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Abstract 

Scale-up in droplet microfluidics achieved by increasing the number of devices run in parallel or increasing 
the droplet makers in the same device can compromise the narrow droplet-size distribution, or requires 
high fabrication cost, when glass or polymer based microdevices are used. This paper reports a novel way 
using parallelization of needle-based microfluidic systems to form highly monodispersed droplets with 
enhanced production rates yet in cost effective way, even when forming higher order emulsions with 
complex inner structure. Parallelization of multiple needle-based devices could be realized by applying 
commercially available two-way connecters (TWC) and 3D printed four-way connectors (FWC). The 
production rates of droplets could be enhanced around fourfold (over 660 droplets/min) to eightfold (over 
1300 droplets/min) by TWCs and FWCs, respectively, for the production of the same kind of droplets than 
a single droplet maker (160 droplets/min). Additionally, parallelization of four-needle sets with each 
needle specification ranging from 34G to 20G allows for simultaneous generation of four groups of 
polydimethylsiloxane (PDMS) microdroplets with each group having distinct size yet high monodispersity 
(coefficient of variation (CV) <3%). Up to six cores can be encapsulated in double emulsion using two 
parallelly connected devices via tuning the Capillary number of middle phase  in a range of 1.31×10-4 to 
4.64×10-4. This study leads to enhanced production yields of droplets and enables formation of groups of 
droplets simultaneously to meet extensive needs of biomedical and environmental applications, such as 
microcapsules with variable dosages for drug delivery or drug screening; or microcapsules with wide range 
of absorbent loadings for water treatment. 
 
 
 
 

 

 



  

1. Introduction 

Microfluidics is characterized by the properties such as minute amount of consumed materials, fast 

analytical and responding performances, and integration of multiphase functions in the same system. 

Droplets are the most exploited fluid structures in microfluidics, acting as mixers and more importantly 

as a template to fabricate functional materials carrying a substance of interest. Droplet microfluidics has 

been developed rapidly in recent years, as it enables precise control over droplet formation, 

encapsulations and release kinetics using nonlinear channel geometries, such as T-junctions, co-flowing 

and flow focusing constrictions, to induce the pinch-off of droplets from a mother stream [1-5], leading 

to a number of industrial and biomedical applications including food industries [6], cosmetics [7], 

biological applications [8], pharmaceutics [9], reagent mixing and chemical reactions [10, 11]. Wider 

applications of droplet microfluidics to industry scale is challenged by the demands to scale up the 

emulsion generation via either integrating more droplet making units in the same microdevice or 

increasing the number of devices run in parallel to the desired production volumes, therefore careful 

considerations have to be made in terms of fabrication cost, material selection, microsystem design and 

operation reliability [12].  

Glass is one of the most extensively used materials to fabricate microdevices for droplet generation, 

attributing to its excellent physical and chemical properties such as optical transparency and chemical 

inertness [13, 14]. Many attempts have been made to attain high-throughput droplet generation, the 

most common way is to produce numerous glass-based devices and work in parallel [15, 16]. However, it 

is expensive for fabricating droplet makers in a glass-based substrate as laser ablation is needed, the cost 

will be dramatically increased especially when fabricating more droplet makers in the same device with a 

limited size. It requires time-consuming alignment procedures when glass capillaries are used. Moreover, 

the complexity in control of collected droplet size is increased when it comes to parallelizing multiple glass 

capillary devices. For example, single emulsion can be formed in co-flowing, and double emulsion can be 

formed in co-flowing combined with hydrodynamic focusing way using a glass capillary device, it is needed 

to polish inner capillary tip to get the required size of nozzle, however this is normally done in a manual 

way, and increase in polydispersity of droplet size distribution will become inevitable. Additional use of 

syringe pumps is also not obviated.  

