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Abstract

Differences in mRNA expression levels have been observed in failing versus non-failing human hearts for several membrane
channel proteins and accessory subunits. These differences may play a causal role in electrophysiological changes observed
in human heart failure and atrial fibrillation, such as action potential (AP) prolongation, increased AP triangulation,
decreased intracellular calcium transient (CaT) magnitude and decreased CaT triangulation. Our goal is to investigate
whether the information contained in mRNA measurements can be used to predict cardiac electrophysiological remodeling
in heart failure using computational modeling. Using mRNA data recently obtained from failing and non-failing human
hearts, we construct failing and non-failing cell populations incorporating natural variability and up/down regulation of
channel conductivities. Six biomarkers are calculated for each cell in each population, at cycle lengths between 1500 ms and
300 ms. Regression analysis is performed to determine which ion channels drive biomarker variability in failing versus non-
failing cardiomyocytes. Our models suggest that reported mRNA expression changes are consistent with AP prolongation,
increased AP triangulation, increased CaT duration, decreased CaT triangulation and amplitude, and increased delay
between AP and CaT upstrokes in the failing population. Regression analysis reveals that changes in AP biomarkers are
driven primarily by reduction in IKr, and changes in CaT biomarkers are driven predominantly by reduction in ICaL and
SERCA. In particular, the role of ICaL is pacing rate dependent. Additionally, alternans developed at fast pacing rates for both
failing and non-failing cardiomyocytes, but the underlying mechanisms are different in control and heart failure.
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Introduction

A growing number of studies examine cardiac tissue mRNA

expression levels in an attempt to characterize electrophysiological

remodeling associated with disease conditions such as heart failure

and atrial fibrillation [1–3]. Recent studies have shown alterations

in expression of mRNA transcripts in human failing hearts

compared to non-failing hearts [2,3]. Furthermore, recent optical

mapping measurements have also demonstrated differences in

action potential (AP) and calcium transients (CaT) between failing

and non-failing human hearts [4–6], with potentially pro-

arrhythmic implications [7–10].

Linking mRNA changes to AP and CaT alterations has several

complications, as recently reviewed by Nattel et al [11]. Firstly,

mRNA expression is only one determinant factor of ion channel

expression at the cell membrane. Translation rate, binding with

channel subunits, methylation, membrane localization, trafficking

and phosphorylation all affect the activity of ion channels.

Secondly, expression of mRNA in cardiac cells has been reported

to vary with circadian rhythm [12,13]. And finally, mRNA

expression levels might exhibit variability between tissue samples

due to, for example, gender differences [1,3,14] and spatial

location within the heart [2].

Despite these challenges, mRNA expression data provides

information on heterogeneity and variability in the heart, in both

healthy and diseased states. In this study, we aim to show how

computational modelling can be used to understand the electro-

physiological consequences of differences in mRNA expression

levels between failing and non-failing human hearts. The

methodology proposed is flexible and can be applied to any set

of mRNA measurements and models. We illustrate its potential by

focussing on the ventricular component of the dataset recently

obtained by Ambrosi et al [3]. We will seek to establish whether
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information contained in mRNA transcription data can predict

the functional differences in AP and CaT reported between failing

and non-failing human hearts. We develop an approach that takes

into account potential sources of variability and uncertainty in

both change in conductance due to mRNA expression and

electrophysiological measurements. We construct two cell model

populations based on a human ventricular model [15]. Each

population consists of an ensemble of cell models sharing the same

equations representing ionic current kinetics but different

conductance values. As in [16–20], we incorporate variability,

which may arise from a variety of sources, by using a range of

values for ion channel conductances rather than a single

parameter value. The failing population is then constructed by

additionally incorporating the upregulation or downregulation of

conductances corresponding to mRNA expression changes

reported in heart failure [3].

AP and CaT properties are quantified across both populations

and compared to experimental measurements obtained in failing

and non-failing human ventricles. We then predict the electro-

physiological response of human ventricular myocytes at different

stimulation rates and quantify the relative importance of each

ionic current in determining AP and CaT differences in the

human non-failing and failing cell populations.

