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Abstract: Orbital angular momentum (OAM) is an important property of vortex light, which
provides a valuable tool to manipulate the light-matter interaction in the study of classical
and quantum optics. Here we propose a scheme to generate vortex light fields via four-wave
mixing (FWM) in asymmetric semiconductor quantum wells. By tailoring the probe-field and
control-field detunings, we can effectively manipulate the helical phase and intensity of the
FWM field. Particularly, when probe field and control field have identical detuning, we find that
both the absorption and phase twist of the generated FWM field are significantly suppressed.
Consequently, the highly efficient vortex FWM is realized, where the maximum conversion
efficiency reaches around 50%. Our study provides a tool to transfer vortex wavefronts from
input to output fields in an efficient way, which may find potential applications in solid-state
quantum optics and quantum information processing.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Vortex beams carrying orbital angular momentum (OAM) [1,2] are now widely explored for
different domains [3–7]. Unlike the conventional beam, the OAM beam provides a larger
orthonormal spatial basis. Recently rapid progresses have been made to explore interactions
between atomic gases and laser light with OAM. For example, the storage and memory based on
OAM have been demonstrated in atomic vapors [8–10]. The transfer of OAM has been studied in
multilevel atomic systems [11,12] . Research into the spatially structured transparency in a cold
rubidium atomic system has been introduced [13]. Moreover, vortex four-wave mixing (FWM)
has been investigated in 85Rb vapor, they found that the phase profile associated with OAM is
transferred entirely from the one light to another [14]. Quite recently, the vortex six-wave mixing
(SWM) and its manipulation in an atomic system has also been experimentally observed [15].

On the other hand, there have been a lot of efforts on quantum coherent phenomena in
semiconductor quantum wells (SQWs). The important motivations of using SQWs are that their
transition energies, dipole moments, and symmetries can be engineered as desired and the dipole
moments of intersubband transitions are large. Quantum coherent phenomena (e.g., lasing without
inversion [16–18], coherent population trapping [20], enhancement of refractive index [19],
electromagnetically induced transparency [21,22], and slow light [23], etc.) in semiconductor
heterostructures have been explored both theoretically and experimentally. Benefiting from the
inherent advantages of the SQWs, it has been suggested that enhanced Kerr nonlinearity [24,25],
optical bistability [26], and slow optical solitons [27,28] are possible in such systems. In addition,
a number of studies have also analyzed FWM in a variety of SQWs [29–32]. However, the
spatial characteristics of the FWM field have not been fully studied during the FWM process
in solid-state systems. Inspired by this, here we put forward a new scheme to achieve the
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high-efficiency vortex FWM generation in SQWs. In comparison with most scenarios in atomic
gases [33–38] , the major advantages of our scheme are as follows. (i) The basic structure of the
SQW is a double-well potential, where strong cross coupling between the neighboring wells are
present [see Fig. 1(a)]. The cross coupling arises from two transitions between one ground state
and two energetically closed excited states, which can create a strong coherence between the two
closely spaced excited states. (ii) By coupling these states with the laser lights, we show that a
new light field can be efficiently generated through mixing the input laser light. Through tuning
the probe-field and control-field detunings, we can effectively manipulate the generated FWM
field and the maximum conversion efficiency is approximately 50%. (iii) The SQWs are preferred
for practical applications due to the flexible manufactuation and controllable interference strength
[39]. As a result, our scheme may open up a new perspective for modulating the vortex FWM in
a solid device.

Fig. 1. (a) The fundamental structure is coupled asymmetric quantum wells. Each well
has a distinctive ground state, labeled as |1〉 and |2〉. The first excited state of the well is
nearly degenerate. The cross coupling between the well leads to delocalized state |3〉 and |4〉.
Another state |5〉 is used to produce the FWM field. A probe field Ωp connects states |1〉
and |3〉, while a control field Ωc couples states |2〉 and |3〉. A vortex field Ωv drives states
|2〉 and |5〉, and the FWM field is generated from the transition |5〉 ↔ |1〉. (b) Geometry
of the laser fields. The FWM field carrying OAM is generated under the phase-matching
condition ®kp + ®kv = ®kc + ®km.