Hierarchical approaches such as tree, ladder or annular structures are preferable when scaling up 

microfluidic emulsification in a parallel manner. Although parallelizing step emulsifications in ladder or 

annular structures by glass microfluidic devices can improve the droplet formation rate [15-19], the 

manufacturing still requires expensive rigs and specific expertise to process. The abovementioned 

limitations severely constrain the applications of glass-based microfluidic devices, especially in regard of 

expanding the yields of droplets.  The predicament of glass devices could be rectified using glass with 

PDMS [20, 21] or other materials, such as Polymethyl methacrylate (PMMA) [22-24], PDMS [25-35] or 

PDMS with other materials such as polycarbonate or silicon [36, 37], to fabricate  multiple chips or 

channels to extend the operation feasibility. Among all the materials mentioned, PMMA is cheaper and 

more robust than glass devices and hundreds of channels could be crafted in a PMMA substrate; however, 

it is restricted by manufacturing precision for channels as the etching or mechanical machining techniques 

are commonly used in its fabrication, this may severely impact surface roughness of individual channel, 



   

  

the formed droplet size has polydispersity with coefficient of variations (CV) in a range of about 3-6% [22-

24]. This is relatively higher than those when other materials are used. For instance, highly monodispersed 

droplets with CV below 3% can be generated when PDMS device was used [31]. 

PDMS microfluidic device can be rapidly replicated from a master mold using soft lithography, and 

rearranged in a compact system in the form of layers or stacks for enhanced production of droplets. 

However, they normally have very elaborated designs, examples of which include the tree structures [25, 

30, 32], multilevel module with radial arrays [27], the sinoidal shaped main channel intersected by many 

small shunt channels [33], and millipede structures [31]. These designs can dramatically raise the 

production rate of droplets to the liter-scale per day, yet compromising the production accuracy 

ineluctably. This becomes more pronounced when dealing with tens of hundreds of droplet generators. 

For instance, fabrication errors might be introduced when manually drilling or punching the 

interconnecting holes, the limited fabrication precision might also lead to high polydispersity of the 

droplet size distribution [27, 29, 34]. When multiple channels are used, each channel has to couple with 

the neighbouring channels for parallelization, the even distribution of flows might be hindered by debris, 

dust, air bubbles, clogging or aggregates of chemicals and fouling by the inner fluids in the channels. These 

inevitably reduce the actual numbers of active channels or even cause failures of production [29]. It thus 

increases the difficulty for troubleshooting the faulted channels or altering channel geometries [31], 

particularly when the microdevices are irreversibly bonded or assembled. The PDMS devices also require 

the use of large or extra syringe pumps whereas the precise control of flow rates might be compromised 

or even sacrificed especially when pumping highly viscous fluids into the scalable PDMS devices because 

of the substantially increased  flow resistance [22], [25]. In addition, PDMS necessitates surface wettability 

modification to render hydrophilicity. However, the uncross-linked PDMS monomers in the bulk would 

gradually migrate to its surface as a result of the minimum surface energy of the polymer chain, and thus 

recover to its original hydrophobic behaviour [38]. Furthermore, organic compatibility inhibits the wider 

application of PDMS on dealing with swellable organics that could result in deformation or collapse of the 

PDMS microdevice for droplet generation [39-42].  

Off-the-shelf needle-based microfluidic devices were firstly reported by Li et al [43]. This versatile cost-

effective device is regarded as a promising alternative to producing droplets with good control over the 

size. It is also proficient to generate core-shell double emulsion microdroplets for multiple applications 

[43]. The needle-based microfluidic devices have been applied to fabricate pristine and two types of 

porous PDMS microparticles using oil-in-water single emulsion template for treating synthetic wastewater 

that contained organic compounds [44]. Nevertheless, the production rate is 130 pieces per minute and 

still quite low, the development of needle-based droplet microfluidics is hindered by insufficient means 

for scale-up formation of multiple cored droplets without increasing complexity of devices. One can find 

more applications from double emulsions encapsulating multiple cores, which can carry multiple drugs 

targeting different diseases simultaneously. This work demonstrates a robust method to produce highly 

monodispersed (CV<3%) emulsion drops from a co-flowing system on a needle-based microfluidic 

platform running in parallel mode. With this approach, we can generate core–shell droplets encapsulating 

up to 6 cores. In particular, we show that the complexity of the resultant emulsions can be controlled by 

the Capillary number of middle phase. To the best of our knowledge, we report for the first time in this 
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paper a viable and facile method using needle based microfluidic system for scale up formation of droplets 

with high monodispersity and low cost in a parallel mode. Our device is easy to assemble. Significantly, it 

can generate droplets with enhanced production rates, controllable droplet size and number of inner 

cores concurrently.  