Methods

mRNA Expression Data
mRNA expression data [3] are used to determine directions of

changes in ionic conductances in failing versus non-failing human

cardiomyocytes, as summarized in Table 1. Ambrosi et al [3] used

a one-way analysis of variance followed by Tukey-Kramers test

with a significance level of p ƒ 5.6|10{4 based on the

Bonferroni correction 0.05. Three gene transcripts show a trend

towards downregulation in heart failure, contributing to the

conductances of L-type Ca current ICaL (GCaL), transient outward

current Ito (Gto), and the SERCA pump (Jup). Gene transcripts for

the rapid component of the delayed rectifier K current IKr

(HERG) also show a trend towards downregulation and are

included in the simulations by altering the conductance of IKr

(GKr). One gene transcript shows a trend towards upregulation in

the heart failure cases, contributing to the conductance of the Na/

Ca exchange current INaCa (GNaCa). Two further currents are

included in the analysis as they are active during the repolarisation

phase of the action potential, the inward rectifier current IK1 and

the slow component of the delayed rectifier K current IKs. As gene

transcripts associated with these channels show no trend in the

data published in [3] they are considered to have natural

variability only in both populations.

Populations of Human Failing and Non-failing Cell
Models

The O’Hara-Rudy (ORd) human ventricular endocardial

model [15] is used to generate populations of non-failing and

failing cell models. Each population contained 16384 models

sharing the same equations as the ORd model but different

parameter sets. The non-failing population is constructed by

Monte-Carlo sampling of the parameters under investigation (GKr,

GKs, GK1, GCaL, Jup, GNaCa, Gto) from a uniform distribution

between +30% of the original parameter values, in line with

previous studies [16]. This percent variation results in significant

changes in biomarker properties across the population. The

uniform distribution is used as we do not have prior information

on the distribution of conductances in human cardiac myocytes. In

the failing cell population, upregulation is sampled from a uniform

distribution ranging from 0 to +60% change from the original

parameter values and downregulation is sampled in the range -

60% to 0% change from the original parameter values, in line with

mean changes in mRNA expression data [3]. In the failing

population, GK1 and GKs are sampled from the same distribution

as in the non-failing population.

Stimulation Protocol
The stimulation protocol mimics the one used by Lou et al [5] to

obtain optical mapping measurements in failing versus non-failing

cardiomyocytes. Cell models are stimulated for 100 paces at each

of the following basic cycle lengths (BCLs) in a step protocol;

1500 ms, 1000 ms, 900 ms, 800 ms, 700 ms, 600 ms, 500 ms,

450 ms, 400 ms, 350 ms and 300 ms. A stimulus current of

magnitude 280 mA/cm2 and duration 0.5 ms is applied at each

pace.

Biomarkers
As illustrated in Fig. 1, the following biomarkers are calculated

from the two last action potentials simulated for each BCL: AP

duration to 80% repolarisation (APD80), action potential trian-

gulation (APD3080) defined as the ratio between AP duration to

30% repolarisation (APD30) and APD80, CaT duration to 80% of

repolarisation (CaTD80), CaT triangulation (CaTD3080) defined

as the ratio between CaT duration to 30% repolarisation

(CaTD30) and CaTD80, maximum cytosolic calcium concentra-

tion (CaTMax) and the delay between the AP and CaT upstrokes

(DAPCaT). The occurrence of voltage and calcium alternans is

defined as a difference of §5 ms between the APD80 or CaTD80,

respectively, in the penultimate and final APs.

Regression Analysis
To quantify the relative importance of ionic conductances in

determining changes in the biomarkers, linear regression [21,22] is

performed on the failing and non-failing populations, leaving out

the cases showing alternans in APD80 or CaTD80. For each

population, the following procedure is applied for each biomarker.

Biomarker outputs are mean centred and normalised with respect

to their standard deviation at each BCL, as in previous studies

[21]. We seek linear regression coefficients bi for each of the

i~1, . . . ,n parameters under investigation such that for each of

our j~1, . . . ,m cells we have that the cell’s predicted biomarker

output y
p
j is given by

Table 1. Parameters under investigation.

