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Abstract

An open question in the metal hydride community is whether there are simple,

physics-based design rules that dictate the thermodynamic properties of these ma-

terials across the variety of structures and chemistry they can exhibit. While black

box machine learning-based algorithms can predict these properties with some success,

they do not directly provide the basis on which these predictions are made, there-

fore complicating the a priori design of novel materials exhibiting a desired property

value. In this work we demonstrate how feature importance, as identified by a gradient

boosting tree regressor, uncovers the strong dependence of the metal hydride equilib-

rium H2 pressure on a volume-based descriptor that can be computed from just the

elemental composition of the intermetallic alloy. Elucidation of this simple structure-

property relationship is valid across a range of compositions, metal substitutions, and

structural classes exhibited by intermetallic hydrides. This permits rational targeting

of novel intermetallics for high-pressure hydrogen storage (low-stability hydrides) by

their descriptor values, and we predict a known intermetallic to form a low-stability

hydride (as confirmed by density functional theory calculations) that has not yet been

experimentally investigated.
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Development of renewable energy technologies is more critical now than ever to avoid

some of the catastrophic consequences of climate change.1 Hydrogen is a clean energy car-

rier poised to make an impact throughout the renewable energy space, but storage and

transportation of hydrogen gas (H2) remains a significant challenge.2,3 Decades of research

have been devoted to storing hydrogen more economically/efficiently, and metal hydrides4–10

are one of the most extensively studied materials for applications in H2 storage for trans-

portation, H2 compressors, thermal energy storage, and H2 getters.11–14 Their practical ap-

plicability varies widely as a function of their thermodynamic properties which, when com-

bined with other factors such as sustainability, cost, kinetics, capacity, has lead to thousands

of metal hydrides being investigated experimentally. Thus, an open question is whether

there exist simple materials design rules that dictate their thermodynamic properties across

their varying chemical and structural space. Correlations have been elucidated from various

experimental results15–20 and empirical design rules derived,21–25 such as the pressure de-

pendence on interstitial volumes for a given intermetallic series. Computational screenings

have also been performed,26–28 but this problem has received comparatively little attention

from a “big-data” perspective. In other energy related applications such as hydrogen stor-

age or xenon/krypton separations in porous materials, big data approaches have been able

to identify relatively simple materials descriptors and models that predict thermodynamic

performance across a wide swathe of material space.29,30 Can similar results be achieved for

metal hydrides?

Statistical or machine learning (ML) techniques have the potential to answer this question

and, despite sometimes lingering skepticism over their utility, are now continually employed

to solve problems in the physical sciences.31 Some prominent examples include generative

models for drug design,32 prediction of conductive metal organic frameworks,33 classification

of stable perovskites,34 among others.35–40 One natural way to segregate these studies is by

those that use “black-box” vs. “explainable” ML techniques.41 Black-box ML techniques are

well-suited to make accurate predictions of materials properties but provide little visibility
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into how the algorithm utilizes feature space to make a prediction, a potential limitation

that explainable ML techniques seek to address. For example, “explainable” insight can be

derived by simply extracting a given feature’s importance when training a model42 or by

using ML methods whose mapping from features to prediction is directly interpretable by

design.43,44

A few studies have applied ML techniques to make black-box predictions on the ther-

modynamic properties of metal hydrides. Rahnama et al. trained a model to use measured

properties of metal hydrides to predict other measured properties.45,46 However, this is not

particularly predictive since one would have to perform an experiment or simulation to mea-

sure the materials’ properties to use the model, and at that point the properties would be

known, negating the need for a model. One of their main conclusions from this approach

is that “composition formula was found to be an insignificant variable”,45 which is sur-

prising given the large body of literature on doping and destabilization of metal hydrides.

Hattrick-Simpers et al. trained a model on the Department of Energy’s experimental metal

hydride (HydPARK) database to predict hydriding enthalpies solely from the composition

of the intermetallic phase, which was then used as a surrogate model to quickly evaluate the

performance of novel intermetallic compositions for use in hydrogen compressors.47 These

studies did not exploit insights from explainable ML to determine what properties of inter-

metallic compounds dictate their thermodynamic performance.

