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Abstract  

Root branching is influenced by the soil environment and exhibits a high level of plasticity. We report 

that the radial positioning of emerging lateral roots is influenced by their hydrological environment 

during early developmental stages. New lateral root primordia have both a high degree of flexibility in 

terms of initiation and development angle towards the available water. Our observations reveal how the 

external hydrological environment regulates lateral root morphogenesis. 

Main text  

The soil environment contains a variety of niches for a growing root to explore. This complex 

environment consists of nutrient rich areas, air pockets, stones etc. and strongly varies in its moisture 

distribution, to which we refer as the hydrological landscape. The ability of a root system to absorb 

water and nutrients efficiently from a heterogeneous medium depends on its architecture and its ability 

to adapt to the available potential resources1. For example, plants generate lateral roots in nutrient rich 

patches and reduce branching in dry areas2,3. Similarly, roots emerge on that side of the primary root, 

which is in contact with moisture, a mechanism called hydropatterning4,5. Here we show that lateral 

root morphogenesis is steered by the available moisture during lateral root primordia initiation, while 

outgrowth stages and plasticity in organogenesis are likely directed by lateral root flanking cells. 

 

Lateral roots originate primarily from the pericycle cell layer in both angiosperms and gymnosperms. 

The radial distribution of lateral roots is partly determined by the geometry of the root with respect to 

underlying phloem and xylem tissues6. Arabidopsis has a diarch root with two xylem poles and lateral 

roots initiate in the pericycle cells overlaying one xylem pole (Fig. 1A, B, Fig S1)7,8. In order to 

investigate how the vascular geometry of Arabidopsis affects the positioning of lateral root primordia 

in response to different moisture levels, we grow plants on an agar surface to expose roots to two distinct 

water environments, i.e. when one side is in contact with the agar (termed contact-side) versus humidity 

from the air (termed airside). We then captured 3D image stacks of roots grown on the agar surface 

using Light Sheet Fluorescence Microscopy (LSFM)(Fig. 1C, Fig. S2-S3, Supplemental Movie 1). We 

observed that both the orientation of the xylem pole axis and the lateral root primordium initiation site 

relative to the agar surface are uniformly distributed across the radius of the root. In the case of LRP 

initiation sites 54% orient towards the gel versus 46% towards the airside (Fig. 1D, E). This suggests 

that in our setup the choice of the initiation site is not influenced by a moisture gradient. However, 80% 

of the lateral root emergence angles are <90°, pointing towards the agar (Fig. 1C, D, E). When does this 

apparent asymmetry of the organ’s emergence angle arise? 
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To investigate the angle of the lateral root outgrowth relative to the xylem pole, we define a line from 

the xylem pole to the tip of the primordium (Fig. 1C). The angle on top of the xylem pole is defined as 

0°. Our experiments reveal that this angle varied by more than 70° (Fig. 1F, H). The primordia emerging 

on the airside orient mainly towards the gel surface. In contrast, primordia initiating on the contact-side 

orient mainly parallel to the gel surface. These results indicate that the lateral root outgrowth angle is 

highly plastic and steers organ development preferentially towards externally available water sources. 

 

We tested whether external water availability is the stimulus for the orientation of the lateral root 

outgrowth when it grows along the agar surface. Hence, we quantified lateral root angles when grown 

embedded in gel or immersed in water to provide uniform mechanical or aqueous environments, 

respectively. In both cases we observed that the angles of the lateral roots’ orientations were 

significantly smaller relative to the angles of roots grown on agar (Fig. 1G, H). Hence, when moisture 

is uniformly available, the lateral root outgrowth angles tend to distribute evenly and deviate less from 

the axis of xylem poles. 

 

Next, we investigated at which developmental stage(s) the bias in lateral root emergence angle arises. 