Gene Current Parameter Regulation in HF [3]

KChIP2 Ito, ICaL (a) Gto, GCaL Q

NCX1 INaCa GNaCa q (b)

Serca2A SERCA Jup Q

Kv4.3 Ito Gto Q (c)

Kv11.1/HERG IKr GKr Q (c)

Kv7.1 IKs GKs –

Kir2.1 IK1 GK1 –

a) KChIP2 has recently been shown to form an accessory subunit of ICaL [40].
b) NCX1 was downregulated in non-ischæmic cardiac myopathy patients but
showed no difference from the non-failing group in ischæmic cardiac
myopathy.
c) Kv4.3 and HERG tended to be downregulated relative to the non-failing group
however the difference was not statistically significant.
doi:10.1371/journal.pone.0056359.t001

Modeling mRNA Expression in Human Heart Failure

PLOS ONE | www.plosone.org 2 February 2013 | Volume 8 | Issue 2 | e56359



y
p
j ~

Xn

i~1

bixij , j~1, . . . ,m

where j denotes the current cell, and xij denotes the scaling of the

ith conductance for the jth cell. This may be re-written as the

matrix system

Yp~Xb,

where the coefficients of Yp are (y
p
j ), the coefficients of X are (xij)

and the coefficients of b are (bi). Let Y have coefficients (yj), the

computed biomarker values for each cell. We wish to find a

solution b such that the least squares difference between yj and y
p
j

is minimised over all cells j. This solution is given by

b~(XT X){1XT Y: The vector b then contains our linear

regression coefficients. This is repeated for each biomarker at

each BCL.

To determine the effectiveness of this fit, the correlation

coefficient R2 (R-squared) is computed for each linear regression

fit. This coefficient is computed as

R2~1{

Pm

j~1

(y
p
j {yj)

2

(m{1) Var (Y)
:

The closer R2 is to one, the more of the variance in the data is

accounted for by the linear fit.

Numerical Methods
All numerical simulations are performed using our open source

cardiac simulation software Chaste [23]. A CellML [24] imple-

mentation of the ORd model is used from the functional curation

database available within Chaste [25]. The ordinary differential

equations are integrated using the numerical ODE software

package CVODE (https://computation.llnl.gov/casc/sundials/)

called from Chaste. A backward differentiation formula method is

used to integrate the differential equations with absolute and

relative error tolerances 10{5 and 10{7 respectively. The output

time step for biomarker calculation was 1 ms. All postprocessing of

traces to calculate biomarker values was performed within the

Chaste environment. Analysis of biomarkers was performed using

Matlab. A Chaste user project containing the simulation codes

used in this study is available to download from the Chaste website

(http://www.cs.ox.ac.uk/chaste). Matlab data analysis scripts are

also included. All simulations are performed on a 512 core cluster

utilising 2.8GHz Intel processors at the Oxford Supercomputing

Centre (OSC).

Results

Voltage and Calcium Transients in Non-failing and Failing
Populations

Fig. 2 shows sample AP and Ca transients from the non-failing

and failing populations at BCLs of 1500 ms and 300 ms.

Histograms based on these traces, shown in Fig. 3, illustrate the

variability encountered across populations for each biomarker.

Simulation results show significant differences in biomarker values

between the failing and non-failing populations at all BCLs, but an

overlap between the two populations also exists. The circle in each

panel indicates the biomarker value obtained using the standard

ORd model. The cross in each panel indicates the biomarker

value obtained by including specific values of 60% downregulation

of GCaL, Gto, GKr and Jup and 60% upregulation of GNaCa as

indicated by the mean change in mRNA expression in Ambrosi

et al [3] (therefore without considering electrophysological vari-

ability and uncertainty in ionic currents and electrophysiological

measurements). As expected, biomarker values in the non-failing

population are centered around results marked by the circle. In

contrast, the cross is often located at the higher end of biomarker

values for APD80, CaTD80, CaTD3080 and DAPCaT and at the

lower end for APD3080, which could lead to an overestimation of

remodeling-related changes. Results corresponding to each

biomarker are discussed in detail below, and compared to

previously published experimental studies, summarized in

Table 2. A summary of the experimental data may be found in

Tables S1–S7 in Supplement S1.

AP duration. As shown in Fig. 3 A–C, APD80 values in the

non-failing population range between 201 and 362 ms for

BCL = 1500 ms and between 158 and 248 ms for BCL = 300 ms.

Introducing mRNA expression changes associated with heart

failure results in prolonged APD80 values in the failing population

with a 19.6% median increase at all BCLs. APD80 values in the

Figure 1. Biomarkers calculated from AP and CaT traces. A)
shows APD80, APD30 and APD3080, and B) shows CaTD30, CaTD80,
CaTD3080 and CaTMax. AP-CaT delay is the difference between the AP
and CaT upstroke times.
doi:10.1371/journal.pone.0056359.g001
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failing population range between 223 ms and 486 ms for

BCL = 1500 ms and between 167 ms and 277 ms for

BCL = 300 ms. An overlap in APD80 values between the non-

failing and failing populations exists for all BCLs.