In this work we also train an ML model on the HydPARK database using features derived

solely from the intermetallic composition (no structural or hydride information); however, our

major contribution is to use feature importance from gradient boosting trees to gain “explain-

able” insight into simple structure-property relationships that govern the thermodynamics

of hydride formation. While our ML model can accurately predict the room temperature

equilibrium H2 pressure of intermetallic hydrides, its interpretability allows us to generalize

the pressure dependence on the lattice volume in the LaNi5 substitution series (a historically

known design correlation18–20) over a surprisingly wide range of intermetallic chemistries and
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structures. This unifies disparate experimental results onto a single structure-property rela-

tionship. Its elucidation provides thermodynamic insight into the underpinnings of the ML

model predictions, which we further corroborate with density functional theory (DFT). We

then utilize this to predict a known intermetallic for high-pressure H2 storage applications

whose hydriding properties have not yet been experimentally tested.

Metal hydride database selection.— Computational databases such as the Materials Project

(MP),48 OQMD,49 and AFLOWLIB50 contain large numbers of crystal structures and var-

ious DFT computed properties. However, only certain thermodynamic properties of metal

hydrides can be readily calculated from electronic structure simulations, such as the enthalpy

of dissociation of the hydride phase, ∆H. The entropy of dissociation, ∆S, on the other hand,

requires a very computationally intensive estimate of the vibrational density of states and is

impractical to compute for hundreds or thousands of structures. In contrast, the HydPARK

database contains thermodynamic data that is not easily calculated but readily measurable,

such as the equilibrium pressure of H2, Peq, at a given temperature, T . Therefore, ∆S can

be computed using experimental data and the van’t Hoff relationship,

lnPeq = −∆H

RT
+

∆S

R
. (1)

Often we are interested in predicting the equilibrium H2 pressure, lnP o
eq (@25oC), as it indi-

cates how much H2 a material can deliver at room temperature and provides a standardized

metric for comparing metal hydrides that accounts for both entropic and enthalpic hydrid-

ing effects.51,52 Figure 1 shows the strong enthalpy-entropy correlation (which is not unique

to this application53,54) for the hydriding reaction with a Spearman rank-order correlation

coefficient (SC) of 0.68 with p-value < 0.01. Even if we specify some desired ∆H, e.g. 27

kJ (mol H2)
−1, variations in ∆S yield lnP o

eq ± 10. Thus assuming ∆S is just equal to the

molar entropy of gaseous hydrogen (130.4 J (mol H2)
−1 K−1) is overly simplistic and ignores

experimentally known secondary contributions.17 Additionally, the HydPARK database con-
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Figure 1: ∆H vs. ∆S for all complete entries in the HydPARK database and contour values
for constant lnP o

eq.

tains many complex stoichiometries for which the exact crystal structure is not known and

therefore cannot be included in a computational database of specific crystal structures. We

therefore proceed with the HydPARK database for developing our ML model.

Next we clean and prepare the HydPARK database before training an ML model with

additional details included in the Supplementary Information section S1. Briefly, we remove

compositions with missing or unusable data (for which lnP o
eq cannot be calculated), thereby

reducing the size of the dataset from 2732 entries to 570 entries. Further investigation re-

veals significant spread in the reported experimental data for duplicate compositions (e.g.

6 different CaNi5 entries) as well as incorrectly collected data in HydPARK, something we

expect will challenge the development of a highly accurate ML model. We therefore remove

duplicates, yielding 409 unique compositions, while minimizing the bias introduced by this

process (more details in S1); however, these literature references need to be revisited indi-

vidually and experiments repeated when necessary. Additionally, there is a large imbalance

in both the distribution of thermodynamic properties (Table 1) and the population sizes of

different metal hydride classes. For example, less than 3% of complete and unique entries

are complex hydrides55,56 which we discard since these ∼10 sample points are insufficient for

an ML model to learn from. S12 contains our final version of the “ML ready” HydPARK

database.
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Table 1: The distribution of lnP o
eq for complete and unique compositions in Hyd-

PARK. Even within the lnP o
eq > −10 subset, the data is non-uniformly distributed

as shown in Figure 2d.

