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Abstract In this paper, we present an approach to the definition of multiparameter quan-
tum groups by studying Hopf algebras with triangular decomposition. Classifying all of
these Hopf algebras which are of what we call weakly separable type over a group, we
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tum groups are Drinfeld doubles. It is possible to recover a Lie algebra from these doubles
in the case where the group is free abelian and the parameters are generic. The Lie algebras
arising are generated by Lie subalgebras isomorphic to sl2.
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1 Introduction

1.1 What are Quantum Groups?

An important problem in the theory of quantum groups is to give some definition of a
class of these objects that captures known series of quantum groups, such as the quantum
enveloping algebras Uq(g) of [18], and their finite-dimensional analogues, as examples.
This was for example formulated in [13, Problem II.10.2]:

“Given a finite-dimensional Lie algebra g, find axioms for Hopf algebras to qualify as
quantized enveloping algebras of this particular g.”

A possible hint to the structure of quantum groups is that the quantum enveloping alge-
bras Uq(g) (as well as the small quantum groups uq(g) and multiparameter versions) are
pointed Hopf algebras. Such Hopf algebras were studied by several authors (see e.g. [8]).
Classification results as in [10] suggest a strong resemblance of all finite-dimensional
pointed Hopf algebras over abelian groups with small quantum groups. Another paper [9]
gives a characterization of quantum groups at generic parameters using pointed Hopf alge-
bras of finite Gelfand–Kirillov dimension with infinitesimal braiding of positive generic
type.

A further hint to the structure of quantum groups is that they can be decomposed in a
triangular way (via the PBW theorem) as

Uq(g) = Uq(n+) ⊗ kZn ⊗ Uq(n−).

Here, the positive and negative part are perfectly paired braided Hopf algebras, and the
relation with the group algebra kZn is governed by semidirect product relations. The positive
(and negative) part are so-called Nichols algebras.

A third aspect — observed already in the original paper [18] — is that quantum groups
are (quotients of) quantum or Drinfeld doubles. It was shown in [24] that Uq(g) in fact is a
braided Drinfeld double (which is referred to as a double bosonization there). It was proved
in [14] that also two-parameter quantum groups are Drinfeld doubles.

In this paper, we aim to provide an axiomatic approach to the definition of (multi-
parameter) quantum groups by combining the pointed Hopf algebra and the triangular
decomposition approach. Under the additional assumption of what we call a triangular
decomposition of weakly separable type over a group, the only indecomposable exam-
ples are close generalizations of multiparameter quantum groups. In particular, assuming
further non-degeneracy, they are examples of a more general version of braided Drinfeld
doubles, which we refer to as asymmetric braided Drinfeld doubles. Further, under certain
assumptions on the group and the parameters, we can recover Lie algebras from these Hopf
algebras, after introducing a suitable integral form.

1.2 This Paper’s Results

This paper starts by recalling the necessary technical background, including a brief overview
on classification results of finite-dimensional pointed Hopf algebras, as well as structural
results by [12] on algebras with triangular decomposition, in Section 2. Next, we give the
definition of a bialgebra with a triangular decomposition over a Hopf algebra H in Section
3. This adapts the two-step approach used for algebras in [12] to the study of bialgebras.
Namely, we first consider the free case of a bialgebra T (V )⊗H ⊗T (V ∗) where the positive
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and negative parts (T (V ), respectively T (V ∗)) are tensor algebras, and then specify by what
ideals (called triangular Hopf ideals) we can take the quotient.

The core of this paper is formed by a partial classification of bialgebras with triangular
decomposition over a group algebra kG. We assume that V has one-dimensional homoge-
neous components (weak separability). We again proceed in two steps. First, we determine
all pointed bialgebras with free positive and negative part over kG in Section 4.2, and
then look at pairs of ideals I , I ∗ such that the quotient A/(I, I ∗) is still a bialgebra in
Section 4.3. We find that indecomposable examples are automatically pointed Hopf alge-
bras, and impose strong commutativity conditions on the group G. Multiparameter quantum
groups fit into this framework. Indeed, the only possible commutator relations (11) closely
resemble those of multiparameter quantum groups:

[fi, vj ] = γij (kj − li ) ∈ kG, ∀i = 1, . . . , n. (1)

We further observe that there exists a natural generalization of the definition of a braided
Drinfeld double to the setting of braided Hopf algebras in the category of Yetter–Drinfeld
modules (YD-modules) over H . For this, the base Hopf algebra H does not need to be
quasitriangular. We need two braided Hopf algebras which are only required to be dually
paired considered as braided Hopf algebra in the category of modules (rather than YD-
modules). That is, the requirement that is weakened compared to the definition of a braided
Drinfeld double (as in [24] or [21]) is that the comodule structures do not need to be dually
paired. We refer to this generalization as the asymmetric braided Drinfeld double. It gives
a natural way of producing Hopf algebras with triangular decomposition — which are not
necessarily quasitriangular. We show in Theorem 4 that the Hopf algebras arising in the
classification in Theorem 3 are of this form (provided that the parameters γii are non-zero)
and that G has to be abelian in this case.

In Section 4.4 we show that from these asymmetric braided Drinfeld doubles of separable
type we can recover Lie algebras provided that there exists a well-defined morphism of
rings to Z when setting the parameters equal to 1. Hence, in the spirit of the question asked
in Section 1.1, we can relate the outcome of our classification back to Lie algebras, which
are always generated by Lie subalgebras isomorphic to sl2.

Here is an overview of the increasingly stronger assumptions on the Hopf algebras A and
H used in the classification:

– Section 3: H any Hopf algebra over a field k, A a bialgebra with triangular decomposi-
tion;

– Section 4: H = kG, A a bialgebra with triangular decomposition;

– Section 4.1–4.2: A is of weakly separable type and indecomposable after
Definition 10;

– Section 4.3: A is indecomposable and non-degenerate of separable type;
– Section 4.4: In addition to the assumptions of 4.3, we require that char k = 0,

and that setting the parameters equal to 1 gives a well-defined homomorphism
of rings to Z.

The final Section 5 contains different classes of indecomposable pointed Hopf algebras
with triangular decomposition over a group kG that arise as examples in the main classifica-
tion. The first class we discuss are the multiparameter quantum groups Uλ,p(gln) introduced
by [19] (adapting the presentation in [15]). They are asymmetric braided Drinfeld doubles,
which is a generalization of the result of [14] showing that two-parameter quantum groups
are Drinfeld doubles. In Section 5.2 we bring results of [31] on growth condition (finite
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Gelfand–Kirillov dimension) and classification of Nichols algebras from [9] into the pic-
ture. We use these results to characterize the Drinfeld–Jimbo type quantum groups at generic
parameters q within the classification of this paper under the additional assumption that the
triangular decomposition is what we call symmetric. Further, a class of finite-dimensional
pointed Hopf algebras by Radford can naturally be included as examples in this framework
(Section 5.3).

To conclude this paper, we suggest in Section 5.4 that future research could focus on
the search for Hopf algebras with triangular decomposition over other Hopf algebras H

(replacing the group algebra kG). This might give interesting monoidal categories, or even
knot invariants, in other contexts. As the first — most classical — example, we take H to
be a polynomial ring k[x1, . . . , xn]. In this case, the only examples are universal enveloping
algebras of Lie algebras.

1.3 Notations and Conventions

In this paper, adapted Sweedler’s notation (see e.g. [33, 1.2]) is used to denote coproducts
and coactions omitting summation. Unless otherwise stated, we work with Hopf algebras
over an arbitrary field k. A Hopf algebra always has an invertible antipode S. The category
of left YD-modules (or crossed modules, cf. [23, Proposition 7.1.6]) over a Hopf algebra
H is denoted by H

HYD, while left modules are denoted by H -Mod, and right modules by
Mod-H .

We denote the module spanned by generators S over a commutative ring R by R〈S〉,
while R[S] denotes the R-algebra generated by elements S (subject to some specified rela-
tions). Groups generated by elements of a set S are denoted by 〈S〉, while ideals are denoted
using ().

2 Background

2.1 Pointed Hopf Algebras

Let the coproduct � : H → H ⊗ H make H a coalgebra over a field k. We can consider
simple subcoalgebras A ≤ H . That is, �(A) ≤ A ⊗ A and there are no proper subobjects
of this type in A. A basic observation is that if dim A = 1, then A can be written as kg, for
a generator g ∈ H such that �(g) = g ⊗ g. Such elements are called grouplike. Indeed, if
H is a Hopf algebra, then the set of all grouplike elements G(H) has a group structure. A
Hopf algebra is pointed if all simple subcoalgebras are one-dimensional. This notion can be
traced back to [33, 8.0] and classifying all finite-dimensional pointed Hopf algebras can be
taken as a first step in the classification of all finite-dimensional Hopf algebras (see e.g. [5]
for a recent survey).

In the late 1980s and early 1990s, important classes of pointed Hopf algebras have been
discovered with the introduction of the quantum groups (and their small analogues). Due to
the vast applications of and attention to these Hopf algebras in the literature, the study of
pointed Hopf algebras has become an important algebraic question.

2.2 Link-Indecomposability

In the early 1990s, Montgomery asked the question, which groups may occur as G(H)

where H is an indecomposable pointed Hopf algebra. In [27], an appropriate notion of
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indecomposability is discussed in different ways. We will briefly recall the description in
terms of link-indecomposability which is equivalent to indecomposability as a coalgebra
and indecomposability of the Ext-quiver of simple comodules.

Given a pointed Hopf algebra H , we define a graph �H with vertices being the simple
subcoalgebras of H (that is, the grouplike elements). There is an edge h → g if there
exists a (g, h)-skew-primitive element v ∈ H , i.e. �(v) = v ⊗ g + h ⊗ v, which is not
contained in kG(H). We say that H is indecomposable if �H is connected. As an example,
group algebras kG are only indecomposable if G = 1. The quantum group Uq(sl2) is
indecomposable if the coproducts are e.g. defined as �(E) = E ⊗ 1 + K ⊗ E and �(F) =
F ⊗ 1 +K−1 ⊗F . There are other versions of the coproduct which are not indecomposable
(see [27]).

2.3 Classification Results for Pointed Hopf Algebras

It was understood early that some pointed Hopf algebras can be obtained as bosonizations
A = B(V ) � kG of so-called Nichols (or Nichols-Woronowicz) algebras B(V ) associated
to YD-modules over a group G (see e.g. [8, Section 2] for definitions). In this case, the
coproducts are given by �(v) = v(0) ⊗ v(−1) + 1 ⊗ v using Sweedler’s notation. That is, if
v is a homogeneous element, then �(v) = v ⊗ g + 1 ⊗ v for the degree g ∈ G(A) of v and
A is indecomposable over the group generated by g ∈ G with Vg 
= 0. Thus, the question
of finding finite-dimensional pointed Hopf algebras is linked to finding finite-dimensional
Nichols algebras.1 Although both questions remain open in general, vast progress on clas-
sifying pointed Hopf algebras has been made in a series of papers by Andruskiewitsch
and Schneider (see [8, 10]) for abelian groups G, and more recently for symmetric and
alternating groups [3], or groups of Lie type [1, 2]. See [5] for more detailed references.