As shown in Table S2 in Supplement S1, experimental

recordings obtained in failing and non-failing cardiac preparations

show a wide range of APD80 values, possibly explained by inter-

subject and intra-subject variability as well as differences in

experimental conditions and preparations between studies. Over-

all, experimentally-reported APD values are longer in failing

hearts than in non-failing hearts, as our simulation results show in

Fig. 3 A–C. In particular, our results for APD80 are comparable to

those of [26,27]. Both populations have significantly smaller

absolute values than those published by Bueckelmann et al [28,29],

however these values are significantly longer than those reported

in the other experimental studies we reviewed. Optical mapping

measurements in the left-ventricular transmural wedge report AP

prolongation at the epicardium and shortening at the endocardi-

um in failing versus non-failing hearts, indicating potential location

specific remodeling effects caused by heart failure [5].

AP triangulation. As shown in Fig. 3 D–F, AP triangulation

increases (i.e. APD3080 decreases) by a median value of between 7

and 10% at all BCLs in the failing population as compared to the

non-failing population, due to a decrease in APD30 relative to

APD80. The range in APD3080 values observed in the failing

population is larger than that observed in the non-failing

population. AP triangulation was not generally quantified in the

reviewed literature. However, visual inspection of APs given in

Figure 2. Sample AP and CaT traces obtained from the non-failing (blue) and failing (red) populations. Traces are shown for BCL = 1500
(A,C) and 300 ms (B,D). The AP for the standard ORd endocardial model is shown in black.
doi:10.1371/journal.pone.0056359.g002

Table 2. Experimental data summary.

Biomarker Increase in HF Decrease in HF No change in HF
Simulation Dmedian (1500 ms
BCL)

AP duration [28], [29], [33], [27], [4](a), [6](a) [5] : 19.7%

AP triangulation [28](b), [30](b) : 6.6%

CaT duration [34], [28], [32], [33] [5] : 51.7%

CaT triangulation [5] ; 11.6%

CaT max [28], [32], [33] [31] ; 44.4%

AP-CaT delay [34], [5] : 59.6%

a) [4] and [6] report a transmural flattening of APD in heart failure caused by prolongation of AP at the epicardium, but not in the midmyocardium or endocardium.
b) Not computed, see figures in those papers.
doi:10.1371/journal.pone.0056359.t002
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experimental studies [28,30] does reveal a marked increase in AP

triangulation in failing myocytes, in agreement with our simulation

results.

Calcium transient duration. CaTD80 is increased at all

BCLs compared with the non-failing population (Fig. 3 G–I). At

1500 ms cycle length, the median value of CaTD80 in the failing

population is 777 ms, a 51.7% increase in the median value

recorded for the non-failing population of 512 ms. The percentage

increase in the median value of the failing population decreases

with cycle length to a 36% increase compared to the non-failing

median value of 176 ms at a 300 ms cycle length. In agreement

with our findings, prolongation of CaT was consistently reported

in the reviewed literature, as summarized in Table 2. Numerical

values from experimental studies are shown in full in Table S3 in

Supplement S1.

Calcium transient triangulation. As shown in Fig. 3 J–L,

CaTD3080 values tend to increase in the failing population

relative to the non-failing population, corresponding to a decrease

in the CaT triangulation. This is in agreement with the only

experimental study to explicitly report CaT triangulation values by

[5] (see Table S6 in Supplement S1).

Our simulations show that CaTD3080 values display a complex

behaviour that is dependent upon the BCL in both the non-failing

and failing populations. At 1500 ms BCL, CaTD3080 values for

the non-failing population display a bimodality in their distribution

corresponding to two subpopulations of cells, the larger one close

to the value shown by the original ORd model, and the other one

with markedly reduced CaTD3080 values. The latter disappears

with decreasing BCLs below 1000 ms in the non-failing popula-

tion. In the failing population however, the bimodality appears for

BCLs ƒ 600 ms, with one sub-population appearing close to the

original ORd model value and one significantly greater, corre-

sponding to significantly decreased triangulation. At a BCL of

300 ms, the subpopulation with lower CaTD3080 values is a

larger proportion of the failing population.

