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a b s t r a c t 

The coarse prior- β grain structure in titanium alloys produced by additive manufacturing is associated 

to mechanical anisotropy and limited fatigue life. Here we report a novel methodology to refine such 

structure by rapid heat treatment of Ti–6Al–4V produced by laser powder-bed fusion. The refinement was 

analysed using high-temperature EBSD that showed, for the first time, how high angle boundary β grains 

nucleated and grew with quasi-equiaxed morphology by epitaxial recrystallization. These findings show 

the potential for such heating regime to be applied to control grain size, morphology and distribution in 

a wider category of structural alloys produced by additive manufacturing. 

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 
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Thanks to a combination of high specific strength, corrosion re-

sistance and biocompatibility, titanium alloys – especially Ti–6Al–

4V – have found a wide use in different applications [1–3] . One

of the most promising manufacturing techniques for Ti–6Al–4V is

laser powder-bed fusion (L-PBF), an attractive Additive Manufactur-

ing (AM) technique that allows the production of net-shape com-

ponents of complex geometry with minimal material waste [4] .

Compared to wrought counterparts, Ti–6Al–4V components pro-

duced by l -PBF generally possess higher strength, though with

an anisotropic behaviour alongside significantly lower ductility [2] .

This is due to the typical microstructure of l -PBF Ti–6Al–4V con-

sisting of martensitic α′ -lamellae within coarse columnar prior- β
grains, which might extend to hundreds of microns or even sev-

eral millimetres along the building direction. 

Previous investigations have shown that the martensitic α′ 
structure of l -PBF Ti–6Al–4V can be decomposed into α+ β by heat

treatments conducted below the β transus temperature. The result-

ing microstructure generates a good balance of strength and duc-

tility compared to the as-printed condition [2 , 5] . However, heat

treatments below the β-transus temperature cannot change the

original elongation of the prior- β grains and therefore have no im-

pact on anisotropy and fracture toughness, thus limiting the use of

such components. Studies on the microstructural evolution upon

heat treatments above the β-transus temperature have shown that
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t is possible to obtain coarse equiaxed β grains; however, the

xtensive β grain growth associated with such heat treatments

ead to an unacceptable loss in strength and ductility [6] . 

The principal aim of the present study is to investigate how the

nitial microstructure formed in l -PBF can be exploited to achieve

-grain refinement via Rapid Heat Treatment (RHT) methods. The

ecrystallization phenomena responsible for refinement and the

echanical properties following such RHT are discussed. 

The materials used in this study were Ti–6Al–4V (grade 23)

ylinders of 9 mm diameter and 60 mm length produced by l -

BF at 90 ° build angle to the build platform. The produced cylin-

ers were manufactured on an EOSINT M290. Prior to RHT the

verage β-transus temperature of the specimens was estimated

o be ~950 °C as ascertained by Simultaneous Differential Anal-

sis (SDT). Five cylinders were subjected to the RHT protocol in

n argon protective atmosphere using a bespoke setup that in-

luded an induction power supply with an operating frequency of

00 KHz and a maximum power level of 1 kW. This experimen-

al set up enabled full β-annealing with a constant heating rate

f 10 °C/s to a target temperature of 1030 °C and a short dwell

ime of 1 s before air cooling. Tensile specimens with a diame-

er of 4 mm and gauge length of 20.4 mm were machined from

he centre of the cylinders according to standard ASTM E8/E8M-

6a [7] . Tensile tests were conducted at room temperature (20 °C)

n an Instron 5969 at a strain rate of 0.14 mm/min. Microstruc-

ural observations were carried out on representative samples be-

ore and after RHT using a JEOL 7100F FEG-SEM equipped with a

eating SEM stage (Murano in-situ stages, Gatan) for a controlled
rticle under the CC BY-NC-ND license. 
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Fig. 1. Typical α-orientation maps of Ti–6Al–4V in (a) as-built condition and (b) after the proposed rapid heat treatment, both of the orientation maps were scanned with a 

step size of 0.5 μm. Reconstructed β-orientation maps from the as-built (c) and rapidly heat treated (d) microstructures. The misorientation distribution at the prior- β grain 

boundary in the as-built condition and after RHT are shown in (e) and (f), respectively. High angle boundaries are also colour marked in the reconstructed β-orientations 

maps. 
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eating of specimens (up to 980 °C) and simultaneous imaging and

lectron Back-Scattered Diffraction (EBSD). The collected data was

nalysed using HKL-Channel 5 TM , OIM and the MATLAB toolbox

Tex, mapping in Z-IPF with colour scheme presented in Fig. 1 .

f not directly measured at high-tempearture, the β-phase was

econstructed by back-calculation from the room temperature α-

hase via the Burger Orientation Relationship (BOR) as described

lsewhere [8] . Using this approach, each reconstructed β grain de-

ived from a minimum of 4 different α variants. 