Let us briefly recall the classification results of [10] over an algebraically closed field
k of characteristic zero here in order to provide the basis for comparison to this paper’s
classification in Section 4 later. To fix notation, let D denote a finite Cartan datum. That is,
a finite abelian group �, a Cartan matrix A = (aij ) of dimension n × n with a choice of
generating group elements gi , and characters χi for i = 1, . . . , n. Then define qij := χj (gi)

and impose the conditions that

qij qji = q
aij

ii , qii 
= 1. (2)

We can associate to the Cartan matrix A a root system � (with positive roots �+). The
simple roots αi of � are indexed by i = 1, . . . , n. Denote by χ the set of connected com-
ponents of the corresponding Dynkin diagram, and by �J the root system restricted to the
component J ∈ χ , and write i ∼ j if i and j are in the same connected component. Denote
further

gα :=
n∏

i=1

g
ni

i , χα :=
n∏

i=1

χ
ni

i , for a root α =
n∑

i=1

niαi .

To state the classification of finite-dimensional pointed Hopf algebras over abelian
groups, some technical assumptions need to be made:

(a) Assume that the parameters qii are roots of odd order Ni .

1However, a pointed Hopf algebra is not necessarily a bosonization of this form. Important tools available are
the coradical filtration (see e.g. [26, 5.2]) and the lifting method of Andruskiewitsch and Schneider [8, Section
5].
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(b) Ni = NJ is constant on each connected component, i ∈ J .
(c) If J ∈ χ is of type G2, then 3 does not divide NJ .

To construct pointed Hopf algebra from a Cartan datum D, we need two families of
parameters:

(d) Let λ = (λij ) be an n × n-matrix of elements in k such that for all i � j , gigj = 1 or
χiχj 
= ε implies λij = 0.

(e) Further let μ = (μα)�+ be elements in k such that for any α ∈ �+
J , for J ∈ χ , such

that if g
NJ
α = 1 or ξ

NJ
α 
= ε, then μα = 0.

Definition 1 ([10, 5.4]) Given a Cartan datum D with families of parameters λ, μ as above,
there is a Hopf algebra u = u(D, λ, μ). The algebra u is generated by elements g ∈ � (to
define uα(μ) ∈ k� for α ∈ �+, see [10, 2.14]), and xi for i = 1, . . . , n, subject to the
relations

gxi = χi(g)xig, for all i, g ∈ �, (3)

ad(xi)
1−aij = 0, for i 
= j, i ∼ j, (4)

ad(xi)(xj ) = λij (1 − gigj ), for all i < j, i � j, (5)

xNJ
α = uα(μ), for all α ∈ �+

J , J ∈ χ. (6)

Here, ad(x)(y) is the braided commutator xy−m◦�(x⊗y) where m denotes multiplication
and � is the YD-braiding. The comultiplication is given by �(xi) = xi ⊗ 1 + gi ⊗ xi .

Theorem 1 ([8, 0.1]) Under the above assumptions (a)–(e) on a Cartan datum D with
parameters λ, μ, the Hopf algebra u(D, λ, μ) is indecomposable and pointed with G(u) =
� and has finite dimension.

Moreover, if |G| is not divisible by 2,3,5 or 7, then any indecomposable finite-
dimensional pointed Hopf algebra over kG, where G is abelian, and k = k, char k = 0, is
of this form.

2.4 Algebras with Triangular Decomposition (Free Case)

A triangular decomposition of algebras means that an intrinsic PBW decomposition exists,
similar to universal enveloping algebras of Lie algebras. This is a common feature of quan-
tum groups and rational Cherednik algebras, but more generally shared by all braided
Drinfeld or Heisenberg doubles (cf. [21, Section 3]). Here, we are using the definitions
introduced in [12] to study such algebras with triangular decomposition (so-called braided
doubles).

From a deformation-theoretic point of view, triangular decomposition can be viewed as
follows. Let V , V ∗ be dually paired finite-dimensional vector spaces and H a Hopf algebra
over a field k, such that V is a left H -module, and V ∗ carries the dual right H -action. That
is, for the evaluation map 〈, 〉 : V ∗ ⊗ V → k, we have

〈f  h, v〉 = 〈f, h � v〉, ∀f ∈ V ∗, v ∈ V, h ∈ H. (7)

Now define A0(V , V ∗) to be the algebra on T (V ) ⊗ H ⊗ T (V ∗) with relations

f h = h(1)(f  h(2)), hv = (h(1) � v)h(2), (8)

(i.e. the bosonizations T (V ) � H and H � T (V ∗) are subalgebras), and [f, v] = 0.
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In [12, 3.1], a family of deformations of A0(V , V ∗) over Homk(V
∗ ⊗ V, H) is defined.

The algebra Aβ(V, V ∗), for a parameter β : V ∗ ⊗ V → H , is defined using the same
generators in V , V ∗ and H with the same bosonization relations, but the commutator
relations

[f, v] = β(f, v). (9)

In order to obtain flat deformations we restrict to maps β such that multiplication

m : T (V ) ⊗ H ⊗ T (V ∗) ∼−→ Aβ(V, V ∗), v ⊗ h ⊗ f �→ vhf,

gives an isomorphism of k-vector spaces.

Definition 2 In the case where m gives such an isomorphism of k-vector spaces, we say
that Aβ(V, V ∗) is a free braided double.

Theorem 2 ([12, Theorem 3.3]) The algebraAβ(V, V ∗) is a free braided double if and only
if there exists a k-linear map δ : V → H ⊗ V , δ(v) = v[−1] ⊗ v[0] which is YD-compatible
with the H -action on V, i.e. for any h ∈ H

h(1)v
[−1] ⊗ (h(2) � v[0]) = (h(1) � v)[−1]h(2) ⊗ (h(1) � v)[0]. (10)

In this case, we call (V , δ) a quasi-YD-module and we have

[f, v] = β(f ⊗ v) = v[−1]〈f, v[0]〉. (11)

Note that Aβ(V, V ∗) is a graded algebra where deg v = 1, deg h = 0, and deg f = −1,
for all v ∈ V , h ∈ H , and f ∈ V ∗.

2.5 Triangular Ideals

So far, the braided Hopf algebras T (V ) and T (V ∗) were assumed to be free. We can bring
additional relations into the picture, defining braided doubles that are not necessarily free.
Let I  T (V ) and I ∗  T (V ∗) be ideals. We want to determine when the quotient map

m : T (V )/I ⊗ H ⊗ T (V ∗)/I ∗ ∼−→ Aβ(V, V ∗)/(I, I ∗)

is still a graded isomorphism of k-vector spaces. In [12, Appendix A] it is show that this is
the case if and only if J := (I, I ∗) is a so-called triangular ideal. That is, J = I ⊗ H ⊗
T (V ∗) + T (V ) ⊗ H ⊗ I ∗, where I  T >1(V ), I ∗  T >1(V ∗) are homogeneously generated
ideals such that I and I ∗ are H -invariant and

T (V ∗)I ≤ J, I ∗T (V ) ≤ J. (12)

This condition is equivalent to the commutators [f, I ] and [I∗, v] being contained in J for
all elements v ∈ V , f ∈ V ∗. For each quasi-YD-module, there exists a unique largest
triangular ideal Imax, and thus a unique maximal quotient referred to as the minimal braided
double of V .

If δ is a YD-module, then the maximal quotient T (V )/Imax is the Nichols algebra B(V )

of V , and the braided double on B(V ) ⊗ H ⊗ B(V ∗) is a generalization of the Heisenberg
double, a so-called braided Heisenberg double.

For the purpose of this paper, we need ideals I such that T (V )/I is a braided bialgebra,
where V is a YD-module. That is, not a bialgebra object in the category of k-vector spaces
but in the category of YD-modules over kG (see e.g. [8, 1.2–1.3]). In fact, if I is a homoge-
neously generated ideal in T >1(V ) which is a coideal and a YD-submodule, then T (V )/I
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is a braided Hopf algebra. We denote the collection of such ideals by IV . In particular
Imax ∈ IV as the Nichols algebra B(V ) is a braided Hopf algebra.

3 Hopf Algebras with Triangular Decomposition

In this section, we let k be a field of arbitrary characteristic and H a Hopf algebra over k.
We introduce a notion of a Hopf algebra with triangular decomposition over H .

3.1 Definitions

We refer to the grading of a braided double T (V )/I ⊗ H ⊗ T (V ∗)/I ∗ given by

deg v = 1, deg f = −1, deg h = 0, ∀v ∈ V, f ∈ V ∗, h ∈ H,

as the natural grading. We want to study Hopf algebras with triangular decomposition
preserving this grading.

Definition 3 A bialgebra (or Hopf algebra) A with triangular decomposition over a Hopf
algebra H is a braided double A = T (V )/I ⊗ H ⊗ T (V ∗)/I ∗ which is a bialgebra
(respectively Hopf algebra) such that

• H is a subcoalgebra of A with respect to the original coproduct of H, (13)

• the subspaces T (V ) ⊗ H and H ⊗ T (V ∗) are closed under the coproduct of A, (14)

• the coproduct and counit are morphisms of graded algebras for the natural grading. (15)

(In the Hopf case, the antipode S is required to preserve the natural grading and the
subspaces T (V ) ⊗ H and H ⊗ T (V ∗).)

Note that (15) implies that ε(v) = ε(f ) = 0 for all v ∈ V , f ∈ V ∗. We further observe
that assumptions (14) and (15), combined with the counit property, give that �(V ) ≤ H ⊗
V + V ⊗ H as well as �(V ∗) ≤ H ⊗ V ∗ + V ∗ ⊗ H . Consider the compositions δr , δl with
projections in

The coalgebra axioms imply that δl and δr are left (respectively right) H -coactions. In par-
ticular, as the semidirect product relations in A are preserved by �, δl (and δr ) are left
(respectively right) YD-compatible with the given actions of H on V (right action via
antipode). Similarly, we can obtain a left and right YD-module structure over H on the dual
V ∗ from the coproduct. The corresponding coactions are denoted by δ∗

l and δ∗
r .

Definition 4 Given a bialgebra A with triangular decomposition over H , we define the
right (respectively, left) YD-structure of A to be δr (respectively, δl) together with the given
H -actions. We refer to δ∗

r and δ∗
l (with the dual H -actions) as the right and left dual YD-

structures.
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To fix Sweedler’s notation for the different coactions, denote δr (v) = v(0) ⊗ v(−1) and
δl(v) = v(−1)⊗v(0) and use similar notations for f ∈ V ∗. We will reformulate the definition
of a bialgebra with triangular decomposition in terms of conditions on the YD-structures of
A in Eqs. 18–22 in the free case first.

