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Van der Waals (vdW) interfaces based on two dimensional (2D) materials are

promising for optoelectronics, as interlayer transitions between different com-

pounds allow tailoring the spectral response over a broad range. However, issues

such as lattice mismatch or a small misalignment of the constituent layers can

drastically suppress electron-photon coupling for these interlayer transitions.

Here, we engineer type-II interfaces by assembling atomically thin crystals that

have the bottom of the conduction band and the top of the valence band at

the Γ-point, thus avoiding any momentum mismatch. We find that these vdW

interfaces exhibit radiative optical transitions irrespective of lattice constant,

rotational/translational alignment of the two layers, or whether the constituent

materials are direct or indirect gap semiconductors. Being robust and of general

validity, our results broaden the scope of future optoelectronics device applica-

tions based on two-dimensional materials.

Van der Waals interfaces of interest for optoelectronics consist of two distinct layered

semiconductors with a suitable energetic alignment of their conduction and valence bands,

such that electron and hole excitations reside in the two separate layers.[1–4] This allows the

interfacial band gap to be controlled by material selection –as well as by application of an

electrical bias or strain[5–9]– so that electron-hole recombination across the layers generates

photons with frequency determined over a broad range at the design stage. Choosing the

interface components among the vast gamut of 2D materials –including semiconducting

transition metal dichalcogenides (TMDs, MoS2, MoSe2, MoTe2, WS2, WSe2, ReS2, ZrS2,

etc.), III-VI compounds (InSe, GaSe), black phosphorous, and even magnetic semiconduc-

tors (CrI3, CrCl3, CrBr3, etc.)– enables, at least in principle, to cover a spectral range

from the far infra-red to the violet. In practice, however, efficient light-emission from in-

terlayer recombination requires the corresponding electron-hole transition to be direct in

reciprocal (k-) space: the bottom of the conduction band in one layer has to be centered

in k-space at the same position as the top of the valence band in the other layer.[10] This

requirement poses severe constraints as concluded from heterostructures of monolayer semi-

conducting TMDs, the systems that have been so far mostly used to realize light-emitting

vdW interfaces.[7, 11–14] Indeed, in this case the minimum of the conduction band and top

of valence band are at the K/K’ points in the Brillouin zone and the presence of radiative
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interlayer transitions requires combining compounds with both matched lattice constants

and virtually perfect rotational alignment.[10, 15] If not, the k-space mismatch between the

K/K’ points in the two materials prevents interlayer radiative recombination.[14, 16] To

bypass these limitations, it is important to identify a mechanism enabling the occurrence

of robust radiative transitions in vdW interfaces, as well as classes of semiconducting 2D

materials to implement it.

Here we propose a general strategy to form vdW interfaces of 2D semiconductors sup-

porting interlayer transitions that are direct in k-space, irrespective of the crystal symmetry,

lattice constant, or crystallographic alignment of the constituent materials. If the materials

forming the interface are selected so that the conduction band minimum in one and the

valence band maximum in the other are centered at the Γ-point of reciprocal space, inter-

layer transitions will be direct in k-space as long as the energetic alignment of the bands

is of type II (because the Γ-point resides at k = 0, and hence coincides for all materials).

To demonstrate this strategy, we use bilayers and thicker multilayers of different TMDs

(WS2, MoS2, and MoSe2) having the maximum of their valence band at the Γ-point,[17]

and show that they enable direct interlayer transition in vdW interfaces with InSe multilay-

ers, which have their conduction band minimum at Γ.[18, 19] Light emission from Γ-point

interlayer transitions is well known in covalently bonded heterostructures of GaAs/AlGaAs

and CdTe/ZnSe,[20–24] which form the basis for a multitude of technological applications

including light-emitting diodes, different types of lasers, radiation detectors, etc.[25–27] The

advantage of vdW interfaces is that the constituent materials neither need to be lattice

matched nor satisfy any other stringent conditions, broadening the choice of materials that

can be used and, correspondingly, the range of accessible photon frequencies.