lnP o
eq values % of database

lnP o
eq < −20 2.9 %

−20 < lnP o
eq < −10 12.7 %

−10 < lnP o
eq 84.4 %

Machine learning with feature importance.— The Magpie code57 was used to generate

a set of 145 features derived solely from the intermetallic chemical composition for each

HydPARK material. Therefore, no structurally specific features were included for training

the ML model (other than what is implicitly encoded by the properties of the material’s

constituent elements), an approach which has shown great success in a variety of materi-

als science applications.57,58 In other words, we try to discover whether the thermodynamic

properties of intermetallic hydrides can be a priori predicted from the intermetallic compo-

sition without any information about the hydride composition or structure. Next a gradient

boosting tree regressor (the best performer in comparison to other regression techniques as

shown in S2) was trained using scikit-learn59 to predict lnP o
eq. A 10-fold validation was

performed, and the combined test and train sets for each of the 10 models is shown in Fig-

ure 2a-b. As quantified by the mean absolute error (MAE), the model generalizes especially

well to predict materials with lnP o
eq values most commonly occurring in the dataset (Fig-

ure 2d). For materials in the wings of the lnP o
eq distribution, the model can fit these samples

well during train time but does not generalize as well during validation.

The mathematical foundation of gradient boosting trees is covered extensively in the

literature.60 This technique is particularly useful because it permits the calculation of feature

importance, which generally scores how valuable each feature was in the construction of the

boosting trees. Figure 2c shows the averaged Relative Importance (note each importance

value is scaled by the constant factor that sets the most important feature to 100) across

all 10-fold validations. While most Magpie names are intuitive, S3 explains the naming
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Figure 2: (a) Train and (b) test performance of the ML model on predicting lnP o
eq. Each

plot contains the overlaid data from each 10-fold validation experiment, with the 〈MAE〉
corresponding to the average over all 10 models. (c) Among the 145 Magpie generated
features, the mean relative feature importance of the 8 most important features over all
10 models is shown. (d) The histogram of the lnP o

eq values for all HydPARK materials is
overlaid with the test 〈MAE〉 computed within each individual bin (with bin width = 1).

of individual features in more detail. The most important descriptor, mean_GSvolume_pa

(νMagpie
pa ), is computed as

νMagpie
pa =

∑
fiνi, (2)

where fi is the composition fraction of element i, and νi is the volume occupied per atom

in the ground state elemental solid of species i. In other words, it is Magpie’s estimation of

the specific volume per atom for a given composition. Notably, its average relative impor-

tance across all 10-fold validation models is close to 100 (not exactly 100 since one model

yields most_GSvolume_pa as the most important), indicating that it is the most important

descriptor regardless of the test/train split; it even remains so when removing data from the

training set (see S4). We discuss secondary features in more detail later as they constitute

important features when training individual models to predict lnP o
eq’s constituent compo-

nents, ∆S and ∆H. Ultimately, the interpretable model suggests that a simple volume-based

descriptor may be the single most useful feature, a surprising result given the wide ranging

chemistries and structure types displayed by these materials.

An intermetallic hydride design principle.— The high importance of the νMagpie
pa de-

scriptor warrants further investigation into a structurally specific volume descriptor. We

cross-reference the compositions in the training set with the MP database to identify ∼80
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overlapping structures for which we extract the DFT relaxed crystal structure corresponding

to the lowest formation energy per atom. We then derive an analogous descriptor to νMagpie
pa

based on the cell volume, Vcell, and the number of atoms in the cell, natoms, from the MP

crystal structure

νMP
pa =

Vcell
natoms

. (3)

Hence νpa refers to the volume per atom in a crystal which can be either estimated (νMagpie
pa ) or

computed by DFT (νMP
pa ). Figure 3a first compares lnP o

eq vs. Vcell, from which DBSCAN,59,61

a density-based clustering (unsupervised learning) algorithm, highlights distinct bands of

materials obeying the same log-linear relationship. The common feature in these different

colored “classes” is the number of atoms in the lattice cell. Thus, converting Vcell to νMP
pa

in Figure 3b results in a majority of the data collapsing onto a single log-linear trend. And

while νMagpie
pa does not explicitly encode any structural information, it still represents a highly

correlated structure-property relationship (Figure 3c) because it reasonably predicts the true

νMP
pa (S5), with small discrepancies arising when the volume of mixing is non-negligible.