Lemma 1 A bialgebra A with triangular decomposition over H is a Hopf algebra with
triangular decomposition if and only if there exists a k-linear map S : V ⊕V ∗ → V ⊗H ⊕
V ∗ ⊗ H such that

S(v(0))v(−1) + (S(v(−1))(1) � v(0))S(v(−1))(2) = 0,

v(0)S(v(−1)) + (v(−1)
(1) � S(v(0)))v(−1)

(2) = 0, ∀v ∈ V, (16)

f (−1)S(f (0)) + S(f (−1))(1)(f
(0)  S(f (−1))(2)) = 0,

S(f (−1))f (0) + f (−1)
(1)(S(f (0))  f (−1)

(2)) = 0, ∀f ∈ V ∗. (17)

In this case, S extends uniquely to an antipode on all of A.

Proof This follows (under use of the semidirect product relations) by restating the antipode
axioms for the coproduct of a Hopf algebra with triangular decomposition, in which the
coproducts have the form �(v) = v(0) ⊗ v(−1) + v(−1) ⊗ v(0). Note that ε(v) = 0 as we
require the counit to be a morphism of graded algebras.

3.2 The Free Case

Let A be a free braided double, i.e. A = T (V ) ⊗ H ⊗ T (V ∗). We can now state necessary
and sufficient conditions on the YD-structures of A to make the algebra A a bialgebra with
triangular decomposition. In the following, we stick to the notation of [12, Definition 2.1]
denoting the quasi-coaction determining the commutator relations between elements of V

and V ∗ by δ(v) = v[−1] ⊗ v[0], for v ∈ V .

Lemma 2 A free braided double A on T (V ) ⊗ H ⊗ T (V ∗) is a bialgebra with triangu-
lar decomposition if and only if there exist YD-structures δl , δr , δ∗

l , and δ∗
r such that the

following conditions hold for v ∈ V , f ∈ V ∗:

(f (0)  v(−1)) ⊗ (f (−1) � v(0)) = f ⊗ v, (18)

(f (−1) � v(0)) ⊗ (f (0)  v(−1)) = v ⊗ f, (19)

v(0)f (0) ⊗ (f (−1)v(−1) − v(−1)f (−1)) = 0, (20)

(f (−1)v(−1) − v(−1)f (−1)) ⊗ v(0)f (0) = 0, (21)

v(0)[−1]〈f (0), v(0)[0]〉 ⊗ f (−1)v(−1)

+f (−1)v(−1) ⊗ v(0)[−1]〈f (0), v(0)[0]〉 = v[−1] ⊗ v[−1]〈f, v[0]〉. (22)

Proof The conditions are easily checked — under use of the relations in A and the PBW
theorem — to be equivalent to the requirement that Eq. 11 is preserved by �. This gives the
relations (20)–(22), as well as

v(−1)
(1)(f

(0)  v(−1)
(2)) ⊗ (f (−1)

(1) � v(0))f (−1)
(2) = v(−1)f (0) ⊗ v(0)f (−1),

(f (−1)
(1) � v(0))f (−1)

(2) ⊗ v(−1)
(1)(f

(0)  v(−1)
(2)) = v(0)f (−1) ⊗ v(−1)f (0).
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These relations are equivalent to Eq. 18 and Eq. 19 under use of the counit of H , applying
the coaction axioms.

Further, given δr , δl as well as their dual counterparts δ∗
r , δ∗

l , the bosonization relations
are preserved by the coproduct defined as

�(v) = v(0) ⊗ v(−1) + v(−1) ⊗ v(0), Δ(f ) = f (0) ⊗ f (−1) + f (−1) ⊗ f (0), (23)

for v ∈ V , f ∈ V ∗ by YD-compatibility.

It will become apparent in Section 4 what constraints on the structure of A condi-
tions (18)–(22) give when working over H a group algebra, and over a polynomial ring in
Section 5.4.

3.3 Triangular Hopf Ideals

We are looking for triangular ideals J = I⊗H ⊗T (V ∗)+T (V )⊗H ⊗I ∗ (cf. [12, Appendix
A] or Section 2.5) which are also coideals, and hence A/J is a bialgebra or Hopf algebra
with a triangular decomposition. Using the description of the coproduct � in terms of the left
and right YD-structures on A, the triangular ideals J that are also coideals are simply those
triangular ideals for which I (and I ∗) are YD-submodules for both δl and δr (respectively,
δ∗
l and δ∗

r ). If A is a triangular Hopf algebra with antipode given as in Lemma 1, then every
triangular ideal which is also a coideals is automatically a Hopf ideal.

Definition 5 We denote the collection of triangular ideals of the form

J = I ⊗ H ⊗ T (V ∗) + T (V ) ⊗ H ⊗ I ∗

for homogeneously generated I T >1(V ) and I ∗T >1(V ∗) which are also YD-submodules
for δr , δl (respectively for δ∗

r , δ∗
l ) by I�(A). Such ideals J are called triangular Hopf ideals.

3.4 Asymmetric Braided Drinfeld Doubles

A special class of Hopf algebras with triangular decomposition can be provided by braided
Drinfeld doubles of primitively generated Hopf algebras over a quasitriangular base Hopf
algebra H . This form of the Drinfeld double was introduced as the double bosonization
in [23, 24], see also [21, Section 3.5] for the presentation used here. We now give a more
general definition of an asymmetric braided Drinfeld double which is suitable to capture
the more general class of Hopf algebras that we find in Section 4, including multiparameter
quantum groups, as examples. In this construction, the base Hopf algebra H need not be
quasitriangular, and the asymmetric braided Drinfeld double is also not quasitriangular in
general.

To define the braided Drinfeld double of dually paired braided Hopf algebras C and B in
the category Drin(H)-Mod = H

HYD we require that 〈, 〉 : C⊗B → k is a morphism of YD-
modules. This implies that the actions and coactions on C and B are dual to one-another
(by means of the antipode of H ). A weaker requirement is that we consider the images of
C and B under the forgetful functor

F : H
HYD −→ H -Mod,

and require that F(C) and F(B) are dually paired Hopf algebras in H -Mod (with the
induced braiding under F ), while C and B may not be dually paired in H

HYD. Hence the
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coactions on C and B do not necessarily have to be related via the antipode, but the actions
and resulting braidings need to be related by duality. This is captured by the following def-
inition, where we denote the left coactions by c �→ c(−1) ⊗ c(0) and b �→ b(−1) ⊗ b(0)

respectively.

Definition 6 We say that two braided Hopf algebras C, B in H
HYD are weakly dually paired

if there exists a morphism of H -modules 〈, 〉 : C ⊗ B → k such that

〈cc′, b〉 = 〈c′, b(1)〉〈c, b(2)〉, 〈c, bb′〉 = 〈c(1), b
′〉〈c(2), b〉, (24)

for all c, c′ ∈ C, and b, b′ ∈ B; as well as

(c(−1) � b)c(0) = b(0)(b(−1) � c). (25)

This weaker duality is equivalent to an analogue of condition (19). To see this, we can
regard the left H -coaction on B as a right H cop-coaction, over the co-opposite Hopf algebra
H cop with coproduct τ�. Given a left H -action �, we define a right H cop-action  :=
�(S−1 ⊗ Id)τ (where τ denotes the ⊗-symmetry in Vectk). The resulting structures make B

a right YD-module over H cop. The analogue of condition (19) can be rephrased as requiring
for all b ∈ B, c ∈ C that

b(0)c(−1) ⊗ b(−1)c(0) = c(−1)b(0) ⊗ c(0)b(−1),

⇐⇒ b(0)c(−1) ⊗ b(−1)c(0) = (c(−1)
(1) � b(0))c(−1)

(2) ⊗ b(−1)
(1)(c

(0)  b(−1)
(2)), (26)

⇐⇒ bc = (c(−1) � b(0))(c(0)  b(−1)), (27)

⇐⇒ (c(−1) � b)c(0) = b(0)(c  S(b(−1))) = b(0)(b(−1) � c),

which gives condition (25). We can visualize conditions (26) and (27) using graphical
calculus (with the conventions from [21]), see Fig. 1.

Given (25), we can define an analogue of the braided Drinfeld double on the k-vector
space B ⊗ H ⊗ C (rather than using B ⊗ Drin(H) ⊗ C) with this weaker requirement
of duality on C and B. The definition of the asymmetric braided Drinfeld double can be
given using Tannakian reconstruction theory by describing their category of modules. This
is similar to the approach used for the braided Drinfeld double in [24, Appendix B] (cf. also
[21, Section 3.2]).

Definition 7 Let C, B be weakly dually paired braided Hopf algebras in H
HYD. We define

the category CYDB
asy(H) of asymmetric YD-modules over C, B as having objects V which

are left H -modules (also viewed as right modules by means of the inverse antipode),

Fig. 1 Left and right braiding compatibility condition
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Fig. 2 Asymmetric Yetter–Drinfeld modules

equipped with a left C-action and a right B-action (by morphisms of H -modules) which
satisfy the compatibility condition

((c(2) � v)  b(1)
(−1))  b(2)〈c(1), b(1)

(0)〉 = c(1) � (c(2)
(−1) � (v  b(1)))〈c(2)

(0), b(2)〉, (28)

for all v ∈ V, b ∈ B, c ∈ C. Morphisms in CYDB
asy(H) are required to commute with the

actions of H , B and C.

It may help to visualize the condition (28) using graphical notation, see Fig. 2.

Proposition 1 The category CYDB
asy(H) is monoidal, with a commutative diagram of

monoidal fiber functors

Proof This monadicity statement can for example be checked directly using graphical cal-
culus. Note that condition (27) is crucial. The fiber functors simply forget the additional
structure at each step.

Definition 8 The asymmetric braided Drinfeld double Drinasy
H (C,B) is defined as the

algebra obtained by Tannakian reconstruction2 on B ⊗ H ⊗ C applied to the func-
tor CYDB

asy(H) −→ Vectk . Hence Drinasy
H (C,B)-Mod and CYDB

asy(H) are canonically
equivalent as categories.

2See e.g. [23, 9.4.1] or [21, Section 2.3].
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Proposition 2 An explicit presentation for the asymmetric braided Drinfeld double
Drinasy

H (C,B) on the k-vector space B ⊗H ⊗C can be given as follows: the multiplication
on B is opposite, and for c ∈ C, b ∈ B and h ∈ H we have

hb = (h(2) � b)h(1), (29)

hc = (h(1) � c)h(2), (30)

b(2)S
−1(b(1)

(−1))c(2)〈c(1) ⊗ b(1)
(0)〉 = c(1)c(2)

(−1)b(1)〈c(2)
(0) ⊗ b(2)〉. (31)

The coproducts are given by

�(h) = h(1) ⊗ h(2), (32)

�(b) = b(1)
(0) ⊗ b(2)S

−1(b(1)
(−1)), (33)

�(c) = c(1)c(2)
(−1) ⊗ c(2)

(0), (34)

and the antipode is

S(h) = S(h), S(b) = S−1(b(0))b(−1), S(c) = S(c(−1))S(c(0)), (35)

using the respective given structures on H , B, and C.