The typical microstructure of the specimens in the as-built con-

ition is shown in Fig. 1 a. This consists of martensitic α′ laths in

oarse columnar β grains as commonly reported in the literature

2 , 8] . After RHT the microstructure develops a conventional α+ β
aminar structure with an increase in the α colony size ( Fig. 1 b).

ost importantly it is observed a significant refinement of the β-

rains which has never been reported before in AM specimens af-

er heat treatment. This is confirmed in the orientation maps of the

phase ( Fig. 1 c and d) calculated from the room temperature mi-

rostructure in both conditions which show that the original elon-

ated coarse morphology of the prior- β grains is substantially re-

ned after RHT. The typical microstructure of the α phase in the

s-built condition and after RHT is presented in the Supplemen-

ary material (Fig. S1). The comparison of the calculated β grain

oundary angles reveals that after RHT there is an increase in high

ngle boundaries (HABs) as shown in Fig. 1 e and f and marked via

ed and black boundaries in the orientation maps of Fig. 1 c and

. This indicates that recrystallization of β might have occurred

ithin the initial coarse columnar β grains during RHT. 

The current understanding associated to the nucleation and

rowth of the β phase during conventional heat treatment of

artensitic Ti–6Al–4V is that, after an initial recovery of the mi-
rostructure, the α+ β→ β transition occurs by movement of the

/ β interface until only the parent β phase exists [9 , 10] . It is also

elieved that nucleation of β grains of new orientations does not

ake place because the shear stress associated to the HCP → BCC

attice transformation is too low to induce recrystallization of β
rains with no BOR with existing α during the α+ β→ β transfor-

ation [9 , 10] . However, this would not explain the observed re-

rystallization and refinement of the β grains. 

To understand the observed early stage refinement mechanisms,

igh-temperature EBSD was undertaken. This technique enabled

he direct measurement of the orientations of the grain structure

t elevated temperatures with sub-micron resolution. Fig. 2 a and

 show α- and β-orientation maps acquired at 850 °C where the

rientation relationship in the two phases is expressed in the cor-

esponding pole figures of Fig. 2 c–f. The average orientations of

arked grains in Fig. 2 a and b are listed in Table 1 . The orientation

aps show the existence of multiple α variants contained in two

istinct prior- β grains ( Fig. 2 a). Typically, there are 5–7 variants

hat are formed inside each prior- β grain ( α1 - α7 ). Within each

rior- β grain the dominant β (for sake of clarity this is defined

ereafter as β1 ) is similarly orientated across the length of the en-

ire prior- β grain (orientation spread < 10 °). As shown in Fig. 2 c

he (0 0 01) α plane of each α lath is parallel to one of the (110) β

lanes of β1 and one to three 〈 11 ̄2 0 〉 α reflections are parallel to

ne of the 〈 111 〉 β , indicating that the β1 is the parent phase that

s strictly related to the martensitic phase via BOR. 

However there are other (HAB) β grains that are distinct from

he dominant β1 as marked in Fig. 2 b. It is observed that the β
f new orientations can nucleate either on the grain boundary of

he α (this will be referred as β2 ) or on the grain boundary of

he prior- β (hereafter indicated as β3 and β4 ). The analysis shows
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Fig. 2. α-orientation (a) and β-orientation (b) maps acquired at 850 °C, a step size of 0.14 μm was used to obtain the orientation data. The discrete pole figures in (c) show 

the orientation relationship between the parent β phase (indicated as β1 ) and a cluster of nearby α laths. (d), (e) and (f) are discrete pole figures that show the orientation 

relationship of recrystallized β with neighboring α laths, black circles are used to highlighting BOR relationship. Colours refer to IPF-scheme demonstrated in Fig. 1 . 

Table 1 

Average orientation of marked grains in 

Fig. 2 a and b. 

ID Orientation 

α1 (150 °, 112 °, 194 °) 
α2 (117 °, 61 °, 235 °) 
α3 (38 °, 31 °, 198 °) 
α4 (83 °, 110 °, 236 °) 
α5 (25 °, 88 °, 205 °) 
α6 (37 °, 29 °, 188 °) 
α7 (16 °, 149 °, 200 °) 
α8 (6 °, 137 °, 239 °) 
α9 (153 °, 97 °, 183 °) 
α10 (110 °, 145 °, 219 °) 
α11 (84 °, 109 °, 227 °) 
α12 (109 °, 145 °, 229 °) 
α13 (31 °, 26 °, 201 °) 
α14 (110 °, 145 °, 219 °) 
α15 (107 °, 145 °, 226 °) 
β1 (118 °, 150 °, 226 °) 
β2 (94 °, 165 °, 194 °) 
β3 (215 °, 173 °, 238 °) 
β4 (240 °, 166 °, 232 °) 

 

 

 

 

 

 

 

 

Table 2 

Misorientations of β2 and β4 to surrounding dominant β . 