The structure of the article is organized as follows. In Section II, we describe the system and
corresponding model. The dynamics of the system are governed by the coupled Schrödinger
equations. In the slowly varying amplitude approximation, we derive the light propagation
equation based on the Maxwell equation. Results are shown in Section III. We analyze spatial
properties of the FWM output field, focusing on helical phase and spatial intensity distributions.
We discuss how the different parameters affect the spatial-dependent absorption and phase
properties of the FWM field. It’s found that high conversion efficiency can be achieved by tuning
systemic parameters. Finally we conclude in Section IV.
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2. Model and dynamic equations

We consider an asymmetric semiconductor quantum well as shown in Fig. 1, which consists of a
shallow well (a 11.0 nm Al0.04Ga0.96As layer) and a deep well (a 9.5 nm GaAs layer), and they
are separated by a 3.8 nm Al0.4Ga0.6As potential barrier [40]. Both the shallow well (left) and
the deep well (right) are Al0.4Ga0.6As potential barriers. Due to the tunneling effect, the SQW
structure has five subbands which include two ground subbands |1〉 and |2〉, two closely separated
excited subbands |3〉 and |4〉, and a second excited subband |5〉. By solving the effective mass
Schrö dinger equations [41], we can obtain that the energies of five subbands are E1 = 34.5
meV, E2 = 62.3 meV, E3 = 135.5 meV, E4 = 141.5 meV and E5 = 296.3 meV, respectively.
We study the coupling of these states with external laser lights. Subbands |3〉 and |4〉 are
separated by an energy splitting 2∆, which are coupled with two ground subbands |1〉 and |2〉
by a weak super-Gaussian pulse field with Rabi frequency Ωp = Ω0 exp[−(x2 + y2)8/ω16

sp ]e−t2/τ2

(ωsp and Ω0 are the transverse waist and initial amplitude of the field, and τ is pulse length) and a
continuous-wave control field with Rabi frequency Ωc, respectively. The transition |2〉 ↔ |5〉 is
driven by a vortex field Ωv. Then a FWM field Ωm can be efficiently generated via the nonlinear
process. Here, the vortex field is a Laguerre-Gaussian (LG) mode and its Rabi frequency
is [42]

Ωv =
√
2p!/π(p + |l|)!

Ωv0
ω0
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exp

(
−
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0

)
exp(−ilφ), (1)

whereΩv0 is the initial amplitude, r is the radial radius and the beam waist is given by ω0. φ is the
azimuthal angle and L |l |p is a generalized Laguerre polynomial. The radial index and azimuthal
index are defined by p and l, respectively.
In the present analysis we assume that the SQWs with low dopings are designed such that

electron-electron effects have very small influences on our results. Many-body effects for example,
the depolarization effect, which renormalizes the free-carrier and carrier-field contributions are
not included in our study [43]. Under the rotating wave and electric-dipole approximations, the
Hamiltonian in the interaction picture can be written as (~ = 1)

HI = (∆p − ∆c)|2〉〈2| + (∆p − ∆)|3〉〈3| + (∆p + ∆)|4〉〈4|

+ (∆v + ∆p − ∆c)|5〉〈5| − (gΩpei®kp ·r |3〉〈1|

+Ωpei®kp ·r |4〉〈1| + fΩcei®kc ·r |3〉〈2| +Ωcei®kc ·r |4〉〈2|

+Ωvei®kv ·r |5〉〈2| +Ωmei®km ·r |5〉〈1| + H.c.),

(2)

where the detunings of relevant fields are denoted as ∆p = [(E3 + E4)/2 − E1] − ωp, ∆c =

[(E3 + E4)/2 − E2] − ωc and ∆v = E5 − E2 − ωv. Ej(j = 1 − 5) is the energy of subband
|j〉. The ratios of the transition dipole moments between the relevant subbands are defined as
g = µ13/µ41 and f = µ32/µ42, in which µnb(n, b = 1 − 5, n , b) represents the dipole moment
for the transition between states |n〉 ↔ |b〉. The wave vectors of the corresponding fields are
®kj(j = p, c, v,m).

Defining the electronic energy state as |ψ〉 = A1 |1〉+A2ei(®kp−®kc)·r |2〉+A3ei®kp ·r |3〉+A4e
®kp ·r |4〉+

A5ei(®kp−®kc+®kv)·r |5〉 and using the Schrödinger equation i~∂ |ψ〉/∂t = HI |ψ〉, the equations of motion
for the probability amplitude Aj (j = 1 − 5) can be obtained as [44]

ÛA2 = −i(∆p − ∆c)A2 + ifΩ∗cA3 + iΩ∗cA4 + iΩ∗vA5 − γ2A2, (3)

ÛA3 = −i(∆p − ∆ − iγ3)A3 + igΩpA1 + ifΩcA2, (4)
ÛA4 = −i(∆p + ∆ − iγ4)A4 + iΩpA1 + iΩcA2, (5)
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ÛA5 = −i(∆v + ∆p − ∆c)A5 + iΩvA2 + iΩmA1 − γ5A5, (6)