We perform photoluminescence (PL) measurements that allow the identification of spec-

tral features in the light emitted by vdW interfaces originating from interlayer electron-hole

recombination. The behavior representative of the systems that we have studied is illus-

trated in Fig. 1 and 2, with data measured on structures formed by bilayer InSe (2L-InSe)

and bilayer WS2 (2L-WS2), assembled to enable separate measurements of the PL coming

from the individual layers and from their interface (see Fig. 1(a) for a schematic of the 2L-

InSe/2L-WS2 interface and Fig. 1(b) for the relevant aspects of the band structure). Lines
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of different color in Fig. 1(c) represent the PL measured at T = 5 K on 2L-WS2 (blue line),

2L-InSe (orange line), and on their interface (purple line), and can be readily interpreted

in terms of the known band structure of the materials forming the interface (see the arrows

in Fig. 1(b)). The PL spectrum of 2L-WS2 shows a (split) peak at approximately 2 eV

originating from direct recombination of excitons and trions at the K-point, and a lower

energy peak at 1.73 eV due to k-indirect recombination of electrons at the Q-point with holes

at the Γ-point, as expected.[28, 29] In the 2L-InSe spectrum a peak at approximately 1.9 eV

is present, corresponding to the so-called A-transition in this system.[18, 30, 31] The vdW

interface PL, in contrast, is dominated by a peak close to 1.55 eV, significantly lower than

the energy of the peaks identified in the spectra of the constituent materials, without any

pronounced feature corresponding to those of 2L-WS2 and 2L-InSe. We directly conclude

that the interfacial PL cannot be explained in terms of intralayer transitions, and that the

1.55 eV peak originates from an interlayer transition resulting from charge transfer that

quenches the PL of the individual layers.

The temperature evolution of the interfacial PL intensity (Fig. 2a) and its dependence

on the excitation laser power (Fig. 2c) do indeed exhibit the behavior characteristic of in-

terlayer transitions that are direct in k-space. Fig. 2a shows that upon reducing T from 250

to 5 K, the intensity of the 1.55 eV PL peak steadily increases, as expected for a transition

that is direct in k-space. For comparison, Fig. 2b shows that in 2L-WS2 the amplitude of

the 2 eV peak originating from k-direct recombination at the K-point also increases upon

cooling, whereas the amplitude of the 1.75 eV peak due to the k-indirect transition between

the Q and the Γ point decreases, as typical for phonon mediated processes. Upon increasing

the excitation laser power, the transition energy increases by more than 50 meV before

saturating as the power exceeds 100 µW (see Fig. 2c and its inset). The blue-shift is a

manifestation of the electrostatic potential generated by the “pumped” interlayer excitons,

whose density increases (and eventually saturates) at higher excitation power. In simple

terms, the photo-generated excitons consist of electrons residing in one layer (InSe) and of

holes in the other layer (WS2), so that a higher exciton density results in a net electro-

static potential difference between the two layers and –owing to the interlayer nature of

the transition– in a shift of the transition energy (as discussed extensively in the literature

–see for instance [32, 33]– this interpretation in terms of an interlayer electrostatic potential
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FIG. 1. Photoluminescence of 2L-InSe/2L-WS2 interfaces. a. Schematics of a 2L-InSe/2L-

WS2 interface with the WS2 bilayer on top and the InSe on the bottom. These two systems have a

honeycomb lattice structure with lattice constants differing by approximatively 15%. The relevant

parts of the band structure of the two layers are shown in b (the orange and blue lines represent

the conduction and valence band edge of 2L-InSe and of 2L-WS2, respectively). The blue and the

orange arrows indicate the transitions observed in the PL of the individual bilayers; the purple

arrow represents the interlayer transition from the conduction band of 2L-InSe to the valence band

of 2L-WS2 that is observed in the interfacial PL. c. Measured photoluminescence spectra of bare

2L-InSe (orange line), bare 2L-WS2 (blue line), and of their interface (purple line). The labels

on the PL curves (XA and XI) measured on the individual InSe and WS2 bilayers refer to the

transitions pointed to by the arrows in panel b. Finding that the interfacial PL peaks at an energy

smaller than that of all transitions occurring in the individual constituent layers indicates that

the interfacial PL originates from an interlayer transition. The inset shows an optical microscope

image of a h-BN-encapsulated (hexagonal-Boron Nitride) 2L-InSe/2L-WS2 interface (the scale bar

is 10 µm). Orange and blue lines delimit the edge of the InSe and WS2 flakes.
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difference is fully equivalent to accounting for the effect of the dipole-dipole interaction be-

tween the photo-excited excitons). In the same power range, a virtually identical behavior is

observed in PL studies of interlayer excitons in vdW interfaces formed by MoSe2 and WSe2

monolayers,[6, 34, 35] but it is never observed in individual monolayers. We conclude that the

transition responsible for the 1.55 eV line in the PL power spectrum of the 2L-InSe/2L-WS2

interface originates from an interlayer, k-direct transition, as expected for the Γ-Γ transition

from the bottom of the conduction band of 2L-InSe to the top of the valence band of 2L-WS2.