2. Materials and experimental setup 

The needle based microfluidic system comprises dispensing needles, polypropylene (PP) cross link, and 

silicone rubber soft tubes. Single emulsion microdroplets were generated by assembling a PP cross link 

and soft tube where the dispersed phase (DP) was penetrated into the device through the inlet needle at 

a pre-set flow rate from a syringe pump, and breakup into droplets by the continuous phase (CP) pumped 

from the perpendicular directions into the cross link, when the shear stress from CP overcomes the 

interfacial tension between two phases [45] (see Fig.1A, B and inset). Thanks to the hydrodynamic 

focusing of co-flowing geometry, the need for surface wettability modification upon the channel wall of 

single emulsion needle device can be obviated. As marked by a white rectangle in Fig. 1C, the outlet needle 

was located downstream at a distance (i.e., 3mm) away from the inlet of the continuous phase. The 

zoomed edges of two needles in the flow junction area were highlighted in red in Fig. 1D, together with a 

blue arc depicting the ejected droplet. Time-lapse images in Fig. 1D depicts that the inner fluid was 

dragged and sheared by the outer phase and ultimately broken into droplets when shear force become 

dominant over the interfacial tension. The time interval of each image was about 75 ms with an error 

around 25 ms in Fig. 1D (a) to (d). The interface of the inner fluid then recoiled soon caused by the capillary 

pressure after the droplet breakup. The same setup can be extended to form the PDMS microparticles 

where the mixture of PDMS precursor and curing agent (10:1 wt%) was used as DP; and deionized (DI) 

water mixed with 5 wt% polyvinyl alcohol (PVA) was used as CP. The formed droplets were collected in a 

beaker via the outlet needle whose needle holder was removed to fit into the cross link.  

 

Figure 1. Demonstration of water-in-oil (W/O) single emulsion formation process with needles of 21G-

20G (21G: I.D.=510 µm, O.D.=800 µm and 20G: I.D.=600 µm, O.D.=900 µm. The device is shown in the 



   

  

inset with a coin of one British Pound for scale. (A) Isometric view and (B) Cross section view of the 

schematic of the needle device for single emulsion microdroplet generation.  (C) Photo of the needle 

device in co-flowing mode and (D) Time-lapse images of the droplet formation in the device, the time 

interval of each image was about 75 ms with an error around 25 ms as shown in (a) to (d). 

Core-shell structured double emulsion microdroplets were fabricated according to Li’s design [43]. A 

needle with length of 50.8 mm, referred to as inner needle, was inserted into the aforementioned single 

emulsion droplet maker where for clarity, we recall the previous inlet and outlet needles as the middle 

and outer needles, respectively. The inner phase was introduced through the inner needle, and was then 

surrounded by the incoming middle phase and together were sheared into double emulsion microdroplets 

by the outer phase at the junction where middle and outer needles meet. Leakage or clogging occasionally 

occurred at the T-link section and took place more frequently especially when highly viscous fluids such 

as PDMS was used. When tuning the flow rate, it might cause high shear stress inside the device and result 

in fractures or even fluid splashing out of the device. Therefore, it attests to some modifications for the 

current design to ensure the needle based microfluidic system can function properly, especially at high 

flow rate conditions. To circumvent the leakage problem and ensure stability of the device, we used a 

commercially available exquisite three-way link as a replacement of the original T-link section, see Fig. 2A 

and B. The outlet of the link features a snap joint with a screw thread which can firmly be connected with 

the inner needle and middle needle (see Fig. 2C). The design allows rapid replacement of any component 

if problems occur. The other entrances were securely sealed by glue. The assembled needle device can be 

applied for formation of double emulsion microdroplets.  

 

Figure 2. (A) Three-way link and (B) its schematic. (C) Application of three-way link with needle device for 

production of double emulsion microdroplets. 
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The dispensing needles, PP cross link, silicone rubber soft tubes and three-way link were purchased from 

Taobao. Laboratory syringe pumps (Longer LSP02-1B) from Longer Precision Pump Co., Ltd (Hebei, China) 

were adopted for delivery of fluids and control of flow rate. PDMS (Sylgard 184 silicone elastomer) were 

purchased from Dow Corning (USA). PVA and octadecyltrichlorosilane (OTS) were obtained from Sigma 

Aldrich (Shanghai, China).  

