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Abstract: 

Background 

High resolution manometric studies below the stomach are rare due to technical limitations of 

traditional manometry catheters. Consequently, specific motor patterns and their impact on gastric 

and small bowel function are not well understood. This study used high resolution manometry to 

record fed state motor patterns in the antro-jejunal segment and to relate these to fasting motor 

function. 

Methods 

Antro-jejunal pressures were monitored in 15 healthy females using fiber-optic manometry (72 

sensors at 1 cm intervals) before and after a high-nutrient drink. 

Key Results  

Post-prandial motility showed a previously unreported transition point 18.8 cm (range 13-28cm) 

beyond the antro-pyloric junction. Distal to the transition, a zone of non-propagating, repetitive 

pressure events (11.5 ± 0.5 cpm) were dominant in the fed state. We have named this activity, the 

Duodeno-Jejunal Complex (DJC). Continuous DJC activity predominated, but 9 subjects also 

exhibited intermittent clusters of DJC activity, 7.4 ± 4.9/hr, lasting 1.4 ± 0.55 min, 3.8 ± 1.2 min 

apart. DJC activity was less prevalent during fasting (3.6 ± 3.3 /hr; P = 0.04). 78% of fed and fasting 

state propagating antro-duodenal pressure events terminated proximally or at the transition point and 

were closely associated with DJC clusters. 

Conclusions & Inferences 

High-resolution duodeno-jejunal manometry revealed a previously unrecognised transition 

point and associated motor pattern extending into the jejunum, consistent with the duodenal 

brake previously only identified fluoroscopically. Timing of DJC activity suggests it is driven 

by chyme stimulating duodenal mucosal chemosensors. These findings indicate that the 

duodenum and proximal jejunum consists of 2 major functional motor regions. 
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INTRODUCTION 

The duodenum is vital for digestive function, being where secretions are first mixed with 

acidic gastric chyme. Secretions are stimulated by duodenal mucosal sensing of components 

of chyme[1]. The effectiveness of duodenal chemical processing is evident from the rapid 

neutralisation of acidic chyme entering the duodenum[2, 3, 4]. 

Duodenal mucosal chemosensors also cause immediate modulations of gastric and pyloric 

motor function that moderate gastric emptying,[5, 6, 7] ensuring that the rate of emptying is 

matched to the speed of nutrient processing in the duodenum. Motor functions of the 

duodenum itself are also influenced by duodenal chemosensors[8, 9, 10]. Rao et al 

demonstrated fluoroscopically that intraduodenal infusions of sodium oleate, bile or 

hydrochloric acid caused almost instant flow-obstructive occlusion of the distal duodenum 

that did not occur with infusions of a normal saline/barium sulphate mixture. [9].  This flow-

obstructive mechanism was dubbed the “duodenal brake”, but the underlying mechanics 

remained undefined.    

Traditional high resolution manometry catheters are not able to penetrate very far into the 

small bowel, hence we have used the larger span of 72 element high-resolution fibre optic 

manometry catheters to make 1 cm-spaced recordings of fed state and fasting pressures from 

the antrum into the region of the duodenal brake. 

MATERIALS AND METHODS 

Healthy Subjects 

Studies were conducted at the Gasthuisberg campus, UZ Leuven, Belgium, after approval 

from its Medical Ethics Committee and the Federal Agency for Medicines and Health 

Products, Belgium. 15 female volunteers (26 ± 3 years, BMI between 18 and 25 kg/m2 ) gave 
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written consent and fasted for 12 hours prior to the study: none had any history of 

gastrointestinal diseases, abdominal surgery (appendicectomy allowed), psychiatric illnesses, 

nor use of drugs affecting the gastrointestinal tract or central nervous system.  

Manometry Catheters 

The catheters 3 mm diameter catheters each contained 72 1 cm-spaced fiber-optic pressure 

sensors. The devices were fabricated for investigational use only.  Data from the catheter 

were acquired by a solid state fibre-optic spectrometer (FBG-scan 804D; FBGS International, 

Jena, Germany).  Pressures were recorded by a custom-written LabVIEW© program 

(National Instruments, Texas, USA).  

