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Abstract Scale effects are differences in physical behavior that manifest between a large event and a
geometrically scaled laboratory model and may cause misleading predictions. This study focuses on scale
effects in granular slides, important in the environment and to industry. A versatile 6 m long laboratory
setup has been built following Froude similarity to investigate dry granular slides at scales varied by a
factor of 4, with grain Reynolds numbers Re in the range of 102 to 103. To provide further comparison,
discrete element method simulations have also been conducted. Significant scale effects were identified;
the nondimensional surface velocity increased by up to 35%, while the deposit runout distance increased
by up to 26% from the smallest to the largest model. These scale effects are strongly correlated with Re,
suggesting that interactions between grains and air are primarily responsible for the observed scale effects.
This is supported by the discrete element method data, which did not show these scale effects in the
absence of air. Furthermore, the particle drag force accounted for a significant part of the observed scale
effects. Cauchy number scale effects caused by unscaled particle stiffness resulting in varying dust
formation with scale are found to be of secondary importance. Comparisons of the laboratory data to that
of other studies and of natural events show that data normalization with Re is an effective method of
quantitatively comparing laboratory results to natural events. This upscaling technique can improve
hazard assessment in nature and is potentially useful for modeling industrial flows.

1. Introduction
Granular slides and flows are omnipresent, occurring in natural conditions such as rockfalls, landslides,
pyroclastic flows, and avalanches (Pudasaini & Hutter, 2010), and in industrial contexts including heap
development (Bryant et al., 2014; Markauskas & Kačianauskas, 2011; Zhang & Vu-Quoc, 2000), chutes, hop-
pers, rotating drums, and blenders (Turnbull, 2011; Zhu et al., 2008). They can be identified as collections of
individual particles moving in unison, with the space between particles being filled with an interstitial fluid
(Campbell, 2006). This study focuses on dry granular slides, where the interstitial fluid is air. Granular slides
differ from continuous flows by having defined initial, transient, and final states. These are typically trig-
gered by direct mechanical action, temperature changes of the solid or fluid phase, or acoustic propagation
(Aradian et al., 2002; Juanico et al., 2008).

Landslides and avalanches can be extremely massive and influence large areas (Xu et al., 2014), causing con-
siderable damage during their passing (Haque et al., 2016) and resulting in indirect effects such as tsunamis
or artificial dam formation (Heller et al., 2008; Kelfoun et al., 2010; Walsh et al., 2012). The relevance
of granular events and the challenge to measure them in nature justify the use of scaled experiments
to develop understanding of their physical processes, facilitating more repeatable and detailed analy-
sis in a cost-effective manner. The sheer scale of natural events makes controlled physical experiments
of comparable dimensions (Iverson et al., 2010; McElwaine & Nishimura, 2001; Moriwaki et al., 2004)
rather rare.

While physical modeling is useful for capturing key physical mechanisms, model effects can be caused by
misrepresentation of features secondary to the model's focus, such as the terrain, materials, or slide initiation
mechanisms. Additionally, measurement effects can be caused by differences in measurement techniques
between natural events and models. While these two effects can be readily corrected in principle, scale effects
are much harder to isolate and account for. Many key parameters of a phenomenon scale nonlinearly and
independently of each other; as a result, it is practically impossible to correctly scale all involved parameters
and completely avoid scale effects (Heller, 2011).
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Scale effects are produced when force ratios observed in nature vary from those in a scaled model. In granular
slides, the Froude number (Fr), corresponding to the ratio of inertial and gravity forces, dominates slide
motion in comparison to other force ratios (Choi et al., 2015). Fr is defined as

Fr = U√
gL

, (1)

where U and L are characteristic velocity and length scales and g is the gravitational acceleration. The grain
Reynolds number (Re) is also highly relevant to granular slides (Iverson, 1997; Zhou & Ng, 2010) and is
the ratio between the inertial and viscous forces of the surrounding media acting on a single particle. Re is
defined as

Re = UL
𝜈𝑓

, (2)

with 𝜈𝑓 being the kinematic fluid viscosity, and quantifies whether the drag force acting on these individual
particles is primarily laminar or turbulent. Re is the most relevant Reynolds number for evaluating slide
dynamics as the fluid flow around individual particles depends more strongly on the particle shape and local
granular system than on the granular slide as a whole. Additionally, the Cauchy number (Ca) relates to the
ratio of inertial and elastic forces acting on particles during collisions. Ca is defined as

Ca =
𝜌gU2

E
, (3)

with 𝜌g being the particle density, and E being the particle Young's modulus, and Ca is also potentially
relevant to granular slides (Heller, 2011). Each of the force ratios in equations (1)–(3) follows different scaling
laws, preventing full similarity of key slide parameters across all force ratios.

A scale series of granular slides can be constructed such that Fr is kept constant between scales (Heller et
al., 2008; Kesseler et al., 2018). This eliminates the gravity force as a cause of scale effects, such that they are
primarily due to differences in Re and other force ratios such as Ca. Sometimes phenomena are self-similar
and Froude scaling completely models them without significant scale effects, and others may be Re-invariant
without significant Re-dependent scale effects (Heller, 2017). Identifying which key parameters of granular
slides are Re-invariant and which are not (and thus show scale effects) would be highly useful for comparing
slide data from different scales.

Granular dynamics has seen relatively little focus on scale effects (Iverson, 2015) in contrast to experimental
fluid dynamics (Heller, 2011), with the scale separation between macroscopic slide and microscopic parti-
cle scales remaining unclear (Andreotti et al., 2013; Armanini, 2013). Furthermore, granular systems have
many additional properties that increase the complexity of their scaling compared to fluid systems, such
as particle fracture, stress anisotropy, and local and historical effects. Bowman et al. (2012) and Ng et al.
(2018), for example, focus on the influence of particle fracture on slide dynamics, using centrifuges to pro-
duce fracturing stress levels at small scales and identifying that particle fracture can significantly influence
slide runout distance and impact force, respectively. Granular systems thus have a wider range of variables
and constraints that must be controlled to ensure proper scaling throughout the slide duration (Slonaker et
al., 2017). Many studies looking at granular scaling focus on comparing the macroscales and microscales
(Brodu et al., 2015; Bryant et al., 2014; Slonaker et al., 2017), or relative scales within an event (Warnett
et al., 2014), rather than comparing geometrically similar systems at different sizes (Iverson, 2015). Addi-
tionally, other studies focus on scale effects in the surrounding fluid rather than in the granular systems
themselves (Ettema et al., 2006; Heller et al., 2008; Ranieri, 2007), with studies investigating scale effects in
granular systems typically focusing on continuous flows rather than discrete granular slides (Artoni et al.,
2012; Pouliquen, 1999).