Note that the data associated with each material can be found in the ML ready HydPARK

database (https://github.com/mwitman1/MetalHydrideML).

Figure 3 also shows how this result builds upon previous investigations of the volume

dependence of thermodynamic properties in intermetallic hydrides. Cuevas, Zhang, and

Reilly all demonstrated the log-linear dependence of H2 plateau pressure on Vcell for LaNi5

substituted materials (i.e. the AB5-type intermetallic).18–20,62 Lundin et al. took these ef-

forts a step further and, by considering local structure, correlated lnP o
eq with the volume

of interstices in AB5 substituted materials as well as cubic AB systems.15,16 The advantage

of using a data-driven approach with explainable ML is that we are able to recognize how

this structure-property relationship encompasses different chemistries, different intermetallic

classes (AB, AB2, AB5, solid solution), and different substitutions at A and B sites. For

example, the data of Smith et al.17 in Figure 3 corresponds to the “miscellaneous” hydride

class R6Fe23 [R=Ho,Er,Lu], whereby rare earth substitution expands νpa and leads to an
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Figure 3: (a) The DBSCAN clustering of lnP o
eq vs. Vcell for the ∼80 materials common to

both the MP and HydPARK databases. Colored points correspond to materials identified
with membership to the cluster, gray crosses represent unassigned materials, and open sym-
bols correspond to various experimental results.17,20 (b) Converting Vcell to νMP

pa collapses
the subclasses onto a single log-linear relationship. (c) Compares the νpa structure-property
descriptor for both Magpie and MP computed values with the SC in parentheses (all p-values
< 0.01.

lnP o
eq that collapses to the same correlation. Furthermore, we arrive at this relationship

without any a priori knowledge of the intermetallic or hydride structures and instead only

require the intermetallic composition (contrast this with the conclusions of Ref. 45). We

stress that this simple structure-property relationship is less predictive than, and therefore

not a substitute for, the ML model (see S7); rather, it provides an avenue for exploring why

the ML model can predict the thermodynamic properties of metal hydrides over a range of

chemistry and structural space.

A thermodynamic basis for νpa.— In order to understand why this structure property

relationship exists, our discussion first returns to the individual contributions of ∆H/(RT ◦)

and ∆S/R to lnP o
eq. Figure 4a contrasts the strong negative correlation of ∆H/(RT ◦) (SC

= −0.82) and the very weak negative correlation ∆S/R (SC = −0.23) with lnP o
eq. In other

words, the ∆H/(RT ◦) contribution systematically decreases over a wider range of values

than the ∆S/R contribution as evidenced by their ratio (Figure 4b). Consequently, there

exists a strong structure-property relationship between νMagpie
pa and ∆H (Figure 4c), and an

ML model of comparable accuracy can also be trained to predict ∆H (see S6) with νMagpie
pa as

the dominantly important feature. A reasonably accurate model for ∆S can also be trained
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Figure 4: (a) ∆H/RT o (T o = 25◦C) and ∆S/R plotted vs. lnP o
eq, with SC = −0.82 and SC =

−0.23, respectively. (b) The ratio of these contributions plotted vs. lnP o
eq. (c) The correlation

between ∆H and νpa. (d) Magpie’s pairwise electronegativity differences (MeanIonicChar)
and (e) mean melting temperature vs. νMagpie

pa , color-coded by intermetallic class.

(see S6) but with significantly different feature importance.

Empirical modeling of binary alloy formation enthalpies21,63,64 has utilized cellular models

incorporating properties like electronegativity differences and the difference in electron den-

sity at the boundary between dissimilar atoms. Extension to ternary hydrogen-containing

alloys often relied on knowledge of structurally specific features.16,22,25 ∆H has also been

rationalized in terms of a qualitative rule of reversed stability: substituting La or Ni to

stabilize the binary intermetallic results in a less stable hydride phase.22 Interestingly, the

same insights from these different modeling efforts can be qualitatively rationalized across

the HydPARK materials via our data-driven approach. Specifically, νpa is a “synthetic fea-

ture” that encodes many of the other chemically specific features that affect ∆H; therefore,

this feature can even be removed when training the ML model without significant loss in

accuracy (S7). As a simple illustration in Figure 4d-e, materials with larger νpa tend to have
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larger average pairwise electronegativity differences between elements (Magpie’s MeanIonic-

Char feature), as well as lower mean melting temperatures. We can rationalize such trends

as indicators for increasing hydrogen absorption strength or decreased energy penalty for

lattice deformation, which we investigate further with DFT.