Study Protocol 

With subjects seated, the catheter was passed transnasally until ~20 sensors were aborad of 

the lower oesophageal sphincter. With the subject supine, the catheter was passed through the 

pylorus under fluoroscopic guidance until the tip was at or beyond the duodeno-jejunal 

flexure The catheter was then taped to the nose. Abdominal X-rays (Fig 1) documented 

sensor locations at study start and completion.  

Subjects were studied semi-reclined. Fasting recordings were continued until 2 phase III 

periods of the migrating motor complex (MMC) were recorded, or for a maximum of 5 hours. 

Subjects then ingested a standard 200 ml nutritional drink (Vanilla Multifibre Nutridrink, 

Nutricia; 480 kcal, 42% carbohydrate, 39% lipid, 3% fiber). Fed-state activity was then 

recorded for 60 - 120 min. 

Analysis of manometric recordings  

Pressures were analysed both manually with software (PlotHRM, written in Matlab©, The 

MathWorks, Massachusetts, USA) and JavaTM (Sun Microsystems, California, USA) and 

with an in-house developed automated system (see below)[15].  
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Fed-state pressures were analysed in detail for 60 min following the drink intake. These were 

compared to fasted pressure patterns during 30 min prior to the drink. Definite phase III 

MMC episodes that occurred during the fasted period in 7 subjects were excluded from 

analysis (see Discussion) and an equivalent epoch prior to the phase III substituted.   

Pressure sensor locations were determined from characteristic frequencies and/or patterns of 

pressures of the lower esophageal sphincter, antro-pyloric junction and duodenum. Antro-

pyloric junction position was taken as the most aborad point at which the underlying 

frequency was 3 cycles per minute (cpm) (Fig 1B). 

Manual pressure event analysis 

Propagation was confirmed if a pressure event peak occurred in 3 or more adjacent channels 

(i.e., ≥2 cm), each with a trough-to-peak amplitude of at least 5 mmHg, and if the up-stroke 

of each adjacent pressure wave commenced during the pressure event in an adjacent 

channel[11].  Direction of travel, velocity (cm/s), extent (cm), and peak amplitude (mmHg) 

of propagating pressure events were scored and their origins were recorded as either antro-

pyloric, duodenal loop or duodeno-jejunal (see below).    

 

Automated measurements of duodenal and jejunal pressure events 

The automated analysis surveyed the frequencies and amplitudes of pressure events at each 

recording site. As previously described[12] base-line drift, respiration, coughs and straining 

artefacts were removed from the manometry traces. 

The frequencies of pressure events at each sensor were detected using a wavelet transform 

[13]. The root-mean-square amplitude over time was derived for the duodenal loop and 

duodeno-jejunal regions (see below) during fasting and after the drink. The wavelet transform 

was set up to detect physiological frequencies between 4 -16 cycles per minute (cpm) as this 
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was the frequency range over which the majority of activity occurred. These steps produced 

curves which represented wavelet amplitudes over all of the assessed frequencies for each of 

the subjects (Fig 2).   

Spatial referencing of pressure events 

Fed and fasting patterns of duodenal and proximal jejunal pressures revealed a previously 

undescribed transition point of motor patterns in the distal duodenum. We used this point to 

divide the duodenum and proximal jejunum into two functional regions, as described below.  

Statistical comparisons: 

Propagating pressure events: Comparisons of numbers, amplitude, velocity, extent of 

propagation for propagating pressure waves before and after the nutrient drink were made 

with a nonparametric Wilcoxon matched-pairs signed rank test. Comparisons between 

different propagating motor patterns used a Mann-Whitney test (GraphPad Software, Inc., La 

Jolla, CA, USA).  

Statistical comparison of multiple frequencies of pressure events between the different 

regions, before and after the meal used Bayesian analysis[14,15]. This was categorised by 

region (‘duodenal loop’ and ‘duodeno-jejunal’, defined in the results) and period (‘fasted’ 

and ‘fed’)[16]. The probability distribution of the statistical model's parameters was 

calculated using the Stan software[17].  

