS dataset contains 170 features and a binary class (True or False) as labels. The missing data
are imputed using k-nearest neighbour (KNN) [33]. Furthermore, the synthetic minority over-sampling
technique (SMOTE) is used to re-balance the training set as it is highly imbalanced as shown in Table 3.
SMOTE is a way of increasing the minority class without directly duplicating instances of the minority
class. Instead, new instances are synthesized within the clusters of minority classes. The reason this
dataset is balanced for this experiment is because the goal is to investigate the effect of a dynamically
weighted loss function on instances that are difficult to learn. Therefore, the balanced data is tested
on deep learning models using normal and dynamically weighted loss functions. Further study is
required to study the effect of dynamically weighted loss function on a highly imbalanced dataset.

4.2.3. Deep Learning Architectures

For consistency, the same deep learning architectures listed in Section 4.1.3 are used to test the
FL shown in Equation (15). Their respective hyperparameters are listed in Table 4. Furthermore,
the strategy adopted for mitigation of overfitting is the same as the technique described in Section 4.1.3
using a combination of L2 regularizer and drop rate of 0.5. In addition, the γ and α set for focal
loss are 5 and 0.75 respectively. The γ and α value were experimented using a combination of
γ = [1, 2, 3, 4, 5] and α = [0.25, 0.5, 0.75, 1.0]. The results are shown in Figure 10 using a boxplot with
different values of alpha and gamma. Additionally, it was ran six times to obtain the distribution.
By using analysis of variance (ANOVA), it was found that the cost calculated using Equation (18) using
different combinations of γ and α were not statistically significant different as it has the F-value of
F(19, 100) = 0.588 and a p-value greater than 0.05 at p = 0.907.

4.2.4. Evaluation Metrics

The authors of the APS dataset from Scania published a cost-metric of misclassification as an
evaluation metric. Binary classification has two faults: (1) False positive and (2) false negative.
Each misclassification has a cost associated with it. In the context of the PHM of trucks, a false
negative outcome has a more severe consequence compared to false positive outcome, and leads to

Sensors 2020, 20, 723 14 of 21

an asymmetry in cost. A cost value of 10 and 500 are assigned to the false positive and false negative
outcomes respectively to signify the asymmetry in cost. The cost value for the false positive and
negative are specified by the data owner. The origin for the specific value of 10 and 500 are not
explained. The total cost can be summarized as follows in Equation (18) and Figure 11:

Total Cost = (Cost 1 ∗Number of false positive) + (Cost 2 ∗Number of false negative) (18)

Figure 10. Boxplot of final cost using a combination of gamma value, [1, 2, 3, 4, 5] and alpha value,
[0.25, 0.5, 0.75, 1.0]. The x-axis are denoted by the combination of alpha and gamma. For instance,
’g1a100’ represents gamma value of 1 and alpha of 1.0.

Table 4. Hyperparameters of all models used to test the focal loss function presented in Section 3.2.

Deep Learning Architecture Hyperparameters

Bi-LSTM Number of layers: 2
Layer 1 units: 32
Layer 2 units: 16
Activation function: ReLU

DNN Number of layers: 2
Layer 1 units: 64
Layer 2 units: 64
Activation function: Sigmoid

CNN1D Number of layers: 1
Layer 1 units: 30
Activation function: ReLU
Filter size: 10 × 1

Bi-GRU Number of layers: 2
Layer 1 units: 32
Layer 2 units: 16
Activation function: ReLU

The goal is to minimize the cost. A large percentage of the cost factor comes from the false
negative classification. Additionally, metrics such as false negative rate (FNR), false omission rate
(FOR), and recall are also used. The formula for FNR, FOR and Recall is as follows:

False Negative Rate =
False Negative

True Positive + False Negative
(19)

Sensors 2020, 20, 723 15 of 21

False Omission Rate =
False Negative

True Negative + False Negative
(20)

Recall =
True Positive

True Positive + False Negative
(21)

Finally, a precision-recall (PR) curve is added to study the relationship between precision and
recall. Precision is the measurement for the false positive rate while recall is the rate of true positive
against false negative. A PR curve is employed here as opposed to a receiver operating characteristic
curve as the latter can be easily misinterpreted in highly imbalanced dataset [34].