Maximum cytosolic calcium concentration. Fig. 3 M–O

show that at all BCLs, both magnitude and range of CaTmax

values decrease in the failing population as compared to the non-

failing population. As BCL decreases, the range in values increases

in each population. At 1500 ms the non-failing population has a

median value of 2.82|10{4 mM, increasing to 9.0|10{4 mM at

300 ms cycle length. The failing population has a median value of

1.58|10{4 mM at 1500 ms, increasing to 2.96|10{4 mM at

300 ms cycle length. In both populations, the dispersion increases

as BCL decreases. The experimental values for maximum

cytosolic calcium vary widely in the literature, but a reduction in

failing hearts is reported consistently in line with our simulations

(see Table S5 in Supplement S1). One potential disagreement with

the experimental data is that Table S5 in Supplement S1 suggests

that systolic Ca may decrease with BCL contradicting what we see

in our simulations. As this trend for decreasing systolic Ca with

decreasing BCL spans multiple papers [31–33] there is a strong

possibility that differences in preparation of myocytes and

recording technique are responsible for this apparent effect.

AP-calcium transient delay. As illustrated in Fig. 3 P–Q, at

all BCLs, DAPCaT values tend to be larger and more variable in

the failing population than in the non-failing population, in

agreement with the only experimental study to measure the AP-

CaT delay [5]. Increased rise time to peak, as observed in

Gwathmey et al [34] and Lou et al [5] is also consistent with slowed

rise of the CaT, as shown in our simulations (Table S7 in

Supplement S1).

At 1500 ms the median value for DAPCaT in the failing

population is 17.4 ms, as opposed to 10.9 ms in the non-failing

population. At a cycle length of 300 ms, the median value for the

failing population is 13.1 ms and the median value for the non-

failing population is 8.6 ms.

Correlation between Biomarkers
In order to determine the potential correlation between the

different biomarkers values shown above, Fig. 4 plots values for

each biomarker against each of the other biomarker values for

each model in the non-failing and failing populations. As shown in

Fig. 4 (first column, first row), APD80 and APD3080 are

correlated as expected from the formulation of APD3080 and

increasing APD80 is associated with increased triangulation

(decreased APD3080) in both populations. The correlation is

found for all BCL, except for BCL = 300 ms, where the failing

population shows no such correlation (not shown). In general, AP

biomarkers are only weakly correlated with CaT biomarkers

suggesting the underlying ionic mechanisms driving changes in

these biomarkers are different. The exception is APD80 at

1500 ms BCL in the failing population, which shows a correlation

with CaTD3080.

Fig. 4 indicates that calcium biomarkers (CaTD80, CaTD3080,

CaTMax and DAPCaT) show strong correlation with one

another. In general, increased CaTD80 is correlated with

decreased CaT triangulation (increased CaTD3080), decreased

CaTmax and increased DAPCaT. Increased triangulation (de-

creased CaTD3080) is also correlated with decreased CaTmax,

and increased DAPCaT in the non-failing population only. Finally

increased CaTmax is correlated with decreased DAPCaT. The

correlation shown between certain biomarkers may be explained

by common ionic mechanisms, as explored below using regression

analysis.

Regression Analysis
We further exploit the potential of a population-based

computational approach to investigate the relative importance of

ionic properties in determining changes in each biomarker in

failing versus non-failing human cardiomyoctes. The correlation

found in the previous section with respect to AP and Ca

biomarkers suggests that different ionic properties determine AP

and Ca biomarkers values, respectively, within each population.

We use regression analysis to establish which ionic currents

determine biomarker values in the failing versus non-failing

population. Fig. 5 shows regression coefficients for each of the

biomarkers under investigation at all BCLs in the non-failing (left)

and failing (right) populations. For clarity, only coefficients

reaching an absolute value greater than 0.2 are given (those that

come outside of the grey band in the plots). Regression coefficients

are shown for both failing and non-failing populations. Examples

of regression fits are shown in Fig. S1 A-D in Supplement S1.