 

RESULTS 

Duodenal intubation succeeded in all subjects. Within the first 5 hours, phase III MMC 

activity occurred twice in 7 subjects, once in 6 and not at all in 2. The nutrient drink was 

given 238 ± 85 min (range 94 – 300 min) after the start of fasting recordings.   

Division of the duodenum and proximal jejunum into two major functional regions 
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In all 15 subjects the fed-state recordings revealed a clear transition point of motor patterns 

in the distal duodenum, beyond which non-propagating pressure events at a frequency of 9-

12/min extended aborally across all sensors (Fig1). We have named this motor pattern the 

Duodeno-Jejunal Complex (DJC). The duodenum orad to the transition point was named the 

Duodenal Loop (DL) region and the region aborad to the transition point, the Duodeno-

Jejunal (DJ) region. The transition point was also evident during fasting (Fig 3, see below). 

When catheter migration during the meal was accounted for, the position of the transition 

point position in fasted and fed states did not vary within individuals. 

The average distance of the transition point from the antro-duodenal junction was 18.8 ± 

3.7cm (range 13 – 28cm). In three subjects, the depth of insertion of the catheter did not 

extend significantly beyond the transition point for DJ region motility analysis, though the 

transition point could be recognised. Accordingly, the data on motor patterns in the DL and 

DJ regions were from 15 and 12 subjects respectively.  

Fed-state duodeno-jejunal region activity 

DJC activity was the dominant fed-state DJ region motor pattern. This had a mean frequency 

of 11.5 ± 0.5 cpm (Fig 2E). There was no clear propagation between the individual DJC 

pressure events at adjacent recording points (Figs 4B, 5B).  

In 9 subjects, DJC activity became the dominant pattern within 90s of starting the nutrient 

drink. In the remaining 3 subjects, duodenal phase III-like activity [18,20] occurred within 

45-90s of starting the nutrient drink. This activity, which persisted for 5 – 15 min, was 

followed by an 8 – 11 min quiescent period after which DJC activity commenced.  

Once DJC activity commenced, it persisted throughout the one hour fed-state recording. In 9 

of 12 subjects, at 12.3 ± 8.4 min after the nutrient drink, discrete clusters of more intense DJC 

activity were also observed (Figs 4A,B). In 8 subjects these clusters occurred over ~25 
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minutes, followed by continuous DJC activity.  In 1 subject, clustered DJC activity continued 

for the full fed-state recording (Fig 4A). Clusters occurred at 7.4 ± 4.9 per hr, with an interval 

between them of 3.8 ± 1.2 min and lasted 1.4 ± 0.55 min. The frequency of pressure events 

within fed-state clusters was 10.8 ± 0.8 cpm. These clusters extended to the most aborad  

pressure sensor over a minimum of 23.5 ± 2.9cm aborad from the transition point. Some DJC 

clusters were static, but in most, their orad margin moved aborad at variable rates (0.8 ± 0.5 

cm/s; Range 0.2 – 1.9 cm/s) (Fig 4B). 

Fed-state motor function in the duodenal loop region. 

In the DL region, after the nutrient drink, pressure events in individual channels occurred at 

frequencies between 6 – 12 cpm (Fig 2D). However, while there were short periods of 

localised 10-12 cpm events they were significantly less frequent and extensive compared to 

DJC activity (Fig 2 E &F).  DL region activity (Tables 1, 2) was dominated by events that 

propagated varying distances, predominantly in an aborad direction from the antropyloric and 

proximal DL regions at a rate of 4-6 per min (Fig 3 & 4C), with more than half extending at 

least 10 cm (Table 1). Orad propagating and synchronous events in the DL region accounted 

for 6% and 17% of events respectively.  

Relationships between fed-state motor function in the duodenal loop and duodeno-

jejunal regions 

Of the 1760 aborad propagated pressure events originating in the antropyloric or DL regions, 

78% did not cross the transition point; the events that did had a greater peak pressure 

amplitude than those that terminated before or at the transition point (Table 2, p = 0.007).  

Overall, 80% of all DJC activity clusters were preceded within 30 sec by usually vigorous 

(561.3 ± 162.2 mmHg) antro-pyloric pressure events. Clustered DJC activity also occurred in 
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the absence of preceding antro-pyloric events in 2 subjects. Vigorous antro-pyloric events 

also occurred during continuous DJC activity (Fig 5A).  