Proof This follows under application of reconstruction (in Vectk) applied to CYDB
asy(H).

See e.g [21, Section 2.3] for formulas on how to obtain the structures, including the antipode
(Figure 2.1).

An important feature of the braided Drinfeld double is that it has a braided monoidal
category of representations, hence is quasitriangular. For the asymmetric braided Drinfeld
double to be quasitriangular, we need H to be quasitriangular. If H is not quasitriangular,
this can be achieved by working with over Drin(H) instead of H as a base Hopf algebra.

From now on, we restrict to the important special case where B and C are primi-
tively generated by finite-dimensional YD-modules. This way, we obtain examples of Hopf
algebras with a triangular decomposition over H .

Lemma 3 Let V , V ∗ be left YD-modules over H , such that the action on V ∗ is dual to the
action on V . Then the braided tensor (co)algebras T (V )op and T (V ∗)cop are dually paired3

in the monoidal category of right modules over H . Further assume that the compatibility
condition (25) holds.

Then the asymmetric braided Drinfeld double Drinasy
H (T (V ∗)cop, T (V )op) is given on

A = T (V ) ⊗ H ⊗ T (V ∗) subject to the usual bosonization relations (8) and the cross
relation

[f, c] = S−1(v(−1))〈f, v(0)〉 − f (−1)〈f (0), v〉. (36)
The coalgebra structure is given by

�(v) = v(0) ⊗ S−1(v(−1)) + 1 ⊗ v, �(f ) = f ⊗ 1 + f (−1) ⊗ f (0). (37)

3We choose the opposite T (V )op and co-opposite T (V ∗)cop in order to avoid having to take the opposite
multiplication in the resulting double (cf. Proposition 2). As tensor algebras are braided cocommutative, this
choice does not affect the formulas for the coproduct.



560 R. Laugwitz

The counit is given by ε(v) = ε(f ) = 0 and the antipode can be computed using the
conditions from equations (16) and (17) as

S(v) = −v(0)v(−1), S(f ) = −S(f (−1))f (0). (38)

We can also consider quotients of the form A/J for any triangular Hopf ideal J ∈ I�(A).
The quotient of A by the maximal triangular Hopf ideal in I�(A) is denoted by UH (V, V ∗).

Lemma 4 Let A = Drinasy
H (T (V ∗)cop, T (V )op) for V , V ∗ as in Lemma 3. Then the

maximal ideal Imax(A) in I�(A) is given by

Imax(A) = Imax(V ) ⊗ H ⊗ T (V ∗) + T (V ) ⊗ H ⊗ Imax(V
∗),

where Imax(V ) is the maximal Nichols ideal in T (V ) for the left coaction on V , and
Imax(V

∗) is the maximal Nichols ideal in T (V ∗) for the left coaction on V ∗. Hence

m : B(V ) ⊗ H ⊗ B(V ∗) ∼−→ UH (V, V ∗)

is an isomorphism of k-vector spaces (PBW theorem).

Proof This is clear as we know that T (V )op/Imax(V ) and T (V ∗)cop/Imax(V
∗) are weakly

dually paired braided Hopf algebras and their asymmetric braided Drinfeld double is given
by the quotient Drinasy

H (T (V ∗)cop, T (V )op)/Imax(A), which must be the minimal double
UH (V, V ∗).

A perfect pairing between the positive and negative part of UH (V, V ∗) implies the exis-
tence of a formal power series coev satisfying the axioms of coevaluation. We expect that
this can be used to give a braiding on a suitable category of modules over UH (V, V ∗) (where
B(V ) acts integrally), and all modules have the structure of being YD-modules over H .

3.5 Symmetric Triangular Decompositions

The rest of this section will be devoted to the question of recovering the braided Drinfeld
double over a quasitriangular base Hopf algebra H as a special case of the asymmetric
braided Drinfeld double. For this, we introduce the idea of a Hopf algebra with a symmetric
triangular decomposition:

Definition 9 Let A be a bialgebra with a triangular decomposition over H . If the associated
coactions satisfy that the right coaction δ∗

r of V ∗ is the dual coaction to δl , i.e.

〈f (0) ⊗ v〉f (−1) = 〈f ⊗ v(0)〉v(−1), (39)

and the coactions δr and δ∗
l are compatible in the same way, then we call the triangular

decomposition symmetric.

In the case where H is a quasitriangular Hopf algebra, we can recover a special case
of the definition of the braided Drinfeld double given in [21, Example 3.5.6] from the
more general form given in Definition 8, and the resulting triangular decomposition will be
symmetric. For this, note that the universal R-matrix and its inverse give functors (see [22])

R−1 : H -Mod −→ H
HYD, (V , �) �−→ (V , �, (IdH ⊗�)(R−1 ⊗ IdV )),

R : Mod-H −→ H
HYD, (V , ) �−→ (V , , ( ⊗ IdH )(IdV ⊗R)).
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Given a right H -module V , we can hence give V a left YD-module structure using R−1,
and V ∗ the dual YD-module structure using R. Note that (25) is satisfied in this case. With
these structures, the relation (36) becomes

[f, c] = S−1(R−(2))〈f, v  R−(1)〉 − R−(1)〈R−(2) � f, v〉
= R(2)〈R(1) � f, v〉 − R−(1)〈R−(2) � f, v〉.

This is precisely the cross relation of [21, Example 3.5.6]. Note that we use R = (S−1 ⊗
IdH )R−1. This proves the following Proposition:

Proposition 3 Braided Drinfeld doubles of braided Hopf algebras over a quasitriangular
Hopf algebras are asymmetric braided Drinfeld doubles (as in Definition 8) with a
symmetric triangular decomposition.

Note that a partial converse statement also holds: Given an asymmetric braided Drinfeld
double that is symmetric, then it can be displayed as a braided Drinfeld double in the sense
of [21, 24], but unless H is quasitriangular (and the coactions induced by the R-matrix), we
need to view it over the base Hopf algebra Drin(H) instead. If the positive and negative part
are perfectly paired, then we can give a formal power series describing the R-matrix and an
appropriate subcategory (corresponding to the Drinfeld center) is braided.

Particularly interesting examples of such braided Drinfeld doubles include the quantum
groups Uq(g) for generic q, and the small quantum groups uq(g) (see [24, Section 4]).
Their construction uses the concept of a weak quasitriangular structure for which a similar
statement to Proposition 3 can be made. We will see in Section 5 that multiparameter quan-
tum groups can be viewed as examples of asymmetric braided Drinfeld doubles that are not
symmetric. Further, all the pointed Hopf algebras classified in the main result of this paper
(Theorem 3), under the additional assumption that the braiding is of separable type and
some commutators do not vanish, are asymmetric braided Drinfeld doubles (Theorem 4).

4 Classification Over a Group

In this section, we denote by A = T (V ) ⊗ kG ⊗ T (V ∗) a bialgebra with triangular
decomposition over a group algebra kG. Note that we do not assume G to be finite.

4.1 Preliminary Observations

Hopf algebras that are generated by grouplike and skew-primitive elements are always
pointed. We show that assuming a Hopf algebra has triangular decomposition over a group
and is of what we call weakly separable type, it is generated by skew-primitive elements
and hence pointed.

Lemma 5 For a bialgebra A with triangular decomposition over kG as above, there exists
a basis v1, . . . , vn of V and f1, . . . , fn of V ∗, as well as invertible matrices M and N such
that

�(vi) = vi ⊗ gi + ∑
j Mjihj ⊗ v′

j , �(fi) = fi ⊗ ai + ∑
j Njibj ⊗ f ′

j , (40)

where v′
1, . . . , v

′
n is another basis of V , and f ′

1, . . . , f
′
n of V ∗.
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Proof Let v1, . . . , vn be a homogeneous basis for the YD-compatible grading δr and
v′

1, . . . , v
′
n a homogeneous basis for δl . The form (40) of the coproducts is obtained by let-

ting M be the base change matrix from {vi} to {v′
i}. The same argument works for the dual

V ∗, denoting the base change matrix from {fi} to {f ′
i } by N .

Lemma 6 A bialgebra A with a triangular decomposition over kG as above is a Hopf
algebra, with antipode S given on generators of the form vi , fi as in Eq. 40 by

S(vi) = − ∑
j Mji(h

−1
j � v′

j )h
−1
j g−1

i , S(fi) = − ∑
j Nji(f

′
j  bj )b

−1
j a−1

i .

(41)

Proof The antipode axioms require that S is of the form stated, using that kG is a Hopf
subalgebra, cf. (16)–(17). As T (V ) and T (V ∗) are free, defining S on the generators extends
uniquely to an anti-algebra and anti-coalgebra map on all of A.

Definition 10 A Hopf algebra A with triangular decomposition over a group is called
of weakly separable type if the right degrees gi, . . . , gn of V are pairwise distinct group
elements, and the same holds for the left degrees h1, . . . , hn of V as well as the dual degrees.

We observe that being of weakly separable type over a group implies that V and V ∗ have
1-dimensional homogeneous components. This gives that for a homogeneous basis element
vi of degree ai , g �vi 
= 0 is homogeneous of degree gaig

−1 which hence has to be a scalar
multiple of a basis element vg(i) where g(i) is an index 1, . . . , n. Hence we obtain an action
of G on {1, . . . , n}. To fix notation, we write

g � vi = λi(g)vg(i), fi  g = μi(g)fg(i). (42)

We will see that for A of weakly separable type, the base change matrices M , N are diagonal
matrices and can be chosen to be the identity matrix by rescaling of the diagonal bases. This
implies that A is generated by primitive and group-like elements and hence pointed. It is
a conjecture in [8, Introduction] that all finite-dimensional pointed Hopf algebras over an
algebraically closed field of characteristic zero are in fact generated by skew-primitive and
group-like elements.

Proposition 4 If A is of weakly separable type, then there exist bases {vi} of V and {fi} of
V ∗ consisting of skew-primitive elements, such that

�(vi) = vi ⊗ gi + hi ⊗ vi, �(fi) = fi ⊗ ai + bi ⊗ fi, (43)

and the antipode on these skew-primitive elements is given by S(vi) = (h−1
i � vi)h

−1
i g−1

i ,

S(fi) = (fi  bi)b
−1
i a−1

i .