The effective decay rate γj (j = 2 − 5) for each subband |j〉 are phenomenologically added to the
above equations [45–47], which comprise of a population-decay contribution γjl and a dephasing
contribution γjd, i.e. γj = γjl + γjd. γjl tends to only occur at low temperatures due to longitudinal
optical photon emissions, while γjd is attributed to a combination of quasi-elastic interface
roughness scattering and electron-photon scattering.
Using the slowly varying amplitude approximation, the propagation equations of the probe

and FWM fields are [48]

∂Ωp

∂z
+
∂Ωp

c∂t
=

ic
2ωp
∇2⊥Ωp + iζp(gA3 + A4)A∗1, (7)

∂Ωm

∂z
+
∂Ωm

c∂t
=

ic
2ωm
∇2⊥Ωm + iζmA5A∗1, (8)

where ζp = 2πNωp |µ31 |
2/~c and ζm = 2πNωm |µ51 |

2/~c are constants with N being the electron
density. The first terms on the right-hand sides of the Eqs. (7) and (8) account for light
diffraction. Light diffraction can be neglected if the propagation distance is much smaller than
the Rayleigh range of the probe pulse or the generated FWM field, i.e. πω2

sp(m)/λp(m) � L [49].
In this work, we consider the propagation distance L = 100 µm, the waist ωsp(ωm) ≈ 600 µm
(200 µm) and the wavelength λp(m) ≈ 11.9 µm (4.8 µm), obtaining πω2

sp(m)/λp(m) ≈ 9.5 × 104 µm
(2.6 × 104 µm)� L. In viewing these parameters, it is safe to ignore diffraction in the following
analysis.

In weak-probe regime, most of the electrons remain in the subband |1〉, i.e. |A1 |
2 ≈ 1. Under

this condition, we solve Eqs. (3)–(8) using the Fourier transform method

b2Ã2 + fΩ∗cÃ3 +Ω
∗
cÃ4 +Ω

∗
vÃ5 = 0, (9)

b3Ã3 + fΩcÃ2 + gΩ̃p = 0, (10)

b4Ã4 +ΩcÃ2 + Ω̃p = 0, (11)

b5Ã5 +ΩvÃ2 + Ω̃m = 0, (12)

i∂Ω̃p/∂z − ωΩ̃p/c − ζp(gÃ3 + Ã4) = 0, (13)

i∂Ω̃m/∂z − ωΩ̃m/c − iζmÃ5 = 0, (14)

where b2 = ω − ∆p + ∆c + iγ2, b3 = ω − ∆p + ∆ + iγ3, b4 = ω − ∆p − ∆ + iγ4 and b5 =
ω − ∆v − ∆p + ∆c + iγ5. ω is the Fourier variable. Ãj (j = 2, 3, 4, 5) and Ω̃p(m) are the Fourier
transforms of Aj (j = 2, 3, 4, 5) and Ωp(m), respectively.
By solving Eqs. (9)–(12), one immediately obtains

gÃ3 + Ã4 = Dp1Ω̃p/D + Dm1Ω̃m/D, (15)

Ã5 = Dp2Ω̃p/D + Dm2Ω̃m/D, (16)

where Dp1 = (b3+g2b4)(b2b5−Ω2
v)−b5(f −g)2Ω2

c , Dm1 = b3ΩcΩ
∗
v+gfb4ΩcΩ

∗
v, Dp2 = b3Ω∗cΩv+

gfb4Ω∗cΩv, Dm2 = b2b3b4 − b3Ω2
c − b4f 2Ω2

c , and D = b3b4Ω2
v + b3b5Ω2

c + f 2b4b5Ω2
c − b2b3b4b5.

By substituting Eqs. (15) and (16) into Eqs. (13) and (14) and using the initial condition
Ω̃m(z = 0,ω; x, y) = 0, we obtain the approximate solution of the FWM field

Ω̃m(z,ω; x, y) = FΩ̃p(z = 0,ω; x, y)(eizK+ − eizK− ), (17)

where K± = ω/c + (Dm2ζm +Dp1ζp ∓
√

G)/2D = K±(0) + ω/vg± +O(ω2), F = ζmDp2/
√

G, with
G = (Dm2ζm − Dp1ζp)

2 + 4Dm1Dp2ζmζp. vg± = 1/Re{[∂K±(ω)]|ω=0} is the group velocity of K±
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mode. From Eq. (17), we readily see that there exist two modes described by the dispersion
relations K+ and K−, respectively. Normally, real part Re(K±) is defined as the phase shifts per
unit length, which reflects the variation of the phase; while imaginary part Im(K±) represents the
absorption, which reflects the variation of the intensity [50,51].
Utilizing the inverse Fourier transform and we obtain