Fasting compared with fed-state motor function 

Following the identification of the fed-state DJC, similar DJC activity was also recognized 

during fasting, but it was less prevalent and of lower amplitude compared to the fed-state 

(Figs 2B & H, Fig 3). While short bursts of fasting DJC activity were seen in single or 

several adjacent channels, there were no prolonged episodes (>3min). Clusters of DJC 

activity occurred during fasting in 8 subjects at 3.6 ± 3.3 /hr, less than in the fed state (7.4/hr; 

P = 0.043).  Fasting clusters had a significantly shorter duration (34.1± 7.3 sec; P = 0.02) and 

lower frequency of their individual regular pressure events (7.2 ± 1.5/min; P = 0.01), than 

fed-state clusters. Fasting clusters frequently did not extend aborad over all of the DJ region 

sensors (Fig 3A). Fasting DJC clusters were all preceded by vigorous antro-pyloric pressure 

events (582.4 ± 213.3 mmHg) and long (>10cm) aborad- propagated events in the DL region 

(Fig 3A). The overall frequency, amplitude, velocity and extent of propagating pressure 

waves in and beyond the duodenal loop region did not differ significantly between the fasted 

and fed states (Tables 1,2).  

DISCUSSION 

We propose that DJC activity is the motor mechanism of the “duodenal brake” in humans. 

Our data show that this is a fundamental physiological mechanism as it is active during 

gastric emptying of even the modest nutrient intake used in this study. The patterns observed  

yield insights on how the proposed brake activity relates to gastric and duodenal motor 

function orad to the distal duodenum.  

The two major new findings are firstly, that the motility of the duodenum and proximal 

jejunum can be differentiated into two physiologically distinct segments, the Duodenal Loop 
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(DL) and Duodeno-Jejunal (DJ) regions. Secondly, at the orad margin of the DJ region in the 

distal duodenum, there was a sharp point of transition (Figs 1,3,4,5) to a previously 

undescribed pressure pattern that we have named the Duodeno-Jejunal Complex (DJC).  

DJC activity was most prevalent after the nutrient drink compared to fasting and extended 

into the DJ region more than 20 cm aborad from the transition point. The spatiotemporal 

pattern of the pressures of DJC activity is consistent with it impeding emptying of content 

from the DL region (see below). 

The proposal that DJC activity retains digesta in the DL region is consistent with the 

observations in healthy subjects by Rao et al[9] who showed fluoroscopically that infusions 

of bile, lipid and acid into the duodenal loop caused immediate and sustained closure of the 

most distal part of the duodenal lumen by what they called the “duodenal brake”.  

Pancreatic and biliary secretions empty into the Duodenal Loop region through the ampulla 

of Vater 7-10 cm aborad from the pylorus. This central position in the DL region, (as defined 

in this report), seems to be well-suited to support a rapid onset of digestion by achieving 

effective mixing of these secretions with chyme when they are retained by DJC activity. The 

transition point we identified between the DL and DJ regions, which was the most orad 

position of the zone of DJC activity, was 18.8 ± 3.7 cm aborad from the antro-duodenal 

junction. This distance accords with the most orad position of the zone of duodenal luminal 

closure observed fluoroscopically by Rao et al [9]. Rao et al used duodenal manometry, but 

their recording points only extended ~12cm into the duodenum, well short of the DJC activity 

we observed. Definitive testing whether DJC activity impedes flow will need concurrent 

imaging and high resolution manometric studies. 

Apart from the anatomical concordance of DJC activity with the duodenal brake [9], there is 

persuasive indirect evidence that DJC activity is flow-impeding: the frequency and spatial 
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patterning of the individual pressure events in DJC activity closely resembles phase III MMC 

activity, except that DJC activity is not preceded by duodenal loop phase III motor activity, is 

anchored to the DJ region and does not show the stereotypical aborad migration which 

underlies the small intestine lumen-sweeping mechanics of phase III MMC[19]. Fluoroscopy 

and impedance monitoring have shown that the lumen is occluded continuously in segments 

of duodenum or proximal jejunum encompassed by the phase III MMC[20]: this is likely to 

be the also the case for DJC activity, given its close similarity. Purely on manometric 

grounds, the frequency of DJC activity is so high and the duration of the pressure “valley” 

between each pressure event is so brief (Fig 5) that the lumen is unlikely to fill with any 

content between individual events, especially when DJC activity extends for many 

centimeters. Also, vigorous propulsive, aborally propagated DJ region pressure events that 

could overcome the resistance from DJC activity are uncommon during DJC activity (Figs 

1,3,4,5, Table 2).  