Furthermore, scale effects addressed in this work are not necessarily relevant to size effects such as hyper-
mobility that have been more thoroughly studied (Johnson et al., 2016; Parez & Aharonov, 2015). Size effects
typically occur once a discrete volume threshold is passed, and do not strictly relate to differences in force
ratios such as equations (1)–(3) or other stress ratios in Iverson (1997). For example, hypermobility is a size
effect observed as a drastic increase in runout distance, for example, in slides over 106 m3, unrelated to grad-
ual changes in runout distance below this threshold as for scale effects. While some suggest that size effects
are caused solely by the physics of a granular system in isolation (Parez & Aharonov, 2015), others suggest
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that secondary mechanisms such as lubrication, fluidization, and velocity frictional weakening are respon-
sible (Collins & Melosh, 2003; Davies & McSaveney, 1999; Erismann, 1986; Savage & Hutter, 1989), which
match the definition of model effects better than of scale effects. The field of scale effects in granular slides
is thus relatively unexplored.

The discrete element method (DEM), introduced by Cundall and Strack (1979) to the field of granular sys-
tems, has developed significantly over the last few decades as a powerful numerical technique for modeling
dense granular flows. Poschel (1993) first applied the DEM to inclined chute flows and Zhu et al. (2008)
reviews applications of the DEM to a range of granular flow contexts. The DEM complements physical
modeling well, as difficult-to-control parameters such as the friction angle and restitution coefficient can
be implemented directly. A major advantage of the DEM in comparison to continuum-based approaches
including depth-averaged models (Savage & Hutter, 1989), the material point method (Llano-Serna et al.,
2016), and smoothed particle hydrodynamics (Nguyen et al., 2017), is its direct capture of particle-scale inter-
actions. While the DEM typically uses spherical particles for improved performance, rolling-resistance mod-
eling can be applied to better represent the energy of systems of rough particles (Ai et al., 2011; Wensrich &
Katterfeld, 2012), while multisphere clumps can be used to capture shape effects more precisely if required
(Kruggel-Emden et al., 2008). This allows the DEM to better represent phenomena specifically linked to
particle characteristics including size, shape, and relative displacement of particles, such as size segrega-
tion, slide dilation and contraction, contact force transference, and jamming events. In this study, spherical
particles are used with a rolling-resistance model to allow for timely simulation of laboratory experiments.

This study primarily aims to quantify the relative importance of Re in the scale effects identified in the labo-
ratory data set. The overall data set consists of laboratory and numerical data at three different experimental
scales and three initial conditions at each scale, adopting and improving on the methodology in Kesseler
et al. (2018). Key slide parameters were nondimensionalized and compared, showcasing the match of the
DEM simulations to the corresponding laboratory slides and highlighting laboratory-scale effects. These key
parameters were then normalized with Re, quantifying the degree to which these scale effects can be corre-
lated to air-related interactions. For the deposit runout distance, the normalization also included the data
set from Davies et al. (1999) and natural events, to evaluate whether the relative importance of Re changes
as the scale range increases further. This results in new scaling laws allowing laboratory results, under ideal-
ized conditions, to be quantitatively compared to natural slides by excluding Re scale effects, with equation
(10) facilitating direct upscaling.

The laboratory setup, methodology, and the DEM approach are described in sections 2 and 3, while section 4
highlights laboratory-scale effects and key results from the DEM. Section 5 evaluates the dependence of
these scale effects on Re. The most relevant conclusions are summarized in section 6.

2. Laboratory Setup and Methodology
A laboratory setup was designed to produce Fr-similar granular slides at three different scales. The scale
factor 𝜆, the ratio between a characteristic length at largest scale and at the chosen comparison scale, varies
across a range of 1 to 4. The key parameters and scaling relating to the ramp geometry and slides across the
experimental range are defined in Figure 1 and Table 1. Images of the laboratory setups at 𝜆 = 1, 2, and 4
are provided in the supporting information (Figure S1); all configurations had the same layout in terms of
measurement equipment, chute geometry, and moving parts. The channel was frictional but smooth, with
smooth channels being relevant to industrial contexts and providing a useful simplification and foundation
for evaluating scale effects caused by other factors in dry granular slides.

The x coordinate denotes the position downward parallel to the channel surface, with x𝑓 , xm, xc, and xt rep-
resenting the respective channel-wise slide front, peak, mass centroid, and tail positions. The 𝑦 coordinate
denotes the perpendicular distance from the left-hand sidewall in Figure 1b with w representing the chan-
nel width. The z coordinate denotes the position perpendicular to the channel surface, with hm being the
maximum slide thickness at the channel centerline (𝑦 = 0). d is the mean particle diameter and 𝜔sh is the
constant rate of shutter angular acceleration after release, resulting in a velocity ush at the shutter tip after
rotating 90◦. Hs and Ls describe the slide release wedge shape, resulting in an angle 𝜃W between the wedge
surface and the flat runout zone. Hc represents the initial height of the slide mass centroid above the flat
runout zone. Ms and Vs indicate the slide mass and volume. L1 denotes the distance from the release point
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Figure 1. Key parameters and Fr scale series of granular slides. (a) Channel side view, with x, 𝑦, z denoting the
curvilinear position coordinate system. (b) Slide cross section across channel width. (c–e) Relative scaling of release
wedges, channel, and mean particle diameter d varying with scale factor 𝜆.

to the onset of the curved transition zone, of radius R, and Lsh denotes the distance between the shutter rota-
tion axis and the channel surface. x1 and x2 describe the positions of specific measurement zones from the
release point, at which high-speed camera and laser trigonometry measurements (with incidence angle 𝜃i)
were made. 𝜃r is the channel inclination angle, xr represents the position at which the transition curve ends
and Rs is the final front distance from xr , while 𝑓 is the image frame rate.

w was 0.250, 0.500, or 1.000 m, while L1 was 0.578, 1.155, or 2.310 m, depending on 𝜆. 𝜃r was fixed at 40◦, well
above the friction angle of the slide material to ensure a steady avalanche from release to deposit. High-speed
cameras were positioned perpendicular to the inclined channel surface to measure the surface velocity us via
particle image velocimetry, while the surface thickness was calculated using the shift in a laser point visible
in the camera images. us acts primarily in the x direction, making it nearly identical to ux, the ramp-wise
slide velocity. The slide runout distances and deposit morphologies were measured via photogrammetry
(Kesseler, 2019; Kesseler et al., 2018).