One more direct experimental indication of the origin of the interlayer transition that we

observe comes from the analysis of polarization of the emitted light. At the Γ-point, the

edge of the InSe conduction band and WS2 valence band consist of atomic orbitals whose

angular momentum component in direction perpendicular to the plane is zero.[36, 37] The-

oretically this prescribes[38] that the polarization of the photons emitted in the interlayer

transition should be perpendicular to the interface. To check if this expectation is satisfied

we fabricated dedicated devices –by cutting into a lamella configuration a block of 2 µm x

20 µm x 0.7 µm out of h-BN encapsulated 2L-WS2/6L-InSe using a focused ion beam (see

Fig. 2(d))– and measured the light emitted in the plane of the interface from the side of

the lamella. The resulting polarization map is shown in Fig. 2(e), with a very pronounced

out-of-plane photon polarization, as expected.

On the basis of experimental observations similar to those just presented for 2L-InSe/2L-

WS2 interfaces, we conclude that also all other interfaces that we have investigated, based

on combinations of thicker WS2 and InSe multilayers, exhibit direct interlayer transition at

Γ. The same is true for interfaces in which the WS2 multilayers are substituted by MoSe2,

or MoS2. In all these systems, the PL spectrum of the interfaces exhibits a peak at an

energy smaller than that of the spectral features of the individual constituent materials,

whose amplitude increases upon cooling and whose frequency blue-shifts upon increasing the

power of the exciting laser. The observed behavior is entirely consistent with the fact that

all the semiconducting TMDs employed to assemble the interfaces have their valence band

maximum centered at the Γ-point, and the same is true for the conduction band minimum of

all the InSe multilayers.[6, 32–34] Interestingly, the PL of the interfaces can be even brighter

than that of the individual constituents, showing that interlayer Γ-Γ transitions can result
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FIG. 2. Direct interlayer transition in 2L-InSe/2L-WS2 interfaces. a. PL emission spec-

trum of a 2L-InSe/2L-WS2 interface at different temperatures (curves offset for clarity). Upon

lowering T the peak intensity steadily increases as expected for a k-direct optical transition. For

comparison, the PL emission spectrum of bare 2L-WS2 is plotted in b (curves offset for clarity).

It shows that the 2.0 eV peak due to the k-direct transition at the K-point also increases upon

cooling, whereas the intensity of the 1.73 eV peak originating from the k-indirect transition (from

Q to Γ) decreases as T is lowered. c. PL spectra of a 2L-InSe/2L-WS2 interface measured at

T = 5 K with different laser power (see indicated values; curves offset for clarity). The transition

systematically blue-shifts upon increasing power (the full evolution of the peak position is shown

in the inset, in the range between 80 nW - 800 µW). d. Scanning electron microscope image of

a lamella-shaped sample consisting of the layers shown in the right scheme (the interface consists

of a 6L-InSe and a 2L-WS2). The lamella structure allows illumination with photons propagating

in the plane of the interface, with an electric field polarized normal to the interface plane. The

scale bar is 2µm. e. Polar plot of the PL of the interface in the lamella configuration, showing

that the emitted light is predominantly polarized in the direction perpendicular to the interface

(0◦ corresponds to a polarization perpendicular to the interface plane; the dashed line represents

a fit of the data with a sinusoidal dependence).
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in an increased efficiency for light emission (see Supplementary Information section S3).

Figure 3 shows representative data reproduced in more than 40 structures that we have

investigated experimentally. In Fig. 3a we show the evolution of the PL spectrum measured

at T = 5 K on interfaces consisting of 2L-WS2 and of InSe multilayers of increasing thickness

(from 2L to 7L), and in Fig. 3b we compare the thickness dependence of the interlayer tran-

sition energy extracted from Fig. 3a (purple dots) to the energy of the intralayer transition

in the corresponding InSe multilayers (orange dots). As stated above, for all thicknesses

the interlayer transition occurs at a lower energy than the intralayer one. A similar be-

havior is observed upon fixing the thickness of the InSe layer and varying that of the WS2

multilayers, as illustrated in Fig. 3c for interfaces consisting of 4L-InSe and NL-WS2, with

N varying from 2 to 5. Data measured on interfaces based on InSe and semiconducting