Given our data and those of Rao et al[9] our hypothesis is that the duodenal brake mechanism 

actively impedes emptying of chyme from the DL region until its pH has been largely 

neutralised and it has been thoroughly mixed with and partially processed by the secretions 

delivered to the duodenal loop. We propose that, with time, these functions alter the 

chemistry of the duodenal content to the point that it no longer causes major stimulation of 

DJC activity by duodenal loop chemosensors, allowing it to be delivered into the upper 

jejunum.  

The timing of periods of DJC activity supports the concept that this is modulated by signaling 

from duodenal chemosensors as the vigor, luminal extent and prevalence of fasting DJC 

activity was less than in the fed state (Figs 2,3,). Secondly, clusters of fed state DJC activity 

were strongly associated with propagated antro-duodenal events (Tables 1,2) known to cause 

delivery of pulses of chyme into and along the duodenum in the fed state [22,23,24].  This 
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association is best explained by these pulses of nutrients causing surges of duodenal mucosal 

chemosensor signaling. The long periods of continuous fed-state DJC activity seen in 3 

subjects could be explained by a relatively constant and slow flow of chyme into the 

duodenum with a lower, but continuous, stimulus to chemosensors and DJC activity. 

Predominantly pulsatile or non-pulsatile gastric emptying are known to occur, with 

considerable variations over time and among individuals[4]. 

The primary aim of our analysis of the pressure recordings was to evaluate fed-state pressure 

patterns. The recognition of DJ region pressure patterns in the fed state that are best 

explained by duodenal brake motor activity prompted us to also evaluate 30 minutes of the 

fasting recordings in each subject for occurrence of DJC activity and the presence of a 

transition zone. This tested whether increased DJC activity was associated with entry of 

nutrient chyme into the duodenum: this analysis was complicated by the need to exclude 

periods of phase III activity in the antroduodenal segment. It is not feasible nor directly 

relevant to the aims of this report to include a detailed assessment of fasting motor activity in 

this report, but this will be the subject of a second evaluation. In the light of the paragraph 

immediately below, it would seem worth comparing presence, extent and vigor of fasting 

DJC activity during phases I and II of the MMC cycle.   

The relatively brief DJC clusters recorded during fasting may appear to refute the proposal 

that these are stimulated by duodenal chemosensors. However, episodic duodenal 

acidification occurs during fasting, in association with the highly expulsive interdigestive 

phase II antro-pyloric pressure events[2, 4] and it was these events that we found to be 

strongly associated with fasting DJC activity clusters (Fig 3). That the duodenal brake is 

potently activated by duodenal acidification alone was shown by Rao et al[9]. 

The stimulation and modulation of DJC activity during fasting and gastric emptying of the 

modest caloric intake provided by the nutrient drink indicates that the duodenal brake is 
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active under normal physiological conditions. This refines the findings of Rao et al [9] whose 

observations might be interpreted as revealing a mechanism possibly triggered only by 

duodenal chemical “overload”, since it is unclear if the infusate stimuli they delivered 

directly to the duodenum were within the physiological range for the duodenal luminal 

environment.  

Rao et al[9] reported stimulation of the duodenal brake within seconds of the start of the 

duodenal delivery of infusates, consistent with our finding that clusters of DJC activity 

started within seconds of motor events previously shown to deliver pulses of gastric content 

from the stomach to the duodenum[21, 22]. The rapidity of the response of the duodenal 

brake to duodenal chemical stimuli can only be explained through neural mediation. 