Lateral root primordia originate from dividing cells located in 5-8 adjacent pericycle cell files, which 

undergo a series of anticlinal, periclinal and then radial divisions9–12. Earlier studies have reported the 

importance of the cell file directly overlying the xylem pole during lateral root morphogenesis in 

Arabidopsis8,10,13. This “central” cell file forms the tip of the primordium and contributes most of the 

cell mass at the time of emergence12. However, the role of flanking cell files could be more important 

than previously reported. To uncover the contribution of each cell file, we manually tracked cell 

contours in a transversal cross section post emergence in two independent experiments (Fig. 2A). This 

analysis revealed that all cell files contribute to the final lateral root primordium, but flanking cell files 

continue to contribute to a primordium’s volume, whereas the central cell file provides only a thin cell 

file (Fig. 2A). This highlights that all contributing pericycle cell files play an important role through 

different stages of lateral root morphogenesis. 

 

The contribution of individual cell files is highly variable12. This could be due to differences in radial 

division rates between cell files, which increases the width of the primordium (Fig. 2B). To address this 

possibility, we re-analyzed five published datasets12 and observed that the occurrence of radial divisions 

varied (Fig. 2C). In datasets #121211 and #130607 radial divisions occurred preferentially on one side 

of the primordium, resulting in an asymmetric increase in width (Fig. 2C). Hence, although these 

images were acquired submerged in a light sheet microscope’s specimen chamber, they reveal plasticity 

in the direction of radial growth. Even in these datasets, radial divisions promote growth along a 

particular direction and provide a basis for influencing the angle of the lateral root outgrowth. 

 

The direction of lateral root outgrowth is determined by the radial cell divisions in flanking files. 

However, there are earlier events that influence the angle of outgrowth. Recently we reported the 

expression of the early lateral root marker pLBD16::LBD16:GFP14 preferentially in pericycle cells 

facing the agar (contact-side)5. To investigate the radial position of early events during lateral root 

initiation relative to the xylem pole axis, we captured the expression of LBD16:GFP with respect to the 

xylem pole. In 39 lateral root primordia datasets we observed 13 cases, in which LBD16 expression 

was not strictly above the xylem pole (Supplemental Figure 4). In Figure 2D-F (and Supplemental 

Movie 2) we show the most extreme examples of deviations in central cell file location relative to the 

xylem pole axis. The migration of nuclei prior to the first cell division (Fig. 2D), the first anticlinal cell 

division (Fig. 2E) and the first periclinal division (Fig. 2F) were observed in different plants 

independently. Hence, the selection of pericycle cell files that contribute to a new lateral root 

primordium takes place at a very early developmental stage, i.e. prior to the first cell division. We 

showed previously that developmental plasticity drives the selection of cells along the longitudinal axis 

of the root12. Our new findings reveal that developmental plasticity also exists in the radial axis. 

 

We conclude that external water availability profoundly influences lateral root formation during organ 

emergence. Lateral roots are critical for exploring large volumes of soil for nutrients and moisture. To 

acquire water efficiently, plants have developed mechanisms that drive lateral root outgrowth towards 



external water availability4,5. In contrast to these earlier studies, which focused on the underlying 

molecular mechanisms that control this behavior, this study focused on cell to organ scale mechanisms 

that contribute to the outgrowth of the LRP in response to water availability. Our study reveals that, 

unlike the xylem pole axis, the selection of pericycle cell files that initiate a new lateral root 

primordium is linked to the external hydrological landscape. Our results also reveal that radial divisions 

steer outgrowth of the LRP. These two mechanisms potentially steer LRs towards external water. The 

strong impact of the hydrological landscape explains the non-stereotypical patterns of division reported 

for the morphogenesis of lateral root primordia11,12. Collectively, our observations suggest that the 

external hydrological environment regulates lateral root organogenesis from initiation to outgrowth, 

and represents a potential adaptive advantage when foraging under heterogeneous soil conditions. 