Proof Consider the right and left coactions δr and δl from Section 3.1. Choosing a basis
v1, . . . , vn homogeneous for δl and v′

1, . . . , v
′
n homogeneous for δr , (40) gives

�(vi) = vi ⊗ gi +
∑

j

Mjihj ⊗ v′
j , (44)

where M = (Mji) is the base change matrix. By coassociativity, we find that
∑

j,k

Mji(M
−1)kj hj ⊗ vk ⊗ gk =

∑

j

Mjihj ⊗ v′
j ⊗ gi. (45)
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By weak separability of δr and δl we now have for each j = 1, . . . , n:
∑

k

Mji(M
−1)jkvk ⊗ gk = Mjiv

′
j ⊗ gi. (46)

Note that Mji 
= 0 for at least some i. This implies that (M−1)kj = 0 unless k = i as the
gi are all distinct. Further, if Mji 
= 0, then vi and v′

j are proportional. This can only be
true for at most one i for given index j by weak separability. Hence by reordering the basis
v′

1, . . . , v
′
n we find that M is a diagonal matrix and can rescale the basis {v′

i} such that M is
the identity matrix. Hence we have �(vi) = vi ⊗ gi + hi ⊗ vi . The antipode conditions for
A give (using Lemma 1) that S is of the form claimed.

Remark 1 The bases {vi} and {fi} do not necessarily need to be orthogonal with respect to
the pairing 〈, 〉. We will see in Theorem 3 that if the characters λi are all distinct, then the
bases can be chosen to be dual bases.

Remark 2 In the following, we fix a basis v1, . . . , vn for V and f1, . . . , fn for V ∗ such that

�(vi) = vi ⊗ gi + hi ⊗ vi, �(fi) = fi ⊗ ai + bi ⊗ fi, i = 1, . . . , n. (47)

A direct observation from Proposition 4 is that the algebra A is generated by primitive
and grouplike elements (which precisely give the group G) and hence pointed. We have the
following restrictions on the group structure.

Proposition 5 In the group G, the relations [gi, aj ] = [hi, aj ] = 1 and [hi, bj ] =
[gi, bj ] = 1 hold for all i, j = 1, . . . , n. In particular, if A has a symmetric triangular
decomposition, then the subgroup of G generated by all degrees is abelian.

Further, the following identities for the characters of the group action hold:

μj (hi) = λi(aj )
−1, μj (gi) = λi(bj )

−1. (48)

Proof The commutator relations follow by applying (20) and (21) to a pair of homogeneous
basis elements of V and V ∗ with respect to δl, δ

∗
r (or δr , δ

∗
l ). Then it follows from Eq. 18

and Eq. 19 that hi(j) = j , aj (i) = i, gi(j) = j and bj (i) = i by the PBW theorem. This
implies the relations (48). In the symmetric case, ai = g−1

i and bi = h−1
i which forces the

subgroup generated by all degrees to be abelian.

4.2 Classification in the Free Case of Weakly Separable Type

We are now in the position to classify all Hopf algebras A with triangular decomposition
of weakly separable type (cf. Definition 10). This will enable us to view the Hopf algebras
arising from this classification as analogues of multiparameter quantum groups in Section 5.
We start by considering the case A = T (V ) ⊗ kG ⊗ T (V ∗) which is referred to as the free
case.

Proposition 6 For the Hopf algebra A with triangular decomposition of weakly separable
type to be indecomposable as a coalgebra it is necessary that G is generated by elements
k1, . . . , kn, l1, . . . , ln such that there exist generators vi of V and fi of V ∗ which are skew-
primitive of the form

�(vi) = vi ⊗ ki + 1 ⊗ vi, �(fi) = fi ⊗ 1 + li ⊗ fi, (49)
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with [ki, lj ] = 1 for all i, j . For the characters of the actions on the homogeneous
components of V and V ∗ we require that

μj (ki) = λi(lj )
−1. (50)

Proof To determine when pointed Hopf algebras are indecomposable as coalgebras, con-
sider the graph �A described in 2.2. Assume that A has generators given as in Remark 2.
We claim that the connected components of �A are in bijection with the double cosets of
the subgroup

Z := 〈g−1
1 h1, . . . , g

−1
n hn, a

−1
1 b1, . . . , a

−1
n bn〉

in G which partition G. Indeed, using that the elements gvi and gfi are skew-primitive of
type (ggi, ghi) and (gai, gbi), we find that the connected component of g contains, for
i = 1, . . . , n, of the strands

. . . −→ g(g−1
i hi)

−2 −→ g(g−1
i hi)

−1 −→ g −→ g(g−1
i hi)

1 −→ g(g−1
i hi)

2 −→ . . .

for i = 1, . . . , n and the same strands with a−1
i bi instead of g−1

i hi (and with g multiplied on
the right). Moreover, as the elements gvi , gfi , vig, fig (and possibly linear combinations of
products of them, which would again be skew-primitive with degrees given by elements in
Z) are the only skew-primitive elements in A, and thus give the only arrows in �A, two ele-
ments g and h are in the same connected component if and only if z1gz2 = z3hz4, for some
zi ∈ Z. Thus, A is indecomposable if and only if G equals the connected component of 1 in
the graph �A, hence if G = Z which is the group generated by the elements ki := h−1

i gi ,
li := a−1

i bi for i = 1, . . . , n. Thus, in order to obtain indecomposability, the coproducts
are of the form as stated in Eq. 49. This is achieved by replacing the generators vi by vih

−1
i

and fi by a−1
i fi . The remaining statements follow directly from Proposition 5.

Theorem 3 For an indecomposable Hopf algebra A of weakly separable type as in
Proposition 6, the commutator relations (11) are of the form

[fi, vj ] = γij (kj − li ), ∀1 ≤ i, j ≤ n, (51)

where γij are scalars in k such that γij = 0 whenever λi 
= λj in which case also 〈fi, vj 〉 =
0, or if either of li of kj are not central. Conversely, any choice of such scalars gives a
pointed Hopf algebra of this form.

Proof With the work done in Proposition 6, it remains to verify that the form of the com-
mutator relation (11) is as stated. Recall that in [12, 3.1], the commutator relation is given
by means of a quasi-coaction. That is a morphism δ : V → kG⊗V satisfying (10) and (11).
Such a morphism has the general form

δ(vj ) = v
[−1]
j ⊗ v

[0]
j = ∑

k,g α
j
k,gg ⊗ vk, αi

k,g ∈ k, (52)

on the basis elements from Eq. 49. Then (22), which is required for A to be a bialgebra,
rewrites as

∑
k,g α

j
k,g(g ⊗ kj + li ⊗ g)〈fi, vk〉 = ∑

k,g α
j
k,gg ⊗ g〈fi, vk〉, ∀i, j.
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For each i, there exists k such that 〈fi, vk〉 
= 0. For given i, we denote the set of indices
such that 〈fi, vk〉 
= 0 by Ii . For such k ∈ Ii , we find that α

j
k,g = 0 for g 
= kj , li , and

α
j
k,kj

= −α
j
k,li

. Thus, we obtain that δ is of the form

δ(vj ) = v
[−1]
j ⊗ v

[0]
j =

n∑

i=1

γij (kj − li ) ⊗ v′
i , (53)

where γij = ∑
k∈Ii

α
j
k,kj

〈fi, vk〉 |Ii | and {v′
i} is the dual basis of V to {fi}. Conversely,

given arbitrary scalars γij for i, j = 1, . . . , n, we can define a quasi-coaction by the same
formula (53). Then δ is YD-compatible with the given action of G on V if and only if (cf.
condition (A) in [12, Theorem A])

γijμi(g)(gkj − gli) = g[fi  g, vj ] (A)= [fi, g � vj ]g = γij λj (g)(kjg − lig).

This implies λj = μi whenever γij 
= 0. Further, if γij 
= 0 we need li , kj ∈ Z(G). These
two requirement ensure that δ is YD-compatible.

Further, by duality of the action, if 〈fi, vj 〉 
= 0 then λi = μj . As for given i = 1, . . . , n,
〈fi, vj 〉 
= 0 for some j we have that λi = μj for at least some j , and vice versa. Hence,
the set of characters and dual characters are in bijection. We can change the numbering and
assume without loss of generality (recall that we are in the weakly separable case) to obtain

λi = μi. (54)

From now on, we will hence only use the notation λi .

Example 1 The most degenerate case, where γij = 0, gives the Hopf algebra (T (V ) ⊗
T (V ∗))� kG where the tensor algebras are again computed in the category of YD-modules
over kG.

Remark 3 At this point, a comparison to [10, 2.4] and [9, 4.3] seems appropriate. The
condition (51) is equivalent to the so-called linking relation (5) after a change of generators
fi ↔ l−1

i fi , since in the form of Definition 1 all generators have coproducts δ(vi) =
vi ⊗ 1 + gi ⊗ vi . Such a change of generators causes the commutators ad = [, ] to become
braided commutators ad = IdV ⊗2 −�. The scalars λij satisfy the condition (d) in 2.3, where
for the characters χiχj 
= ε implies λij = 0. This is the analogue of our condition λi 
= λj

implying γij = 0.
The linking relations also appear in the quantum group characterization of [9, Theorem

4.3]. Hence we can conclude that the classification in this section gives Hopf algebras with
similar relations as appearing in the work of Andruskiewitsch and Schneider. The outcome
here is more restrictive as in our setting relations of the form (6) cannot involve non-trivial
elements in kG, and we also have a symmetry in the set χ of connected components due to
the triangular decomposition.

The situation where {vi} and {fi} are orthogonal bases deserves particular attention. In
this case, the scalars γij = 0 for i 
= j . The following concept of separability ensure this.

Definition 11 Let A have a triangular decomposition of weakly separable type over a group
G. If the characters λ1, . . . , λn are distinct for different indices, we will speak of a triangular
decomposition of separable type.
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If A is of the form as in Theorem 3, we say that A is non-degenerate if γii 
= 0 for all
i = 1, . . . , n (this implies ki 
= li).

Note that both definitions — separability and non-degeneracy — cause the group G

to be abelian, and hence the braidings on V and V ∗ to be of diagonal type. Assuming
non-degeneracy, we can adapt the terminology of [12, 5.5] that the braided doubles in this
case come from mixed YD-structures. A mixed YD-structure is a quasi-coaction δ that is
a weighted sum

∑
tiδi , where δi are YD-modules compatible with the same action, and ti

are generic scalars. The quasi-YD-module in the theorem is the sum δ = δr − (δ∗
l )∗, where

(δ∗
l )∗ is the YD-module given by vj �→ lj ⊗ vj , which is dual to δ∗

l . We will see that in
this case all the Hopf algebras arising are certain asymmetric braided Drinfeld doubles (as
defined in 3.4). In the symmetric case, these algebras are in fact braided Drinfeld doubles.
In particular, their appropriately defined module categories (resembling the Drinfeld center)
are braided.