Ωm(z, t; x, y) = F[Ωp(η+)eizK+ −Ωp(η−)eizK− ], (18)

where η± = t − z/vg± . In the adiabatic regime, one can find the K− mode is absorbed quickly and
only the K+ mode remains after a short propagation distance at the central frequency [52,53]. By
neglecting the K− mode, the final result of the FWM field after a short propagation distance L is
obtained as

Ωm(L, t; x, y) = FΩp(η+)eiLK+ . (19)

Based on [54], the conversion efficiency of the generated FWM field can be obtained, i.e.
η = |Em(L, t; x, y)/Ep(0, t; x, y)|2, where Em(L, t; x, y) is the electric field of the generated FWM
at z = L and Ep(0, t; x, y) is the electric field of the probe field at z = 0. |Em(L, t; x, y)|2 =
4~2 |Ωm(L, t; x, y)|2/|µ51 |2 and |Ep(0, t; x, y)|2 = 4~2 |Ωp(0, t; x, y)|2/|µ31 |2. Then the FWM
efficiency can be written as

η =
|µ31 |

2

|µ51 |2

∫
x

∫
y

∫
z

∫
t |Ωm(L, t; x, y)|2dxdydzdt∫

x

∫
y

∫
t |Ωp(0, t; x, y)|2dxdydt

. (20)

3. Results and discussion

In the following, we focus on the situation where the pump field is a LGmode LGl=3
p=1. The electric

density of the high-quality SQW keeps below 1024 m−3 under the case of temperatures up to 10
K [55]. In that case, we can choose the decay parameters as γ2 = 2 × 10−5 meV, γ3 = γ4 = 9
meV and γ5 = 4 meV.

In Fig. 2, we show the phase and intensity patterns of the FWM field when probe-field detuning
∆p is equal to control-field detuning ∆c. Here, Figs. 2(a) and 2(b) are phase patterns of the
FWM field, while Figs. 2(c) and 2(d) are corresponding intensity patterns. As illustrated in
Figs. 2(a) and 2(c), under the resonance condition ∆p = ∆c = 0, the phase is normal and the
intensity distribution shows a double-ring pattern. Interestingly, when ∆p = ∆c = 6 meV, the
phase remains normal and the intensity in Fig. 2(d) is the same as in Fig. 2(c). Clearly, when the
condition ∆p = ∆c is satisfied, the absorption is suppressed and the phase variations induced by
∆p and ∆c are nearly balanced out. In order to gain deeper insight into the above phenomena, we
plot the real and imaginary parts of the dispersion relation K+ as a function of radial radius r in
Figs. 2(e) and 2(f). One can see the values of real parts (solid lines) are very small while the
imaginary parts (dotted lines) are same in Figs. 2(e) and 2(f). Therefore, the helical phase is
normal while the intensity is unchanged.

For exploring the vortex FWM process, we study the phase and intensity patterns of the FWM
field when probe-field detuning ∆p is not equal to control-field detuning ∆c. As shown in Figs.
3(a)–3(d), when (∆p,∆c) = (4, 0 meV) or (∆p,∆c) = (0, 4 meV), the phase becomes twisted and
the intensity decreases obviously compared with the Figs. 2(a)–2(d). The reason is due to the
probe-field detuning ∆p and control-field detuning ∆c modify the spatial-dependent absorption
and phase properties of the FWM field. Similarly, we give the real and imaginary parts of the
dispersion relation K+ as a function of radial radius r in Figs. 3(e) and 3(f). One can find that
the real and imaginary parts increase significantly, which means that the spatial dependency
of helical phase on xy space becomes stronger and the absorption is increasing. So the phase
appears twisted and the intensity decreases in Figs. 3(a)–3(d). Here, note that the value of real
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part in Fig. 3(e) is negative compared to the positive value of real part in Fig. 3(f), which gives
the physical reason that the twisted directions of the phase patterns are opposite in Figs. 3(a) and
3(b).
In order to clearly understand the vortex mechanism, we perform the interference between

the FWM field and a same-frequency Gaussian beam ΩG = ΩG0 exp(−r2/4ω2
0) for different

probe-field detuning ∆p and control-field detuning ∆c in Fig. 4. From this figure, it can
be seen that the interference phase and intensity patterns are quite different from the cases
in Figs. 2 and 3. Specially, as shown in Figs. 4(g) and 4(h), the interference intensity
patterns are twisted and rotated oppositely. The reason is that, due to the equiphase surface
of Gaussian beam is a plane, the detunings ∆p and ∆c modify the phase difference between
the vortex FWM field and Gaussian beam, which results in the twisted and rotated interfer-
ence patterns. Actually, the results imply that one can indeed manipulate the vortex phase
and intensity of the output FWM field via the probe-field detuning ∆p or the control-field
detuning ∆c.
Finally, we study the FWM conversion efficiency η as a function of the propagation distance