These structure-property relationships are also invaluable for outlier identification. For

example, note that the thermodynamic properties of materials with νpa > ∼17 Å3/atom devi-

ate significantly from the trend exhibited by materials with νpa < 17 Å3/atom. These exactly

correspond to the materials for which the model generalizes poorly (Figure 2b) due to a lack

of materials in this descriptor regime, an insight only derived because the simple structure

property relationships elucidated by the ML model’s feature importance. This breakdown

of the log-linear (lnP o
eq) or linear (∆H) correlation at this critical threshold suggests that

these materials require a different physical understanding than the νpa structure-property

relationship, but the lack of data in this regime must be addressed before ML models have

the chance to provide further data-driven insight. Other secondary benefits of the model’s

interpretability are discussed in S7, S8, and S10.

Thermodynamic insights from DFT.— We can further corroborate our insights into the

νpa structure-property relationship by examining A site substitutions in the LaNi5 series

with DFT. First we define Ef as the formation energy of the intermetallic alloy with respect

to the elemental crystals, ∆Edef as the energy penalty required to deform the intermetallic

lattice to accommodate H absorption, and ∆EH as the binding energy between hydrogen

and metal atoms in the hydride lattice (see S11 for the definition). V is the volume of the

hydrided lattice, and V0 is the volume of the intermetallic lattice. Specific details on these

calculations are provided in S11,65–71 and we summarize DFT computed ∆H, Ef , ∆Edef

and ∆EH in Table 2. Note that in these calculations the final state is the hydride and the

initial state is the intermetallic, i.e. the ∆’s correspond to the hydriding reaction, not the

dehydriding reaction. We also note that we considered a hydride composition of ANi5H7 (A

= U, Ce or La), which corresponds to a hydrogen/metal ratio of 1.17 and is close to the
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maximum hydrogen uptake reported for LaNi5.
71

Table 2: DFT computed properties for A site substitutions in the LaNi5 se-
ries, including UNi5 which does not exist in HydPARK. ∆H, ∆Edef , ∆EH [=]
kJ/(mol·H2) and Ef [=]meV/atom.

νpa ∆H Ef ∆Edef ∆EH V/V0
UNi5 13.17 -0.60 -285 65.2 -65.8 1.278
CeNi5 13.76 -20.5 -353 49.3 -69.8 1.266
LaNi5 14.38 -36.1 -224 44.3 -80.5 1.256

This demonstrates the experimental trend of increased hydride stability (∆H) with νpa while

the individual energy terms yield additional insight. First, there is no apparent correlation

with Ef . Rather, increasing νpa more importantly indicates a propensity for a lower energy

penalty of deformation ∆Edef , which can be rationalized by the reduced volume expansion

required to form the hydride phase. It should be pointed out that in addition to the magni-

tude of volume expansion V/V0, the elastic modulus of the intermetallic will also affect the

energy penalty of deformation ∆Edef : assuming the same volume expansion, a stiffer inter-

metallic would require a bigger energy penalty to deform the lattice in comparison with a

less stiff intermetallic. Second, the binding energy between hydrogen and metal atoms in the

hydride lattice increases with νpa, which can be rationalized by the lower electronegativity

of La in comparison with U (1.1/La vs. 1.38/U on Pauling scale), i.e. the binding between

hydrogen and LaNi5 is expected to be more ionic than that between hydrogen and UNi5.