Grain Misorientation (aixs/angle) 

Surrounding dominant β

(183 °, 134 °, 223 °) 
β2 [ −1, 1, 1]/60.00 °
β4 [ −1, 0, 1]/60.00 °

d  

α  

o  

r  

i  

t

 

H

m  

[  

b  

a  

a  

l  

c  

i  

c  

s  

o  

s  

i

t  

(  

c  
that β2 and β4 are crystallographically related to individual adja-

cent α/ α′ laths via BOR ( Fig. 2 d–f). Both β2 and β4 have a ~60 °
misorientation with the surrounding dominant β ( β1 ). Such mis-

orientation is not random but related to β1 by precise axis-angle

rotation pairs ( Table 2 ). Therefore β2 and β4 appear to be nuclei

of epitaxially recrystallized β , which is similar to that recently dis-

covered in hot-worked metastable β titanium alloy [1] . These sub-

grains originate at the α/ β interface and correspond effectively to

one of the six equivalent BOR transformations that link the α to β
phases. In addition, it is observed that there is another HAB β that
oes not show any apparent orientation relationship with adjacent

laths ( β3 ). The misorientation of β3 relative to β1 (or any of the

ther measured HAB β) is not described by any obvious axis-angle

otation pair ( Fig. 2 e). However, it cannot be excluded that β3 orig-

nates from similar recrystallization mechanisms originating under

he plane of investigation, as it will be discussed later. 

The recrystallization phenomena that lead to the formation of

AB β are significantly different from the recovery of the α+ β
icrostructure and the grain growth of the parent β phase ( β1 )

2 , 10] and, to the authors knowledge, have never been reported

efore in any Ti alloys produced by any AM process. Drawing an

nalogy with the recrystallization of deformed Ti alloys, it is can

ssumed that the driving force for the observed epitaxial recrystal-

ization derives from the stored energy of deformation that is typi-

ally expressed by the large dislocation densities found after l -PBF

n the core and at the boundary of the martensitic as-built mi-

rostructure. The substructure of the martensitic α′ could therefore

eed epitaxial recrystallization of the β allowing for the formation

f new β variants during the α+ β→ β transformation. Previous re-

earch indicates that under similar heating rates of ~10 °C/s, there

s only a marginal increase in the temperature of the onset α→ β
ransformation [10] and therefore the high-temperature EBSD

near equilibrium conditions) experiments presented in this study

an capture the range of temperatures at which the phase trans-



Z. Zou, M. Simonelli and J. Katrib et al. / Scripta Materialia 180 (2020) 66–70 69 

Fig. 3. (a) Reconstructed β-orientation map of specimen from the as-built condition, orientation data was acquired via a step size of 0.25 μm; (b) measured β-orientation 

maps of the same locations at 850 °C, the orientation data was measured by high-temperature EBSD with a step size of 0.25 μm; (c) measured β-orientation maps of the 

same locations at 925 °C, the orientation data was obtained via a step size of 0.6 μm. White arrows indicate recrystallized β grains. 

Fig. 4. (a) Overlaid discrete pole figures of calculated parent β (black) and measured β at 925 °C (red); (b) Overlaid discrete pole figures of measured β at 850 °C (green) 

and at 925 °C (red/black). (c) Engineering tensile stress-strain curves of Ti–6Al–4V specimens in the as-built condition and after RHT. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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ormation occurs during the applied RHT. It is well understood

owever that RHT can retain the substructure of the martensitic

hase to higher temperatures and promote higher nucleation rates

f HAB grains [9] . This would exacerbate epitaxial recrystallization

nd result in observed significant refinement of the structure. 

Fig. 3 a shows the β-orientation map obtained by reconstructing

he parent phase ( β1 ) of the room temperature α′ phase. In Fig. 3 b

nd c it is shown the measured β-orientation maps of the same

ocation at 850 ° and 925 °C, respectively. The comparison of these

aps allows the identification of the recrystallized β grains (some

re marked in the corresponding figures via white arrows). As the

emperature is increased from 850 ° to 925 °C, it is observed that

he recrystallized β grains grow competitively with the surround-

ng matrix ( β1 ) and that some of the newly formed grains grow

aster than others. In addition, these grains grow with no preferred

rain growth direction aligned to any of sample coordinate system

as the heating is uniform as opposed to l -PBF). The retained α
aths pin the original prior- β grain boundaries and therefore the

verall β morphology remains unchanged during heat treatments

elow the β transus temperature. Subsequently, as the RHT was

arried out above the β transus temperature no α-pinning could

ake place. It is plausible that the HAB, of higher mobility than

he surrounding matrix β1 , could migrate at a higher rate [11] and

hus change the original columnar morphology. 