Regression coefficients for all biomarkers at all BCLs are shown in

Tables S8–S19 in Supplement S1. The regression method

produces good fits as measured by the R2 values which lay in a

Figure 3. Histograms showing biomarker values obtained for the non-failing (blue) and failing (red) cell model populations.
Histograms shown are recorded at BCL = 1500 ms, 600 ms and 300 ms (A–C: APD80, D–F: APD3080, G–I: CaTD80, J–L: CaTD3080, M–O: CaTmax and
P-R: AP-CaT delay. In each panel, the circle indicates biomarker values obtained with the standard ORd model whereas the cross indicates the value
obtained with the ORd model including 60% downregulation of Gto , GCaL, Jup and GKr and 60% upregulation of GNaCa.
doi:10.1371/journal.pone.0056359.g003
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range between 0.75 and 0.98, with the exception of CaTD80 in

the failing case. R2 values for all regression fits are shown in Tables

S20 and S21 in Supplement S1.

In both the failing and non-failing populations, long APD80

values are correlated with low GKr, as shown by the large negative

correlation coefficient of around 20.9 (Fig. 5A,B). Regression

analysis also gives a small positive correlation of APD80 with GCaL

in the failing population that increases as BCL is decreased. In the

non-failing population the effect of GCaL shows no significant

change with BCL.

As expected from the strong correlation between APD80 and

AP triangulation shown in Fig. 4, large AP triangulation (i.e. small

APD3080 value) is correlated with low GKr, but unlike APD80

also with lowered GCaL, represented by the positive correlation

coefficients shown in Fig. 5C,D. Lowered GK1 also makes a small

contribution to the increase in triangulation. In both populations,

the ionic mechanisms determining APD3080 are heavily rate

dependent, with GKr being the most important factor at long

BCLs. At short BCLs of 350 ms and 300 ms AP morphology is

driven primarily by GCaL, especially in the failing population.

As illustrated in Fig. 5 E–L, CaTD80, CaTD3080, CaTmax

and DAPCaT are determined by Jup, GCaL and GNaCa in both

populations. This is consistent with their sharing the same

underlying mechanisms determining these properties, as suggested

by the strong correlations shown in Fig. 4. GKr also affected

CaTD3080 at longer cycle lengths in the failing population.

Negative correlation coefficients of Jup and GCaL for CaTD80,

CaTD3080 and DAPCaT indicate that low Jup and GCaL result in

prolonged and less triangular CaTs with increased delay between

the upstrokes of voltage and calcium. Positive correlation

coefficients of Jup and GCaL for CaTmax suggest that low Ca

systolic levels in the failing population are determined by small Jup

and GCaL. For each of the calcium transient biomarkers, the

action of Jup and GCaL was opposed by that of GNaCa. Despite

being upregulated in heart failure, GNaCa had a relatively smaller

importance on biomarker values in the failing population than in

the non-failing population. The relative importance of Jup and

GCaL is rate dependent, with GCaL becoming increasingly

important at shorter BCLs, as for AP triangulation. Note that

the failing population shows a very different cause for low

triangulation at long BCLs, with a negative correlation coefficient

suggesting that decreased GKr increases CaTD3080 and hence

decreases triangulation, the opposite result to that for APD3080.

Figure 4. Correlation plots of one biomarker against another at 600 ms BCL. Red denotes the failing population, blue denotes the non-
failing population, and the darker shade represents cells lying in the intersection between the two populations. Points which develop alternans are
removed from these plots. Each biomarker is plotted against each other.
doi:10.1371/journal.pone.0056359.g004
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Even when R2 coefficents are low, regression analysis can be

useful for identifying markedly non-linear responses in regions of

parameter space. The concomitant effects of the parameters Jup

and GCaL explain both the bimodality shown in Fig. 3 J–L and the

low R2 values for CaTD3080 regression fits. The non-linear

relationship between Jup and GCaL (as shown in Fig. S2 and

Figure 5. Regression coefficients obtained in the non-failing and failing populations. Coefficients are plotted at all cycle lengths for A,B)
APD80, C,D) APD3080, E,F) CaTD80, G,H) CaTD3080, I,J) CaT max and K,L) AP-CaT delay. For clarity, only regression coefficients with an absolute value
greater than 0.2 are plotted, denoted by the grey band.
doi:10.1371/journal.pone.0056359.g005
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discussed in Supplement S1) results in the majority of the

parameter space giving either a high or low value for this

biomarker. A relatively small region of parameter space separates

the two regions, indicating that a large change in either of these

parameters individually could produce similar effects in morphol-

ogy to a smaller change in both parameters simultaneously.