Garside Sands aggregates were used with particle diameters varying between 0.5 and 1.0 mm at 𝜆 = 4,
between 1.0 and 2.0 mm at 𝜆 = 2, and between 2.0 and 4.0 mm at 𝜆 = 1 (Table 1), with similar angularity
and size distribution curves at all scales. d is d50 for the laboratory particles, representing the sieve size with
50% average passing and corresponding well to the volume-based particle size. d was preferred to other
characteristic diameters such as the Sauter mean diameter (which Kowalczuk and Drzymala (2016) suggest
may be relevant) due to its ease of application and relevance for both drag and collisional/contact contexts.
The material stiffness was constant between scales.
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Table 2
Initial (Fri, Rei, Cai) and Measured (Fr, Re, Ca) Force Ratios

Experiment no. 𝜆 Hc ui hi Fri Rei Cai us hm Fr Re Ca
(-) (-) (m) (m/s) (m) (-) (-) (-) (m/s) (m) (-) (-) (-)
L1–L6 1 1.664 3.19 0.0161 8.02 570 3.86 × 10−7 3.15 0.0149 8.24 563 3.76 × 10−7

L7–L12 1 1.684 3.21 0.0212 7.03 574 3.90 × 10−7 3.19 0.0155 8.18 570 3.85 × 10−7

L13–L17 1 1.716 3.24 0.0290 6.07 579 3.98 × 10−7 3.24 0.0162 8.13 579 3.97 × 10−7

L18–L21 2 0.832 2.26 0.0081 8.02 202 1.93 × 10−7 2.06 0.0088 7.01 184 1.61 × 10−7

L22–L25 2 0.842 2.27 0.0106 7.03 203 1.95 × 10−7 2.11 0.0094 6.95 189 1.69 × 10−7

L26–L29 2 0.858 2.29 0.0145 6.07 205 1.99 × 10−7 2.15 0.0101 6.83 192 1.75 × 10−7

L30–L37 4 0.416 1.60 0.0040 8.02 71 9.64 × 10−8 1.39 0.0052 6.15 62 7.31 × 10−8

L38–L45 4 0.421 1.61 0.0053 7.03 72 9.75 × 10−8 1.40 0.0059 5.82 63 7.42 × 10−8

L46–L53 4 0.429 1.62 0.0073 6.07 72 9.94 × 10−8 1.42 0.0066 5.58 63 7.63 × 10−8

A Froude scaling approach was used, with lengths scaling linearly with 𝜆, velocities and time scaling with
𝜆1∕2, and mass scaling with 𝜆3. In this study, Fr = u∕

√
gh, with u being the slide velocity and h being the slide

thickness. Initial estimates of relevant Fr, Re, and Ca have been calculated to clarify the scaling approach.
For Fri, an initial characteristic velocity ui is derived from the energy balance of a frictional block sliding
down a slope (Körner, 1977), resulting in

ui =
√

2gHc(1 − tan 𝛿i∕ tan 𝜃r), (4)

with Hc denoting the vertical distance of the mass centroid of the release wedge from the runout zone.
An initial characteristic length hi is derived from the mean thickness of the slide spread evenly along the
inclined channel length from the shutter to the transition curve, resulting in

hi =
Hs

2 tan(90 − 𝜃r + 𝜃W )
2L1

. (5)

The resulting Fri, Rei, and Cai are thus defined as

Fri =
ui√
ghi

= 2
Hs

√
HcL1(1 − tan 𝛿i∕ tan 𝜃r)

tan(90 − 𝜃r + 𝜃W )
, (6)

Rei =
uid
𝜈𝑓

= d
𝜈𝑓

√
2gHc(1 − tan 𝛿i∕ tan 𝜃r), (7)

Cai =
𝜌gui

2

E
=

2𝜌ggHc(1 − tan 𝛿i∕ tan 𝜃r)
E

, (8)

with 𝜈𝑓 being 1.5 × 105 m2/s at room temperature. The initially calculated (Rei and Cai) and measured (Re
and Ca) values of force ratios differ greatly across the laboratory-scale series (Table 2), confirming that exper-
iments scaled to have identical Fr display large differences in Re and Ca, responsible for scale effects. While
it is difficult to compare granular slides effectively with a single representative value of Fr (Ng et al., 2019),
this comparison is useful for validating the presence of scale effects in the present study.

Multiple experiments have been conducted for each initial condition at each scale (Table 1) to generate
ensemble-averaged slide data. This reduced the measurement uncertainty of these parameters by a factor of√

N, where N is the number of experimental repeats. N = 4 for laboratory experiments with 𝜆 = 2, N = 5
for 𝜆 = 1 and 𝜃W = 15◦, N = 6 for other 𝜃W with 𝜆 = 1, and N = 7 for 𝜆 = 4.

Deposit front and tail positions measured with a digital camera involved a timing uncertainty of ±0.017 s
due to 𝑓 = 30 Hz, and a positioning uncertainty of ±0.01 m due to the camera resolution. The uncertainty
in the particle image velocimetry velocity vectors at specific time steps is estimated as ±2.5%, with tim-
ing uncertainty of ±1 camera frame at each scale (Table 1). Slide thickness measurements were influenced
by uncertainty in the ramp coordinates in the camera footage (±2.5%), uncertainty caused by stray par-
ticle interference with the lasers (±10%), and uncertainty in 𝜃i (±5%), compounding to a total thickness
uncertainty of ±11.2%. Deposit position uncertainty in the photogrammetric meshes is ±0.5 mm for all 𝜆.
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Table 3
Key DEM Parameters