 

Materials and Methods 

 

Plant material and growth conditions 

Arabidopsis thaliana ecotype, Columbia (Col-0) was used as wild type. The reporter line 

pLBD16::LBD16-GFP was previously published14. Arabidopsis thaliana seed lines were surface 

sterilized using 10 % (v/v) bleach for 3 min containing 0.001 % Triton X-100 followed by five 

washes with sterile water and then stratified at 4 °C for 48 h in the dark. Seeds were germinated on 

media containing ½ MS (2.15 g/L) (Murashige and Skoog media, Sigma), 0.97 g/L MES, 1 % sucrose 

and 1 % Bacto agar at pH 5.7.  Seedlings were grown vertically for 10 days under continuous 

temperature 22 °C with a 16 h photoperiod (150 μmol m−2 s−1). The same medium plates were used 

to let plants grow in the gel. Plants in the hydroponic experiments were grown 96-well plates with 

roots immersed in Hoagland’s medium. 

 

Light Sheet Fluorescence Microscopy15 using the Zeiss Lightsheet Z.1 for outgrowth angle 

measurements 

Arabidopsis thaliana seedlings were carefully (without moving them) glued on the media plate using 

1% agarose. Root segments (3cm in length from the root tip) were cut out including the gel and 

transferred to a sample holder described earlier (Figure S1)16. The entire volume of the root was 

captured including the gel substrate using a 405 nm laser (laser intensity in ZEN set to 35%). Auto-

fluorescence was filtered between 505-545 nm. The angles of the xylem pole axis and of the lateral 

root relative to the surface of the medium were measured in a cross section using ImageJ/Fiji (ImageJ 

version 1.52n)17. The line tool was used to draw a line parallel to the surface of the gel. Angles of 

xylem were measured by drawing a line from one xylem pole (the xylem without the primordium) to 

the other xylem pole (the xylem adjacent to the primordium). The angle of the lateral root primordium 

was measured by drawing a line from the xylem (adjacent to the primordium) to the tip of the 

primordium. Angles were exported from Fiji and normalized to the angle of the surface of gel. Since 

the angles measured in Fiji cover the range between -180° and +180°, the angles used in this paper 

were 1) transformed to become all positive between 0° and 360° and 2) rotated for the angle 0° to be 

perpendicular to the gel surface and 180° pointing into the air. The angles of the lateral roots are 

presented as follows: a) orientations towards the gel have positive values and b) those away from the 

gel have negative values. When xylem angles are smaller than 180° (on the right side of the radius) 

the angle becomes the difference “xylem angle minus lateral root angle” otherwise “lateral root angle 

minus xylem angle”. 

 

Data visualization:  

Angle measurements were visualized using Adobe After Effects (version 16.1.2) (Figure 1d, g; 

Supplemental Figure 3; and Supplemental Movie 1). Three dimensional data visualization was 

performed using the software Arivis Vision 4D (version 3.1.2.) (Figure 1a, b;  Figure 2 c, d-g; 

Supplemental Figure 4 and Supplemental Movie 2). Figures were assembled in Adobe Photoshop 

(version 20.0.5) and Adobe Illustrator (version 23.0.3) 

 

 

Multi-view Light Sheet Fluorescence Microscopy (Figure 1A, B): 



Arabidopsis thaliana seedlings were grown on the surface of media plates (½ MS + 1.0% bacto agar). 

Roots were covered with 1% agarose containing fluorescent beads (PS-Speck, fluorescent beads, 

ThermoFisher, Catalog number: P7220) and further processed according to the protocol depicted in 

Supplemental Fig. S2. Roots were imaged with a Zeiss Lightsheet Z1 microscope. Images were 

captured using the W Plan-Apochromat 20x/1.0 and the PCO.edge camera module (CMOS, 

1920x1920 pixel). Excitation wavelengths: 405 nm for autofluorescence for YFP. Emission filter: 

Bandpass 505-545 nm for GFP and Bandpass 525-545 nm for YFP. Multi-view images were set up 

using the Quick-Setup option in the ZEN software. Single views were fused using the bead-based 

registration using the Fiji plugin Multiview Reconstruction18,19  

 

Data availability statement: 

Fig 1 F data freely available on the following link: https://youtu.be/A3qsY1evmQ0. Other data sets 

can be shared when requested. 