TMDs other than WS2 are presented in Fig. 3e. Fig. 3e shows the PL originating from

interlayer electron-hole recombination in 3L-InSe/2L-MoSe2 and in 4L-InSe/2L-MoS2: for

these materials we did not systematically study the evolution of the interlayer transition

energy upon varying thickness, but we did measure several interfaces combining multilayers

of different thickness, and observed in all cases PL (again, with an amplitude that increases

upon lowering temperature, at an energy that blue-shifts upon increasing excitation laser

power). However, for interfaces based on WSe2 and InSe we did not observe any PL signal,

despite the expected presence of a k-direct interlayer transition at the Γ-point. We believe

that this is because the transition occurs at an energy of 0.8-0.9 eV, approaching the limit of

sensitivity of our detector camera (the presence of a non-radiative recombination path that

quenches the PL, e.g. due to material-specific impurities creating in-gap states, can not be

entirely ruled out at this stage).

We conclude that k-direct interlayer transitions at Γ are robust processes, as we have

shown them to occur irrespective of the relative orientation of the multilayers forming

the interface (in the majority of cases we did not align the crystals when assembling the

structures), of a substantial lattice constant mismatch (approximatively 15 %) between the

constituents, and despite the fact that the band structure of TMD multilayers changes signif-

icantly upon varying their thickness. Besides substantiating our initial strategy to engineer

systems for broad-spectrum optoelectronics, the ability to detect interlayer transitions in
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FIG. 3. Robust k-direct interlayer transitions at Γ in InSe-TMD multilayer interfaces.

a. PL spectra of NL-InSe/2L-WS2 with N varying between 2 and 7, measured at 5 K (curves are

offset for clarity). In all cases a peak originating from a k-direct interlayer transition is observed.

b. Energy of the interlayer transition at Γ in NL-InSe/2L-WS2 interfaces (purple dots) as a

function of N . The interlayer transition always occurs at energy lower than the transitions in the

two constituent layers (the orange dots represent the intralayer transition energy in NL-InSe). c.

Interlayer transition energy in 4L-InSe/NL-WS2 as a function of the number N of WS2 layers

(purple dots), extracted from the interfacial PL spectrum (the blue dots represent energy of the

intralayer Q-Γ transition in NL-WS2). d. Decomposition of the PL spectrum of a 6L-InSe/2L-

WS2 interface: the measured data (red solid line) are reproduced (blue solid line) by summing

multiple Gaussian lines (gray dashed lines) originating from the interlayer transition, the intralayer

transition in 6L-InSe, and from an additional peak that we attribute to the hybridization of states

at the valence band edge of 2L-WS2 and NL-InSe (see main text). e. PL spectra measured at T =

5 K on interfaces realized with TMDs other than WS2 (light green curve: 3L-InSe/2L-MoSe2; dark

green curve: 4L-InSe/2L-MoS2). The observed peaks originate from k-direct interlayer transitions

at Γ.
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so many different interfaces enables the relative optical band alignment of entire classes

of materials to be determined quantitatively, in a rather straightforward and reproducible

way. This is a significant result, because band offsets of semiconductors are often complex

to measure precisely, and different techniques give different results depending on details of

how experiments are done.

To understand how the alignment of the different band edges is determined, we dis-

cuss in detail the procedure for 2L-InSe/2L-WS2 interfaces, whose relevant band edges are

represented in Fig. 4a. The interlayer transition occurring at 1.55 eV measures the dis-

tance in energy between the bottom of the 2L-InSe conduction band and the top of the

2L-WS2 valence band at the Γ-point. The intralayer transition in 2L-InSe fixes the energy

distance between the valence band maximum and the conduction band minimum (both

near the Γ-point) in this 2D semiconductor (approximately 1.93 eV). Similarly, the indirect

intralayer transition in 2L-WS2 (approximately 1.73 eV) fixes the position of the bottom

of the conduction band in bilayer WS2 at the Q-point, relative to the maximum of the

valence band at Γ. Since in 2L-WS2 the conduction band edge at the Q and K points are

nearly degenerate[39] (the energy difference is at most a few tens of meV, which we neglect

here), we can use the k-direct, 2.0 eV intralayer transition at K in 2L-WS2 to determine

the energy of the maximum at K of the valence band of 2L-WS2. The relative alignment

of all relevant band edges in 2L-InSe and 2L-WS2 is then entirely determined. The same

holds true for all other layers that we have investigated: 2L-WS2 and InSe multilayers up

to 7L-InSe (Fig. 4b), for 4L-InSe and WS2 of thickness increasing from 2L to 5L (Fig. 4c),

and for 4L-InSe combined with all the different semiconducting TMDs (Fig. 4d). We es-

timate the precision of the band-gap values extracted from this procedure to be 100 meV

or better. A source of uncertainty comes from neglecting the binding energy of interlayer

excitons, which is justified because for all interfaces investigated in our work this quantity

is significantly smaller than 100 meV (see Section S4 of the Supplementary Information).