Experiment no. 𝜆 n Ts Tr Δtc Δts

(-) (-) (-) (s) (s) (s) (s)
S1 1 1.95 × 106 0.130 2.958 6.12 × 10−7 3.54 × 10−7

S2 1 2.56 × 106 0.140 3.040 6.12 × 10−7 3.54 × 10−7

S3 1 3.51 × 106 0.140 3.112 6.12 × 10−7 3.54 × 10−7

S4 2 1.94 × 106 0.085 2.107 3.06 × 10−7 1.77 × 10−7

S5 2 2.56 × 106 0.092 2.171 3.06 × 10−7 1.77 × 10−7

S6 2 3.49 × 106 0.099 2.205 3.06 × 10−7 1.77 × 10−7

S7 4 1.94 × 106 0.065 1.473 1.53 × 10−7 8.84 × 10−8

S8 4 2.56 × 106 0.065 1.518 1.53 × 10−7 8.84 × 10−8

S9 4 3.49 × 106 0.070 1.552 1.53 × 10−7 8.84 × 10−8

S10 0.2 1.95 × 106 0.269 6.619 3.06 × 10−6 1.77 × 10−6

S11 20 1.94 × 106 0.027 0.660 3.06 × 10−8 1.77 × 10−8

3. DEM Modeling
This study involves DEM simulations based on the Large-scale atomic/molecular massively parallel simu-
lator Improved for General Granular and Granular Heat Transfer Simulations (LIGGGHTS) engine of Kloss
et al. (2012). LIGGGHTS models particle contacts via a linear spring-dashpot model with Lagrangian trajec-
tory calculation. Normal and tangential contact forces are calculated using properties including the Poisson
ratio, friction coefficients, restitution coefficient, shear modulus, and Young's modulus, using a nonlinear
Hertz (1882) contact model (Kloss et al., 2012). Details for the DEM settings used in this study are given in
Kesseler et al. (2018) and Kesseler (2019).

A rolling-resistance method has been adapted to simulate the shape effects of the spherical particles of the
DEM. The sphericity and angularity of the laboratory sand particles were modeled through the application
of rolling friction torques during particle-particle and particle-surface collisions (Ai et al., 2011; Wensrich
& Katterfeld, 2012). The coefficient of rolling resistance 𝜇r is physically derived from the mean eccentricity
of contacts from the mass centroid of a particle and can be derived from the angle at which the gravity and
rolling-resistance torques acting on a particle are balanced (Ai et al., 2011).

The distance threshold for the detection of particle collisions was set to 2d in this study. The particle size
distribution was represented via Gaussian distributions with mean volume-based d and standard deviations
of d closely matching the laboratory particles at their respective scales (i.e., a mean of 2.7 mm and a standard
deviation of 0.4 mm at 𝜆 = 1). The DEM particles were gravity deposited to ensure that the release wedge
structure was modeled with sufficient accuracy.

The simulation time step Δts was determined for each experimental scale, using the Rayleigh wave speed
to determine a critical threshold for adequate calculation stability. The resulting critical time step Δtc
(Thornton, 2015) is proportional to d, meaning that smaller simulations require more time steps to simulate
the same duration after Froude scaling. The simulation time steps were set to less than 60% of Δtc at each
scale; this value was deemed sufficient to prevent calculation instability entirely. Δtc, the final time step Δts,
the particle count n, the settlement time Ts, and the respective runout completion time Tr for all simulations
are shown in Table 3.

The LIGGGHTS code has been calibrated and validated with an own column collapse experiment (Figure
S2) and a granular chute slide experiment from Hutter et al. (1995) (Figure S3). 𝜇r was set to 0.28, while the
rolling viscous damping ratio 𝜂r was set to 0.30, and the restitution coefficient e to 0.893.

4. Laboratory Scale Effects in the Scale Series
This section contains key data from the scale series. While experiments were conducted for 𝜃W = 0◦,
7.5◦, and 15◦, only the results for 𝜃W = 0◦ are presented here with the remaining results provided in the
supporting information. The total data set comprises nine different laboratory slide geometries (Table 1).
Overall, the laboratory data shows significant scale effects across many of the key parameters, such as slide
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Figure 2. Comparison of position distribution along the channel center x over time t between (a) laboratory (L1–L6)
and simulation (S1) slides for 𝜆 = 1 and 𝜃W = 0◦ and (b) laboratory (L18–L21) and simulation (S4) slides for 𝜆 = 2 and
𝜃W = 0◦.

position distribution over time, deposition patterns, and the slide surface velocity, with other parameters
such as the slide thickness also being influenced by these scale effects indirectly.

A comparison of the ensemble-averaged laboratory position distributions at the channel centers for 𝜆 = 1
and 2 and 𝜃W = 0◦, together with the simulation data for 𝜆 = 2 shown in Figure 2, reveals large differences
between scales. The laboratory fronts and tails in Figure 2a ran out 26% further on average than predicted
by the DEM. The DEM accurately matches the front and tail positions of the laboratory experiments at
𝜆 = 2 until the slides start to settle. Despite the DEM showing little evidence of scale effects, the laboratory
data quickly diverges from the DEM data as the slides start to decelerate. The tails show a strong mismatch
at 𝜆 = 1 long before reaching the transition curve with the laboratory slide tails depositing beyond the
transition curve, in contrast to the tails at 𝜆 = 2. However, at 𝜆 = 1, the laboratory slide fronts still match
the simulation data well until they pass over the transition curve. Overall, while the DEM reproduced most
features at 𝜆 = 2, a mismatch is seen at 𝜆 = 1 due to the DEM excluding air responsible for Re scale effects.

Similar slide position data for the channel sidewall region can be seen in Figure S4, with Figures S5 to S8 pro-
viding the corresponding data for other values of 𝜃W . The discrete fronts of the simulated slides occur where
the cyan in the color map is strongest, with the dispersed front region being represented by fainter shades
tending toward white. These dispersed fronts and tails are also visible during the laboratory experiments
(Figures S9 and S10), with the fronts behaving similarly to those in the DEM but displaying more disper-
sion due to individual particle angularity. However, the simulated tails deposited in the transition curve and
lagged behind the laboratory tails throughout, particularly at the sidewalls (Figure S7), resulting in stronger
tail curvature. Some laboratory tail data was missing due to the shutter blocking the visual access for the
digital camera, but the trends of the laboratory tail position remain clear throughout.

The surface velocity magnitude and behavior are also subject to significant scale effects in the laboratory
experiments. The differences in the dimensional simulation data in Figure 3a mostly disappear in the nondi-
mensionalization seen in Figure 3b. However, the differences in the corresponding laboratory data are not
entirely eliminated in Figure 3b, displaying scale effects. The laboratory surface velocity data is represented
as a moving average across a period of 25 camera frames (Table 1). The corresponding data for 𝜃W = 7.5◦

and 15◦ can be found in Figures S11 and S12, respectively. Generally, the front velocity quickly deceler-
ates into a quasi-constant value as the bulk of the slide passes through the measurement point, before
decelerating more rapidly again as the slide tail passes. Overall, the agreement between the laboratory and
simulated us∕(gd)1∕2 is reasonably good at 𝜆 = 2. The improved data fit at the same 𝜆 value compared to the
position distributions in Figure 2 suggests that the simulated base velocity is reduced, resulting in increased
shearing due to similar us∕(gd)1∕2.