True
positivep′

p

False
negative
Cost: 500

n total

P′

False
positive
Cost: 10

n′

total P

True
negative N′

N

actual
value

prediction outcome

Figure 11. A confusion matrix with the associated cost of each fault. A confusion matrix tabulates
the performance of a classification model. A true positive and true negative are correct classification
therefore, there are no cost associated to it. Whereas false positive and false negative receive a cost of
10 and 500 respectively. The p and n represents positive and negative class while P and N represents
the total positive and negative class. The actual class is denoted by an apostrophe, ′.

5. Results and Discussion

This section discusses the results obtained using the methodology in Section 3 and experimental
setup in Section 4.

5.1. Case Study 1: Remaining Useful Life Prediction of Gas Turbine Engine

Table 5 shows the comparison between the RUL prediction results of deep learning models with
and without dynamically weighted loss function. Dynamically weighted loss function improved the
scoring function’s values for all models tested. However, using the RMSE metric, Bi-LSTM and CNN1D
showed improved performance while DNN and Bi-GRU’s result worsened. The DNN and Bi-GRU
models with dynamically weighted loss function predicted earlier RUL, which caused the predicted
output to deviate further from the ground truth but still showed an improvement in scoring function.
This is due to the scoring function’s asymmetric property that resulted in the score favoring an early
RUL prediction. The results shown in Table 5 arethe median values, and they do not include outliers.

Subsequently, Figure 12 shows that the improvement made by using the new loss function is
statistically significant. The number of “*” in Figure 12 represents the p-value where “***” < 0.001, “**”
< 0.01, “*” < 0.05. Figure 12 clearly shows that the four models, DNN, Bi-GRU, CNN1D and Bi-LSTM
results improvement are statistically significant. Bi-GRU has a p-value of < 0.001, DNN and CNN1D
has a p-value of < 0.01, while Bi-LSTM has a p-value of < 0.05. In addition, some anomalies are noted
in the results as shown in the boxplots. This is caused by the random initialization of the initial weights
which resulted in the variability of the final output. Therefore it is important to run the experiment
multiple times to ensure that the true distribution of the final output is captured.

Sensors 2020, 20, 723 16 of 21

Table 5. Scoring function and root mean squared error (RMSE) before and after using dynamic
weighting (DW) for loss function while maintaining the architecture of deep learning models. Blue
colored text indicates improved performance while red colored text indicates worsened performance.
The values in this table are the median values across 20 experimental runs.

Deep Learning
Architecture Scoring Function RMSE

Bidirectional LSTM 178.568 20.1
Bidirectional LSTM + DW 129.089 13.9

−27.7% −30.6%

DNN 93,473.3 23.1
DNN + DW 13,741.3 23.9

−85.2% +3.4%

CNN1D 112.858 22.3
CNN1D + DW 63.002 21.1

−44.1% −5.7%

Bidirectional GRU 169.550 11.6
Bidirectional GRU + DW 81.899 12.9

−51.6% +11.8%

(a) (b)

(c) (d)
Figure 12. Boxplots of all scoring functions result from the four deep learning models, (a) DNN,
(b) Bi-GRU, (c) CNN1D, and (d) Bi-LSTM using a dynamically weighted loss function, and without the
weight. The asterisk on the top of each boxplot denotes the p-value where “***” < 0.001, “**” < 0.01,
“*” < 0.05.

Sensors 2020, 20, 723 17 of 21

5.2. Case Study 2: Fault Detection in Air Pressure System of Heavy Trucks

Table 6 shows the cost, FNR, FOR, and recall for the deep learning architectures Bi-LSTM, DNN,
CNN1D, and Bi-GRU using CE and FL. Bi-LSTM, DNN, CNN1D, and Bi-GRU with FL showed
significant improvement across the cost, FNR, FOR, and recall metrics. CNN1D with FL achieved
the lowest cost of 12,580 while Bi-GRU with cross entropy loss achieved the highest cost of 35,480.
Furthermore, when FL was used as the choice of loss function the cost metric improved by an average
of 31.5% across the tested models.

The results of cost metric were plotted to show the distribution of output across 20 experimental
runs as shown in Figure 13d. Similar to Section 5.1, the number of “*” in Figure 13d represents the
p-value where “***” < 0.001, “**” < 0.01, “*” < 0.05. The boxplots show that using deep learning models
with FL as the loss function resulted in improvements that were statistically significant. DNN, CNN1D,
and Bi-LSTM had p-values of <0.001 while Bi-GRU had a p-value of <0.01. In addition, the anomalies
within the experimental runs for each deep learning models are shown in the boxplots as black dot.