Pharmacological analysis, antral field stimulation[23] and proximal duodenal transection[24] 

indicate that ascending intramural nerves are the major pathway for the pyloric stimulatory 

and antral inhibitory effects of stimulation of duodenal chemosensors. The present study 

suggests that duodenal chemosensors also signal along descending duodenal intramural 

pathways to modulate motility and specifically DJC activity.  

The episodes of phase III-like activity seen in some subjects following consumption of the 

nutrient drink are of uncertain significance. These are clearly not DJC activity, as they started 

in the orad part of the DL region and propagated down the duodenum into the jejunum in the 

same orderly manner as true Phase III MMC activity. Rao et al[9] also noted stimulation of 

duodenal ‘phase III-like activity’ with some episodes of duodenal infusion. Other 

intraduodenal infusions[6, 8, 9], cold stress[25] and systemic hyperglycaemia produced by an 

intravenous dextrose infusion[18] have also been found  to trigger similar activity.   

Given that DJC activity had not been recognized prior to this study, a dose-response study 

was not possible. By removing the variablility of gastric emptying rates, future duodenal 

infusion-based studies would better define control of DJC activity by components of the 
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duodenal content and give better insight into whether the absence of clustered fed-state DJC 

activity seen in 3 of our subjects was due to predominantly non-pulsatile gastric emptying.  

The absence of any imaging data that examine the mechanics of DJC activity could be seen 

as the second major limitation of the present study, but our analysis, and that of Rao et al[9], 

provides strong indirect support that DJC activity impedes flow. The outcomes of the present 

study now provide the guidance needed for design of ethical imaging studies of DJC activity 

in the future. 

Confirmation of the existence and physiological importance of the duodenal brake may 

present opportunities for less morbid types of surgery of the stomach and duodenum. 

Perturbed DJC activity may also contribute to troublesome slow gastric emptying in some 

patients that might be addressable by interventions targeting DJC activity. Finally, since the 

rate of delivery of glucose into the upper jejunum, beyond the region of the DJC, is likely to 

have a major effect on the rate of glucose absorption, it is an intriguing question whether 

aberrant DJC activity could contribute to impaired glucose tolerance.  

 

Acknowledgements, funding, and disclosures: 

This work was part funded by the CSIRO and JA’s South Australian Premier's Professorial 

Research Fellowship in Biomedical Engineering, by a Methusalem grant from Leuven 

University to JT, by a grant from the Leuven University Research Council to MC, and by a 

postdoctoral mandate grant from the F.W.O. (Fonds voor Wetenschappelijk Onderzoek) to 

ED. 

JA is managing director of Arkwright Technologies Pty Ltd. A company that makes fibre 

optic sensors for a range of medical and non-medical applications. Arkwright Technologies 



Dent 15 

did not fund this study or provide any devices for use in the study. The catheters described in 

this manuscript are for investigational use only. 



Dent 16 

References 

1 Ronnestad I, Akiba Y, Kaji I, Kaunitz JD. Duodenal luminal nutrient sensing. Curr 

Opin Pharmacol 2014;19:67-75. 

2 Bendtsen F, Rosenkilde-Gram B, Tage-Jensen U, Ovesen L, Rune SJ. Duodenal 

bulb acidity in patients with duodenal ulcer. Gastroenterology 1987;93:1263-9. 

3 Allen A, Flemstrom G. Gastroduodenal mucus bicarbonate barrier: protection 

against acid and pepsin. Am J Physiol Cell Physiol 2005;288:C1-19. 

4 Houghton LA, Read NW, Heddle R, Maddern GJ, Downton J, Toouli J, et al. Motor 

activity of the gastric antrum, pylorus, and duodenum under fasted conditions and after 

a liquid meal. Gastroenterology 1988;94:1276-84. 

5 Heddle R, Dent J, Read NW, Houghton LA, Toouli J, Horowitz M, et al. 

Antropyloroduodenal motor responses to intraduodenal lipid infusion in healthy 

volunteers. Am J Physiol 1988;254:G671-9. 

6 Heddle R, Fone D, Dent J, Horowitz M. Stimulation of pyloric motility by 

intraduodenal dextrose in normal subjects. Gut 1988;29:1349-57. 