To examine the possible evolution of the texture during RHT,

he pole figures of the as-built β are compared to those measured
or a range of temperatures below the β transus ( Fig. 4 ). Above the

transus temperature, abnormal grain growth occurs so it was not

ossible to directly observe changes in texture via EBSD. Below the

transus temperature, the dominant texture is that of the parent

phase (recrystallization during slow EBSD heating below the β
ransus temperature is limited). Minor texture components derived

rom the epitaxial recrystallization could only be identified through

iscrete pole figures. In Fig. 4 a the reflections of the calculated β
hase (referred to as β1 , i.e. the parent phase of the martensitic
′ observed at room temperature) and those of the measured β at

25 °C are overlaid. It is observed that all the parent β orientations

hat present in the pole figures measured at 925 °C are within an

rientation scatter of 10 °. As β1 does not show a large spread in

rientation along the vertical axis of the columnar grain, it is un-

ikely that this possesses boundaries with high mobility capable

f causing the refinement observed after RHT. On the other hand,

he HAB recrystallized grains can be clearly observed as extra re-

ections at 925 °C and marked in the figure (arrows). By overlay-

ng the reflections of the β phase measured at 850 ° and 925 °C
 Fig. 4 b) insights on the growth of the β phase can be evinced. It is

oted that as the temperature increases from 850 ° to 925 °C, there

s an apparent decrease in the orientation scatter due to the fact

hat each reflection describes the average orientation of several β
ub-grains that are merging together. No further new β orienta-

ions appear during the growth of β phase from 850 ° to 925 °C
s no additional HAB reflections are observed in Fig. 4 b. This
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Table 3 

Tensile properties of Ti-6Al-4V produced under optimised conditions by l -PBF. The presented values are average and standard deviations from the 3 references. 

Specimens are built with consistent zx-orientation. 

Condition Young’s modulus E (GPa) Ultimate Tensile Strength UTS (MPa) Yield Strength σ y (Mpa) Elongation ε (%) 

As-built 124.3 ± 1.0 1241.6 ± 4.7 1122.9 ± 6.0 5.2 ± 0.2 

Stress relieved (700 °C – 800 °C) [12-14] 106.5 ± 18.7 1036 ± 59.4 962 ± 62.1 11.0 ± 1.8 

ASTM F2924-14 (900 – 950 °C) [6 , 12 , 15 , 16] 115.5 ± 2.4 1047.3 ± 138.9 982 ± 121.9 13.1 ± 0.8 

RHTed (this study) 121.2 ± 0.8 934.5 ± 11.3 853.8 ± 10.7 16.6 ± 0.7 
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implies that most likely β3 is not formed with random orientations

to the surrounding phases but with BOR with α laths underneath

the plane of observation. 

The mechanical properties associated with the developed mi-

crostructure after RHT were assessed by comparing engineering

stress-strain curves of the specimens before and after treatment

( Fig. 4 c). The specimens in the as-built condition showed high

yield strength but limited elongation (5.2 ± 0.2%) which is not ac-

ceptable for typical industry standards (ASTM F3001/14). Following

the RHT, a marked increase in elongation at break (16.6 ± 0.7%)

and acceptable yield stress and UTS was observed. The difference

in tensile properties is believed due to a combined effect of α
coarsening (Supplementary Material, Fig. S1) and the β grain

refinement. The balance in strength and ductility compares well

to Ti–Al–4V produced by l -PBF followed by conventional post-

processing heat treatments as well as to wrought and annealed

products, as shown in Table 3 , which suggests that the applied

RHT is not penalising tensile properties although being conducted

at temperatures above the β transus [2 , 4] . The proposed RHT

method however brings significant advantages in terms of both

process duration and refinement of the β structure alongside

the consequent potential to generate specimens with isotropic

behavior and increased fatigue resistance and fracture toughness. 

To summarise, rapid heat treatments to a temperature in the

single β phase region were carried on l -PBF Ti–6Al–4V specimens

to investigate a methodology aimed at refining the columnar prior-

β grains typical to AM. Fully laminar α+ β microstructure with

substantially refined prior- β grains could be obtained. The refine-

ment is explained considering the epitaxial recrystallization that

occurs at α/ β interfaces from the substructure present in the as-

built martensites. To-date, this has never been demonstrated in ad-

ditively manufactured Ti alloys. High-temperature EBSD provides

evidence of the early stages nucleation and growth of new HAB

recrystallized β , which are believed to generate the refinement ob-

served during RHT. 

The present results would open a possibility for obtaining

quasi-equiaxed microstructures following simple rapid heat treat-

ments of AM specimens. The same methodology could be applied

to refine the microstructure of a wider category of structural al-

loys in AM which display anisotropic behavior and limited fatigue

resistance such as steels and Ni-based superalloys. 
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