At 𝜆 = 4 the slides arrived at each measurement point slightly later than at lower 𝜆 values; this corresponds
to us∕(gd)1∕2 decreasing with reduced slide size. While the difference in us∕(gd)1∕2 between 𝜆 = 2 and 4 is
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Figure 3. Comparison of the slide surface velocity profiles over time at x1 and x2 in (a) dimensional and
(b) nondimensional form. Laboratory (L1–L6, L18–L21, and L30–L37) and simulated (S1, S4, and S7) velocity
measurements with 𝜃W = 0◦.

minor at x1, us∕(gd)1∕2 at x2 is 7.5% smaller at 𝜆 = 4 than at 𝜆 = 2, suggesting that some slide scale effects
manifest between x1 and x2. us∕(gd)1∕2 is similar for all scales as the slide front crosses the measurement
points, but decreases much more slowly thereafter at 𝜆 = 1. Between 𝜆 = 1 and 𝜆 = 4, this results in a
relative difference in us∕(gd)1∕2 of 31% at x1 and 35% at x2, respectively, as the slide tails pass.

The slide thicknesses measured at the channel sidewall at x1 and at the channel center at x2 at 𝜃W = 0◦

vary significantly in dimensional form (Figures 4a and 4b), with the simulation data collapsing neatly with
nondimensionalization and remaining differences in the laboratory data indicating scale effects (Figures 4c
and 4d). The data for 𝜃W = 7.5◦ and 15◦ is provided in Figures S13 and S14, respectively. Scatter clouds show

Figure 4. Comparison of laboratory and simulated slide thickness profiles over time for 𝜃W = 0◦ in (a, b) dimensional
and (c, d) nondimensional form at (a, c) x1 at the channel sidewall and (b, d) x2 at the channel center.
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Figure 5. Comparison of laboratory and simulated (a, b) dimensional and (c, d) nondimensional deposit surfaces over
distance for 𝜃W = 0◦ at (a, c) 10% across the channel width and (b, d) 50% across the channel width. The experimental
numbers are shown in Table 1.

the variance within the discrete laboratory thickness measurements within each initial condition, which is
due to the granularity of the slide surface and the occasional interference of loose particles. This variance
relative to the mean peak slide thicknesses is ±10%; after averaging, the variance of the laboratory thickness
data is similar to that of the simulated data. The simulated slide thickness at 𝜆 = 2 is about 20% larger than
in the laboratory at x1. The agreement is much closer at x2, demonstrating differences in shearing over the
course of the slide event. The main scale effect at both x1 and x2 is the difference in thickness decrease after
the peak is reached, with slides at larger sizes typically decreasing faster. This correlates with the increase
in surface velocity previously seen in Figure 3. Furthermore, the duration at which the peak thickness is
maintained increases as 𝜆 increases, showing that the peak is steeper at larger scales. The variation of the
maximum slide thickness with 𝜆 is inconsistent, however.

After settling, the laboratory slide deposits are relatively flat and have cleared the transition curves, while
the simulated tails deposit roughly halfway up the transition curve and the fronts run out over a shorter
distance. The dimensional deposit surfaces with 𝜃W = 0◦ vary greatly across experimental scales (Figures 5a
and 5b), with nondimensionalization collapsing the simulated deposits neatly but still revealing large-scale
effects in the laboratory deposits (Figures 5c and 5d). Related data for 𝜃W = 7.5◦ and 15◦ is provided in
Figures S15 and S16, respectively, with Tables S1 to S3 providing more detailed information on the deposit
dimensions for 𝜃W = 0◦ to 15◦. For ease of comparison, the dimensional deposit surfaces in Figures 5a and
5b are presented in terms of x − xr , denoting the distance from the end of the transition curve, while the
nondimensional data in Figures 5c and 5d are presented with x (the distance from the shutter release) as
defined in section 2. Data from individual laboratory experiments illustrates the high repeatability.

Significant changes can be seen in the nondimensional laboratory deposits as 𝜆 varies in Figures 5c and
5d. At 𝜆 = 1, the mean central tail position is 221d ahead of that at 𝜆 = 4 (a relative difference of 24%),
while the mean central front position at 𝜆 = 1 is 333d ahead of that at 𝜆 = 4 (a relative difference of
26%). While the large-scale deposits are typically flat with little lateral curvature, the smaller laboratory
deposits show a smoother curved surface with greater lateral curvature. This suggests that the influence of
sidewall friction on the slide lateral shearing behavior is reduced at larger scales compared to other factors,
potentially including air interactions. These scale differences were not seen in the corresponding numerical
simulations, suggesting that the responsible physical mechanism is not captured by the DEM. Mechanisms
present in the laboratory slides that are absent from the DEM and may facilitate scale effects are discussed
in section 5.

While the scale effects captured by the laboratory experiments are not present in the simulation data, addi-
tional simulations conducted with 𝜆 values of 0.2 and 20 reveal some slight scale effects over this geometric
scale difference of 100. The tail positions increased by up to 3d and the front positions by up to 18d as the
size increased (Figure S17). These differences are Ca scale effects caused by constant material stiffness with
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scale, and are derived from subtle changes in the slide velocity over time between these scales (Figures S18
and S19). These effects are very small in comparison to the total laboratory scale effects observed. They may
have a minor impact on contact force transmission in physical models that would result in minor runout
distance increases in scale series between much larger ranges of 𝜆. However, this impact may not lead to the
same outcomes with real angular particles and is insignificant compared to the main mechanism driving
the laboratory scale effects.

5. Grain Reynolds Number Dependence
Overall, clear scale effects have been identified in the slide position distribution, the deposit shape and set-
tlement behavior, and the slide surface velocity of the laboratory slides within a small scale range of 𝜆 = 1
to 4. While the simulation captured negligibly small scale effects within a larger scale range of 𝜆 = 0.2 to
20, the DEM failed to model the laboratory scale effects with the same Fr distributions being seen across
the slide length at all moments in the slide events (Figure S20). This strongly suggests that the governing
mechanism leading to scale effects is not modeled by the DEM. While the laboratory slides differ from the
simulated slides due to particle angularity and contact-based effects that could indirectly lead to differences
in slide dilation, contraction, and stress states (Kesseler et al., 2018), these are model effects and should not be
responsible for the scale effects seen in the laboratory data. Additional key mechanisms that act exclusively
on the laboratory slides include air, particle fracture, and subsequent dust generation.