7 Tougas G, Anvari M, Dent J, Somers S, Richards D, Stevenson GW. Relation of 

pyloric motility to pyloric opening and closure in healthy subjects. Gut 1992;33:466-71. 

8 Rao SS, Safadi R, Lu C, Schulze-Delrieu K. Manometric responses of human 

duodenum during infusion of HCl, hyperosmolar saline, bile and oleic acid. 

Neurogastroenterol Motil 1996;8:35-43. 

9 Rao SS, Lu C, Schulze-Delrieu K. Duodenum as a immediate brake to gastric 

outflow: a videofluoroscopic and manometric assessment. Gastroenterology 

1996;110:740-7. 



Dent 17 

10 Andrews JM, Doran SM, Hebbard GS, Malbert CH, Horowitz M, Dent J. Nutrient-

induced spatial patterning of human duodenal motor function. Am J Physiol Gastrointest 

Liver Physiol 2001;280:G501-9. 

11 Dinning PG, Wiklendt L, Maslen L, Gibbins I, Patton V, Arkwright JW, et al. 

Quantification of in vivo colonic motor patterns in healthy humans before and after a 

meal revealed by high-resolution fiber-optic manometry. Neurogastroenterology and 

motility : the official journal of the European Gastrointestinal Motility Society 

2014;26:1443-57. 

12 Wiklendt L, Mohammed SD, Scott SM, Dinning PG. Classification of normal and 

abnormal colonic motility based on cross-correlations of pancolonic manometry data. 

Neurogastroenterology and motility : the official journal of the European 

Gastrointestinal Motility Society 2013;25:e215-23. 

13 Torrence C, Compo GP. A practical guide to wavelet analysis. Bulletin of the 

American Meteorological society 1998;79:61-78. 

14 Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian data analysis. London: 

Chapman & Hall/CRC., 2014. 

15 Titsias MK, Lázaro-Gredilla M. Variational heteroscedastic Gaussian process 

regression.  Proceedings of the 28th International Conference on Machine Learning 

(ICML-11), 2011:841-8. 

16 Flaxman SR. Machine learning in space and time. Ph. D. thesis, Carnegie Mellon 

University, 2015. 

17 Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, et al. Stan: 

A Probabilistic Programming Language. 2017 2017;76:32. 

18 Fraser R, Horowitz M, Dent J. Hyperglycaemia stimulates pyloric motility in 

normal subjects. Gut 1991;32:475-8. 



Dent 18 

19 Caenepeel P, Janssens W, Accarino A, Janssens J, Vantrappen G, Eyssen H. 

Variation of slow-wave frequency and locking during the migrating myoelectric 

complex in dogs. The American journal of physiology 1991;261:G1079-84. 

20 Ehrlein HJ, Schemann M, Siegle ML. Motor patterns of small intestine determined 

by closely spaced extraluminal transducers and videofluoroscopy. Am J Physiol 

1987;253:G259-67. 

21 Treacy PJ, Jamieson GG, Dent J. Pyloric motor function during emptying of a 

liquid meal from the stomach in the conscious pig. 319-330 1990;422:523-38. 

22 Imam H, Shay S, Ali A, Baker M. Bolus transit patterns in healthy subjects: a study 

using simultaneous impedance monitoring, videoesophagram, and esophageal 

manometry. Am J Physiol Gastrointest Liver Physiol 2005;288:G1000-6. 

23 Allescher HD, Daniel EE, Dent J, Fox JE, Kostolanska F. Neural reflex of the canine 

pylorus to intraduodenal acid infusion. Gastroenterology 1989;96:18-28. 

24 Treacy PJ, Jamieson GG, Dent J, Devitt PG, Heddle R. Duodenal intramural nerves 

in control of pyloric motility and gastric emptying. Am J Physiol 1992;263:G1-5. 

25 Fone DR, Horowitz M, Maddox A, Akkermans LM, Read NW, Dent J. 

Gastroduodenal motility during the delayed gastric emptying induced by cold stress. 

Gastroenterology 1990;98:1155-61. 

 

Table 1. Characteristics of aboral propagating motor patterns originating in the antro-

duodenal or duodenal loop region before and after nutrient drink.  