4.3 Interpretation as Asymmetric Braided Drinfeld Doubles

Assume in this section that A is non-degenerate of indecomposable separable type over G.
So far, we have only classified free braided doubles over kG. That is, as a k-vector space
A ∼= T (V )⊗kG⊗T (V ∗) via the multiplication map. To capture examples such as quantum
groups, it is necessary to consider quotients of A by triangular ideals J = (I, I ∗) such
that A/J ∼= T (V )/I ⊗ kG ⊗ T (V ∗)/I ∗ is still a Hopf algebra (and thus pointed). Here
I  T >1(V ) and I ∗  T >1(V ∗) are ideals and also coideals, and J ∈ I�(A). We will now
refine our considerations from Section 3.3 to find for what ideals I and I ∗ this is the case.
We will use the notation

qij := λj (ki). (55)

Then, by Eq. 50, we have that λj (li) = q−1
ji , and the matrix q = (qij ) describes the braiding

on V fully, i.e. it is of diagonal type.
The collection of triangular Hopf ideals I�(A) introduced in Section 3.3 can be

described more concretely in the separable non-degenerate case: The ideals in I�(A) are
of the form J = I ⊗ kG ⊗ T (V ∗) + T (V ) ⊗ kG ⊗ I ∗ where I is an ideal in the collec-
tion I(V ,δr ) for V with the right coaction given by δr , and I ∗ is in I(V ∗,δ∗

l ) for the left dual
coaction δ∗

l on V ∗. This follows using [12, Proposition 5.10] and the description of triangu-
lar Hopf ideals in Lemma 4. We use that by Eq. 50 the braiding �r coming from δr and �l

from (δ∗
l )∗ on V are given by

�r(vi ⊗ vj ) = qij vj ⊗ vi, �l(vi ⊗ vj ) = q−1
ji vj ⊗ vi, . (56)

That is �l = �−1
r , the inverse braiding. Thus, I ∗ is just the dual k-vector space to I .

Example 2 In the quantum groups A = Uq(g), the braiding satisfies the symmetry qij =
qi·j = qj ·i = qji as the Cartan datum is symmetric. This implies that the relations in I are
symmetric under reversing the order of tensors v1 ⊗ . . . ⊗ vn ↔ vn ⊗ . . . ⊗ v1. This can be
verified explicitly by observing that in Uq(g) the ideal I is generated by q-Serre relations,
which carry such a symmetry.

Theorem 4 Let A be an indecomposable bialgebra with triangular decomposition of
separable non-degenerate type over G. Then A is an asymmetric braided Drinfeld double.
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That is, all quotients by triangular Hopf ideals J ∈ I�(A) of algebras A of separable
non-degenerate type occurring in the classification of Theorem 3 are asymmetric braided
Drinfeld doubles. If J is maximal in I�(A), then A/J ∼= UkG(V, V ∗).

Proof Recall that every Hopf algebra with triangular decomposition is the quotient of a
free braided double by a triangular Hopf ideal. We saw that in the free separable case the
commutator relations are of the form [fi, vj ] = δij γii (ki − lj ). This is precisely the form
of the asymmetric braided Drinfeld double of V with right YD-module structure given by
the right grading, and V ∗ with left YD-module structure given by the left dual grading. The
pairing is given by 〈fi, vj 〉 = δij γii here. We have to check that the braided Hopf algebras
T (V ) and T (V ∗) of YD-modules over G are dually paired when viewed in the category of
left kG-modules. This however follows from condition (50). Taking the maximal quotient
by a triangular ideal (or the left and right radical of the pairing) gives the asymmetric braided
Drinfeld double UkG(V, V ∗).

If some of the parameters γii are zero, then the pointed Hopf algebras obtained are not
asymmetric braided Drinfeld double any more (in the sense of Definition 8).

4.4 Recovering a Lie Algebra

We assume that char k = 0 in this section and study Hopf algebras with triangular decom-
position of separable type which are of the form UkG(V, V ∗) (see Theorem 4). The aim is to
set the characters λi and the group elements ki , li equal to 1. This way, we want to recover a
Lie algebra g for any of the indecomposable pointed Hopf algebras of the form UkG(V, V ∗),
relating back to the question asked in the introduction of finding quantum groups for a given
Lie algebra. The tool available for this is the Milnor–Moore theorem from [25] (see also
[26, Theorem 5.6.5]) which shows that any cocommutative connected Hopf algebras is of
the form U(g) for a (possibly infinite-dimensional) Lie algebra g.

There are technical problems with this naive approach. To set the elements qij — which
will be replaced by formal parameters — equal to one, we need to give an appropriate
integral form to avoid that the modules collapse to zero. This rules out examples like e.g.
k[x]/(xn) (and, more generally, the small quantum groups) which are braided Hopf algebras
in the category of YD-modules over kZ, as here a generator of the group acts by a primitive
nth root of unity q on x, and Z[q] ⊂ k is a cyclotomic ring.

As a first step, we introduce appropriate integral forms of UkG(V, V ∗), for which we
need the square roots of qij . We consider the subring Z := Z[q±1/2

ij ]i,j ⊂ k adjoining
all square roots of the numbers qij and their inverses. These will now be treated as formal
parameters with certain relations between them, coming from the relations we have among
them in k.

Remark 4 In this section, we assume that the ideal 〈q±1/2
ij − 1 | i, j = 1, . . . , n〉 in Z is a

proper ideal, and hence p : Z → Z, q
±1/2
ij �→ 1 is a well-defined morphism of rings.

This assumption is crucial in the formal limiting process. It, for example, prevents
examples in which qn + qn−1 + . . . + q + 1 = 0 as in cyclotomic rings.

To produce an integral form, we replace a given YD-module V over kG of separa-
ble type as in the previous sections by a YD-module over ZG. For this, we can choose



568 R. Laugwitz

a G-homogeneous basis v1, . . . , vn and a homogeoneous dual basis fi, . . . , fn such that
(possibly after rescaling)

〈fi, vj 〉 = 1
q

1/2
ii −q

−1/2
ii

δij , ∀i, j. (57)

An important observation is that the Woronowicz symmetrizers, which are used to compute
the Nichols ideal Imax(V ), have coefficients in Z. Hence their kernels will be Z-modules.
That is, for V int defined as Z〈v1, . . . , vn〉, which is a YD-module over the group ring
ZG, the Woronowicz symmetrizer Wornint � is a Z-linear map V int ⊗n → V int ⊗n. Hence
Imax(V

int) := ker Worint � is an ideal in T (V int), the tensor algebra over Z.
In order to provide an integral form of UkG(V, V ∗), we change the presentation by intro-

ducing new commuting generators, namely [fi, vi] =: ti . One verifies that the following
commutator relations hold over k, as we are given the relation ti = 1

q
1/2
ii −q

−1/2
ii

(ki − li ) when

working over the field:

[fi, tj ] = δi,j (q
1/2
ii kifi + q

−1/2
ii lifi), (58)

[
vi, tj

] = −δi,j (q
−1/2
ii kivi + q

1/2
ii livi). (59)

Definition 12 The integral form UZG(V int, V int ∗) of UkG(V, V ∗) is defined as the graded
Hopf algebra over the ring Z generated by v1, . . . , vn, of degree 1, f1, . . . , fn of degree
−1, and the group elements k1, . . . , kn, l1, . . . , ln ∈ G, and additional elements t1, . . . , tn
of degree 0, subject to the relations of Imax(V

int) and I ∗
max(V

int), bosonization relations

gvi = (g � vi)g, fig = g(fi  g), (60)

as well as the relations (58), (59) and

gvi = (g � vi)g, fig = g(fi  g), (61)

q
1/2
ii (ki − li ) = (qii − 1)ti , (62)

[
fi, vj

] = δi,j ti , (63)
[
ti , tj

] = 0. (64)

The coproducts are given as before on the generators fi, vi, ki , li and �(ti) = ti⊗ki+li⊗ti .

Note that as A = UZG(V int, V int ∗) is a Hopf algebra over the commutative ring Z, the
coproduct is a map A → A ⊗Z A. For the quantum groups Uq(g) at generic parameter,
the integral form in this case is the so-called non-restricted integral form (see e.g. [16, 9.2])
which goes back to De Concini–Kac [17]. To set the parameters equal to one, and to consider
extensions of Hopf algebras to fields, we use the following Lemma:

Lemma 7 Let φ : R → S be a morphism of commutative algebras. We denote the category
of Hopf algebras over R by HopfR . Then base change along φ induces a functor

Hopfφ : HopfR −→ HopfS, A �−→ A ⊗R S.

Proof Given a Hopf algebra A which is an R-algebra, i.e. there is a morphism R → A, we
induce the multiplication and comultiplication on A ⊗R S using the isomorphism

(A ⊗R S) ⊗S (A ⊗R S) ∼= (A ⊗R A) ⊗R S.

It is easy to check that the Hopf algebra axioms are preserved under base change.
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Proposition 7 There is an isomorphism of graded Hopf algebras

UZG(V int, V int ∗) ⊗Z k
∼−→ UkG(V, V ∗).

Proof Recall that Z ≤ k by construction. Extending to k, we are able to divide by qii − 1
in Eq. 62, and recover the original commutator and bosonization relations in UkG(V, V ∗).
It remains to verify that

Imax(V
int) ⊗Z k = ker Worint � ⊗Z k = ker Wor � = Imax(V ).

This follows by noting that k is flat as a Z-module (since the function field K(Z) is flat over
Z as a localization, and k is free over K(Z)), and V int ⊗Z k ∼= V as k-vector spaces.

Definition 13 We define the classical limit of UkG(V, V ∗) as the algebra

U cl
k (V , V ∗) := (UZG(V int, V int ∗) ⊗Z Z) ⊗Z k

/
(ker εG) ,

using the morphism p : Z → Z mapping all q
±1/2
ij to 1, and the two sided ideal (ker εG)

generated by the kernel of the augmentation map εG : kG → k mapping all group elements
to 1. Note that this ideal is a Hopf ideal.

That is, to obtain the classical limit, we first set the parameters q
±1/2
ij equal to 1 in the

integral form and then extend the resulting Z-module to a k-vector space, and finally set the
group elements equal to 1 along the counit εG : kG → k. We obtain a primitively generated
Hopf algebra, and hence a Lie algebra, this way:

Proposition 8 The classical limit U cl
k (V , V ∗) is a connected Hopf algebra, generated

by primitive elements. Hence, for the Lie algebra pV of primitive elements, U(pV ) =
U cl

k (V , V ∗). This algebra is generated by triples fi, vi, ti which form a subalgebra
isomorphic to U(sl2).

Proof Lemma 7 ensures that U cl
k (V , V ∗) is a Hopf algebra over k, and freeness of V int over

Z ensures that the positive and negative part do not collapse to the zero space. In particular,
the k-vector space V int ⊕V int ∗ embeds into the Lie algebra pV of primitive elements. In the
classical limit, we obtain the relations

[fi, vj ] = δi,j ti , [fi, tj ] = 2δi,j fi, [vi, tj ] = −2δi,j vi . (65)

Hence every triple fi, vi, ti generates a Lie subalgebra of pV isomorphic to sl2. Note that
U cl

k (V , V ∗) is generated by the ti and the primitive elements:

�(fi) = fi ⊗ 1 + 1 ⊗ fi, �(vi) = vi ⊗ 1 + 1 ⊗ vi .