What also limits the precision of our analysis are the assumption that the conduction band

edges at the K and Q points of 2L TMDs are energy degenerate (correct only within a few

tens of meV), and having neglected hybridization effects between the valence band edges of

InSe and TMD multilayers in which these edges are energetically aligned (based on previous

studies of other vdW interfaces reported in the literature,[40] we estimate the phenomenon
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to cause an indetermination of 50 meV or less).

The internal consistency of the band diagrams extracted from the measured interlayer

and intralayer transition energies can be cross-checked directly with the measured data. For

instance, all measurements on interfaces formed by 2L-WS2 and NL-InSe shown in Fig. 3a

were performed with the excitation laser tuned at the K-K transition of 2L-WS2. The photo-

excited electron at the K-point of the 2L-WS2 conduction band has always enough energy to

be transferred to the InSe multilayer (Fig. 4b), which is why the interlayer transition in the

PL spectrum is visible. For 5L-InSe and thicker layers, in addition, the top of the 2L-WS2

K-valley becomes nearly degenerate with the top of the valence band of InSe at the Γ-point,

so that also the hole in the K-valley of 2L-WS2 can transfer into InSe. This has measurable

consequences, since for 5L- and thicker InSe multilayers it leads to PL originating from the

InSe intralayer transition, as well as to splitting of the transitions involving the Γ-point

valence band edge (due to hybridization of states in 2L-WS2 and in InSe). The PL spectra

of 5L-, 6L-, and 7L-InSe (Fig. 3a) do indeed show multiple peaks, one of which is due to

the intralayer transition in InSe, and another that we attribute to the hybridization-induced

splitting (see Fig. 3d for the decomposition of the PL spectrum; a systematic discussion

of hybridization effects will be presented elsewhere). Additional evidence in support of the

band diagrams shown in Fig. 4 is obtained from PL energy spectroscopy –i.e., from measure-

ments of the PL intensity as a function of the exciting energy of the photon– that we discuss

in the supplementary information section S1. Finally, note also the different behavior of the

band edges in InSe and WS2 multilayers (compare Fig. 4b and 4c): whereas in InSe both

the conduction and valence band edges shift as thickness is increased (Fig. 4b), in WS2 the

valence band edge remains nearly constant as the thickness is increased past that of bilayers

(Fig. 4c) in agreement with existing Angle-Resolved Photoemission Spectroscopy (ARPES)

experiments.[40]

Besides demonstrating the validity of the proposed strategy for the realization of vdW

interfaces supporting k-direct transitions, the band diagrams in Fig. 4 show how the interfa-

cial transition energy can be engineered by simply selecting different thicknesses of the most

commonly available 2D materials. The heterostructures investigated here densely cover the

interval between approximatively 1.0 and 1.6 eV, but a much larger interval can be spanned
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red lines indicates states at Γ, blue lines states at K, and green lines states at Q; if the line is

continuous, the states belong to the TMD multilayers, if it is dashed to an InSe multilayer. b.

Band alignment of NL-InSe/2L-WS2 interfaces, showing that the interfacial band gap of these

systems is always formed by conduction band states in the InSe multilayers and valence band

states in 2L-WS2, all centered around Γ. The size of the band gap is indicated in the figure (in

eV). c. Same as b for 4L-InSe/NL-WS2 interfaces. d. Band alignment between 2L-TMDs and