(a)
(b)

(c)
(d)

Figure 13. Boxplots of Costs result from using (a) DNN, (b) BiGRU, (c) CNN1D, and (d) BiLSTM with
CE and FL respectively. The asterisk on the top of each boxplot denotes the p-value where “***” < 0.001,
“**” < 0.01, “*” < 0.05.

Figure 14 displays the PR Curve for both FL and CE used with DNN, Bi-GRU, CNN1D,
and Bi-LSTM. From the plot it can be observed that DNN’s PR curve and area under curve (AUC) for
FL and CE are similar. Subsequently, Bi-GRU with FL has a higher AUC compared to Bi-GRU with CE
and overall achieved higher precision for a given recall. Next, CNN1D and Bi-LSTM both had lower
AUC when FL was used. CNN1D and Bi-LSTM both had a lower precision to achieve the same recall,
with CNN1D being more extreme. This was caused by the overwhelming false positive prediction

Sensors 2020, 20, 723 18 of 21

to achieve the low false negative count. However, as mentioned in Section 4.2.4 the cost of a false
positive is significantly lower than a false negative, at a ratio of 10:500. Therefore, when the actual cost
is accounted for as shown in Table 6 deep learning models with FL still outperformed CE in all cases.

Table 6. Results of cost, false negative rate, false omission rate, and recall using Bi-LSTM, DNN,
CNN1D, and Bi-GRU with and without FL. Blue colored text indicates improved performance.
The values in this table are the median values across 20 experimental runs.

Deep Learning Architectures Cost False Negative Rate False Omission Rate Recall

Bidirectional LSTM 22,565 0.101 0.00248 0.898
Bidirectional LSTM + FL 15,160 0.045 0.00113 0.954

−32.8% −55.4% −54.4% +6.2%

DNN 31,505 0.156 0.00378 0.844
DNN + FL 24,200 0.112 0.00273 0.888

−28.2% −39.3% −27.8% +5.0%

CNN1D 16,855 0.067 0.00164 0.933
CNN1D + FL 12,580 0.012 0.00030 0.988

−25.4% −82.1% −81.7% +5.9%

Bidirectional GRU 35,480 0.177 0.00429 0.822
Bidirectional GRU + FL 21,350 0.074 0.00187 0.925

−39.8% −58.1% −56.4% +12.5%

(a) (b)

(c) (d)

Figure 14. PR Curve for (a) DNN, (b) Bi-GRU, (c) CNN1D, and (d) Bi-LSTM using focal loss (Green
line) vs. cross entropy loss (Red line). The AUC of PR curves are included at the top of each plot for
each loss function.

Sensors 2020, 20, 723 19 of 21

6. Conclusions and Future Work

This paper demonstrated that the PHM of a gas turbine engine and APS system were improved
by using deep learning models with a dynamically weighted loss function that focused on instances
that were poorly learned during the training process. The proposed loss function and FL are aimed
at increasing prognostics and diagnostics accuracy by improving on the existing loss function while
keeping the deep learning architecture unchanged. We were able to show improvement in the
RUL prediction accuracy on the CMAPSS dataset and fault detection on the APS truck failure dataset
classification performance using four different deep learning architectures, e.g., DNN, CNN1D, Bi-GRU,
and Bi-LSTM, when the dynamically weighted loss function was used. Subsequently, the results were
validated by performing a Mann–Whitney–Wilcoxon non-parametric statistical significance test, which
showed the main evaluation metric, being function for case study 1 and cost for case study 2. All deep
learning architectures tested in this paper achieved statistically significant improvement (p < 0.05)
when the dynamically weighted loss function was employed.

For future work, we consider improving the weighting function to perform better on PHM tasks.
Furthermore, more analysis will be conducted to study the effect of the dynamically weighted loss
function on an imbalance PHM dataset. In addition, we will investigate the usage of physics-based
loss functions to create deep learning models with output that are scientifically consistent with the
data. Finally, we will test the improved loss function with a different PHM dataset in aerospace and
automotive applications.