While dust generation was insignificant at 𝜆 = 4 in the laboratory, the channel was coated in a very thin layer
of dust at 𝜆 = 1 after each experiment (Figure S21), suggesting that dust generation increases with size. The
degree to which this dust formation influences the energy balance of the slides during motion is an open
question. However, measurements of the particle sphericity and angularity of sand grains before and after
the experiments showed no significant changes, and the mass of dust generated per experiment was very
low, perhaps within 0.01% of the slide mass. To further validate whether particle fracture was likely to be
significant, we compared the highest mass-specific kinetic energy of particles at 𝜆 = 1 to the mass-specific
fracture energy of similar quartz particles in Tavares and King (1998). Considering that only a small fraction
(5-20%) of a particle's kinetic energy is lost in a collision event, we found the corresponding mass of dust
generated to be in line with our previous estimate of 0.01%. As such, particle fracture was deemed unlikely
to have created significant scale or model effects, but may become more relevant for 𝜆 < 1.

This leaves air fluidization and other Re-dependent phenomena as the primary mechanisms exclusive to the
laboratory experiments responsible for scale effects. This hypothesis is supported by experimental evidence
seen in the high-speed camera footage, such as the relative difference of front and tail dispersion observed
in Figures S9 and S10 caused by more turbulent air structures. As the larger slides have more turbulent
interactions with air due to higher Re, this turbulence may damp the dispersion caused by particle angularity
more strongly at the larger scales. Additionally, increased randomness of individual particle motion was
observed in the high-speed camera footage at the smaller scales, providing more physical evidence of air
interactions. This section will analyze the degree to which Re is responsible for the observed scale effects,
compared to other phenomena.

5.1. Normalization of the Slide Surface Velocity
To assess whether the surrounding air and turbulence are responsible for changes in slide behavior, the key
parameters have been normalized with respect to Re, here defined with d50 and us. The nondimensional
laboratory surface velocities from Figure 3 can be multiplied by a power 𝛼 of Re at each moment in time as the
slide passes through x1 and x2 (Figure 6a), with 𝛼 being selected such that the experimental data at each scale
collapses with maximized R2 values. A complementary normalization has also been completed by using
the estimated drag force on isolated surface particles to clarify the influence of this physical mechanism
on observed scale effects (Figure 6b). The data for 𝜃W = 7.5◦ and 15◦ are shown in Figures S22 and S23,
respectively.

The fit lines through the collapsed data in Figure 6 are polynomials that start when t∗ = 0, which is the
nondimensional time at which the slide front reaches the measurement point. These polynomials follow
the structure

t(d∕g)1∕2 = T0 + T1t∗ + T2t∗2 + T3t∗3 + T4t∗4 + T5t∗5. (9)
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Figure 6. Comparison of (a) Re-normalized and (b) kD-normalized nondimensional slide surface velocity us∕(gd)1∕2

profiles over nondimensional time t∕(d∕g)1∕2 with 𝜃W = 0◦. Dotted data lines correspond to the respective data in
Figure 3b.

The structure of equation (9) allows the main features of the velocity profiles to be captured, such as the
sharp decrease in initial velocity leveling out as the bulk of the slide passes. For example, T4 and T5 mostly
relate to the fit toward the passing of the slide tails. The coefficients T0 to T5 of the original and normalized
data in Figures 3 and 6 are displayed in Table S4 (see Tables S5 and S6 for 𝜃W = 7.5◦ and 15◦, respectively).

As the particles accelerate under gravity, Re increases, impacting the instantaneous drag coefficient CD and
causing the terminal velocity to evolve over time (Kesseler, 2019). A drag force normalization factor kD can
be applied based on Re and the particle shape-dependent CD (Bagheri & Bonadonna, 2016), representing the
ratio of the drag-free (u𝑓 ) and drag-influenced (ud) instantaneous velocity as it varies from release to terminal
velocity. The drag-influenced laboratory surface velocity can then be multiplied by the appropriate kD to
estimate a “drag-free” velocity (Figure 6b). CD and kD vary significantly between scales due to differences in

Figure 7. Model for the calibration of us to remove the influence of particle drag force Fd for 𝜆 = 1 to 4. (a) Evolution
of nondimensional particle drag-free velocity u𝑓∕(gd)1∕2 and nondimensional particle drag-influenced velocity
ud∕(gd)1∕2 over nondimensional time t∕(d∕g)1∕2. (b) Evolution of drag force normalization factor kD over
nondimensional particle drag-influenced velocity ud∕(gd)1∕2. (c) Evolution of particle drag/gravity force ratio Fd∕Fg
over nondimensional particle drag-influenced velocity ud∕(gd)1∕2.

KESSELER ET AL. 12 of 19



Journal of Geophysical Research: Earth Surface 10.1029/2019JF005347

Re. The evolution of u𝑓 , ud, kD, and the ratio of the grain drag force Fd and the grain gravity force Fg in this
physically based model is highlighted in Figure 7.

Within experimental ranges of velocity, Fd at x1 can reach 17% of Fg at 𝜆 = 1, and up to 28% at 𝜆 = 4.
Meanwhile, Fd at x2 can reach 32% of Fg at 𝜆 = 1, and up to 50% at 𝜆 = 4, with even stronger influence closer
to the transition curve. These correspond to respective kD values of 1.07, 1.13, 1.15 and 1.30. By calibrating
the laboratory data to isolate and remove the impact of the estimated drag force on the slide surface velocity,
the fit improvement shows to which degree the particle drag force is responsible for the Re scale effects seen
in Figure 6a. The related data for 𝜃W = 7.5◦ and 15◦ are shown in Figures S22b and S23b, respectively.

Generally, an improvement of the data fit with the Re normalization is observed at both x1 and x2. The R2

values of the original data (Figure 3b) increased from 0.820 and 0.759 at x1 and x2, respectively, to 0.847
and 0.865 with Re𝛼 normalization, and to 0.828 and 0.818 with kD normalization. 𝛼 = −0.029 was selected
at x1 and 𝛼 = −0.047 at x2. A smaller degree of fit improvement is observed with the kD-normalization,
reaching 30% of the Re normalization fit improvement at x1 and 55% at x2, respectively. The fit improvement
of the surface velocity between scales reaches about 15% at x1 and about 44% at x2. This collapse is typically
best during the middle phase of the slide, apart from the initial timing differences of the front arrival and
differences in the final tail velocities. The value of 𝛼 selected for the best fit increases from x1 to x2, suggesting
that the surface velocity is more Re-dependent further down the ramp and scale effects accumulate with
distance. A smaller but still consistent collapse of the surface velocities can be seen in Figure 6b, showing
that much of the Re-dependence of scale effects is caused by the drag force acting on particles. The relative
fit improvement is best at x2 where particles move closer to the terminal velocity and the drag force becomes
more dominant.