PDMS precursors were well mixed and degassed for 20 min in a desiccator that connected with a water 

circulation multifunction vacuum pump (SHZ-DIII mode, Henan, China) to remove air bubbles after stirring 

the PDMS. An optical microscope (N-800F, Ningbo Novel Optics, China) equipped with a camera 

(QIMAGING, Canada) was employed to observe the formed droplets, the optical images and videos were 

recorded in a computer. The size of at least 200 droplets were measured by the software ImageJ for each 

experiment which has been repeated for 3 times to evaluate the reproducibility of the measurements. CV 

was calculated as a ratio of the standard deviation (STDV) of droplet sizes and their average diameters to 

reflect the monodispersity of droplet diameters: 

CV (%) =
STDV

AD
× 100%               (1) 

 

Interfacial tension between PDMS and deionization (DI) water was measured by interface tensiometer 

(Dataphysics DCAT21, Germany). Viscosities of PDMS were measured by rotational rheometer (Anton 

Paar Physica MCR-301, Austria).  

3. Design of needle-based system in parallel mode 

3.1 Two-way connector for double droplet synthesis 

PDMS can be used as a functional material for removing organic substances in water [45, 46]. The needle 

devices are capable of producing monodispersed PDMS microdroplets, which can be thermally cured off-

site for the organic compound removal [47]. Currently, the handicap is how to massively produce highly 

monodispersed PDMS microdroplets. The amount of PDMS microdroplets  produced by a single needle 

device is far insufficient to fulfil the demand. To enhance the throughput of PDMS microdroplets, we 

employed an exquisite and commercially available flow diverter, defined as two-way connectors (TWC), 

to operate multiple droplet makers simultaneously as demonstrated in Fig. 3. This connector is as 

diminutive as 15.8 mm long with two circle outlets, both of which have the same diameter of 1.5 mm, at 

each of which the input fluids have an unimpeded access from the syringe to the channels through a soft 

tube. Fig. 3A shows a snapshot of this unit and Fig. 3B, C and D depict the schematic of this unit, its cross 

section and bottom view, respectively. It can be equipped at the tip of syringes to evenly apportion the 

input fluids to all drop makers. As such, two aforementioned droplet makers can be parallelized to 

generate microdroplets with a narrow size distribution given the same device parameters and flow 

conditions. This type of connection is demonstrated in Fig. 3E. It is worth mentioning that in our 

experiments, we actually parallelly connected four sets of the needle devices (21G-20G) to gain an 

eightfold production rate of PDMS microdroplets in comparison to a single needle device, see the details 

in Fig. S1 and Supporting Video S1.  



   

  

 

Figure 3. (A) Photo of TWC for parallel connection,  (B) its isometric view, (C) cross-section view, (D) 

bottom view and (E) the application of the TWC for a parallel connection of two single emulsion needle 

devices.  The coin is used for scaling.  

3.2 Four-way connector for quadruple droplet synthesis 

Inspired by the design of Two-way connector, we developed a more powerful flow diverter known as 

Four-way connector (FWC) using a 3D printing technique. It appends two additional outlets that allow two 

more channels to be parallelized, as demonstrated in Fig. 4A (from left to right as: side view, top view and 

an end product). This FWC is 15 mm long with four equal sized circle (diameter 1.5mm) as its outlets. Fig. 

4B, C, D and E display the design drawing, perspective drawing, top view and interior view including the 

four circle outlets, respectively. The design was made by software SOLIDWORKS and printed by 

FormlabsForm2 3D printer (USA) with Stereo Lithography Apparatus (SLA) technology using 

photopolymer resin. The cost for printing one piece of the unit is 0.45 US dollars. With integration of such 

a 3D printing technique, it is thus possible to achieve four to eight or even more needle devices to be 

parallelly connected as this unit permits multiple independent connections while saving the use of 

additional pumps. In Fig. 4F, four needle devices with same needle combination were connected in a 

parallel mode to form an MFDGs system. We have equipped two such systems containing eight channels 

to work simultaneously (please refer to Fig. S2 and Supporting Video S2). The droplet production rates 

were significantly raised up to almost eightfold (over 1300 PDMS drops per minute) than those of a single 

device (160 droplets per min) and a high monodispersity of the droplets was achieved (CV < 3%). 
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Figure 4. (A) Photo of the 3D printed FWC, (B) isometric view, (C) cross-section view, (D) top view, (E) 

bottom view, and (F) an FWC-based parallel connection of needle devices for production of PDMS single 

emulsion microdroplets. 