Author Contributions: D.R. and M.J. proposed the methodology. D.R. designed and conducted the experiments
and evaluation process. D.R., M.J., B.R., X.C., and G.P.F. discussed results. D.R. wrote the article. D.R., M.J., B.R.,
X.C., and G.P.F. edited and reviewed the article. All authors have read and agreed to the published version of
the manuscript

Funding: This work is funded by the INNOVATIVE doctoral programme. The INNOVATIVE programme is
partially funded by the Marie Curie Initial Training Networks (ITN) action (project number 665468) and partially
by the Institute for Aerospace Technology (IAT) at the University of Nottingham.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. He, Y.; Gu, C.; Chen, Z.; Han, X. Integrated predictive maintenance strategy for manufacturing systems
by combining quality control and mission reliability analysis. Int. J. Prod. Res. 2017, 55, 5841–5862.
doi:10.1080/00207543.2017.1346843.

2. Short, M.; Twiddle, J. An industrial digitalization platform for condition monitoring and predictive
maintenance of pumping equipment. Sensors 2019, 19, 3781.

3. Liu, F.; He, Y.; Zhao, Y.; Zhang, A.; Zhou, D. Risk-oriented product assembly system health modeling and
predictive maintenance strategy. Sensors 2019, 19, 2086.

4. Zhu, M.; Liu, C. A Correlation Driven Approach with Edge Services for Predictive Industrial Maintenance.
Sensors 2018, 18, 1844.

5. Tsui, K.L.; Chen, N.; Zhou, Q.; Hai, Y.; Wang, W. Prognostics and Health Management: A Review on Data
Driven Approaches. Math. Prob. Eng. 2015, 2015, 793161.

6. Rengasamy, D.; Morvan, H.P.; Figueredo, G.P. Deep learning approaches to aircraft maintenance, repair
and overhaul: A review. In Proceedings of the IEEE 2018 21st International Conference on Intelligent
Transportation Systems (ITSC), 2018; pp. 150–156.

7. Figueredo, G.P.; Owa, K.; John, R.I. Multi-Objective Optimization for Preventive Maintenance in Transportation:
A Review; Technical Report; University of Nottingham: 2018.

8. Khan, S.; Yairi, T. A review on the application of deep learning in system health management. Mec. Syst.
Signal Proc. 2018, 107, 241–265.

9. Ellefsen, A.L.; Æsøy, V.; Ushakov, S.; Zhang, H. A Comprehensive Survey of Prognostics and Health
Management Based on Deep Learning for Autonomous Ships. IEEE Trans. Reliab. 2019, 68, 720–740.

https://doi.org/10.1080/00207543.2017.1346843

Sensors 2020, 20, 723 20 of 21

10. Jafari, M.; Li, R.; Xing, Y.; Auer, D.; Francis, S.; Garibaldi, J.; Chen, X. FU-net: Multi-class Image Segmentation
using Feedback Weighted U-net. In Proceedings of the International Conference on Image and Graphics
(ICIG 2019), 2019.

11. Lin, T.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings
of the 2017 IEEE International Conference on Computer Vision (ICCV), 2017; pp. 2999–3007.
doi:10.1109/ICCV.2017.324.

12. Saxena, A.; Goebel, K.; Simon, D.; Eklund, N.; Damage propagation modeling for aircraft engine
run-to-failure simulation. In Proceedings of the 2008 International Conference on Prognostics and Health
Management, Denver, CO, USA, 6–9 October 2008.

13. Rengasamy, D.; Mase, J.M.; Rothwell, B.; Figueredo, G.P. An Intelligent Toolkit for Benchmarking
Data-Driven Aerospace Prognostics. In Proceedings of the IEEE 22nd Intelligent Transportation Systems
Conference (ITSC 2019), 2019.

14. Ramasso, E. Investigating computational geometry for failure prognostics. Int. J. Prognost. Health Manag.
2014, 005, 1–18.

15. LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L; Backpropagation
Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551.

16. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780.
17. Jain, L.C.; Medsker, L.R. Recurrent Neural Networks: Design and Applications, 1st ed.; CRC Press, Inc.:

Boca Raton, FL, USA, 1999.
18. Cho, K.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y.; Learning Phrase Representations

using RNN Encoder-Decoder for Statistical Machine Translation. CoRR 2014, abs/1406.1078.
19. Tamilselvan, P.; Wang, P. Failure diagnosis using deep belief learning based health state classification.