Overall, as the particle drag force correction approach does not capture all of the observed scale effects
(Figure 6b), this suggests that other factors also contribute to Re scale effects, particularly at lower particle
velocities. The interactions of air on the macroscale granular system may exert a particularly strong influ-
ence; differences in particle drag caused by changes in slide velocity may affect granular temperature and
thus energy dissipation. This highlights the wide range of physical mechanisms that can influence Re scale
effects.

5.2. Normalization of Slide Deposit Parameters
The front, peak, mass centroid, and tail runout distances of the laboratory slides with 𝜃W = 0◦ were also
multiplied by Re𝛼 , with 𝛼 being the power selected to collapse the data with minimal error (RMSE = 0
corresponds to perfect agreement) (Figure 8). Rs denotes the ensemble-averaged horizontal distance between
a specific position on the flat runout zone and the shutter release point.

As the slide deposits were stationary, Re at 100 frames (Table 1) after the front contacted the x2 measurement
point were used for reference, with Re = 655.1 at 𝜆 = 1, Re = 226.6 at 𝜆 = 2, and Re = 78.7 at 𝜆 = 4. For data
for 𝜃W = 7.5◦ and 15◦ see Figures S24 and S25. The laboratory data converges toward single values after Re
normalization, with fit improvement of 88% for x𝑓 , 98% for xm, 89% for xc, and 93% for xt. The degree of Re
dependence observed in Figure 8 is much greater than that observed for the surface velocity (Figure 6a), and
the deposit peak and tail positions were normalized more effectively than the deposit front and mass centroid
positions. Overall, the high degree of fit improvement shows that scale effects are largely responsible for the
observed changes in the deposit morphology. Re scale effects may impose second-order influences on the
stress distribution through the slide particle contact network in ways that are not accounted for by Re on
individual particles, which may be responsible for the remaining fit improvement.

As the slide front position (i.e., total runout) is the most relevant parameter for hazard assessment, fur-
ther analysis was conducted with the volume-normalized total runout Rs∕Vs

1∕3 being compared with the
volume-normalized fall height Hc∕Vs

1∕3 (Figure 9). The runout was then normalized again with respect to
a relevant Re𝛼 , to collapse the data. This comparison includes the laboratory experiments conducted in this
study, as well as experiments of Davies et al. (1999), who investigated the relationship between Hc and Rs
for a range of slide sizes and dimensions. While those experiments did not follow a Froude number scale
series (for example, the slide release positions were not scaled with the slide volumes), they provide a large
range of slide geometries for which the slide Re dependency can be evaluated, with inclination angles close
to that of the present study.
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Figure 8. Re dependency of key laboratory deposit parameters for 𝜃W = 0◦. (a–d) Original position data, (e–h)
Re-normalized data, and (i–l) prenormalization and postnormalization RMSE for (a, e, i) x𝑓 , (b, f, j) xm, (c, g, k) xc, and
(d, h, l) xt .

The front velocities of these slides were estimated via conservation of energy, using equation (4), with
𝛿i = 29◦ and 𝜃r = 35◦ and 45◦ (Figure 9). This velocity, together with d50, was then used to determine
Re. The natural slide events included in this comparison consist of avalanches, rockfalls, and debris flows
that displayed similar conditions to these laboratory experiments such as channelized sliding, relatively low
moisture content, and insignificant entrainment, and had appropriate physical dimensions (Table S7). The
fit line in Figure 9 is given by

Hc∕Vs
1∕3 = 5.0 ln{cosh[0.27(Rs∕Vs

1∕3) × Re𝛼]}. (10)

Notably, the laboratory experiments of the present study fall in line with those of Davies et al. (1999) for 𝛼 =
−0.091, for which the majority of the natural slides also align. The unnormalized fit (not shown) improves
by 61% with this Re normalization. By using equation (10), laboratory data can be upscaled to natural events
under idealized conditions. This was not possible up to now (Iverson, 2015) and expands the purpose and
utility of laboratory experiments for improving hazard prediction and mitigation capabilities.

The value 𝛼 = −0.091 is lower than those for the laboratory experiments alone (Figure 8), suggesting that
other physical factors start to become relevant compared to Re-dependent fluidization at geophysical scales,
corresponding to size effects rather than scale effects. These may include secondary mechanisms such as
acoustic fluidization, frictional melting, and fragmentation (section 1). Some of the natural events in Figure 9
are outliers, with the Sherman Glacier3, Rubble Creek4, and Mount Cayley8 slides still displaying increased
runout distances after Re normalization. The Sherman Glacier slide3 contained large amounts of snow and
ice, which may have melted and fluidized during the slide event before resolidifying in the deposits analyzed
in Shugar and Clague (2011). Additionally, the mean grain diameter d50 was selected as a characteristic par-
ticle diameter for the Re normalization, but smaller or larger grains may be more representative depending
on the grain size distribution and other factors.

KESSELER ET AL. 14 of 19



Journal of Geophysical Research: Earth Surface 10.1029/2019JF005347

Figure 9. Fit of the normalized slide fall height Hc∕Vs
1∕3 and runout

(
Rs∕Vs

1∕3) × Re𝛼 of laboratory experiments and
natural slides with equation (10). Slide events: (1) Frank (1903) (Cruden & Hungr, 1986). (2) Elm (1881) (McKinnon,
2010). (3) Sherman Glacier (1964) (Shugar & Clague, 2011). (4) Rubble Creek (1855) (Moore, 1976). (5) Mount Cook
(1991) (McSaveney, 2002). (6) Mount Steele (2007) (Lipovsky et al., 2008). (7) Thurweiser (2004) (Sosio et al., 2008).
(8) Mount Cayley (1984) (Evans et al., 2001).