3.3 Six-way microfluidic component (SWMC) 

On top of the flow diverting units, such as TWC or FWC, used in our experiment, another useful and off-

the-shelf component was also employed, which is defined as a six-way microfluidic component (SWMC), 

as shown in Fig. 5A, B and C. This component connects two sets of needles in a shunt way and the other 

two inlets for the use of introducing the continuous phase. The inlet needles (25.4 mm long) are linked 

with two soft rubber tubes that can help us not only adjust the needle positions, but also control the 

distances between inlet and outlet needles. Through use of SWMC, the droplet production rates have 

been raised up to almost double more than those of a single needle device while more space was saved 

than the aforementioned connection approaches. A demonstration video of utilization of this unit for 

production of PDMS microdroplets can be found in Supporting Video S3. In addition, this component is 

easy to be integrated with TWC or FWC so as to achieve four-channel or even eight-channel parallelization. 

In Fig. 5D, CP and DP were depicted by the dark blue and yellow arrows, respectively, and the produced 

droplets were in yellow dots. The center section was marked by red dots in which a distributary of the 



   

  

incoming CP (marked by the light blue arrows) filled first before joining a shearing process of CP with the 

outer split-flow. Similar to this set-up shown in Fig. 5E, two single needle devices can be directly connected 

in a shunt way by a soft rubber tube, as shown in Fig. 5F and Fig. S3. Table 2 lists the details of droplet 

productions using TWC, FWC and SWMC, including the production rates, average diameters of droplets 

and the corresponding CV values. 

 

Figure 5. (A) Photo of a SWMC, (B) front view, (C) side view, (D) cross-section view, (E)  a shunt connection 

with needles for production of single emulsions and (F) a shunt connection with two single needle devices. 

The coin was used for scaling.  

4. Results and Discussion 

4.1 Single emulsion formation 

The flow rates of dispersed phase (Qd) and continuous phase (Qc) were manipulated as 20 and 200 µL/min, 

respectively. Approximately 660 PDMS microdroplets were generated within one minute and an overall 

CV is as low as 1.9%. The results indicate that the production rates have been raised around triple than 

that of a single generator (160 pieces per min) while the droplet remained monodispersed. Although a 
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paralleled connection inevitably broadens the size distribution due to errors of device fabrication, flow 

resistance and operations, the droplet formation by this device is highly reproducible since each emulsifier 

can be controlled independently. Unlike the ladder or tree channel structures, the incoming flow was 

evenly diverted through the TWC in our experiment, making each droplet maker insensitive to one 

another. This greatly minimizes interferences among channels and ensures the enhanced throughput of 

droplets and long-time stability. In addition, the design circumvents the issues that often occurs in PDMS 

devices such as debris, clogging or fouling that may result in a failure of the entire device [29]. For 

example, troubleshooting of the bonded PDMS device might dismantle the whole system; the glass device 

might be easily broken due to the fragility of thin glass capillary. Those issues could be addressed easily 

by component replacement, giving rise to robustness of the needle-based devices. For instance, needles 

or cross links can be replaced rapidly if there exist malfunctions. Moreover, the assembling of needle 

devices is rather user friendly and not labor-intensive. Furthermore, the total costs of one needle devices 

system in Fig.3C (excluded for the pumps) are just less than 4 US dollars, very cost-effective as compared 

with glass capillary-based MFDG (detailed costs of units could be found in Table S2). 

Endowed by flexible assembling and numerous alternatives of needle combinations, a large variety of 

needle combinations can be arranged in a parallel manner to produce diversified sizes of droplets 

simultaneously. In Fig. 6, we parallelly connected four different needle devices with needle sizes of 34G-

30G, 32G-27G, 25G-21G and 23G-20G, respectively, by TWCs to generate PDMS microdroplets. Given the 

same flow rate of 20 and 200 µL/min for Qd and Qc, respectively, PDMS microdroplets with four sizes were 

obtained simultaneously, as shown in Fig. 6A, B, C and D, respectively.  

The smallest and largest droplets were formed in the 34-30G and 23G-20G channels, respectively. Table 

1 lists the measured droplet sizes and their CVs calculated by Eq. (1). As shown from Fig. 6 and Table 1, at 

the same flow rates, larger needles are able to generate droplets with a larger diameter. For the same 

needles, droplet sizes are controlled by the flow rates. For example, in the case of 23G-20G, the droplet 

sizes grew from 399 µm to 438µm when we increased Qd from 20 to 40 µL /min while keeping Qc 

unchanged. CVs of all groups were less than 3%, indicating that highly monodispersed droplets were 

formed.  