L, control field Ωc, and probe-field detuning ∆p in Figs. 5(a), 5(b) and 5(c), respectively.
As shown in Fig. 5(a), it is found that the maximum FWM conversion efficiency achieves

Fig. 2. Phase [(a) and (b)] and intensity [(c) and (d)] patterns of the FWM field for
∆p = ∆c = 0 meV and ∆p = ∆c = 6 meV, respectively. (e) and (f) are corresponding real
Re(K+) and imaginary Im(K+) parts of the dispersion relation K+ as a function of radial
radius r. The other parameters are g = f = 1.2, ∆v = 0, ∆ = 3 meV, Ωc = 12 meV, Ωv0 = 15
meV, ζm = ζp = 3meV/µm, Ω0 = 1 meV, l = 3, p = 1, ω0 = 200 µm, ωsp = 3ω0, τ = 10−6
s, L = 100 µm.
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Fig. 3. Phase [(a) and (b)] and intensity [(c) and (d)] patterns of the FWM field for
(∆p,∆c) = (4, 0 meV) and (∆p,∆c) = (0, 4 meV), respectively. (e) and (f) are corresponding
real Re(K+) and imaginary Im(K+) parts of the dispersion relation K+ as a function of radial
radius r. Other parameters are the same as in Fig. 2.

approximately 36% when ∆p is equal to ∆c. However, when ∆p , ∆c, the maximum FWM
conversion efficiency decreases dramatically with the increasing propagation distance L. In the
Fig. 5(b), we display the FWM conversion efficiency η as a function of the control field Ωc for
different ∆p and ∆c. Interestingly, when ∆p = ∆c, the maximum FWM conversion efficiency
achieves nearly 50%. On the contrary, for the case ∆p , ∆c, the maximum FWM conversion
efficiency decreases by approximately 30%. Also, we plot the FWM conversion efficiency η
vs probe-field detuning ∆p in Fig. 5(c). From this figure, one can see the FWM conversion
efficiency keeps fixed (solid line) when ∆p = ∆c and reaches the maximum value at the point
∆p = 4 meV (dotted line) in the case ∆p , ∆c. The above results demonstrate, when the condition
∆p = ∆c is satisfied, the absorption is significantly suppressed and the phase variations induced
by ∆p and ∆c are balanced out, then the high FWM conversion efficiency is achieved even
the propagation distance is very long, i.e. L = 400 µm. Therefore, our study may open up
a new way for realizing the high-efficiency long-distance multi-channel information transfer
[56] in a solid.
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Fig. 4. Interference phase (a)–(d) and intensity (e)–(h) patterns of the FWM field and a
same-frequency Gaussian beam for different probe-field detuning ∆p and the control-field
detuning ∆c. Other parameters are the same as in Fig. 2 except for ΩG0 = 0.3 meV. Note
that, profiles (a)–(d) have shown the evidence that OAM phase is transferred entirely from
the pump field to the FWM field, while profiles (a)–(h) imply that both the intensity and the
phase of the FWM field are modulated.



Research Article Vol. 28, No. 3 / 3 February 2020 / Optics Express 2983

Fig. 5. The FWM conversion efficiency η as a function of the propagation distance L (a),
control field Ωc (b), and probe-field detuning ∆p (c), respectively. Other parameters are the
same as in Fig. 2.

4. Conclusion

In the present study, we mainly focus on the condition of low temperatures up to 10 K, and have
neglected other many-body effects such as the depolarization effect, which renormalizes the
free-carrier and carrier-field contributions. These contributions and their interplay have been
investigated quite thoroughly in [57]. Note that, due to the small carrier density considered here,
these effects only give a negligible correction.

In conclusion, we have demonstrated a new scheme to achieve highly efficient vortex FWM in
asymmetric semiconductor quantum wells where strong cross coupling between neighboring
wells are considered. Owing to the inter-well cross coupling, one can effectively manipulate
the helical phase and intensity of the FWM field via the probe-field detuning and control-field
detuning. More importantly, when probe-field detuning is equal to control-field detuning, the
highly efficient vortex FWM is achieved and the maximum FWM conversion efficiency is
approximately 50%. As a result, the method and theoretical analyses that are proposed here may
open novel avenues to investigate OAM-based phenomena in different nanostructures [58–64] .
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