We also compute

�(ti) = �([fi, vi]) = [fi, vi] ⊗ ki + li ⊗ [fi, vi] = ti ⊗ ki + li ⊗ ti .

Hence, ti is skew-primitive in U int
ZG(V, V ∗) and primitive in the classical limit. Thus,

U cl
k (V , V ∗) is a pointed Hopf algebra over the trivial group. That is, a connected pointed

Hopf algebra. It is further cocommutative and Theorem 5.6.5 in [26] implies that such a
Hopf algebra is of the form U(g) where g = pV in char k = 0.

Note that U cl
k (V , V ∗) is a braided double over the polynomial ring S(T ), where T =

k〈t1, . . . , tn〉 (which is not necessarily n-dimensional). The action is given by tj � vi =
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2δi,j vi , and the quasi-coaction is given by δ(vi) = ti ⊗ vi which is not a coaction, hence
U int

ZG(V, V ∗) is not a braided Heisenberg double. It is also not an asymmetric braided
Drinfeld double.

Example 3 For Uq(g), g a semisimple Lie algebra, viewed as a braided Drinfeld double, the
classical limit is U(g).

We can also compute examples that do not give finite-dimensional semisimple Lie alge-
bras. As a general rule, the relations between the parameters qij determine the relations
in the Lie algebra. It is easy to construct free examples, for which there are no rela-
tions between the v1, . . . , vn by choosing algebraically independent parameters qij . The
work of [31] and [9] give restrictions on examples satisfying the growth condition of
finite Gelfand–Kirillov dimension. We will view their results in the setting of this paper in
Section 5.2.

5 Classes of Quantum Groups

In this section, we relate the classification from Section 4 to various classes of examples
which are often regarded as quantum groups. This includes the multiparameter quantum
groups studied by [11, 19, 30, 32] and others in Section 5.1, a characterization of Drinfeld–
Jimbo quantum groups in Section 5.2, and classes of examples of pointed Hopf algebras
from the work of Radford in Section 5.3. The classification in Theorem 3 points out natural
generalizations of these classes of examples4. We finally sketch how one can define ana-
logues of quantum groups using triangular decompositions over other Hopf algebras than
kG.

5.1 Multiparameter Quantum Groups

Let k be a field of characteristic zero. For the purpose of this section, let λ ∈ k be generic,
and pij ∈ k for 1 ≤ i < j ≤ n. Assume that pii = 1 and pji = p−1

ij . Following [11, 15]
and to fix notation, we set

κ
(i)
j =

⎧
⎨

⎩

pij , if i < j,

λ, if i = j,
λ

pji
, if i > j.

λ
(i)
j =

⎧
⎨

⎩

λ
pij

, if i < j,

λ, if i = j,

pji , if i > j.

We will provide a variation of the presentation of [11, 15] in order to display the
multiparameter quantum group Uλ,p(gln) as a Hopf algebra with triangular decomposition.

Example 4 (Multiparameter quantum groups) We define on F = k〈f1, . . . , fn−1〉 a YD-
module structure over an abelian group G with generators k1, . . . , kn−1, l1, . . . , ln−1.
Denote the dual by E = k〈e1, . . . , en−1〉, where the pairing is given by 〈ei, fj 〉 = (1−λ)δij .

4While this paper was under revision, it was pointed out by Dr Gastón Andrés Garcı́a that a further series of
examples of asymmetric braided Drinfeld doubles is given in [28, Definition 7] and described in [4] using a
family of pointed Hopf algebras defined in [6].
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The YD-structure is of separable type, and given by assigning the right degree ki to fi , and
the left degree li to ei , and actions

ki � fj = λj (ki)fj = λ
(i)
j+1λ

(i+1)
j

λ
(i)
j λ

(i+1)
j+1

fj , (66)

li � fj = λj (li)fj = κ
(i)
j κ

(i+1)
j+1

κ
(i)
j+1κ

(i+1)
j

fj , (67)

for i, j = 1, . . . n − 1. We will relate the multiparameter quantum group Uλ,p(gln) to be
the asymmetric braided Drinfeld double UkG(F,E).

Note that the definition of UkG(F,E) is possible as Eq. 50 holds, i.e.

qij := λj (ki) = λ
(i)
j+1λ

(i+1)
j

λ
(i)
j λ

(i+1)
j+1

= κ
(j)

i+1κ
(j+1)
i

κ
(j)
i κ

(j+1)

i+1

= λi(lj )
−1.

The commutator relation in UkG(F,E) is given by

[ei, fj ] = (1 − λ)δij (ki − li ). (68)

The following isomorphism displays UkG(F,E) as an indecomposable subalgebra of a
multiparameter quantum group considered in the literature:

Proposition 9 There is an isomorphism of Hopf algebras UkG(F,E) ∼= U ′ where U ′ is a
Hopf subalgebra of the multiparameter quantum group U = Uλ,p(gln).

Proof We prove the theorem by first considering the morphism

φ : T (E) ⊗ kG ⊗ T (F ) −→ U.

Such a morphism will descent to an injective morphism φ : UkG(F,E) → U by the follow-
ing Lemma 8. We further note that the image Im φ =: U ′ is a Hopf subalgebra isomorphic
to UkG(F,E). Denote the generators of U by Ei, Fi for i = 1, . . . , n − 1 and group ele-
ments Ki,Li for i = 1, . . . , n (see [15, 4.8]). The map φ is defined by φ(ei) = λEiK

−1
i+1Ki ,

φ(fi) := Fi , φ(ki) = Li+1L
−1
i , and φ(li) := K−1

i+1Ki . One checks directly that the rela-
tions in the free braided double T (E)⊗ kG⊗T (F ) are preserved under this map, using the
presentation in [15, 4.8] for U .

Lemma 8 The largest ideal in I�(A) for A = UkG(F,E) is generated by the quantum
Serre relations

ad(ei)
1−aij (ej ) = ad(fi)

1−aij (fj ) = 0, (69)

where ad(ei)(ej ) = eiej − qij ej ei .

Proof It follows from Lemma 4 that the maximal ideal J in I�(A) is given by J = (I, I ∗)
where I is the Nichols ideal of the YD-module F .

Generation of the maximal triangular ideal by quantum Serre relations for Uλ,p(gln)

follows from Lemma 4.5 in [15]. For this, it is crucial that λ is not a root of unity. The proof
uses the observation in [30], or [11] for the deformed function algebra, that multiparameter
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quantum groups, using quantum coordinate rings, can be obtained via 2-cocycles from one-
parameter quantum groups. The fact that the quantum Serre relations generate the Nichols
ideal then follows from Theorem 4.4 in [15] where it is shown that these relations generate
the radical of a Hopf pairing. Using the map φ, this result describes the Nichols ideals of
T (F ), T (E) as generated by quantum Serre relations.

The result that the multiparameter quantum group Uλ,p(gln) is the asymmetric braided
Drinfeld double UkG(F,E) can be seen as a generalization of the result in [14] where the
two-parameter quantum groups were shown to be Drinfeld doubles.

5.2 Characterization of Drinfeld–Jimbo Quantum Groups

Let char k = 0 in this section. In Section 4 we observed that for an algebra A with symmetric
triangular decomposition of separable type to be an indecomposable pointed Hopf algebra,
G(A) needs to be abelian acting on V by scalars. That means, in the terminology of [8] that
the YD-braiding �(v ⊗ w) = v(−1) � w ⊗ v(0) is of diagonal type, i.e. there exist non-zero
scalars qij such that �(vi ⊗ vj ) = qij vj ⊗ vi for a basis {v1, . . . , vn}.

We fix a choice of YD-module structure over an abelian group G for this section to
describe the diagonal braiding. That is, qij = λj (ki) for the characters λi by which G acts on
kvi and group elements ki such that δ(vi) = ki ⊗vi . It is a basic observation that the braided
Hopf algebras T (V )/I for I ∈ IV , including the Nichols algebras for V , only depend on
the braiding on V (rather than the concrete choice of λi , ki). However, different diagonal
braidings (V ,�) and (V ,� ′) may give isomorphic braided Hopf algebras T (V )/I . Such
isomorphisms can be obtained using the notion of twist equivalence for diagonal braidings
(which is a special case of the more general concept of twisting a Hopf algebra by a 2-
cocycle).

Definition 14 Two braided k-vector spaces of diagonal type (V ,�), (V ′, � ′) (given by
scalars qij , q ′

ij ) are twist equivalent if V ∼= V ′, qii = q ′
ii , and qij qji = q ′

ij q
′
ji .

Lemma 9 If (V ,�), (V ′, � ′) are twist equivalent of diagonal type, then T (V ) ∼= T (V ′)
as braided Hopf algebras in the category of braided k-vector spaces, preserving the natural
grading.

Proof For a proof see e.g. [8, 3.9–3.10]. We can find generators vi of V and v′
i of V ′ such

that the isomorphism φ is determined by vi �→ v′
i . Defining a 2-cocycle σ by σ(vi ⊗ vj ) =

q ′
ij q

−1
ij for i < j and 1 otherwise, we find that the product vivj maps to the product twisted

by σ . Note that the isomorphism is not an isomorphism in the category of YD-modules over
kG unless (V ′, � ′) = (V ,�).

For an ideal I ∈ IV , denote the corresponding ideal under the isomorphism T (V ) ∼=
T (V ′) from Lemma 9 by I ′. Then we conclude that T (V )/I ∼= T (V ′)/I ′ is also an iso-
morphism of braided Hopf algebras. In particular, B(V ) ∼= B(V ′) for the corresponding
Nichols algebras.

Lemma 10 If (V ,�) and (V ′, � ′) are twist equivalent, such that
G = 〈k1, . . . , kn〉 ∼= 〈k′

1, . . . , k
′
n〉 = G′

via ki �→ k′
i , then UkG(V, V ∗) ∼= UkG′(V ′, V ′∗) as Hopf algebras.



Pointed Hopf Algebras with Triangular Decomposition 573

Proof By Lemma 9, T (V )/I ∼= T (V ′)/I ′ and T (V ∗)/I ∗ ∼= T (V ′∗)/I ′∗. By the assump-
tions on the group generators, ki �→ k′

i extends to an isomorphism kG ∼= kG′. Thus we
can define a morphism UkG(V, V ∗) → UkG(V ′, V ′∗) which is an isomorphism of k-vector
spaces. Further, preservation of the bosonization condition can be checked on generators
using the isomorphism φ from Lemma 9. Finally, the commutator relation (51) is preserved
using the isomorphism on kG.

Diagonal braidings are a very general class of braidings. Quantized enveloping algebras
at generic parameters however are based on braidings of specific type, called Drinfeld–
Jimbo type. Following [9], there are different classes of braidings which we distinguish:

Definition 15 ([9, Definition 1.1]) Let (qij ) be the n × n-matrix of a braiding of diagonal
type.