 



   

  

 

Figure 6. Using TWC for a parallel connection of four-needle devices to produce various sizes of PDMS 

single emulsion microdroplets simultaneously. The optical images of PDMS microdroplets fabricated by 

34G-30G, 32G-27G, 25G-21G and 23G-20G are shown in (A), (B), (C) and (D), respectively, with Qd=20 

µL/min and Qc=200 µL/min.  

Table 1. Diameters and CV values of the PDMS microdroplets generated at different flow rates by the 

four-needle devices, i.e., 34G-30G, 32G-27G, 25G-21G and 23G-20G, which were connected in a parallel 

way. 

Needles Q (µL/min) D (µm) CV (%) 

23G-20G 20-200 398.9  1.4  

 30-200 427.4  2.9  

 40-200 438.4  2.2  

25G-21G 20-200 268.5  0.5  

 30-200 273.4  0.3  

 40-200 279.4  0.6  

32G-27G 20-200 185.6  0.5  

 30-200 186.1  0.7  
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 40-200 193.3  0.6  

34G-30G 20-200 174.5  0.7  

 30-200 175.4  0.7  

 40-200 177.0  0.6  

 

Table 2. Generation rates and size of droplets produced by TWC, FWC and SWMC. 

Parallel Connections Production Rates (drops/min) D (µm) CV (%) 

TWC (4 channels) 660 653.6 1.3 

FWC (8 channels) 1370 657.1 2.4 

SWMC (2 channels) 310 650 2.8 

 

4.2 Single cored double emulsion formation 

The 32G-21G-20G and 30G-21G-20G needle devices were utilized to generate W/O/W double emulsions, 

with flow rate combination of 8, 20 and 200 µL/min for Qi, Qm and Qo, respectively. Red and black dyes 

were mixed with DI water as the inner phase and employed for the upper and lower droplet makers, 

respectively, to distinguish and identify the cores. In order to improve the hydrophobicity, the middle 

needles were immersed in OTS solutions for 30 minutes in room temperature following a heat treatment 

of 80 oC (30 min) to allow the evaporation of the residue solution. Due to the intrinsic hydrophilic 

properties of stainless-steel part of the needles, the surface wettability modification of inner and outer 

needle can be neglected for this W/O/W template. The middle phase was PDMS with a 10:2 wt% for base 

and curing agent, while DI water with PVA (5 wt%) was chosen as the outer phase. The droplets formed 

in those two channels were captured in Fig. 7A and B. Since the flow conditions were identical for both 

emulsifiers, the only difference was the inner needle diameter30G is slightly larger than 32G. As 

speculated, the larger inner channel was beneficial for the inner phase to grow and break up with larger 

cores, as shown in Fig. 7A and B and Table 3. Additionally, the obtained CVs of overall and core sizes 

suggest the droplets generated by two modified needle devices connected in a shunt way have a narrow 

size distribution. 



   

  

 

Figure 7. Optical images of the fabricated single cored double emulsion microdroplets (A) 32G-21G-20G 

and (B) 30G-21G-20G, using three-way link for two channels in parallel. 

Table 3. Measured sizes and CVs of double emulsion PDMS microdroplets formed by parallelly connected 

needle devices.  

Needles Do (µm) CV (%) Dc (µm) CV (%) 

30G-21G-20G 690.3 3.0 466.5 3.2 

32G-21G-20G 642.2 1.6 391.4 1.0 

 

4.3 Multiple cored double emulsion formation 

The versatile needle device is competent to generate multiple cored double emulsions. To examine its 

effeteness for the production of droplets, we used two kinds of PDMS with different viscosities by 

preparing mixture of PDMS and curing agent at weight ratios of 10:1 and 10:2, respectively, labelled as 

PDMS1 and PDMS2, in the following discussion. Two identical needle devices made of 34-21G-20G needles 

connected in a shunt way were used in the experiments for producing multiple cored double emulsions. 

PDMS1 and PDMS2 were pumped into two sets of droplet generators defined as DG1 and DG2, respectively. 