6. Conclusions
Scale effects make accurate modeling of large granular slides at reduced size in the laboratory difficult.
A laboratory-numerical methodology to identify scale effects in granular slides has been developed under
Froude number scaling laws. Geometrically similar laboratory experiments have been conducted between
experiments with a size difference of 4, with slide masses ranging from 1 to 110 kg and grain Reynolds
numbers (Re), defined with the mean grain diameter d50 and the surface velocity us, in the range of 102 to 103.
DEM simulations have also been conducted to replicate the laboratory slide events, to allow the collection of
additional data, to evaluate extrapolations of the scale series, and to verify whether the mechanisms causing
laboratory scale effects manifest in the DEM.

Overall, the conducted laboratory experiments highlight clear differences with scale in dry granular slides. In
particular, the surface velocity of slides increased by up to 35% as the scale increased. Generally, as the slides
progressed down the channel, the laboratory surface velocities were highest and were very similar between
scales, but as the slides continued the velocity decreased rapidly, particularly at the smallest scale. The
tail velocity also decreased significantly at the smallest scale but did not at the largest scale. Experimental
evidence such as changes in the dispersion of the slide fronts and tails in these regions suggests that air inter-
actions are responsible for these differences. Additionally, the slide runout distance increased by up to 26%
as the scale increased, as a result of the surface velocity differences seen. Properties such as the maximum
slide thickness as it moved down the inclined channel section did not vary consistently with scale. The
presence of these strong scale effects suggests that physical modelers should carefully calibrate their data to
mitigate the influence of these scale effects before comparing it to natural events.

The DEM did not capture the significant scale effects identified in the laboratory scale series, highlight-
ing that the physical factors causing these scale effects are not inherent to the physics of a granular system
in absence of air. While some minor differences were observed between simulations of much greater and
smaller sizes, these differences were insignificant within the laboratory range covered and are Cauchy num-
ber (Ca) effects caused by scale-invariant material stiffness. The low magnitude of these effects and lack of
related physical behaviors in the laboratory experiments suggest that the influence of Ca on scale effects in
dry granular slides is small.

A Re power law normalization, where key laboratory slide parameters such as surface velocity and runout
distance are multiplied by a power 𝛼 of Re, significantly improves the collapse of data from different scales.
For example, the collapse of surface velocity is improved by up to 44% and the collapse of center-of-mass
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runout distance is improved by up to 98% with this approach. This, in combination with experimental evi-
dence from the laboratory experiments, suggests that Re strongly influences the scale effects identified in
this study, with scale effects manifesting particularly strongly in the slide deposit positioning. Furthermore,
calibration of the surface velocity with the particle drag force suggests that air-related mechanisms con-
tribute to the Re scale effects, accounting for up to 55% of the Re𝛼-based fit improvement.

Comparisons of the laboratory results to slides from Davies et al. (1999) and natural events confirm the strong
influence of Re scale effects. Finally, it has been demonstrated that laboratory-scale results can be effectively
calibrated to model natural phenomena via Re normalization using equation (10) (Figure 9), expanding the
utility of laboratory modeling for hazard prediction and mitigation.

Further DEM studies coupled with a computational fluid dynamics model could further support the influ-
ence of Re on scale effects in granular slides. Additional DEM studies using multisphere clumps with
computational fluid dynamics coupling could further elucidate whether angularity inherently contributes
to scale effects or whether it facilitates additional second-order Re scale effects.

Nomenclature

Ca = Grain Cauchy number (-)
Cai = Initial grain Cauchy number (-)
CD = Drag coefficient (-)
d = Mean grain diameter (mm)
d50 = 50th percentile grain diameter (mm)
e = Restitution coefficient (-)
E = Grain Young's modulus (N/m2)
𝑓 = Image frame rate (1/s)
Fd = Grain drag force (N)
Fg = Grain gravity force (N)

Fr = Froude number (-)
Fri = Initial Froude number (-)
g = Gravitational acceleration (m/s2)
h = Slide thickness (m)
hi = Initial characteristic slide thickness (m)
hm = Maximum slide thickness along centerline (m)
Hc = Height of slide mass centroid above runout area (m)
Hs = Initial slide thickness at shutter position (m)
kD = Drag force normalization factor (-)
L = Characteristic length scale (m)
Ls = Initial slide length (m)
Lsh = Distance of axis of rotation from ramp surface (m)
L1 = Length of inclined ramp section (m)
Ms = Slide mass (kg)
n = Number of particles in simulation (-)
N = Number of experimental repeats (-)
R = Radius of ramp transition (m)
Rs = Slide horizontal runout distance from shutter release (m)
R2 = R squared value (-)
Re = Grain Reynolds number (-)
Rei = Initial grain Reynolds number (-)
RMSE = Root mean square error (-)
t = Time (s)
t∗ = Nondimensional time reference starting at 0 when slide reaches x1 or x2 (-)
Tr = Slide runout completion time (s)
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Ts = Settlement time (s)
T0–T5 = Polynomial fit coefficient (-)
u = Velocity (m/s)
ud = Grain drag-influenced velocity (m/s)
u𝑓 = Grain drag-free velocity (m/s)

ui = Initial characteristic slide velocity (m/s)
us = Ramp-wise slide surface velocity (m/s)
ush = Shutter tip velocity (m/s)
ux = Ramp-wise component of slide velocity (m/s)
U = Characteristic velocity scale (m/s)
Vs = Slide volume (m3)
w = Channel width (m)
x = Surface downslope coordinate (m)
xc = Ramp-wise position of slide mass centroid (m)
x𝑓 = Ramp-wise position of slide front (m)

xm = Ramp-wise position of slide peak (m)
xr = Downslope position of end of transition curve (m)
xt = Ramp-wise position of slide tail (m)
x1 = First measurement position along channel length (m)
x2 = Second measurement position along channel length (m)
𝑦 = Surface cross-slope coordinate (m)
z = Surface normal coordinate (m)
𝛼 = Reynolds normalization power coefficient (-)
𝛿i = Ramp bed friction angle (◦)
𝛿r = Runout bed friction angle (◦)
Δtc = Rayleigh critical time step (s)
Δts = Simulation time step (s)
𝜂r = Rolling viscous damping ratio (-)
𝜆 = Scale factor (-)
𝜇r = Rolling-resistance coefficient (-)
𝜈𝑓 = Fluid kinematic viscosity (m2/s)

𝜔sh = Shutter angular acceleration (rad/s2)
𝜙 = Internal friction angle (◦)
𝜌g = Grain density (kg/m3)

𝜃i = Laser incidence angle (◦)
𝜃r = Channel inclination angle (◦)
𝜃W = Release wedge surface angle (◦)
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