(a) The braiding given by (qij ) is generic if qii is not a root of unity for any i = 1, . . . , n.
(b) In the case k = C we say the braiding (qij ) is positive if it is generic and all diagonal

elements qii are positive real numbers.
(c) The braiding (qij ) is of Cartan type if qii 
= 1 for all i and there exists a Z-valued

n × n-matrix (aij ) with values aii = 2 on the diagonal and 0 ≤ −aij < ord qii for
i 
= j , such that

qij qji = q
aij

ii for alli, j. (70)

This implies that (aij ) is a generalized Cartan matrix which may have several
connected components. We denote the collection of these by χ .

(d) The braiding (qij ) is of Drinfeld–Jimbo type (DJ-type) if it is of Cartan type and there
exist positive integers d1, . . . , dn such that for all i, j , diaij = djaji (hence the matrix
(aij ) is symmetrizable), and for any J ∈ χ , there exists a scalar qJ 
= 0 in k such that

qij = q
diaij

J for any i ∈ I , and j = 1, . . . , n.

Some observations can be made about the Nichols algebras associated to braided vector
spaces of DJ-type. First, observe that for a braiding of Cartan type with connected compo-
nents I1, . . . , In ∈ χ , we have that B(V ) is the braided tensor product B(VI1)⊗. . .⊗B(VIn)

([7, Lemma 4.2]). Further, for V with braiding (qij ) of DJ-type where qii are generic, the
Nichols algebra can be computed explicitly by the quantum Serre relations ([31, Theorem
15]):

B(V ) = k〈x1, . . . , xn | ad(xi)
1−aij (xj ) = 0, ∀i 
= j〉.

We now bring the growth condition of finite Gelfand–Kirillov dimension (GK-
dimension) into the picture, using characterization results of [31] of Nichols algebras with
this property.

Lemma 11 ([31]) Let k = C and (qij ) be the matrix of a braiding of diagonal type which
is generic such that the Nichols algebra B(V ) has finite Gelfand–Kirillov dimension. Then
(qij ) is of Cartan type.

Moreover, if the braiding is positive then it is twist equivalent to a braiding of DJ-type
with finite Cartan matrix if and only if the GK-dimension is finite.

Proof See [9], Corollary 2.12 and Theorem 2.13.
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Corollary 1 Let A = UCG(V, V ∗), for V of separable type, with generic positive braiding
(qij ). Then the following are equivalent:

(i) A ∼= Uq(g) for g a semisimple Lie algebra.
(ii) The braided C-vector space V with braiding (qij ) is twist equivalent to a braiding of

DJ-type with Cartan matrix of finite type.
(iii) B(V ) has finite Gelfand–Kirillov dimension.
(iv) A has finite Gelfand–Kirillov dimension.

Proof The equivalence of (ii) and (iii) is the statement of Lemma 11 due to [31]. Using
Lemma 10 we find that (ii) implies (i), while it is clear that (i) implies (ii). In fact, the
GK-dimension of B(V ) for V of DJ-type equals the number of positive roots [9, 2.10(ii)].
Further, we observed that A is of the form U(D) in [9, Theorem 4.3] in Theorem 4 provided
that V has finite Cartan type. This observation (together with Lemma 10) gives that (ii) is
equivalent to (iv) using Theorem 5.2 in [9].

Corollary 2 The only indecomposable bialgebras with a symmetric triangular decompo-
sition on B(V ) ⊗ kZn ⊗ B(V ∗) of separable type, such that V = C〈v1, . . . , vn〉 is of
positive diagonal type, and that no vi commutes with all of V ∗ are isomorphic to Uq(g) for
a semisimple Lie algebra g.

Proof This follows from the classification in Theorem 3, combined with the results of
Rosso. The Lie algebra g is determined by the Cartan matrix one obtains under twist equiva-
lence in Lemma 11. The technical condition that no vi commutes with all of V ∗ ensures that
[fi, vi] 
= 0 for a dual basis f1, . . . , fn of V ∗, resembling the non-degeneracy condition
that the scalars γii 
= 0 in Theorem 4.

This is a characterization for quantum groups at generic parameters. The work surveyed
in [8, 10] on finite-dimensional pointed Hopf algebras can be viewed as a characterization
of small quantum groups. The triangular decomposition can be interpreted as the case where
the graph � described in 2.3 has two connected components, such that the corresponding
generators for the two components give dually paired braided Hopf algebras.

The characterization suggests that if we are looking for examples outside of DJ-type,
we have to consider braidings of generic Cartan type which are not positive. In fact, [9,
2.6] gives an example that is generic of Cartan type, but not of DJ-type. We compute the
associated double here:

Example 5 Let G = 〈k1, k2〉 ∼= C∞ × C∞ be a free abelian group with two generators. We
define a two-dimensional YD-module V over G on generators v1 of degree k1, v2 of degree
k2 via

k1 � v1 = qv1, k1 � v2 = q−1v2, k2 � v1 = q−1v1, k2 � v2 = −qv2.

Lemma 2.1 in [9] shows that

B(V ) = 〈v1, v2 | ad(v1)
3(v2) = ad(v2)

3(v1) = 0〉.
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The asymmetric braided Drinfeld double UCG(V, V ∗) is in fact a braided Drinfeld double
if we define V ∗ to be the dual YD-module. It is the Hopf algebra given on B(V ) ⊗ CG ⊗
B(V ∗), subject to the relations

[f1, vi] = δ1,i
k1−k−1

1
q1/2−q−1/2 , [f2, vi] = δ2,i

k2−k−1
2

iq1/2+iq−1/2 ,

k1v2 = q−1v2k1, k2v1 = q−1v1k2,

k1v1 = qv1k1, k2v2 = −qv2k2,

k1f2 = qf2k1, k2f1 = qf1k2,

k1f1 = q−1f1k1, k2f2 = −q−1f2k2,

and with coproducts

�(vi) = vi ⊗ ki + 1 ⊗ vi, �(fi) = fi ⊗ 1 + k−1
i ⊗ fi.

Apart from such examples, we can also include examples where free and nilpotent gen-
erators are combined, hence capturing features of both small and generic quantum groups.
Here is such an example of small rank:

Example 6 Let G = C∞ × Cp = 〈g∞〉 × 〈gp〉 the product of an infinite cyclic group and
one of order p. We define a 2-dimensional YD-module over G on Cv∞ ⊕ Cvp , where v∞
has degree g∞, and vp has degree gp . The group action is given by

gp � vp = ξpvp, gp � v∞ = ηpv∞,

g∞ � vp = η−1
p vp, g∞ � v∞ = η∞v∞,

where scalars with a subscript p are primitive pth roots of unity, and η∞ is generic. We can
now compute the Nichols algebra with generators vp and v∞. It is given by

B(V ) = C〈vp, v∞〉/(vp
p, vpv∞ − ηpv∞vp).

We denote the dual YD-module by V ∗ with generators fp, f∞.
The braided Drinfeld double on B(V ) ⊗ k(Cp × C∞) ⊗ B(V ∗) of the braided Hopf

algebra B(V ) is a quantum group that combines both uq(sl2) and Uq(sl2):

[fp, vi] = δi,p
gp−g−1

p

ξ
1/2
p −ξ

−1/2
p

, [f∞, vi] = δ∞,i
g∞−g−1∞

η
1/2∞ −η

−1/2∞
,

gpvp = ξpvpgp, gpv∞ = ηpv∞gp,

g∞vp = η−1
p vpg∞, g∞v∞ = η∞v∞g∞,

gpfp = ξ−1
p fpgp, gpf∞ = η−1

p f∞gp,

g∞fp = ηqfpg∞, g∞f∞ = η−1∞ f∞g∞.

and with coproducts

�(vi) = vi ⊗ gi + 1 ⊗ vi, �(fi) = fi ⊗ 1 + g−1
i ⊗ fi, for i = p,∞.

Choosing instead g∞ � vp = ξ∞vp we obtain more examples where the Nichols algebra
will involve other relations depending on choice of ξ∞.

5.3 Classes of Pointed Hopf Algebras by Radford

In [29], a class of pointed Hopf algebras U(N,ν,ω) was introduced (see also [20] for gen-
eralizations). These Hopf algebras are associated to the datum of a positive integer N and
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1 ≤ ν < N such that N does not divide ν2, and ω ∈ k is a primitive N th root of unity in a

field k. Denote q := ων and r = |qν | =
∣∣∣ων2

∣∣∣. We let CN denote a cyclic group of order N

generated by an element a.
The algebra U(N,ν,ω) is the braided Drinfeld double of the YD-module Hopf algebra

U+ := k[x]/(xr ) over Cp , with grading given by x �→ aν ⊗ x and action a � x = q−1x.
Note that U+ is the Nichols algebra of the one-dimensional YD-module kx. The coalgebra
structure is given by �(x) = x ⊗ aν + 1 ⊗ x, and �(y) = y ⊗ 1 + a−ν ⊗ y for the dual
generator y. Note further that the other Hopf algebra H(N,ν,ω) introduced by Radford is
simply the bosonization U+ � kCN in this set-up. The algebras U(N,ν,ω) and H(N,ν,ω) are
not indecomposable unless ν = 1. To obtain indecomposable pointed Hopf algebras, we
can consider the subalgebras generated by x, y and aν (respectively, x and aν). Since these
only depend on the choices of r and q we denote these Hopf algebras by U(r,q) (respectively,
H(r,q)). Note that U(r,1,q) = U(r,q).

5.4 Quantum Group Analogues in Other Contexts

To conclude this paper, we would like to adapt the point of view that quantum groups can
also be studied over other Hopf algebras H than the group algebra. For this, one can, moti-
vated by the results of this paper, look for Hopf algebras A with triangular decomposition
over H . The property over a group that A is of separable type can be generalized by requir-
ing that the YD-modules V with respect to the left and right coactions δr and δl are a direct
sum of distinct (one-dimensional) simples. One-dimensionality of the simples is however a
strong restriction.

As a first example, we can consider the case where H itself is primitively generated, i.e.
H = k[x1, . . . , xn] over a field of characteristic zero. If A is a bialgebra with triangular
decomposition over H , then for v ∈ V , �(v) ∈ V ⊗ H + H ⊗ V implies that �(v) in
fact equals v ⊗ 1 + 1 ⊗ v using the counitary condition. This gives that A is generated by
primitive elements and hence is a pointed Hopf algebra that is connected (i.e. the group-like
elements are the trivial group). Now A is in particular cocommutative, so Theorem 5.6.5
in [26] implies (for char k = 0) that A = U(g) where g is the Lie algebra of primitive
elements in A. From this point of view, all quantum groups over H = k[x1, . . . , xn] are
simply the classical universal enveloping algebras. Investigating bialgebras with triangular
decomposition over other Hopf algebras H can be the subject of future research.
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