Alternans
Fig. 6 depicts the number of models displaying alternans in both

populations together with a heat map of the parameters used to

generate them. In the non-failing population beat-to-beat alter-

nans are observed in the amplitude of the calcium transient and in

the APD as BCL is decreased. Alternans onset begins in 36 non-

failing cells at BCL 350 ms and is apparent in 2241 of the non-

failing cells by BCL 300 ms. In the standard ORd model,

alternans are not observed until BCL ƒ 300 ms. 2:1 block is

reported at BCL ƒ 250 ms for the standard ORd model by [15].

As can be seen in Fig. 6 A,C alternans occur in non-failing cell

models with a combination of low Jup and high GCaL.

In the failing population alternans occur in 64 cells at 350 ms

and in 2235 cells at a BCL of 300 ms, due to prolonged APD

associated with low GKr (Fig. 6 B,D), as demonstrated by the

regression analysis. Representative voltage and calcium traces for

both populations are shown in Fig. S3 in Supplement S1.

Discussion

In this study we have developed a population-based approach to

investigate the potential of mRNA expression levels measured in

failing human hearts to predict electrophysiological remodeling in

Figure 6. Occurrence of voltage and calcium alternans in the non-failing and failing populations. Colour scale indicates the proportion
of models displaying alternans in APD80 and/or CaTD80 for each value of each ionic conductance considered. A) There are 36 non-failing alternans
cases at 350 ms BCL. B) There are 64 failing alternans cases at 350 ms BCL. C) There are 2241 non-failing cells in alternans at 300 ms BCL. D) There are
2235 failing cell models in alternans at BCL 300 ms.
doi:10.1371/journal.pone.0056359.g006
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AP and CaT, as measured experimentally. Our population-based

approach takes into consideration natural variability that may

arise from a variety of sources, as well as uncertainty associated

with the extent to which mRNA expression affects functional

channel conductance at the cell membrane, and uncertainty in

electrophysiological measurements. This is in contrast to the

traditional approach of considering unique values of ionic

conductances in cardiac models of non-diseased and failing

human cardiomyocytes [15,30,35]. Our main findings are:

1. mRNA data associated with GCaL, GK1, GKs, GKr, SERCA,

Gto and GNaCa (as reported in [3]) predict prolongation and

increased triangulation of AP, prolongation and decreased

triangulation of Ca transients, decreased maximum systolic Ca,

and increased delay between Ca and Vm upstroke in failing

versus non-failing human cardiomyocytes, as reported in

experimental studies (Tables 2 and S1–S7 in Supplement S1);

2. AP biomarkers (namely APD80 and APD3080) are correlated

in both non-failing and failing cardiomyocytes, and are

primarily determined by GKr, and secondarily by GCaL and

GK1;

3. Ca biomarkers (including CaTD80, CaTD3080 and DAPCaT)

are correlated (but only weakly correlated with AP biomarkers)

and are primarily determined by Jup, GCaL and GNaCa;

4. ionic mechanisms underlying the occurrence of alternans are

different in the failing population versus the non-failing

population: alternans are primarily favoured by low GKr

values in failing human cardiomyocytes and by low SERCA

(Jup) and high GCaL in non-failing human cardiomyocytes.

The non-failing and failing populations of human ventricular

cell models are constructed based on the latest human ventricular

AP model [15], which was developed using a consistent and

extensive dataset of electrophysiological measurements obtained

from the left ventricular endocardium of non-diseased human

hearts. The non-failing cell model population includes human

ventricular cell models sharing the same equations but with ionic

conductances varying in +30% range with respect to control. The

overlap in the parameter ranges between the two populations

explains some (but not all) of the overlap in the histograms in

Fig. 3. Variability in ionic conductances lead to variability in

biomarker values, with each distribution centered around the

original ORd model value. Specifically, APD80 ranges from

201 ms and 362 ms for BCL = 1500 ms and from 158 ms and

248 ms for BCL = 300 ms, which is in range with the level of

variability reported in experimental measurements for non-

diseased human cardiomyocytes [15,16]. As shown in Table S2

in Supplement S1, APD values are very different from one study to

another, indicating important sources of variability related to

preparations and techniques specific to each study. This may

represent an important limitation for the construction of cardiac

models built using a variety of data from different laboratories

[36].