To enhance the contrast and facilitate visualization when the droplets are formed, red and black inks were 

mixed with DI water as the inner phases in DG1 and DG2, respectively. The DI water with 5 wt % PVA 

surfactant was used as the outer phase. Double emulsions with four cores can be formed using DG1 while 

single core was formed using DG2 as shown in Fig. 8A and B, respectively, at the same flow conditions 

when Qi =8 µL/min, Qm=20 µL/min and Qo =200 µL/min. The encapsulation of inner cores at higher flow 

rate of middle phase is shown in Fig.8 C and D when Qm=25 µL/min and in Fig.8 E and F when Qm =30 

µL/min. The breakup of liquid thread is driven by the balance among interfacial tension, inertia and viscous 

shear stress. Decreasing the interfacial tension would slow down the breakup process [48-50], thus 

reducing the possibility for formed droplets to be encapsulated by the middle phase. We attribute the 

experimentally observed difference in number of encapsulated cores in DG1 and DG2 at the same flow 
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conditions to the difference in interfacial tension. To verify the hypothesis, we measured the Capillary 

number of middle phase defined by 

𝐶𝑎𝑚 =
μ𝑚×𝑉𝑚

σ𝑚𝑜
      (2) 

where μ, V  and σ are the viscosity, velocity and interfacial tension, respectively. The subscript m and o 

denote the middle and outer phase, respectively. In our experiments, the viscosities of PDMS1 and PDMS2 

were 3.76 and 2.01 Pa s, and their interfacial tensions with water were 15.2 and 14.01 mN/m, respectively. 

Capillary number of the inner and outer phases remained constant except for that of the middle phase 

through our experiments. For convenience, we use Cam1 and Cam2 to denote the Capillary numbers of the 

middle phase in DG1 and DG2, respectively. Cam1 was 2.91×10-4 and Cam2 was 1.69×10-4 when Qi =8 µL/min, 

Qm=20 µL/min and Qo =200 µL/min. The number of encapsulated inner cores (N) in double emulsion 

versus different Capillary number of the middle phase is shown in Fig.9, and the measured droplet sizes 

as well as size distribution is listed in Table 4. More inner cores were encapsulated in double emulsion 

droplets when Qm increased while Qi and Qo were kept constant. When Qm is increased, corresponding to 

a larger Cam, it will facilitate more cores to be captured in a droplet, as verified by Fig. 8C and D, where 

five cores were encapsulated in DG1 (Cam1=3.63×10-4) and two cores for DG2 (Cam2=2.11×10-4) when Qm 

increased up to 25 µL/min. When Qm increased to 30 µL/min, the number of cores in a droplet became 

six for DG1 and three for DG2, see Fig. 8E and F. A larger Cam implies that a higher shear force is exerted 

to the inner fluid, resulting in smaller sizes of inner droplets. This is consistent with our experimental 

observations shown in Fig. 8 as well as the measured data in Table 4. 

However, increase of Qm is capped by instability of droplets production. In our experiments, when Qm in 

DG1 reached 35 µL/min, stabilization of double emulsion with controllable number of cores could not be 

guaranteed as seven or eight cores were found in the same batch as shown in Fig. S4. The value of Cam in 

this case was 5.09×10-4, larger than the suggested value, i.e., Ca=4.8×10-4 for monodispersed double 

emulsion droplets with stable number of inner cores [50]. For DG2, since the viscosity of middle phase is 

lower than that in DG1, Qm can increase until it is equal to 55 µL/min with six cores encapsulated. It 

occurred for formation of double emulsions with unstable number of cores when Qm was beyond 55 

µL/min. This result also agreed well with that reported by Nabavi et al [50], where unstable number of 

cores were encapsulated when Qm = 57 µL/min, and Ca=4.81×10-4. Interestingly, decreasing Qm to 10 

µL/min in DG1 resulted in the core number equal to two, but the core number could not be well adjusted 

when further reducing Qm below 9 µL/min (Cam1=1.31×10-4). As to DG2, Qm should be set beyond 17 

µL/min (corresponding to Cam2=1.44×10-4) to maintain formation with stable number of cores. In 

summary, the maximum number of stable inner cores from the developed device was six. Further increase 

in Qm led to encapsulation of more inner cores yet with high polydispersity for the size of inner cores and 

outer droplets. Therefore, the viable Cam should range from 1.31×10-4 to 4.64×10-4 to obtain stable and 

controllable numbers of cores for the needle device as shown in Fig. 9. More importantly, the measured 

sizes in Table 4 demonstrate that monodispersed double emulsion droplets with stable number of cores 

can be generated in the parallelization mode. Multiple such sets of double emulsion generators can run 

in parallel to produce double emulsions with various number of cores simultaneously via controlling the 

Capillary number of the middle phase. Additionally, the PDMS microdroplets could be solidified into 



   

  

microparticles under thermal conditions such as under 70 oC for 2 hours. Cross section view of a solidified 

five-cored PDMS double emulsion templated microparticle taken by SEM was shown as an example in Fig. 