 

Statistical methods: 

All statistics were run in IBM SPSS statistics 24. All assumptions for one-way ANOVA were tested 

and met (verified using distribution plots and Levene's test). Different letters indicate significant 

difference between treatments (p<0.05). 

 

 
 
Figure 1: Arabidopsis branching is influenced by the root’s position in the agar. a) A three-dimensional (3D) rendering 

of the auto-fluorescence signal of a lateral root grown out of the main root captured by multi-view light sheet fluorescence 

microscopy. b) The two xylem strands of the lateral root (green) are connected to one of the two xylem strands of the main 

root (magenta). Scaling boxes are 25 µm in size, tick marks 5 µm. c) Autofluorescence 3D light sheet imaging of a young 

primordium (left), a schematic (middle) and the corresponding angles (right) of the xylem axis (magenta) and the lateral root 

(yellow) relative to the gel surface. The white angle represents the orientation of the lateral root relative to the xylem axis. d) 

The complete overlaid set of n=87 angle measurements based on n=10 biological independent samples, data set #180912). e) 

Percentage of lateral roots oriented towards the gel, i.e. <90° with respect to the agar surface (data set #180912, n=87). f) 

Lateral root angle deviation relative to the xylem axis plotted against the position of xylem relative to the gel surface. Lateral 

roots orient towards the agar when initiation occurs on the airside (upper right) and away from the gel when initiation faces 

the contact side (lower left). No lateral root is oriented towards the air when initiation occurs on the airside (upper left). The 

data is derived from five independent experiments. In total, 352 primordia from 42 plants were analyzed (see Supplemental 

Figure 3). Bivariate Pearson Correlation was used to test the linear relationship between the position of the xylem pole and 

the lateral root outgrowth angle. A strong positive correlation was found with  r = 0.726 (p=7.8545E-59; 2-tailed test) g, h) 

Lateral roots grown in gel or water have a smaller deviation angle relative to the xylem pole axis than those grown on gel. 

Data derives from one experiment, 87 images were analyzed per condition. Centerlines show the medians. Box limits 

https://youtu.be/A3qsY1evmQ0


indicate the 25th and 75th percentiles as determined by R software (https://www.r-project.org/); whiskers extend 1.5 times 

the interquartile range from the 25th and 75th percentiles, data points are plotted as yellow circles. Statistical differences 

were analyzed using one-way analysis of variance (ANOVA), Tukey HSD test (P<0.0001; 95% Confidence Interval). 

Statistically similar groups use the same letters. 

 

 
 

 
Figure 2: Lateral root development is flexible during all developmental stages. a) Cell files tracking from 3D light sheet 

fluorescence microscopy time course data sets12 of two biological independent experiments. The colour of the cell file 

indicates which group of cells derive from the same mother cell. Here the green cells represent the central cell file. They 

derive from the cell that undergoes the first periclinal division on its way to become a lateral root primordium. This figure 

illustrates  that the contribution of flanking cell files (yellow and blue cell files) increases over time and pushes the central 

cell file out of the main root. b) Schematic of radial divisions in some cell files, which increases the width of the 

primordium. c) Cell division pattern analyses from five biological independent time course data reveal that radial divisions 

occur preferentially on one side. Thus, the lateral root bends along one direction. d-g) Four individual roots show the 

expression pattern of LBD16 during the first stages of lateral root development, i.e. the migration of nuclei before the first 

cell division (d), the first anticlinal cell division (e), the first periclinal division (f) and a stage IV primordium (g). The 

central file is not strictly above the xylem pole. 39 primordia were scanned, in three independent experiments in which 14 

times the central file was not in line with the xylem pole axis (Supplemental Figure 4). Scale bar: 50 µm. 
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