The failing cell model population is built by including 0–60%

downregulation of Gto, GCaL, GKr and SERCA and 0–60%

upregulation of INaCa, based on the data by [3]. Our simulations

predict changes in AP and Ca transients, which are in qualitative

agreement with experimental recordings summarized in Tables

S2–S7 in Supplement S1. Significant quantitative differences exist

between experimental studies and also with our simulation results,

which might be due to a range of causes including the type of heart

failure (non-ischæmic versus ischæmic), inter-subject variability,

preparation (isolated cells or tissue), recording technique, etc [37].

Changes in AP biomarkers are not strongly correlated with

changes in CaT biomarkers, suggesting that different ionic

mechanisms cause these biomarker changes. This is explicitly

demonstrated through linear regression. In particular different

causes determine the duration of AP and CaT in failing cardiac

myocytes, namely GKr for the AP, and SERCA and GCaL for the

Ca transient. In the reviewed comparative experimental studies,

AP and CaT prolongation occurred concurrently in heart failure.

Thus, our findings lead to the prediction that remodeling of both

calcium and potassium currents currents may have occurred in

these samples - remodeling of one component alone does not lead

to the changes seen in these experiments. It is worth noting that

[5] observed no significant prolongation of APD80 or CaTD80 at

the endocardium in the failing population, but did observe other

changes in CaT morphology. We suggest that correlation plots

may provide a method to investigate causes of biomarker changes

by plotting against biomarkers whose underlying regulatory

mechanisms are well known.

Our simulations also show significant rate-dependence in the

ionic conductances underlying changes in AP triangulation,

CaTD80, CaT triangulation and AP-CaT delay in failing and

non-failing cardiomyocytes. In particular, the significance of ICaL

in affecting the biomarkers under investigation increases at shorter

cycle lengths.

Our population based approach reveals conditions in which

alternans may appear at longer BCLs than in the original ORd

model. The form of alternans observed in the non-failing

population cannot occur in the failing population, as the

combination of parameters driving alternans in the non-failing

population is outside the parameter range for the failing

population. Similarly, the 2:1 block observed in the failing

population does not occur in the non-failing population as GKr

cannot attain sufficiently low values. Thus, the alternans effect is

different in each population, arising from different ionic mecha-

nisms. This suggests that alternans observed in failing and non-

failing hearts may have different causes, and could require

different interventions to correct.

In this study we have only examined one component of the

mRNA expression dataset presented by Ambrosi et al [3], namely

the changes that occur between non-failing and failing human left

ventricle. There are several other avenues of investigation still

open from this dataset, namely atrial differences and gender

specific differences. Whilst Ambrosi et al [3] noted no significant

difference between male and female left ventricles, other studies

have done so [1,14]. This novel population-based approach to

modelling disease states is a first step towards clinically relevant

modelling of disease states as the methodology is flexible enough to

be applied to any dataset in order to utilise the information

extracted from mRNA data.

Limitations
The non-failing human hearts studied are not necessarily

healthy, and so care must be taken in extrapolation from these

results to healthy humans [5]. Similarly, the term ‘heart failure’

describes a range of pathologies as shown in Table S1 in

Supplement S1, and so our results may not extend to all conditions

coming under the description ‘heart failure’. For example,

Ambrosi et al [3] reported a downregulation of NCX1 in non-

ischæmic but not ischæmic cardiomyopathy as compared to non-

failing hearts (see Table 1).

We do not include co-regulation of membrane ion channels in

our study, as this information is not available from Ambrosi et al

[3]. Co-regulation could have an effect upon the choice of

distribution used for the parameters in future studies.
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The presence of spatial heterogeneities in AP properties in the

left ventricle is consistently reported in humans [4,38]. We do not

directly address these heterogeneities in our study, although our

population approach does offer robustness against variability

resulting from this. Furthermore, many experimental studies use

isolated ventricular myocytes whose original location within the

heart is unclear. The left ventricular wedge studies [4–6] go some

way to addressing this issue, however intercellular coupling may

also affect action potentials as compared to isolated cells.

Our study inherits many of the difficulties in extrapolating from

mRNA expression data to functional membrane ion channels as

discussed in the introduction and reviewed in [11]. Furthermore,

we explicitly address only changes in conductance, and do not

consider other potential consequences of heart failure, such as

altered gating dynamics [39].

Supporting Information

Supplement S1 Supplementary figures and tables re-
ferred to in the text.
(PDF)
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