 Extent (cm) Count / hr 

Velocity 

(cm/s) 

Amplitude 

(mmHg) 

Fed State ≤5 11.5 ± 11.1 3.4 ± 1 25.1 ± 7.1 
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6-9 49.5 ± 39.1 3.2 ± 0.7 26.3 ± 4 

10-14 38.4 ± 32.1 3.5 ± 0.9 28.1 ± 4.9  

15-19 21.2 ± 18.7 3.2 ± 0.9 33.9 ± 7.7 

≥20 13.4 ± 16.2 2.6 ± 1.0 41.4 ± 5.7 

     

Fasted State 

≤5 5.8 ± 6.8 3.1 ± 1.5 27.8 ± 11.6 

6-9 31.7 ± 20.4 3.5 ± 0.7 28.7 ± 6.1 

10-14 32.5 ± 24.1 3.9 ± 1.0 32.2 ± 5.2 

15-19 20.3 ± 26.1 3.6 ± 1.2 40.2 ± 7.6 

≥20 12.2 ± 21.1 3.3 ± 1.0 43.6 ± 7.7 

 

 

Table 2. The site of origin, count, amplitude and velocity of propagating motor patterns that 

terminate at or prior to the transition point and those that propagated over the transition point 

(grey shaded rows).  

 Fed State Fasted State 

 Site of 

origin – 

termination 

region 

Count / hr 

Amplitude 

(mmHg) 

Velocity 

(cm/s) 

Count/hr 

Amplitude 

(mmHg) 

Velocity 

(cm/s) 

A - DL 0.4 ± 0.9 37.2 ± 16.5 3.5 ± 1.3 2.2 ± 3.7 47.2 ± 7.2 4.1 ± 0.8 

A - DJ 0.3 ± 0.9 46.8 ± 1.0 3.6 ± 1.4 1.0 ± 1.8 56.9 ± 9.0 3.0 ± 1.1 

DL - DL 40.8 ± 23.8 27.0 ± 4.2 3.5 ± 1.0 33.8 ± 27.7 32.1 ± 4.3 3.7 ± 0.9 

DL - DJ 10.2 ± 11.4 34.1 ± 6.0 3.4 ± 0.8 8.4 ± 7.8 41.0 ± 3.8 3.5 ± 1.2 



Dent 20 

A = Antro-duodenal region 

DL = Duodenal loop region 

DJ = Duodeno-jejunal region 
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Figure Legends 

Fig 1. (A) X-ray image of the fibre-optic manometry catheter in situ. (B) Manometry trace, 

presented as a spatiotemporal color plot, recorded after the nutrient drink. The differing 

manometric patterns recorded along the catheter illustrate the functional specialisation of the 

antropyloric, duodenal loop and duodeno-jejunal regions. 

 

Fig 2. Bayesian analysis of pressure wave frequency in the duodenal loop (DL) region (A & 

D) and the duodeno-jejunal (GJ) region (B & E), both before (left column) and after (middle 

column) a meal. The end of each column (C, F) compares mean pressure wave frequencies 

between the DJ and DL region. When the thick black line appears above the hatched line, 

activity is significantly greater in the DJ region, below the hatched line the activity is 

significantly greater in the DL region. The end of the two rows (G & H) compares data 

between the fed fasted states in the in the two small bowel regions. The thick black line 

above the hatched line indicates a significant increase in response to a meal. 

 

Fig 3. Fasting and fed-state tracings in the same subject. (A). Fasting powerful phase II antral 

and propagated duodenal loop region events and brief, mainly localised clusters of DJC 

activity in the duodeno-jejunal region. (B). After the nutrient drink, there is aborad movement 

of the manometric catheter and more vigorous, almost continuous and more extensive DJC 

activity. 

 

Fig 4. (A). Fed-state clustered DJC activity over 26 min, which is expanded in B to show the 

variable spatial patterns of DJC activity (hatched red arrows). (C) shows antral and duodenal 

loop region pressures which demonstrate aboral propagation (black arrow) 
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Fig 5. (A) Continuous fed-state DJC activity. (B) A highly expanded time base showing the 

non-propagated pattern of DJC pressure events.  
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