Both of these effects promote greater hydride stability, and it is these trends which underpin

the νpa structure-property relationship. The general trend of ∆H as a function of νpa may

also be inferred from simple “chemical intuition”, i.e. intermetallic alloys with larger νpa

usually consist of elements with larger atomic radii, and elements with larger atomic radii

tend to have lower electronegativities (see S9), because of reduced attractions to electrons in

the outer valence shell. The result is that an intermetallic alloy with a larger νpa value tends

to form more ionic bonds with hydrogen in the hydride phase, and therefore the enthalpy

of formation of the hydride, ∆H, is usually bigger than that of an intermetallic alloy with
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a smaller νpa value. We note that for intermetallic alloys with similar νpa values, the energy

penalties of deforming the alloy lattice to accommodate the chemically absorbed hydrogen

can be very different, which may result in a large scattering of the ∆H values.

ML informed targeting of a novel hydride phase.— We propose UNi5 in Table 2 for two

reasons. First, based on our ML informed results, we predict this A site substitution to

LaNi5 to reduce the stability of the metal hydride phase since it significantly reduces νpa

(U has a smaller atomic radius than La). Second, UNi5 is an experimentally synthesized

intermetallic72 in the Inorganic Crystal Structure Database (ICSD), but its hydrided form

has not yet been reported in the ICSD nor is it contained in the HydPARK database (po-

tentially due to the large H2 pressures that may be necessary to synthesize it near room

temperature). As confirmed by our DFT calculations, UNi5H7 has a very small reaction

enthalpy of -0.6 kJ/(mol·H2) and therefore should be a low stability hydride. As seen from

Figure 1, UNi5H7, should it be synthesized in the future, would be one of the least stable

hydrides in the entire HydPARK database. We note the hydriding reaction enthalpy of a

metal alloy may differ depending on the amount of hydrogen that is absorbed. Nevertheless,

the qualitative knowledge generated by our interpretable ML provides a path to rationally

target novel hydride phases with a desired thermodynamic property, i.e. very low stability

for high-pressure H2 or hydrogen isotope storage applications.73,74

In conclusion, utilizing the HydPARK experimental metal hydride database, we have

trained an ML model to predict the equilibrium plateau pressure, one of the most relevant

thermodynamic quantities for practical applications which is also unique to this database

(i.e. not contained in any computationally derived databases due to its dependence on ∆S).

Exploiting the explainability of gradient boosting trees with our data-driven approach en-

ables several key understandings. First, basic thermodynamic insight into intermetallic metal

hydride formation can be derived from features generated only from the elemental composi-

tion of the intermetallic phase (a particularly useful capability if the exact crystal structure

of an experimental compound is not known). Past experimental studies have elucidated
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the dependence of equilibrium H2 pressure on cell volume or structurally specific interstitial

volumes, and the identification of our νpa structure-property relationship encompasses these

observations across a range of intermetallic chemistries and structures. The thermodynamic

basis for this correlation is attributed to the underlying structure-property relationship be-

tween ∆H and νpa; furthermore, materials not described by this simple structure-property

relationship can now be investigated to determine the chemistry behind their outlying be-

havior. All of these insights are predicated on the physical interpretability of an ML model,

which, when corroborated with DFT calculations, is ultimately used to propose a novel hy-

dride of a known intermetallic with significant potential as a high-pressure hydrogen storage

material.

Furthermore, we utilized a noisy, imbalanced database which required multiple heuris-

tic steps to process and clean. This simply highlights that statistical learning techniques

still have the power to help extract useful information in materials science applications, even

when approximations must be made to prepare the training data. Future efforts in this space

will benefit greatly from a concerted effort of the metal hydride community to centralize the

reporting of experimental measurements such as ∆H, ∆S, Peq, T , Vcell (if possible), etc.75

There should also be a standardized method for reporting more complex phenomena such as

hysteresis, existence of multiple hydride phases, sloping plateaus, etc. This could be incor-

porated into the framework of one of the many existing materials databases (MP, OQMD,

AFLOWLIB) which would better position data-driven/ML based approaches to impact the

discovery and understanding of metal hydrides. Less than 20% of the HydPARK database

was used due to missing and/or duplicate information. Several errors were found in the

dataset from a cursory manual investigation of the literature references therein, and stan-

dardized reporting in a central repository could help avoid such inconsistencies. Moreover,

if more complete material entries existed in the HydPARK database with larger volumes

per atom, our explainable ML approach might be able to elucidate the structure-property

relationship(s) that differentiate them from the νpa discussed in this work. However, this will
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be an unlikely accomplishment from an ML perspective until more/better data is acquired in

this regime. Having gained explainable insights into the thermodynamics of hydride forma-

tion, future efforts can now be directed towards explainable ML models that discern whether

a given composition (out of the essentially infinite number that may exist) will form a hy-

dride and, if so, what its hydrogen content may be. We propose that combining all of these

efforts will result in the data-driven discovery of novel, high-performing hydrides.
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Orimo, S.-i. Correlation between thermodynamical stabilities of metal borohydrides

and cation electronegativites: First-principles calculations and experiments. Phys. Rev.