S5.  

 

Figure 8. Optical images of the formed double emulsions with different number of cores by tuning Qm 

while fixing Qi =8 µL/min and Qo =200 µL/min. (A) and (B) The flow rate is 20 µL/min for Qm; (C) and (D) 

The flow rate is 25 µL/min for Qm; (E) and (F) The flow rate is 30 µL/min for Qm. The inner cores were dyed 

by inks to increase contrast of images. DG1 was used for (A), (C) and (E); and DG2 was used for (B), (D) and 

(F). All sub-figures share the same scale bar denoting 200 microns.  

 

Figure 9. Controllable number of inner cores against Capillary number of middle phase. 

 
Table 4. Measured sizes and CV values of multiple-cored double emulsion PDMS microdroplet produced 

using parallelly connected needle devices.  
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  Q (µl/min) Cores 
Do 

(µm) 

CV 

(%) 

Dc 

(µm) 

CV 

(%) 

DG1 8-20-200 4 594.3  1.0  239.6  1.9  

DG2 8-20-200 1 492.8  0.8  338.9  1.1  

DG1 8-25-200 5 635.1  1.1  230.3  2.5  

DG2 8-25-200 2 613.7  1.1  281.9  1.9  

DG1 8-30-200 6 686.1  1.6  223.7  2.7  

DG2 8-30-200 3 659.9 2.5 274.3  2.6  

 

4. Conclusions 

We reported in this paper a facile way to form highly monodispersed multiple cored emulsions with 

CV<3% using needle-based microfluidic devices connected in a parallel mode. Through use of the shunted 

TWC and the 3D printed FWC, the droplet production rates were improved almost fourfold (over 660 

droplets/min) and eightfold (over 1300 droplets/min) in comparison to that of a single device (160 

droplets/min) respectively, while the monodispersity was not compromised, attributing to the precise and 

independent control of flow conditions. Four groups of PDMS microdroplets with distinct sizes were 

obtained simultaneously using TWCs. Our microfluidic system leads to formation of groups of droplets 

with various sizes yet each group has high monodispersity, thereby enabling concurrent batch bioassays 

for pharmaceutical drug development. In addition, an off-the-shelf six-way microfluidic component was 

proposed to integrate two droplet makers. Parallelization of double emulsion devices was realized by 

connecting two set of devices with different needle sizes, leading to formation of multi-cored double 

emulsions, the number of encapsulated inner cores can be controlled by tuning the Capillary number of 

middle phase in a range from 1.31×10-4 to 4.64×10-4 via adjusting the flow rates of the middle phase. Both 

the core and overall droplet sizes were found monodispersed. This allows for development of drug carriers 

with flexibility in control over the dosage and drug loadings. This is of crucial importance for drug 

screening or drug-dosing tests. Our approach is robust and highly feasible for mass production. Our work 

will inspire the development of biocompatible materials with highly complex structures. 
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List of Abbreviations        

AD Average Diameter, µm    

Ca Capillary number, -    

Cam Capillary number of middle phase, -   

CP Continuous Phase, - 

CV Coefficient of Variation, %    

D Diameter, µm 

DI Deionized water, -    



   

  

DP Dispersed Phase, - 

FWC Four-way Connector, -    

I. D. Inner Diameter, µm    

N Number of inner cores, - 

O. D. Outer Diameter, µm    

OTS Octadecyltrichlorosilane    

PDMS Polydimethylsiloxane, -     

PMMA Polymethyl methacrylate, -     

PP Polypropylene, -    

PVA Polyvinyl alcohol, -    

Q Flow rate, µL/min   

SLA Stereo Lithography Apparatus, -   

STDV Standard Deviation, -    

SWMC Six-Way Microfluidic Component 

TWC Two-way Connector, -    

W/O Water-in-Oil, -    

W/O/W Water-in-Oil-in-Water, -    

Subscripts 

 
c      core 
 
i       inner phase 
 
m      middle phase 
 
o      outer phase/overall droplet  