4L-InSe obtained from optical data. For MoSe2 we measured the PL on 3L-InSe/2L-MoSe2 and

reconstructed the alignment of 4L-InSe/2L-MoSe2 using the data in b, from which are known the

relative alignment of the bands in 3L- and 4L-InSe.
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by employing other known materials. Bilayers or multilayers of MoTe2, and of GaSe, for

instance, will allow the energy interval to be extended further on the lower and higher end,

respectively. It is this versatility and physical robustness that makes the use of interfacial

transitions at the Γ-point ideally suited for the realization of broad spectrum optoelectronic

applications. There is broad consensus that optoelectronics is one of the most promising do-

mains for the development of devices based on interfaces of 2D materials, but the large-scale

production and commercialization of such devices pose serious challenges as to the required

level of material control. This is undoubtedly the case if device operation relies on a very fine

control of the different constituents, such as a perfect alignment of 2D crystals, or combining

materials with identical crystal lattices and lattice constants. While some of the challenges

may be solved in the long term, these requirements are incompatible with virtually all

large-area manufacturing techniques that are currently available. The results reported here,

however, change the situation, since with an appropriate choice of materials vdW interfaces

can be used as radiation sources covering a very broad frequency spectrum, in a mode

of operation that is extremely robust against variations of interfacial structural details.

This implies that even the simplest possible techniques to assemble large-area interfaces

of atomically thin layers –such as liquid phase exfoliation followed by ink-jet printing– can

be employed for the scalable fabrication of structures with useful optoelectronic functionality.

METHODS

Sample fabrication. The fabrication of the heterostructures has been performed according to

previous works (ref. [16]) and reproduced here for completeness. The fabrication of the heterostruc-

tures used to perform the measurements discussed in the main text relies on conventional techniques

that are commonly employed to manipulate atomically thin crystals, i.e., 2D materials. Atomi-

cally thin layers of TMDs and InSe are obtained by mechanical exfoliation of bulk crystals in

a nitrogen gas filled glove box with a < 0.5 ppm concentration of oxygen and water; the TMD

crystals are purchased from HQ graphene and the InSe orignate from a Bridgman-grown crystal

of γ-rhombohedral InSe. The exfoliated crystals are transferred onto Si/SiO2 substrate and suit-

able flakes are identified by looking at their optical contrast under an optical microscope. The

heterostructures are then assembled in the same glove box with a conventional pick-up and re-

13



lease technique based on either PPC/PDMS (Poly(propylene carbonate) /polydimethylsiloxane)

or PC/PDMS (polycarbonate) polymer stacks placed on glass slides. The samples, encapsulated

in between exfoliated h-BN crystals of few tens of nanometers, are removed from the glovebox and

placed into the cryostat for optical investigations.

Optical measurements. Photoluminescence measurements in a backscattering geometry (illu-

mination direction out-of-plane) are performed by using an optical microscope to illuminate the

device with the incoming laser beam and to collect the resulting emitted light. The light source

is a supercontinuum white light laser combined with a contrast filter, allowing to tune the laser

wavelength between 400 and 1100 nm. The illumination wavelength for every spectrum is specified

in the main text and the laser power kept at 50 µW , if not stated otherwise. All measurements

are done with the sample placed in the vacuum chamber with a cryostat mounted on a piezoelec-

tric driven x-y stage allowing positioning precision down to 50 nm (Cryovac KONTI). The laser

beam is coupled onto the sample using an optical microscope with long working distance objectives

producing a spot of approximately 1 µm in diameter that can be focused anywhere on the sample

surface. The light collected from the sample is sent to a Czerny-Turner monochromator with a

grating of 150 gr/mm (Andor Shamrock 500i) and detected with a Silicon Charge Coupled Device

(CCD) array (Andor Newton 970 EMCCD).

PL on lamella samples. The fabrication of the lamella samples has been performed according to

previous works (ref. [37]) and reproduced here for completeness. Heterointerfaces for investigation

of the in-plane PL are obtained in a similar manner as described in sample fabrication. However, an

additional layer of thick (>100 nm) h-BN is transferred on top of the encapsulated heterointerface,

followed by 3 nm AuPd + 5 nm amorphous carbon to protect the sample from ion damage. An area

for extraction is then identified using AFM and covered with an additional protective platinum

mask (≈1 µm thick) using a FEI Helios focused ion beam (FIB) dual-beam system. FIB milling is

performed using a 30 kV Ga+ beam to extract the selected area. An OmniProbe micromanipulator

is used to lift the lamella, rotate it by 90◦ , and secure it onto an Omicron transmission electron

microscopy grid. Finally, damaged edges of the lamella are polished by further FIB milling with

a decreasing series of acceleration voltages (e.g. 5 kV, 47 pA and 2 kV, 24 pA). The final thick-

ness of the specimen is <1 µm, to suppress multiple internal reflections of the emitted light. The

polarization measurements are taken at 4 K in an AttoDry 100 cryostat (AttoCFM inset), using

Princeton Instruments Acton Spectrapro SP-2500i CCD with 300 gr/mm grating.
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