B 2006, 74, 045126.

(56) Milanese, C.; Jensen, T.; Hauback, B.; Pistidda, C.; Dornheim, M.; Yang, H.; Lom-

bardo, L.; Zuettel, A.; Filinchuk, Y.; Ngene, P. et al. Complex hydrides for energy

storage. Int. J. Hydrogen Energy 2019, 44, 7860–7874.

(57) Ward, L.; Agrawal, A.; Choudhary, A.; Wolverton, C. A general-purpose machine learn-

ing framework for predicting properties of inorganic materials. npj Comput. Mater.

2016, 2, 16028.

(58) Oliynyk, A. O.; Mar, A. Discovery of intermetallic compounds from traditional to

machine-learning approaches. Acc. Chem. Res. 2018, 51, 59–68.

(59) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blon-

del, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. et al. Scikit-learn: Machine learning

in Python. Journal of Machine Learning Research 2011, 12, 2825–2830.

(60) Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning ; Springer

Series in Statistics; Springer New York: New York, NY, 2009.

(61) others,, et al. A density-based algorithm for discovering clusters in large spatial

databases with noise. KDD’96 Proceedings of the Second International Conference on

Knowledge Discovery and Data Mining. 1996; pp 226–231.

(62) Chao, B. S.; Klebanoff, L. E. In Hydrogen Storage Technology: Materials and Applica-

tions ; Klebanoff, L., Ed.; CRC Press: Boca Raton, FL, 2013; pp 109–132.

(63) Miedema, A.; Boom, R.; De Boer, F. On the heat of formation of solid alloys. J. Less

Common Met. 1975, 41, 283–298.

23



(64) Miedema, A. On the heat of formation of solid alloys. II. J. Less Common Met. 1976,

46, 67–83.

(65) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calcu-

lations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

(66) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made

simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

(67) Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

(68) Hobbs, D.; Kresse, G.; Hafner, J. Fully unconstrained noncollinear magnetism within

the projector augmented-wave method. Phys. Rev. B 2000, 62, 11556–11570.

(69) Methfessel, M.; Paxton, A. T. High-precision sampling for Brillouin-zone integration in

metals. Phys. Rev. B 1989, 40, 3616–3621.

(70) Kisi, E.; Buckley, C.; Gray, E. The hydrogen activation of LaNi5. J. Alloys and Compd.

1992, 185, 369–384.

(71) Lartigue, C.; Bail, A. L.; Percheron-Guegan, A. A new study of the structure of

LaNi5D6.7 using a modified Rietveld method for the refinement of neutron powder

diffraction data. J. Less Common Met. 1987, 129, 65–76.

(72) Baenziger, N. C.; Rundle, R. E.; Snow, A. I.; Wilson, A. S. Compounds of uranium

with the transition metals of the first long period. Acta Crystallogr. 1950, 3, 34–40.

(73) Filipek, S. M.; Paul-Boncour, V.; Gu gan, A. P.; Jacob, I.; Marchuk, I.; Dorogova, M.;

Hirata, T.; Kaszkur, Z. Synthesis of novel deuterides in several Laves phases by using

gaseous deuterium under high pressure. J. Phys.: Condens. Matter 2002, 14, 11261–

11264.

24



(74) Wang, X.; Bei, Y.; Song, X.; Fang, G.; Li, S.; Chen, C.; Wang, Q. Investigation on

high-pressure metal hydride hydrogen compressors. Int. J. Hydrogen Energy 2007, 32,

4011–4015.

(75) Coudert, F. Materials databases: the need for open, interoperable databases with stan-

dardized data and rich Metadata. Adv. Theory Simul. 2019, 1900131.

25