Reliab. Eng. Syst. Saf. 2013, 115, 124–135.
20. Hinton, G.E.; Osindero, S.; Teh, Y.W. A Fast Learning Algorithm for Deep Belief Nets. Neural Comput. 2006,

18, 1527–1554.
21. Kohonen, T. The self-organizing map. Proc. IEEE 1990, 78, 1464–1480.
22. Zhang, C.; Lim, P; Qin, A.; Tan, C; Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life

Estimation in Prognostics. IEEE Trans. Neural Nets Learn. Syst. 2016, 28, 2306–2318.
23. Yuan, M.; Wu, Y.; Lin, L.; Fault diagnosis and remaining useful life estimation of aero engine using LSTM

neural network. In Proceedings of the 2016 IEEE International Conference on Aircraft Utility Systems (AUS),
Beijing, China, 10–12 October 2016; pp. 135–140.

24. Zheng, S.; Ristovski, K.; Farahat, A.; Gupta, C. Long Short-Term Memory Network for Remaining Useful
Life estimation. In Proceedings of the 2017 IEEE International Conference on Prognostics and Health
Management (ICPHM), 2017; pp. 88–95.

25. Ellefsen, A.L.; Bjørlykhaug, E.; Æsøy, V.; Ushakov, S.; Zhang, H. Remaining useful life predictions for
turbofan engine degradation using semi-supervised deep architecture. Reliab. Eng. Syst. Saf. 2019,
183, 240–251.

26. Wang, J.; Wen, G.; Yang, S.; Liu, Y. Remaining Useful Life Estimation in Prognostics Using Deep Bidirectional
LSTM Neural Network. In Proceedings of the 2018 Prognostics and System Health Management Conference
(PHM-Chongqing), 2018; pp. 1037–1042.

27. Babu, G.S.; Zhao, P.; Li, X. Deep Convolutional Neural Network Based Regression Approach for Estimation
of Remaining Useful Life. International Conference on Database Systems for Advanced Applications
(DASFAA), 2016.

28. Li, X.; Ding, Q.; Sun, J.; Remaining Useful Life Estimation in Prognostics Using Deep Convolution Neural
Networks. Reliab. Eng. Syst. Saf. 2017, 172, 1–11.

29. Ruder, S. An overview of gradient descent optimization algorithms. CoRR 2016, abs/1609.04747.
30. Peng, Y.; Wang, H.; Wang, J.; Liu, D. ; Peng, X. ; A modified echo state network based remaining useful

life estimation approach. In Proceedings of the IEEE International Conference on Prognostics and Health
Management, 2012.

31. Pin, L.; Goh, C.K.; Chen Tan, K. A time window neural network based framework for Remaining Useful Life
estimation. In Proceedings of the International Joint Conference on Neural Networks, 2016; pp. 1746–1753.

32. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to
Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

https://doi.org/10.1109/ICCV.2017.324

Sensors 2020, 20, 723 21 of 21

33. Beretta, L.; Santaniello, A. Nearest neighbor imputation algorithms: A critical evaluation. BMC Med. Inf.
Decision Making 2016, 16. doi:10.1186/s12911-016-0318-z.

34. Saito, T.; Rehmsmeier, M. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating
Binary Classifiers on Imbalanced Datasets. PLoS ONE 2015, 10, e0118432. doi:10.1371/journal.pone.0118432.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1186/s12911-016-0318-z
https://doi.org/10.1371/journal.pone.0118432
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	How Neural Network Learning Is Performed
	Deep Feedforward Neural Network
	Convolutional Neural Networks
	Long Short-Term Memory
	Gated Recurrent Unit
	Current Deep Learning Solutions

	Dynamically Weighted Loss Function
	Proposed Dynamically Weighted Loss Function
	Focal Loss Function

	Experimental Design
	Case Study 1: Remaining Useful Life Prediction of Gas Turbine Engine
	Data Description
	Data Preprocessing
	Deep Learning Architectures Investigated
	Evaluation Metrics

	Case Study 2: Fault Detection in Air Pressure System of Heavy Trucks
	Data Description
	Data Preprocessing
	Deep Learning Architectures
	Evaluation Metrics

	Results and Discussion
	Case Study 1: Remaining Useful Life Prediction of Gas Turbine Engine
	Case Study 2: Fault Detection in Air Pressure System of Heavy Trucks

	Conclusions and Future Work
	References

